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Abstract. Using a Love number formalism, the elastic
deformations of the mantle and the mass redistribution
gravitational potential within the Earth induced by the
fluid pressure acting at the core–mantle boundary
(CMB) are computed. This pressure field changes at a
decadal time scale and may be estimated from observa-
tions of the surface magnetic field and its secular
variation. First, using a spherical harmonic expansion,
the poloidal and toroidal part of the fluid velocity field
at the CMB for the last 40 years is computed, under the
hypothesis of tangential geostrophy. Then the associated
geostrophic pressure, whose order of magnitude is about
1000 Pa, is computed. The surface topography induced
by this pressure field is computed using Love numbers,
and is a few millimetres. The mass redistribution
gravitational potential induced by these deformations
and, in particular, the zonal components of the related
surface gravitational potential perturbation (DJ2, DJ3
and DJ4 coefficients), are calculated. Overall perturba-
tions for the J2 coefficient of about 10�10, for J3 of about
10�11 and for J4 are found of about 0:3� 10�11. Finally,
these theoretical results are compared with recent
observations of the decadal variation of J2 from satellite
laser ranging. Results concerning DJ2 can be described
as follows: first, they are one order of magnitude too
small to explain the observed decadal variation of J2
and, second, they show a significant linear trend over the
last 40 years, whose rate of decrease amounts to 7% of
the observed value.
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1 Introduction

According to space geodetic observations over the past
25 years, the zonal degree-2 coefficient of the Earth’s
gravitational potential (J2), which is related to the
Earth’s dynamic oblateness, decreased until around
1998, followed by an increasing trend until 2002 (Cox
and Chao 2002) and, finally, a decrease from that time
to the present (Chao et al. 2003). These recent observa-
tions bring out decadal variations in J2 superimposed on
the secular decrease associated with postglacial rebound.
Cox and Chao (2002) discussed several mechanisms
related to the melting of glaciers or polar ice caps which
could be able to explain these observations; none of
these provides a satisfactory answer, however.

Cazenave and Nerem (2002) concluded that, because
of the magnitude of the event, only two potential can-
didates remain: masses moving in the fluid outer core or
in the oceans. A recent study by Cox et al. (2003)
compared the oceanographic signals with satellite laser
ranging (SLR)-derived gravity observations. Because the
timing of the J2 anomaly onset corresponds with the last
big El Nin̈o event, they concluded that the most con-
sistent explanation of the observed J2 anomaly is an
oceanic cause. Here, we discuss the influence of the
Earth’s fluid core motions on the decadal variations of
the gravitational field at the Earth’s surface. We use a
mechanism in which the fluid overpressure field at the
core–mantle boundary (CMB) changes and induces
time-dependent deformations in the mantle. In a similar
study, Fang et al. (1996) found that the CMB geo-
strophic pressure, derived from ’frozen flux’ core surface
flow estimates at epochs 1965 and 1975, produces a
significant contribution to the time variation of the J2
coefficient—about 50% of the observed _J2. They sub-
tracted the deformation at the 1965 epoch from its
counterpart at the 1975 epoch. Consequently, they could
not separate the decadal contribution from the secular
one in the induced J2 variation. Dumberry and Bloxham
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(2003) found that the variations in the Earth’s gravita-
tional field induced by pressure changes at the CMB
caused by torsional oscillations in the core are weak in
comparison with the decadal observations. Here, we are
interested in simultaneously investigating both secular
and decadal variations of the surface elasto-gravita-
tional deformations induced by pressure changes at the
CMB. We compute a time-dependent pressure field de-
rived from core surface flow estimates based on a recent
geomagnetic field model spanning the last 40 years
(Sabaka et al. 2002). This time-dependent model takes
into account satellite data as well as data from ground-
based observatories.

This paper is organized as follows. In the first part
(Sect. 2), we briefly review the method used to compute
the fluid flow at the CMB from surface observations of
the geomagnetic field. We then compute the changes in
the axial angular momentum of the core, for the last 40
years, associated with these motions. In Sect. 3, we de-
rive the geostrophic pressure associated with these mo-
tions and, solving the elasto-gravitational equations, we
compute the associated surface deformations using a
Love number formalism. Finally, we investigate (in Sect.
4) the temporal evolution of the zonal coefficients of the
gravitational potential and we compare these results
with recent geodetic observations.

