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Abstract At present, the modelling of terrain edges from
discrete data clouds {x, y, z} is one of the ‘hot topics’ in the
processing of laser scanning data. This paper proposes two
different methods for the three-dimensional modelling of ter-
rain edges. Common to both methods is the idea to describe
the terrain edge as the intersection line of two surface patches
zi = z(x, y), i = 1, 2. The first method is based on numerical
integration of a differential equation describing the intersec-
tion line. The second method uses the snakes algorithm for
the identification of the terrain edge. Both methods are tested
for synthetic and real-world data examples, which shows that
they are suitable for the practical extraction of edges from
laser scanning data.

Keywords Surface discontinuities · Intersection curve ·
Numerical integration · Snakes

1 Introduction and motivation

In recent years, laser scanning has significantly changed the
process of data collection for the modelling of topographic,
and other, surfaces. The enormous density of discrete infor-
mation provided by laser scanning, which have the form of
irregularly sampled point clouds {x, y, z} ⊂ R

3 open new
possibilities for the modelling of surfaces. Due to the irregular
data distribution, the problem of modelling surfaces with dis-
continuities in the first-order derivatives can even be tackled.

In Borkowski and Keller (2003) an approach was pro-
posed, which was based on a variational principle.The param-
eters of the variational method are locally controllable and
therefore allow the preservation of surface discontinuities
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during the modelling process. Nevertheless, the method does
not provide vectorial information about the location of those
discontinuities. For many applications, vectorial information
is indispensable such as digital terrain models for disaster
management in flooded areas.

At present, the extraction of vectorial discontinuity infor-
mation is mainly used for the extraction of terrain edges
from laser scanning point clouds. In these methods, the orig-
inally irregularly sampled data are interpolated to a regular
quadratic grid and the height information is converted into
grey-scale values. The resulting height image is treated by
standard methods of digital image processing for edge detec-
tion (Brügelmann 2000; Sui 2002).

In contrast to this digital image processing approach, the
direct use of the laser scanner data allows three-dimensional
modelling of terrain edges. First results for the three-dimen-
sional edge detection are presented in the works of Kraus and
Pfeifer (2001) and Briese et al. (2002). The method described
in this paper starts from the two-dimensional edge location
information, which was obtained by digital image processing
methods. This two-dimensional model K divides the original
data into two classes. One class consists of all points on the
left side of K , and the other consists of all points on the right
side of K .

Both classes are then extended by points of the other
class, which are in the close neighbourhood of the divid-
ing edge K . Sliding along K from each subset, a smaller
patch Pi ⊂ R

3 , i = 1, 2 is selected. For each patch Pi , an
approximating plane Ei is computed. The intersection K :=
E1 ∩ E2 coincides with the local tangent vector to the three-
dimensional terrain edge. The alignment of all these tangent
vectors gives the three-dimensional terrain edge model. This
process is repeated for every patch, when sliding along the
preliminary two-dimensional edge model K .

In a second computation step the resulting intersection
lines t are used for a reclassification of the points of the
data set into ‘left’ and ‘right’ of K . If necessary, this process
can be iterated. The tangent vector t gives only the direction
but not the location of the terrain edge. Therefore, a point
representer in the centre of each patch is chosen. These point
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2 A. Borkowski and W. Keller

representers are then connected by a spline, thus delivering
the three-dimensional vectorial description of the terrain edge.

The paper aims to generalise the idea presented in (Kraus
and Pfeifer 2001; Briese et al. 2002). Instead of finding the
terrain edge as the intersection of sliding planes, here the
terrain edge is to be found as the intersection of two curved
surfaces. This requires that, in a pre-processing step, data
blunders are eliminated and that a rough classification of the
data into the two sides of the terrain edge has been carried out.

Finding the intersection of surfaces (or space-curves) be-
longs to the standard techniques of computer graphics and
visualization. Hoschek and Lasser (1992) give an excellent
overview of the available algorithms. Algebraic methods,
which for simple surfaces provide closed solutions of the
intersection problem, are of particular importance in the field
of computer graphics. Unfortunately, they are not applica-
ble to our problem since the analytic description of the sur-
faces E1, E2 is far too complicated for algebraic solution
techniques.

