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Abstract. Gravimetric reduction schemes play an impor-
tant role in precise geoid determination, especially in
rugged areas. The Rudzki inversion is the only gravimet-
ric reduction scheme that does not change the equipo-
tential surface. The topographical masses above the geoid
are inverted into its interior in this scheme. Although the
potential of the topography is equal to that of the
inverted masses, and thus there is no indirect effect on the
geoid using this mass reduction scheme, the attractions of
the topography and the inverted topography are not
equal. The formulas to compute the attraction due to
topographical masses above the geoid and due to
inverted masses are studied in planar approximation.
One of the most rugged areas in the Canadian Rocky
Mountains, which lies between 49�N and 54�N latitude
and between 236�E and 246�E longitude, is selected to
compute the gravimetric geoid solution using the Rudzki
method. It is compared with geoid models based on
Helmert’s second method of condensation and the
residual terrain model (RTM), which are most commonly
used in practice, and also with those based on the
topographic–isostatic reduction methods of Airy–He-
iskanen and Pratt–Hayford. Results show that the
Rudzki geoid solution performs as well as the Helmert
and RTM geoid solutions (in terms of standard deviation
and range of maximum and minimum values) when
compared to GPS-leveling data in this test area.

Key words Geoid – Rudzki reduction – indirect
effects – Helmert’s condensation method – Residual
terrain modeling

1 Introduction

The topographical effect is one of the most important
components in the solution of the geodetic boundary

value problem (BVP), and should be treated properly
in the determination of a precise geoid or quasigeoid.
The classical solution of the geodetic BVP using
Stokes’s formula for geoid determination assumes that
there are no masses outside the geoid (see e.g.
Heiskanen and Moritz 1967). The input gravity
anomalies should refer to the geoid, which requires
the actual Earth’s topography to be regularized in
some way. The mathematical and physical treatments
of this issue play an important role in the computa-
tion of a precise (local or regional) gravimetric geoid
solution. There are several reduction techniques, which
all differ depending on how these topographical
masses outside the geoid are dealt with. In theory,
the gravimetric solution for geoid determination using
different mass reduction methods should give the same
result, provided that the corresponding indirect effect
is taken into account properly and consistently
(Heiskanen and Vening Meinesz 1958; Heiskanen
and Moritz 1967).

The importance of gravimetric mass reduction in
quasigeoid determination was first introduced by Pelli-
nen (1962). The specific choice of gravity reduction
method depends on the magnitude of its indirect effect,
the smoothness and the magnitude of the resulting
gravity anomalies, and their associated geophysical
interpretation. The complete Bouguer reduction, for
example, removes all topographic masses above the
geoid producing smooth gravity anomalies, but intro-
duces excessively large indirect effects (see e.g.
Heiskanen and Moritz 1967). Topographic–isostatic
gravity reductions [e.g. Airy–Heiskanen (AH) and
Pratt–Hayford (PH)], on the other hand, remove the
topographic masses by shifting them into the interior of
the geoid according to some model of isostasy, and
they exhibit all the characteristics of a ‘good’ gravity
reduction scheme. These methods introduce indirect ef-
fects of the order of several metres, which are much
smaller than that of the Bouguer scheme, but still larger
than that of Helmert’s second method of condensation,
and thus have not commonly been used in geoid deter-
mination since the late 1970s.Correspondence to: S. Bajracharya

Journal of Geodesy (2004) 78: 272–282
DOI 10.1007/s00190-004-0397-y



In Helmert’s second method, the topographic masses
between the geoid and the Earth’s surface are condensed
onto the geoid, forming a surface layer. The direct
topographic effects and indirect effects using this con-
densation reduction method have been discussed in the
literature (see e.g. Heiskanen and Moritz 1967; Wich-
iencharoen 1982; Wang and Rapp 1990; Sideris 1990;
Heck 1993; and Vanicek and Martinec 1994). The
residual terrain modeling (RTM) scheme, which is not a
topographic–isostatic reduction but gives anomalies
similar to topographic–isostatic anomalies, has been
used for almost two decades as a common tool for ter-
rain reduction in geoid computation (Forsberg 1984).
The recent studies on Helmert’s first method of con-
densation by Heck (2003) and on topographic–isostatic
reductions by Abd-Elmotaal and Kühtreiber (2003),
Bajracharya (2003), and Kuhn (2003) can be considered
as an exploration of different gravimetric reduction
techniques for geoid determination, in addition to the
RTM and Helmert’s second method of condensation.