2 Computation of the tangential flow at the CMB

The tangential flow at the CMB (vH ) can be obtained
from surface magnetic field data and core dynamics
approximations. From observations of the magnetic
field and its secular variation near the Earth’s surface,
spherical harmonic models are computed. If we assume
that the mantle is an insulator, these magnetic field
models may be downward-continued to the bottom of
the mantle.

Within the fluid core, the magnetic induction equa-
tion relates the time variation of the magnetic field to
terms that represent advection of the field by the flow
and magnetic diffusion

@B c

@t
¼ $ ^

�
v ^ B c

�
þ gDB c ð1Þ

where B c is the magnetic field within the core, v is the
fluid velocity and g is the magnetic diffusivity. For time
scales of a few decades, the diffusion can be considered
negligible with respect to the advection term: this is the
so-called frozen flux approximation (Roberts and Scott
1965). In the frozen flux approximation, the radial
component of the induction equation links the radial
magnetic field Bc

r with the tangential flow vH at the CMB
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The radial magnetic field Bc
r is continuous across the

CMB and, consequently, from observations of the
secular variation of the radial magnetic field at the
Earth’s surface, we can compute the horizontal diver-
gence of vH Bc

r within the fluid core at the CMB. At this

stage, we have one equation and two unknowns, namely
the two components of the tangential flow velocity.
Consequently, we need further constraints. In our study,
we assume that the flow at the CMB is tangentially
geostrophic, i.e. there exists an equilibrium between the
horizontal gradient of the pressure P c and the Coriolis
force, with the Lorentz force being presumably negligi-
ble at the CMB and the buoyancy force being mostly
radial (Le Mouël 1984)
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�
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where X is the sidereal rotation rate of the Earth and qc

is the density of the fluid core at the CMB, which is
assumed to be uniform. This force balance [Eq. (3)]
implies the following condition on the flow at the CMB:

$H � ðcos h uH Þ ¼ 0 ð4Þ

where h is the colatitude. A further condition is required
in order to obtain a unique solution, which is generally
the hypothesis of a large-scale flow. This condition
enters as a regularization term in the inversion proce-
dure; for more details, see Pais and Hulot (2000).

Using Eqs. (2) and (4) and the observed secular
variation of the surface magnetic field, we have thus
determined a large-scale vH at the CMB. This velocity
flow at the CMB is classically expanded into poloidal
and toroidal spherical harmonic vectors (see e.g. Gub-
bins and Roberts 1987). In this study, we are essentially
interested in the zonal toroidal motions within the core.
These motions are expanded in spherical harmonics in
the following way:

~vzon ¼ �
X1

n¼1
s0n @hP 0

n ðcosðhÞÞ~eu ð5Þ

where P 0
n are the Legendre polynomials and s0n the zonal

toroidal coefficients in km/year relative to the mantle.
These motions do not depend on the longitude. Fol-
lowing Jault et al. (1988), we assume that exchanges of
angular momentum between the core and the mantle are
carried, inside the core, by flows organized in cylinders
that are coaxial with the rotation axis. The flow in
Eq. (5) can then be interpreted as the core-surface
expression of those cylinders.

To compute these motions, we use the magnetic field
model derived by Sabaka et al. (2002, submitted). This is
a time-dependent model that spans the last 40 years
(1960–2000), taking into account satellite data (POGO,
Magsat, OERSTED, CHAMP) as well as data from
ground-based observatories. Figure 1 shows the tem-
poral evolution, in km/year, of the low-degree coeffi-
cients s0n for n=1–5. The amplitude is of the order of
1–10 km/year. From Fig. 1, there is a significant secular
trend in s01, which is sometimes related to the classical
westward drift of the core with respect to the mantle for
the last 30 years. This behaviour is interesting, as it has
significant implications for the present study, as we will
see below. A decreasing trend in s01, starting around
1970, could already be seen in previous core-fluid-flow
inversions [such as those using the ufm1 model of
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Bloxham and Jackson (1992)], but our result shows a
stronger trend based on more recent data. For example,
we obtain an average s01 ’ �4:79 km/year for 1980–
2001. In comparison, Hulot et al. (2002) obtained a
similar mean secular variation between 1980 and 2000
using the difference between data from the OERSTED
(2000) and Magsat (1980) satellites: their secular varia-
tion model is consistent with an average s01 ’ �4:87
km/year (Eymin, pers. commun. 2003).