In this paper, two new approaches are presented, which
are based on the usual explicit terrain representation of digital
terrain models. The first of the two methods is the implemen-
tation of a numerical integrator for the solution of an exact
differential equation describing the terrain edge. The second
uses a deformable curve model (snake) in order to find the
projection of the terrain edge into the xy plane. Both methods
are numerically tested and their performances are compared.

2 Intersection curve of two surfaces

Let us assume that the original data have already been clas-
sified into points to the ‘left’ and points to the ‘right’ of the
edge to be determined. This can be done using methods of
digital image processing. The data from each class are now
approximated by surfaces, having the explicit expressions
z = fi(x, y); i = 1, 2. The terrain edge is the intersection
curve [x(s), y(s), z(s)]� of the two surfaces.

Hence, the problem of finding the three-dimensional edge
representation can be reduced to the problem of finding the
projection of this curve into the xy coordinate plane. The z-
component of the three-dimensional intersection line is ob-
tained by inserting the projection into one of the surfaces f1
or f2

[x(s), y(s), z(s]]�= [x(s), y(s), fi(x(s), y(s))]�, i =1, 2
(1)

Obviously, along the projection [x(s), y(s)]� of [x(s), y(s),
z(s)]� in the xy-plane

F(x(s), y(s)) := f2(x(s), y(s)) − f1(x(s), y(s)) = 0 (2)

holds. This condition (Eq. 2) can be reformulated as an ordi-
nary differential equation (ODE)

d

ds
F (x(s), y(s)) = Fx(x(s), y(s))

dx

ds

+ Fy(x(s), y(s))
dy

ds
= 0 (3)

Hence, the equations

dy

dx
= −Fx(x, y)

Fy(x, y)
, Fy �= 0 (4)

dx

dy
= −Fy(x, y)

Fx(x, y)
, Fx �= 0. (5)

hold.

3 A line-tracking algorithm

3.1 Second-order integrator

If an initial point (x0, y0) is given, the projection [x(s), y(s)]�
can be computed either as a solution of the ODE in Eq. (4),
or as a solution of Eq. (5). In the first case, y as a function of
x and in the second case x as a function of y is obtained.

In general, it will be necessary to switch between Eqs. (4)
and (5) if Fx ≈ 0 or Fy ≈ 0 holds, which can lead to a loss of
continuity of the curve [x(s), y(s)]�. This difficulty can be
overcome in the following way: An equivalent representation
of Eq. (3) is

Fx

dx

ds
+ Fy

dy

ds
= 0 (6)

dx2 + dy2 = ds2. (7)

Equation (6) is clearly equivalent to the first-order differential
equation system[ dx(u)

du
dy(u)

du

]
=

[
Fy(x(u), y(u))

−Fx(x(u), y(u))

]
, (8)

which describes the direction of the tangent vector in every
point of the intersection line. In this form, the problem has
been treated frequently in literature (Ascher and Petzold 1998;
Hairer et.al. 2002). Nevertheless, in this form the curve param-
eter u can be chosen arbitrarily. By adding Eq. (7) to the
problem, the curve parameter is forced to be the arc-length s.
From the mathematical point of view this might be unimpor-
tant, but for practical application is very important to preserve
the metric properties of the intersection line.

By discretizing Eq. (8) with step-size h = sn+1 − sn, the
following difference equations are obtained

Fxdxn+1 + Fydyn+1 = 0 (9)

dx2
n+1 + dy2

n+1 = h2 (10)

where dxn+1 := xn+1 −xn and dyn+1 := yn+1 −yn. The geo-
metric interpretation of Eqs. (9) and (10) is the intersection
of a straight line with a circle of radius h. The situation is
visualized in Fig. 1.