An interesting method in gravimetric reduction is the
Rudzki inversion scheme (Rudzki 1905; Heiskanen and
Vening Meinesz 1958; Heiskanen and Moritz 1967).
Rudzki postulated his theory of gravimetric reduction in
such a way that the potential of topographical masses
above the geoid is equal to that of inverted topograph-
ical masses inside the geoid. Apart from Rudzki’s own
original work on this reduction scheme, it has not been
used for geoid determination. However, emphasis on
using this gravimetric scheme was given by Lambert
(1930). This reduction method is purely mathematical
and has no associated geophysical meaning, which is not
as important in geoid determination as in geophysics.

The purpose of this paper is to present the gravita-
tional integrals used in Rudzki’s inversion scheme and
compute the Rudzki geoid in one of the most rugged
areas in the Canadian Rocky Mountains. A comparative

analysis of the Rudzki geoid solution with those based
on Helmert’s second method of condensation and the
RTM, which are most commonly used in practice, and
also those based on the topographic–isostatic reduction
methods of AH and PH, is performed.

2 Gravitational integrals for the Rudzki inversion scheme

In potential theory, a point Q0 (see Fig. 1) can be
regarded as an inversion of point Q on a sphere of radius
R, if both points are on the same radial from the center
of the sphere and if the radius of the sphere is the
geometric mean of their distances r and r0 from the
center (Kellogg 1929). Hence the term inversion is used
in Rudzki’s gravimetric method. The point Q0 is also
known as the mirror image of Q. Here, the geoid is
approximated by a sphere of radius R. Not only single
points can be inverted (or mirrored) into the geoid using
this inversion theory, but also whole topographical
masses, as shown in Fig. 1. The condition of the
inversion on the sphere can be expressed as (MacMillan
1958)

r
R
¼ R

r0
; dr ¼ R2

r02
dr0 ð1Þ

An algebraic negative sign in the second part of Eq. (1)
is eliminated for convenience, assuming that when r
changes to r+dr, the corresponding r0 will move to r0

)dr0, thus making both dr and dr0 of the same sign.
The main condition in Rudzki’s inversion method is

that the indirect effect on the geoid is zero. The gravi-
tational potential at point Po on the geoid (and for any
points on the geoidal surface) due to mass element dm at
point Q is equal to that of the inverted mass element dm0

at point Q0, which can be expressed as

Fig. 1. Geometry of Rudzki reduction in
spherical approximation
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DT ¼ T � T 0 ¼ 0; T ¼ T 0 ð2Þ

where DT is the difference between the gravitational
potential T of the topographical masses and that of the
inverted topographical masses, T 0. The differential
potential dT at point Po on the geoidal surface due to
the topographic mass element dm and the differential
potential dT 0 at the same point due to the mirrored
topographical mass element dm0 can be expressed as

dT ¼ G
dm
s
¼ Gqr2 cosudrdkdu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ R2 � 2rRcoswÞ
p ;

dT 0 ¼ G
dm0

s0
¼ Gq0r02 cosudr0dkdu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr02 þ R2 � 2r0RcoswÞ
p

ð3Þ

where G is the universal gravitational constant; (r, u,
k) and (r0, u, k) are the spherical coordinates of the
topographical mass element of density q and the
mirrored topographical mass element of density q0,
respectively, s and s0 are the radial distances between
point Po and the mass elements, and w is the angle
formed by the radius vectors pointing from the
Earth’s geocenter to point Po and the mass elements.
Applying the condition of the inversion on the sphere
from Eq. (1) and the condition of Rudzki’s scheme
from Eq. (2) to Eq. (3), the following equation can be
obtained:

q0 ¼ r
R

� �5

q¼ 1þ z
R

� �5

q; q0 ¼ R
r0

� �5

q¼ 1

1� z0=R

� �5

q

ð4Þ

where z= r ) R is the height QoQ of topographical mass
element and z0 ¼ R� r0 is the height Q0Q of the inverted

mass element (Fig. 1). Equation (4) provides the funda-
mental relationship between the in situ topographical
density and the density of the mirrored topographical
masses below the geoid in Rudzki’s gravimetric scheme.
It shows that the ratio of the densities of the mirrored
and topographical masses is proportional to the fifth
power of either the ratio of the radial distance of the
topographical masses to the radius of the Earth or the
ratio of the radius of the Earth to the radial distance of
the inverted masses. If we take a mass element at the top
of Mount Everest, the density of the mirrored topo-
graphical mass element will change by 0.7% of the
standard Earth’s mean topographical density of
2670 kg/m3.

Similarly, from Eqs. (1), (2), and (3), the following
formula can be obtained:

dm0 ¼ R
r
dm ð5Þ

which shows that the shifting of topographical masses
into the geoid by mirrored masses introduces a slight
mass change. The inverted topographical masses are
slightly smaller than the topographical masses. It is
obvious from Eq. (5) that if the mass element is near the
geoidal surface, these two types of masses become nearly
equal and the height of the topographical mass element
will be nearly equal to the depth of the inverted masses
below the geoid. For a planar model of the geoid (see
Fig. 2), we can obtain the following conditions by letting
R!1 in Eqs. (4), (5), and (1):

q0 ¼ q; dm0 ¼ dm; z0 ¼ z ð6Þ

In the planar model, the potential Tp of the topograph-
ical masses outside the geoid at a point P can be

Fig. 2. Geometry of the Rudzki reduction in
planar approximation

274



expressed by the sum of two integrals which represent
the potential of the regular part (Bouguer plate of
thickness hp) and the irregular part (rough terrain) of the
topography as follows:

Tp ¼ Gq

ZZ

E

Z

hp

0

1

s
dEdzþ Gq

ZZ

E

Z

h

hp

1

s
dEdz ð7Þ

s ¼ s2o þ ðz� hpÞ2
h i1=2

; so ¼ ðx� xpÞ2 þ ½ðy � ypÞ2
h i1=2

ð8Þ

where dE is a differential area, and (xp; yp; zp) and (x, y,
z) are the coordinates of the computation and running
point in a planar system, respectively. The following
expression can be obtained by introducing the gravi-
tational potential of a homogenous circular cylinder of
radius a and height hp (when the regular part of the
topography is represented by a homogenous cylinder;
Heiskanen and Moritz 1967) into the first term of Eq.
(7)

Tp ¼ pGq½�h2
p þ hp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2p
q

þ a2ln
ðhp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2
p

q

Þ
a

þ Gq
ZZ

E

Z

h

hp

1

s
dEdZ ð9Þ

The gravitational attraction of all the topographical
masses above the geoid at a point P can also be
expressed as a sum of the attractions of the regular and
irregular parts of the topography as:

Ap ¼ 2pGq½hp þ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2
p

q

�

� Gq
ZZ

E

�

1

so
� 1

s2o þ ðh� hpÞ2
h i1=2

!

dE ð10Þ

This attraction due to the topographical masses of an
infinite Bouguer plate (a!1) can be expressed as

Ap ¼ 2pGqhp � Gq
ZZ

E

1

so
� 1

s2o þ ðh� hpÞ2
h i1=2

0

B

@

1

C

A

dE

ð11Þ

which represents the gravitational attraction due to all
topographical masses above the geoid. Equation (11) is
common in all gravimetric reductions since the topo-
graphical masses above the geoid should be removed
completely before applying compensation (condensation
or inversion) below the geoid.