Before computing the elastic deformations, we will
test our estimate of the zonal toroidal flow by evaluating
the associated core angular momentum. Assuming that
the CMB zonal flows are the core-surface expression of
coaxial fluid cylinders rotating rigidly relative to each
other, the changes in the axial angular momentum of the
core (denoted by Hc

3 ) carried by these simple flows may
be written as (see e.g. Jault et al. 1988; Greff-Lefftz and
Legros 1995)

Hc
3 ¼

8p
15

qcb5½s01 þ
12

7
s03� ð6Þ

where b is the CMB radius (3480 km). We compare this
core angular momentum with the decadal changes in the
axial angular momentum of the mantle (denoted by Hm

3 )
computed from length-of-day (LOD) observations pro-
vided by the International Earth Rotation Service
(IERS)

Hm
3 ¼ CmdX ð7Þ

where Cm is the axial moment of inertia of the mantle
and dX is the observed variation of the axial angular
velocity of the Earth. The decadal excesses in LOD, both
computed (i.e. Hc

3
2p

CmX2) and observed, are plotted in

Fig. 2. Note that for the new magnetic field model
derived by Sabaka et al. (submitted) and used in our
study, we obtain the classical correlation between
decadal LOD variations and modelled core angular
momentum. That is, the decadal LOD fluctuations can
be attributed to exchanges of angular momentum
between the core and the mantle [for a review, see the
web site of the Special Bureau for the Core of the IERS
Global Geophysical Fluids Centre (GGFC): http://
www.astro.oma.be/SBC]. We do not discuss the cou-
pling mechanisms here, but it seems that a mixture of
electromagnetic, topographic and gravitational are the
most likely candidates (see e.g. Jault 2003).

3 Geostrophic pressure and elasto-gravitational
deformations

Once we have computed a tangentially geostrophic flow
at the CMB, we can compute the related geostrophic
pressure P c at the CMB using Eq. (3) (Gire and Le
Mouël 1990). This pressure field is not stationary, and
time variations can reach about 1000 Pa over 40 years. A
snapshot is plotted in Fig. 3a for 1980. The zonal

Fig. 1. Zonal coefficients of the toroidal flow at the CMB as a
function of time

Fig. 2. Decadal changes in the LOD induced by fluid core motions
(solid line) and in the observed LOD (dashed line) from IERS data

Fig. 3. a Snapshot of the geostrophic pressure field at the CMB for
1980 computed from the tangential flow at the CMB derived by Hulot
et al. (1990); b Temporal evolution of the zonal coefficients of the
pressure: P c0

2 (solid line), P c0
3 (dot-dashed line) and P c0

4 (dashed line)
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coefficients of the CMB geostrophic pressure are com-
puted in the following way (Gire and Le Mouël 1990):

P c0
n ¼ �2qcXb

h n� 1

2n� 1
s0n�1 þ

nþ 2

2nþ 3
s0nþ1

i
ð8Þ

Figure 3b shows the temporal evolution of the low-
degree zonal coefficients. For P c0

2 in Fig. 3, the magni-
tude of the pressure variation is a few hundred Pascal
(Pa).

Let us point out that the large-scale assumption
solves, in a somewhat ‘brute force’ way, a non-unique-
ness problem that otherwise would still exist. It can be
shown (e.g. Backus and Le Mouël 1986; Chulliat and
Hulot 2000) that the solution to Eq. (2), subject to the
constraint given by Eq. (3), does not depend on adding
an arbitrary value to P c, which is constant on a con-
nected-level curve of f ¼ Br

cos h. Moreover, this arbitrary
constant can change from one connected-level curve to
another. Therefore, there remains a pressure component
associated with the CMB flow that cannot be deter-
mined from satellite observations and, consequently, is
not taken into account in this study.

We now compute the elasto-gravitational deforma-
tions induced by the geostrophic pressure field. To do
this, we solve the classical elasto-gravitational equations
(Alterman et al. 1959) which consist of mass conserva-
tion, the momentum equation and the Poisson equation.
Concerning the rheological laws for the mantle and the
core, we assume that the mantle is elastic and that the
core is an inviscid fluid. We write the boundary condi-
tions so that they take into account the excitation
source, which is here taken to be a pressure acting at the
CMB (for more details, see Appendix A of Greff-Lefftz
et al. 2000). The solutions are expanded in spherical

harmonics up to degree and order nmax ¼ 13 and written
using a Love number formalism. Within this formalism,
each coefficient of degree n and order m of the radial
displacement ur and of the perturbation of the gravita-
tional potential U1 at the Earth’s surface is proportional
to the pressure coefficient of the same degree n and order