The gradient ∇F = (Fx, Fy) equals the negative main-
normal vector n of the intersection line F(x, y) = C. The
tangent vector t is orthogonal to the main-normal vector

t�∇F = 0, (11)



Global and local methods for tracking the intersection curve between two surfaces 3

Fig. 1 Geometrical interpretation of the second-order integrator

hence

t = (±Fy, ∓Fx). (12)

is true. The vector t is the direction vector of the straight line
described by Eq. (9). Therefore, the two intersection points
between a straight line and a circle are

dxn+1 = ±h cos(α), dyn+1 = ±h sin(α) (13)

with

α = arctan

(
ty

tx

)
= arctan

(−Fx

Fy

)
. (14)

Depending on the choice of the sign, the level line is fol-
lowed in the one or in the opposite direction. This leads to
the iteration

αn = arctan
−Fx(xn, yn)

Fy(xn, yn)
(15)

xn+1 = xn ± h cos(αn) (16)

yn+1 = yn ± h sin(αn) (17)

3.2 Consistency and third-order integrator

The concept of consistency describes the degree of consis-
tence of the original with the discretized differential equation.
If the exact solution of the differential equation is inserted in
the corresponding difference equation, a certain residual ε(h)
will remain. Its magnitude will depend on the chosen step-
size h. If the residual is developed into a power series with
respect to h

ε(h) =
∞∑

n=p

cnh
n (18)

the first non-vanishing power p of h is called the order of
consistency of the integrator (Roos and Schwetlick 1999).

Lemma 1. The integrator (Eqs. 9 and 10) has the order of
consistency p = 2.

Proof.

Fx(xn, yn)(xn+1 − xn) + Fy(xn, yn)(yn+1 − yn)

= Fx(xn, yn)

(
x ′

nh + 1

2
x ′′

nh2

)

+Fy(xn, yn)

(
y ′

nh + 1

2
y ′′

nh2

)
+ O(h3)

= Fx(xn, yn)

(
1

2
x ′′

nh2

)
+ Fy(xn, yn)

(
1

2
y ′′

nh2

)
+ O(h3)


�
This order of consistency is very low, and forces the use

of very small step-sizes h in order to achieve a given accu-
racy level. Therefore, it is desirable to have an integrator of
a higher order of consistency. One possibility to achieve this
goal is to find the next solution point as the intersection of the
circle dx2

n+dy2
n = h2 with a straight line, which has the arith-

metic mean of the tangent vectors in the points n and n + 1
as direction vector. Figure 2 describes the underlying idea.

The resulting integrator is
1

2
(Fx(xn, yn) + Fx(xn+1, yn+1))dxn+1

+ 1

2
(Fy(xn, yn) + Fy(xn+1, yn+1))dyn+1 = 0 (19)

dx2
n+1 + dy2

n+1 = h2 (20)

Lemma 2. The integrator (Eqs. 19 and 20) has the order of
consistency p = 3.

Proof.

Fx(xn, yn)(xn+1 − xn) + Fy(xn, yn)(yn+1 − yn)

+ Fx(xn+1, yn)(xn+1 − xn)+Fy(xn+1, yn+1)(yn+1 − yn)

= Fx(xn, yn)

[
x ′

nh + 1

2
x ′′

nh2

]
+ Fy(xn, yn)

[
y ′

nh + 1

2
y ′′

nh2

]

Fig. 2 Geometrical interpretation of the third-order integrator
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− Fx(xn+1, yn+1)

[
−x ′

n+1h + 1

2
x ′′

n+1h
2

]

− Fy(xn+1, yn+1)

[
−y ′

n+1h + 1

2
y ′′

n+1h
2

]
+ O(h3)

= 1

2
Fx(xn, yn)x

′′
nh2 + 1

2
Fy(xn, yn)y

′′
nh2

− 1

2
Fx(xn+1, yn+1)x

′′
n+1h

2

− 1

2
Fy(xn+1, yn+1)y

′′
n+1h

2 + O(h3)

= 1

2
Fx(xn, yn)x

′′
nh2 + 1

2
Fy(xn, yn)y

′′
nh2

− 1

2
[Fx(xn, yn) + Fxx(xn, yn)(xn+1 − xn)

+ Fxy(xn, yn)(yn+1 − yn)

+ O(h2)][x ′′
n + x ′′′

n h + O(h2)]h2

− 1

2
[Fy(xn, yn) + Fyx(xn, yn)(xn+1 − xn)

+ Fyy(xn, yn)(yn+1 − yn) + O(h2)]

× [y ′′
n + y ′′′

n h + O(h2)]h2 + O(h3)

= −1

2
[Fxx(xn, yn)x

′
nh + Fxy(xn, yn)y

′
nh] · x ′′

nh2

− 1

2
[Fyx(xn, yn)x

′
nh + Fyy(xn, yn)y

′
nh] · y ′′

nh2 + O(h3)

= O(h3)


�
Equations (19) and (20) are implicit because the unknown

point (xn+1, yn+1) occurs as an argument of Fx and Fy . There-
fore, Eqs. (19) and (20) have to be solved iteratively as a
so-called predictor-corrector scheme.