The expression for the gravitational attraction at a
point P on the topographical surface due to the mirrored
topographical masses can also be obtained as a sum of

the gravitational attraction due to the regular and
irregular parts of the inverted topography as

A0p ¼ 2pGq0h0p � Gq0
ZZ

E

1

s2o þ ðhp þ h0pÞ
2

h i1=2

0

B

@

� 1

s2o þ ðhp þ h0Þ2
h i1=2

1

C

A

dE ð12Þ

The expression for direct topographical effect on
gravity, which is equal to the difference between the
gravitational attraction due to all topographical masses
above the geoid and that due to the mirrored topo-
graphical masses inside the geoid in Rudzki’s scheme,
can be obtained from Eqs. (6), (11), and (12) as

dA ¼ Ap � A0p ¼ Gq
ZZ

E

1

s2o þ ðh� hpÞ2
h i1=2

� 1

so

0

B

@

þ 1

s2o þ ð2hpÞ2
h i1=2

� 1

s2o þ ðhp þ hÞ2
h i1=2

1

C

A

dE ð13Þ

In Eq. (13), it is obvious that the attractions due to the
regular parts of the topographical and the mirrored
topographical masses are equal and thus cancel out. The
direct topographical effect on gravity in this Rudzki
reduction scheme is the difference between the attraction
due to the irregular part of the topography and that of
the mirrored topography evaluated at a point P on the
surface of the Earth.

3 Computational formulas for geoid determination

The global geopotential model, local gravity informa-
tion, and digital terrain model loosely represent the low-,
medium-, and high-frequency parts of the gravity signal,
respectively. Gravimetric geoid computation is carried
out using the remove–compute–restore (RCR) technique
in this investigation for all gravity reduction methods in
planar approximation. First, the gravity anomalies are
reduced in a remove step using a mass reduction scheme
to formulate boundary values on the geoid, which—-
when the vertical gradient of gravity is approximated by
the vertical gradient of normal gravity—can be ex-
pressed as

Dg ¼ DgF � DgT � DgGM ð14Þ
where DgF is the free-air (FA) anomaly, DgT is the direct
topographical effect on gravity in each reduction
method used, and DgGM is the reference gravity anomaly
from a global geopotential model. The indirect effect on
gravity, which reduces gravity anomaly from the
co-geoid to the geoid, should be added in Eq. (14) for
Helmert’s second method of condensation and the
topographic–isostatic mass reduction schemes, and can
be expressed using the simple, linear free-air gradient
(Heiskanen and Moritz 1967)
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dg ¼ 0:3086Nind mGal ð15Þ

The direct topographical effect on gravity DgT in Eq.
(14) for each mass reduction scheme can be expressed as

Dg ¼ A� AðInv;Cond;Comp;RefÞ ð16Þ

where A is the attraction of all topographic masses
above the geoid and AðInv;Cond;Comp;RefÞ represents the
attraction of either the inverted topographical masses,
the condensed masses, the compensated masses, or the
reference topographic masses for the Rudzki, Helmert’s
second method of condensation, AH or PH, and RTM
reduction schemes, respectively. The two components on
the right-handside of Eq. (16) can be expressed for each
reduction scheme as follows:

A¼Gq
ZZ

E

Z

h

0

ðhp�zÞ
s3ðxp�x;yp�y;hp�zÞ dxdy dz

AInv¼Gq
ZZ

E

Z

0

�h

ðhp�zÞ
s3ðxp�x;yp�y;hp�zÞ dxdy dz

ACompðAiryÞ ¼GDq
ZZ

E

Z

�T

�T�t

ðhp�zÞ
s3ðxp�x;yp�y;hp�zÞ dxdy dz

ACompðPrattÞ ¼GDq
ZZ

E

Z

0

�D

ðhp�zÞ
s3ðxp�x;yp�y;hp�zÞ dxdy dz

ARef¼GDq
ZZ

E

Z

href

0

ðhp�zÞ
s3ðxp�x;yp�y;hp�zÞ dxdy dz

ð17Þ

where h and href are the (above the geoid) height of the
running point and the reference height of the running
point, respectively; Dq is the density contrast between
the Earth’s crust and the upper mantle in the AH model
and the difference between standard crustal density and
the actual density in the PH model, and it can be given
as (Heiskanen and Meinesz 1958)

DqðAiryÞ ¼ qm � q ¼ hq
t

;