m. The proportionality coefficient is a Love number h
1

n
or k

1

n following the nomenclature used by Hinderer and
Legros (1989)

urða;h;uÞ ¼
Xnmax

n¼2

Xn

m¼0
um

rnY m
n ðh;uÞ and um

rn ¼ h
1

n
P cm

n

qg
ð9Þ

U1ða;h;uÞ¼
Xnmax

n¼2

Xn

m¼0
Um

1nY m
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1n¼ k
1

n
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n

q
ð10Þ

where a is the Earth’s radius, q the average density and g
the surface gravity.

The gravity on the deformed surface of the Earth
may be computed using h

1

n and k
1

n

dg ¼
Xnmax

n¼2

Xn

m¼0

�
�ðnþ 1Þk1n þ 2h

1

n

� P cm
n

qa
ð11Þ

We do not take into account the degree n ¼ 1
coefficient in the computation of the elasto-gravitational

Table 1. Love numbers used in this study

Degree n h
1

n k
1

n

2 0.23026 0.11160
3 0.10653 0.03306
4 0.05136 0.01156

Fig. 4. A ’snapshot’ of the sur-
face gravitational potential, sur-
face gravity and radial
topography at the Earth’s surface
and at the CMB induced by the
geostrophic pressure for 1980
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deformations, because a degree-one pressure acting at
the CMB cannot exist alone. In fact, the total force
acting on the Earth must be equal to zero in order to
conserve the centre of mass. This consequently imposes
a relation between the degree-one coefficients of the
pressures and tangential tractions acting on each fluid–
solid interface of the model [inner-core boundary (ICB),
CMB and outer surface–atmosphere boundary]. More
details about this particular case can be found in Greff-
Lefftz and Legros (1997).

We compute the pressure Love numbers for the
PREM model (Dziewonski and Anderson 1981). The
values for the low degrees are given in Table 1. Using
these Love numbers, we compute and plot in Fig. 4
snapshots of the surface gravitational potential, the
surface gravity, and the radial displacement at the CMB
and at the Earth’s surface induced, for example, by the
geostrophic pressure for 1980. The amplitude of the
induced surface gravity is about 100 nanoGal. The order
of magnitude of the topography is a few millimetres; the
radial displacement is two times larger at the CMB than
at the surface.

4 Temporal evolution of DJn coefficients

We would now like to point out some results concerning
the temporal evolution of the surface zonal harmonics of
the gravitational potential. The perturbation of the
zonal degree-n gravitational potential coefficient, called
DJn, may be computed from the zonal degree-n pressure
at the CMB

DJn ¼ �k
1

n
P c0

n

qga
ð12Þ

DJn and P c0
n consequently have the same temporal

evolution. Figure 5 shows the temporal evolution of
computed DJ2, DJ3 and DJ4 between 1960 and 2002
(solid lines), and the linear regression of these curves
(dashed lines). The amplitudes of the computed varia-
tions are 10�10; 10�11 and 0:3� 10�11 for DJ2;DJ3 and
DJ4, respectively. These variations are essentially
decadal, but there are linear trends associated with
secular terms of the zonal toroidal coefficients. This is
particularly true for DJ2, which is associated with the
decreasing trend of s01 (see Fig. 1). We obtain for the
slopes of the curves D _J2 ¼ �1:9� 10�12/year,
D _J3 ¼ �3:5� 10�13/year and D _J4 ¼ �1:5� 10�14/year.

We compare these results with recent observations of
decadal variations of J2 from SLR data from 1979 to
2002 (Cox and Chao 2002). The top of Fig. 6 shows the
observed J2 (solid line) given by Cox and Chao (2002).
We make a running average (with a length of average of
about two years) of this curve and obtain the decadal
and secular variation of J2 (dot-dashed line). From a
linear regression (thick solid line), we find a secular term
of about _J2 ’ �2:2� 10�11/year for the period 1980–
2001. Note that, because of the nonlinearity of J2 vari-
ation, the slope can vary depending on the period fitted.
For this period, the uncertainty for the J2 rate in the
comprehensive solution is 0:4� 10�11/year (Cox and
Chao 2002). The difference between the dot-dashed and

Fig. 5. Predicted temporal evolution of the zonal coefficients of the
gravitational potential: DJ2 (top), DJ3 (middle) and DJ4 (bottom) (solid
lines); and linear regression of these curves (dashed lines)

Fig. 6. Top: observed temporal variation of the J2 coefficient from
Cox and Chao (2002); bottom: comparison between the observed
decadal variation of J2 (solid line) and the computed DJ2 (dash-dot
line) induced by the zonal degree-two geostrophic pressure plotted in
Fig. 3b
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the thick solid curves is plotted at the bottom of Fig. 6
(solid line); it represents the observed decadal variations
of J2. These variations can amount to 2� 10�10 in just a
few years.