Predictor Step:

α(0)
n = arctan

−Fx(xn, yn)

Fy(xn, yn)
(21)

x
(0)
n+1 = xn ± h cos(α(0)

n ) (22)

y
(0)
n+1 = yn ± h sin(α(0)

n ) (23)

Corrector Step:

α(k+1)
n = arctan

−
(
Fx(xn, yn) + Fx

(
x

(k)
n+1, y

(k)
n+1

))
Fy(xn, yn) + Fy

(
x

(k)
n+1, y

(k)
n+1

) (24)

x
(k+1)
n+1 = xn ± h cos(α(k+1)

n ) (25)

y
(k+1)
n+1 = yn ± h sin(α(k+1)

n ), (26)

k = 0, . . . , K − 1

xn+1 = x
(K)
n+1, yn+1 = y

(K)
n+1 (27)

3.3 Higher-order integrator

Naturally, it is desirable to have an integrator with an or-
der of consistency that is comparable to that of the classical
Runge-Kutta integrator. Adapting the ideas of the Runge-
Kutta method, a fourth-order integrator for our line-tracking
problem is

Fx(xn, yn)dξ1 + Fy(xn, yn)dη1 = 0 (28)

(dξ1)
2 + (dη1)

2 = h2 (29)

Fx

(
xn + 1

2
dξ1, yn + 1

2
dη1

)
dξ2

+ Fy

(
xn + 1

2
dξ1, yn + 1

2
dη1

)
dη2 = 0 (30)

(dξ2)
2 + (dη2)

2 = h2 (31)

Fx

(
xn + 1

2
dξ2, yn + 1

2
dη2

)
dξ3

+ Fy

(
xn + 1

2
dξ2, yn + 1

2
dη2

)
dη3 = 0 (32)

(dξ3)
2 + (dη3)

2 = h2 (33)
1

6

(
Fx(xn, yn) + 2Fx

(
xn + 1

2
dξ1, yn + 1

2
dη1

)

+ 2Fx

(
xn + 1

2
dξ2, yn + 1

2
dη2

)

+ Fx(xn + dξ3, yn + dη3)

)
dxn+1

+ 1

6

(
F(xn, yn) + 2Fx

(
xn + 1

2
dξ1, yn + 1

2
dη1

)

+2Fx

(
xn + 1

2
dξ2, yn + 1

2
dη2

)

+Fx (xn + dξ3, yn + dη3)

)
dyn+1 = 0 (34)

(dxn+1)
2 + (dyn+1)

2 = h2 (35)

3.4 Starting point

Let z = fi(x), i = 1, 2 be the equation of two surfaces with
x = [x y]. The problem of finding a point x∗ on the intersec-
tion line 0 = F(x) := f1(x) − f2(x) of the two surfaces is
discussed. It is assumed that two initial points x(1), x(2) are
known fulfilling

F(x(1)) · F(x(2)) < 0

Define

x(3) := x(1) + x(2)

2
(36)

then a sequence
{
x(k)

}
is constructed in the following way:

sk :=
∥∥x(k) − x(1)

∥∥∥∥x(2) − x(1)
∥∥ (37)
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pk(s) =
k∑

i=k−2

k∏
j �= i

j = k − 2

s − sj

si − sj

F (x(i)) (38)

Let be λ
(k)
1 , λ

(k)
2 be the roots of pk . Then compute

ξ
(k)
l = x(1) + λ

(k)
l

(
x(2) − x(1)

)
, l = 1, 2 (39)

Set

x(k+1) :=
{
ξ

(k)
1 , ξ

(k)
2

} ⋂ [
x(k), x(k−2)