We apply the same treatment (i.e. running average
and linear regression) for the computed DJ2 induced by
the geostrophic flow at the CMB. There is a secular term
of about �0:19� 10�11/year. This value seems to be
consistent with other recent models of secular variation
of the magnetic field. This is a very interesting result,
although it is smaller than the uncertainty for the ob-
served J2 rate: at least during the last 40 years, there is
7% of the observed value of _J2 that can be attributed to
the zonal toroidal flow at the CMB. As far as we are
aware, this term has never been taken into account: the
observed _J2 (observed only over the past 25 years) is
classically assumed to be essentially induced by the last
deglaciation, melting of glaciers, and is partly by mantle
convection, and is interpreted in terms of mantle vis-
cosity (see e.g. Forte and Mitrovica 2001).

Estimates of the observed values of _J3 and _J4 from the
EIGEN-1S data set [a reasonably recent gravity field
model including CHAMP data; Reigber et al. (2002)] are
_J3 ¼ 0:6� 10�11/year and _J4 ¼ �0:2� 10�10/year with
very large uncertainties (50%). We can consequently
conclude from our study that fluid core motions have a
negligible contribution to the observed values for _J3 and
_J4 coefficients.

Finally, we compare (bottom of Fig. 6) the observed
(solid line) and computed (dot-dashed line) decadal
variation of J2, after the linear trends have been sub-
tracted. This shows that the decadal variations of DJ2,
inferred from the fluid core motion, are too small to
explain the observed oscillations, especially the large
anomalous increase in J2 after 1997, as reported by Cox
and Chao (2002).

5 Summary and conclusion

First, we computed the CMB fluid flows responsible for
the main decadal magnetic field variations at the Earth’s
surface, in a tangentially geostrophic approximation.
The main geomagnetic field model used in the inversion
is a new model for the time-dependent main field that
spans the last 40 years and takes advantage of precise
satellite data as well as ground-based observations
(Sabaka et al. 2002, submitted). Second, we solved the
classical elasto-gravitational equations to compute the
surface gravitational potential and topography defor-
mations induced by the previously computed flow-more
precisely by the component that can be inferred from
surface geomagnetic observations. We considered, in
particular, the perturbations in the zonal gravitational
potential coefficients induced by the zonal toroidal
components of the flow.

We compared the estimated perturbation in DJ2 with
recent SLR observations, since there are speculations
that the observed anomaly in the J2 trend starting in
1998 could partly be attributed to the CMB flow (Cox
and Chao 2002). Based on the present study’s results, we

conclude that the perturbations in J2 induced by the
zonal toroidal motions at the CMB are an order of
magnitude too small to explain the observed decadal
variation of J2. Our results agree with those of Dum-
berry and Bloxham (2003), who investigated the varia-
tions in Earth’s gravitational field induced by pressure
changes at the CMB caused by torsional oscillations in
the core. Similarly to this study, they concluded that the
associated decadal time variation in J2 is too weak to
explain the observations.

A second important result of our study is the com-
putation of a significant linear trend of DJ2 induced by
toroidal motions within the core. Fang et al. (1996), with
a similar theoretical approach, computed the DJ2 coef-
ficient induced by geostrophic pressure at the CMB for
two given years: 1965 and 1975. From the difference
between the two obtained values, they proposed a very
large D _J2 ¼ �1:3� 10�11=yr. As we can see from Fig. 5,
the slope of the J2 curve is strongly dependent on the
period fitted, and consequently it is difficult to compare
the Fang et al. (1996) results (obtained with two values)
with our results (obtained with a 40-year continuous
time series).

The _J2 observed over the past 25 years is usually as-
sumed to result from postglacial rebound and mantle
convection, which are processes evolving at geological
time scales. From this study, we conclude that there may
be a significant contribution (’ 7%) at a decadal time
scale, resulting from zonal toroidal tangential flow at the
CMB.
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