]
(40)

x(k) =
{

x(k−1), F (x(k−1)) · F(x(k+1)) < 0
x(k−2), otherwise

(41)

For the unknown initial point x∗, it always holds that

x∗ ∈ [
min

{
x(k+1), x(k)

}
, max

{
x(k+1), x(k)

}]
(42)

4 Snakes-based algorithm

The model of deformable curves, the so-called snakes, was
introduced by Kass et al. (1987) and used for the extraction
of fuzzy line-objects in digital images. Due to the universal-
ity of the underlying principle, the method has found many
applications in almost all domains of geo-data processing.

A certain kind of external energy is assigned to the curve
to be modelled. This energy defines the resulting shape of the
curve. On the other hand, the medium containing the curve
has some internal energy (potential), reflecting the internal
structure of the medium. The interaction between internal
and external energy places the deformable curve at an opti-
mal position, which is characterized by a balance between
the two kinds of energy.

If the curve is normalized to the interval [0, 1], param-
eterised by s, its parameter representation reads v := [x =
x(s) y = y(s)]�. The optimal snake’s position can be found
by minimizing the total energy of the curve

I [v(s)] =
1∫

0

(Eint + Eext)ds. (43)

The internal energy Eint describes the geometric properties
of the curve

Eint := [αv2
s + βv2

ss]

2
, (44)

where vs :=
[
dx

ds

dy

ds

]�
is the elastic term and vss :=

[
d2

x

ds2

d2
y

ds2

]�

is the viscosity term. The elastic term of the internal energy
is weighted by the parameter α, and the viscosity term is
weighted by the parameter β. Varying the parameters α and
β leads to curves with the desired geometrical properties. The
second term in Eq. (43), the external energy Eext, activates
the snake and causes a shift of the snake as long as the energy

terms are not in balance. The external energy is generated by
the data and is therefore context-sensitive.

A necessary condition for the solution of the extremal
problem (Eq. 43) with the boundary conditions v(0) = va

and v(1) = vb is the stationarity of the first variation of
I [v(s)]:
δI [v + δv] = 0 (45)
This leads to a differential equation of fourth order, the so
called Euler equation, which after insertion of internal and
external energy has the following form:
grad(Eext) − αvss + βvssss = 0. (46)
After discretization of the Euler equation (Eq. 46) by fi-
nite differences one obtains the following linear system of
equations
Ax + Ev = 0 (47)
with the pentadiagonal coefficient matrix

A =




a b c 0 0 0 . . .
b a b c 0 0 . . .
c b a b c 0 . . .
0 c b a b c . . .
0 0 c b a b . . .
0 0 0 c b a . . .
...

...
...

...
...

...
. . .




(48)

where Ev = grad(Eext) and the coefficients are given by
a = 2α + 6β, b = −α − 4β, c = β. (49)
Since det(A) = 0, the linear system of equations cannot be
solved directly. Instead, it is transformed into the semi-linear
system
vt = (A + γ I)−1 (γ vt−1 − Ev|t−1

)
(50)

and solved iteratively. The parameter γ is an additional elim-
ination parameter, which in most cases is set equal to unity.

Now the snakes algorithm will be adapted to the problem
of the identification of the intersection line of two surfaces.
The idea behind the algorithm is shown in Fig. 3 (Borkowski
2004): the process starts with an almost arbitrary initial snake
in the xy plane. This initial snake is moved and deformed as
long as an optimal approximation of the projection of the
intersection is not reached.

For this purpose, the external energy is defined as the sum
of the squares of the distances between two surfaces at the
instantaneous position of the snake.

Eext ∝ µ

2
(z2 − z1)

2, (51)

where z1 = f1(x, y) and z2 = f2(x, y) are the snake-heights
on the left and the right surface patch, respectively. In order
to guarantee convergence, the external energy is scaled with
the weight µ. The derivatives needed in the snakes approach
are:

Ev :=
[

∂Eext
∂x

∂Eext
∂y

]
= µ(z2 − z1)

[
∂f2(x,y)

∂x
− ∂f1(x,y)

∂x
∂f2(x,y)

∂y
− ∂f1(x,y)

∂y

]
(52)

In contrast to the line-tracking algorithm, the snakes approach
does not need an initial point. The initial snake can be placed
arbitrarily.
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Fig. 3 Identification of the intersection curve K with snake S

5 Examples

5.1 Synthetic examples

Firstly, numerical integrators of different orders for the solu-
tion of the line-tracking problem are compared to each other.
The intersection line of the plane z = 0 with the surface
z = 50.0 · cos

(
π
5 x

) · sin
(

π
5 x

)
(Fig. 4) is computed twice:

first with an integrator of second order, and then with an
integrator of third order.

The surface has several closed and one non-closed zero-
level lines. The initial point for the line-tracking algorithm
is placed on the non-closed line and therefore this line is
computed by the numerical integration.

The second-order integrator is given by Eqs. (9) and (10).
The third-order integrator is the Predictor-Corrector approach,
mentioned before, which is implemented in two different
ways:

1. One corrector step for each predictor step.
2. Five corrector steps for each predictor step.

The intersection lines computed with both integrators are
displayed in Fig. 5. Visually, there is no difference between
the two solutions. If the neighbourhood of the curvature max-
imum is enlarged, the differences become visible (see Fig. 6).
From Figs. 5 and 6, the third-order integrator follows the cur-
vature more closely while the second-order integrator prefers
the secant direction.

Another comparison is based on the computation of the
z-values along the computed projection xy of the intersection
line. If the computed projection were error-free, the z-values
would be identical to zero. The deviation of the computed
z-values from zero can be used as a measure for the accu-
racy of the method. Figure 7 shows the z-values along the
two projections, computed with the second- and third-order
integrators.

It is clearly visible in Fig. 7 that the second-order integra-
tor generates a considerably larger error than the third-order
integrator. Besides the dependence of the integration error

Fig. 4 Synthetic test data

Fig. 5 Location of the computed intersection lines

Fig. 6 Location of the computed intersection lines (zoomed in)

from the curvature of the projection, an additional undesired
error trend is visible.

Even the third-order integrators differ in their perfor-
mance, depending on the number of corrector steps carried
out. Figure 8 shows the z values along the xy projections,
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Fig. 7 Accuracy of the computed intersection lines

Fig. 8 Accuracy of the computed intersection line

which were computed once with one and five corrector steps.
As expected, the iterated Predictor-Corrector method is much
more stable than the simple third-order integrator.

If the same contour line as in the previous example is
computed with the fourth-order integrator, again the level
error can be considered as an indicator of accuracy. In Fig. 9,
the level errors of the third-order predictor–corrector method
and the sixth-order method are displayed.

The same example has also been tackled using the snakes
approach. Figure 10 displays the z-level accuracy of the iden-
tified intersection line. Obviously, the snakes approach is able
to provide the same accuracy as the third-order integrator,
but uses snake-elements (snaxels), which are shorter than the
step-size h of the integrator. Both methods have their specific
advantages and disadvantages, as follows.

• Numerical integration is a local method. Therefore, the
integration error increases with increasing length of
the intersection line. In contrast, snakes have global
approximation properties. The accuracy is almost con-
stant along the intersection line.

• Snakes do not need an initial point. The initial snake can
be placed almost arbitrarily. On the other hand, numer-
ical integration is much faster, since it does not require

Fig. 9 Accuracy of integrators with different orders of accuracy

Fig. 10 Height accuracy of the snakes method

the solution of a system of linear equations, as this is the
case for the snakes. For intersection lines with large cur-
vature changes, several iterations are necessary, which
can slow down the extraction process considerably.

• By a suitable choice of the parametersα andβ, the snake
approach can produce intersection lines with desired
geometrical properties. This allows for a simultaneous
feature extraction and noise reduction. In the numeri-
cal integration the measurement errors propagate freely
into the shape of the extracted intersection line.

5.2 Real-world examples

The above numerical examples with the synthetic data have
shown that the snakes-algorithm and the differential-equation-
contouring lead to results that are comparable in terms of
accuracy and computational efficiency. In order to demon-
strate the practical value of both methods, they now will be
applied to edge detection for real data sets. For this purpose,
two data sets are used: Data set 1 (see Fig. 11) represents a
section of the embankment of the Oder river. Data set 2 (see
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Fig. 11 Test data 1

Fig. 12 Test data 2

Fig. 12) comes from the Polish city Wroclaw, where an arti-
ficially arisen terrain-form with unequivocally identifiable
edges was scanned.

The first data set was measured primarily for this paper,
the second was taken from Borkowski (2004). Since real laser
scanner data do not provide a ground-truth for the location
of the terrain edges, in the test data sets, the laser-scanner
was emulated by a total-station. The spacing of the measured
points was irregular in order to generate a similar (irregular)
data distribution as laser-scanning would have done (a point
cloud). For the establishment of ground truth, the edges were
measured separately.

Since the data are given as a point cloud, a functional rep-
resentation of the two surface patches has to be derived first.
A thin-plate spline representation (Duchon 1976) is used for

this purpose:

z(x, y) = 1

2

n∑
i=1

λir
2
i ln r2

i + ν00 + ν10x + ν01y, (53)

where r2
i = (x −xi)

2 + (y −yi)
2 and λ, µ are control param-

eters. The n + 3 unknowns are related to the n data w by the
following linear system of equations

[
A T

T� 0

] [
λλλ
ννν

]
=

[
w
0

]
, (54)

where

A =




0 a12 a13 . . . a1n

a21 0 a23 . . . a2n

a31 a32 0 . . . a3n

...
...

...
...

...
an1 an2 an3 . . . 0


 , T =




1 x1 y1
1 x2 y2
1 x3 y3
...

...
...

1 xn yn


 ,

λλλ = [
λ1 λ2 λ3 . . . λn

]�
, ννν = [

ν00 ν10 ν01
]�

,

w = [
w1 w2 w3 . . . wn

]�

and aij = aji = r2
ij ln rij with r2

ij = (xi − xj )
2 + (yi − yj )

2,
i, j = 1, 2, ..., n.

For the identification of the terrain edges as the inter-
sections of two adjacent thin-plate spline surface patches,
both algorithms were used: The snakes algorithm and the
contouring algorithm based on differential equation solver
of second-order. In the horizontal projections the location of
the data points are marked in Figs. 11 and 12. Also, the pro-
jection of the ground-truth edges Bi , i = 1, 2, 3, 4 into the
xy-plane are drawn in Figs. 15 and 16.

For the edge detection with snakes, the parameters α, β, µ
were chosen as α = β = µ = 1. The length of the snakes-
elements was set to h = 0.2 m, which corresponds to the
step-size of the differential equation contouring algorithm.
The deviations between the identified edges and the ground-
truth are shown in Figs. 13–16.

In Figs. 13–16, the left column always shows the devi-
ation (d) in the horizontal plane and the right column the
deviation (�z) in height. The compression of this informa-
tion into statistical parameters can be found in Tables 1–4. For
each edge, the maximal horizontal distance dmax, the mean
horizontal distance d and the standard deviation σd are given.
The same applies to the height deviation.

The statistical parameters in Tables 1–4 show that both
methods are comparable in terms of accuracy. Both methods
show a deviation from the ground-truth, which corresponds
to the data accuracy. The accuracy is influenced by the data
density and the intersection angle of the two surface patches.
The differences between the results of the two methods are
much smaller and are mainly determined by the errors of
numerical approximation. Nevertheless, both methods fulfill
the requirements for practical edge detection.
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Fig. 13 Test data 1. Horizontal (d) and vertical (�z) deviations versus
arc length for the snakes edge detection (all units in meter)

Fig. 14 Test data 1. Horizontal (d) and vertical (�z) deviations versus
arc length for the differential equation contouring edge detection (all
units in meter)

Table 1 Test data 1. Accuracy measures of edge detection by snakes
(all units in meter)

Edge dmax d σd �zmax �z σ�z

B1 0,51 0,18 0,11 0,06 0,00 0,03
B2 0,55 0,20 0,15 0,09 0,03 0,02
B3 0,31 0,11 0,09 0,12 0,04 0,03
B4 0,49 0,19 0,13 −0,12 −0,04 0,04

Table 2 Test data 1. Accuracy parameter of edge detection by differ-
ential equation contouring (all units in meter)

Edge dmax d σd �zmax �z σ�z

B1 0,52 0,18 0,11 −0,07 0,00 0,03
B2 0,56 0,19 0,15 0,09 0,03 0,02
B3 0,32 0,11 0,09 0,12 0,04 0,03
B4 0,51 0,20 0,13 −0,12 −0,04 0,04

Fig. 15 Test data 2. Horizontal (d) and vertical (�z) deviations versus
arc length for the snakes edge detection (all units in meter)

Fig. 16 Test data 2. Horizontal (d) and vertical (�z) deviations versus
arc length for the differential equation contouring edge detection (all
units in meter)

Table 3 Test data 2. Accuracy measures of edge detection by snakes
(all units in meter)

Edge dmax d σd �zmax �z σ�z

B1 0,87 0,40 0,26 −0,16 −0,01 0,06
B2 0,24 0,08 0,06 −0,08 −0,01 0,03
B3 1,05 0,56 0,30 0,22 0,07 0,08
B4 0,87 0,42 0,22 0,13 0,03 0,05

Table 4 Test data 2. Accuracy parameter of edge detection by differ-
ential equation contouring (all units in meter)

Edge dmax d σd �zmax �z σ�z

B1 0,83 0,36 0,25 −0,18 −0,04 0,06
B2 0,29 0,13 0,05 0,08 0,01 0,03
B3 1,04 0,55 0,28 0,23 0,08 0,07
B4 0,86 0,39 0,22 0,13 0,01 0,07
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6 Conclusion

The paper proposes two methods for the extraction of a three-
dimensional vector model of a terrain edge from laser scan-
ning data. The point of departure for both methods is the
same: the data have to be classified into points left and right
from the edge and a surface patch model z = f1(x, z) and
z = f2(x, y) has to be fitted to the data of each class.Any kind
of surface patch fitting can be used. The only requirement for
the surface patch models is that their extrapolation behaviour
does not tend to have strong oscillations. The intersection line
of the two surface patches is considered the terrain edge to
be modelled. This means the intersection line is the solution
of the equation

F(z) := f1(x, y) − f2(x, y) = 0. (55)

The two methods differ by the way in which Eq. (55) is
solved.

• One possibility is to derive a differential equation, ex-
pressing the fact that the value F(z) along intersection
line does not change and to solve the differential equa-
tion by a numerical integrator.

• The other possibility is to define the external energy as
the sum of squares of the differencesEext = ∑

(f1(x, y)
− f2(x, y))2 in z-values of both surface patches and to
find a snake that minimizes the sum of this external and
its own internal energy.

Both methods have their specific advantages and disad-
vantages.

• The integration method is fast and inexpensive, but
it needs an initial point on the edge to be extracted.
The method is independent of curvatures and curvature
changes, but it cannot react to any side condition about
the geometrical nature of the edge it computes.

• The snakes method does not require an initial point on
the edge to be extracted. Already a very coarse initial
location of the snake is sufficient. The snake approach is
an iterative method where the number of necessary iter-
ations strongly depends on the curvature of the edge to
be found. Since in each step a linear system of equations
has to be solved, the iteration process can become rather
costly. By a suitable choice of the weighting parameters
α, β the geometrical nature of the resulting terrain edge
can be controlled.

Both methods provide a numerical accuracy that meets
practical requirements. The numerical tests show that from

discrete laser-scanning data, the form-lines of the terrain can
be determined with a high accuracy. In particular, the accu-
racy of the height information has to be emphasized (see
Tables 1–4).

In practice, the horizontal projection of the terrain edge
is often known, e.g. from photogrammetry. Photogrammetry
always provides a high accuracy of the horizontal projec-
tion, but only a low accuracy of the height information. This
prior information gained from photogrammetry can be used
to classify the laser scanning data into two classes: on the one
and on the other side of the terrain edge. Based on this clas-
sification, the proposed methods can be used to improve the
accuracy of the height information (Kraus 2004). Therefore,
the combination of photogrammetry, point classification and
one of the proposed methods are a useful tool to improve the
overall accuracy of edge detection from laser scanning data.
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