DqðPrattÞ ¼ q� qr ¼
h

Dþ h
q

ð18Þ

where qm and qr are the density of the upper mantle and
the actual crust density, respectively; D, T, and t are the
depth of compensation for the PH model, the normal
crust thickness for the AH model, and the root depth in
the AH model, respectively. The second term on the
right-hand side of Eq. (11), the terrain correction,
represents the direct topographical effect on gravity in
Helmert’s second method of condensation since it is
equal to the difference between the attraction of the

topography computed on the surface of the topography
and the attraction due to the condensed masses com-
puted on the geoid. The integrals in Eq. (17) can be
numerically integrated using rectangular prisms with the
computation point coinciding with the origin of the
coordinate system (Nagy 1966)

AT ¼ Gqjjjx lnðy þ rÞ þ y lnðxþ rÞ � z arctan
xy
zr
jx2x

1
jy2y

1
jz2z1
ð19Þ

where the coordinates x1, x2, y1, y2, z1, and z2 represent
the corners of a prism.

The total geoid obtained from the restore step can be
expressed as

N ¼ NGM þ NDg þ Nind ð20Þ

where NGM denotes the long-wavelength part of the
geoid obtained from a geopotential model, NDg repre-
sents the residual geoid obtained by using Dg from Eq.
(14) in Stokes’s formula, and Nind is the indirect effect on
the geoid, which depends on the mass reduction scheme
used. Stokes’s integral formula with the spherical kernel
by the one-dimensional fast Fourier transform (1D-
FFT) algorithm is used in this paper (Haagmans et al.
1993). The formulas for the computation of DgGM and
NGM are given in Heiskanen and Moritz (1967). The
indirect effect on the geoid, in Eq. (20), can be computed
from Bruns’s formula as follows:

Nind ¼
DT
c

ð21Þ

where DT is the change in the potential at the geoid,
which depends on the reduction method used and can be
expressed as

DT ¼ T � TðInv;Cond;CompÞ ð22Þ

where T is the gravitational potential of the actual
topographical masses and T(Inv,Cond,Comp) represents the
potential of the inverted, compensated, or condensed
masses for the Rudzki, Helmert, and AH or PH
reduction schemes, respectively. The term DT in Eq.
(22) is zero for the Rudzki inversion scheme since the
potential of the topography is equal to that of the
inverted topography, as given by Eq. (2). The potentials
of the topographical masses and the compensating
masses for the AH and PH models can be expressed
respectively as

T ¼ Gq
ZZ

E

Z

hðx;yÞ

0

1

sðxp � x; yp � y; hp � zÞ dxdydz

TComp ðAiryÞ ¼GDq
Z Z

E

Z

�T

�T�t

1

sðxp� x;yp� y;hp� zÞdxdydz
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TComp ðPrattÞ ¼ GDq
Z Z

E

Z

0

�D

1

sðxp� x; yp� y;hp� zÞ dxdydz

ð23Þ

The integrals in Eq. (23) can also be numerically
integrated using rectangular prisms with the computa-
tion point coinciding with the origin of the coordinate
system (Nagy 1966)

T ¼ Gq jjj xy lnðzþ rÞ þ xz lnðy þ rÞ þ yzðxþ rÞ

� x2

2
tan�1

yz
xr

� �

� y2

2
tan�1

xz
yr

� �

� z2

2
tan�1

xy
zr

� �

jx2x1 j
y2
y1 j

z2
z1 ð24Þ

The indirect effect on the geoid for Helmert’s second
method of condensation can be obtained in planar
approximation as (Wichiencharoen 1982)

Nind ¼ �
pGq

c
h2
p �

Gq
6c

ZZ

E

h3 � h3
p

s
3

o

dxdy ð25Þ

The RTM reduction method gives the quasigeoid,
and the restored effect on the geoid due to the
removal of topography according to this model is
(Forsberg 1984)

Nres�eff ¼
Gq
c

ZZ Z

h

hRef

1

s
dxdydz ¼ Gqðh� hrefÞ

c

ZZ

1

so
dxdy ð26Þ

The separation between quasigeoid and geoid can be
computed from (Heiskanen and Moritz 1967)

f� N ¼ � �g� �c
�c

h � DgB
�c

h ð27Þ

where �g; �c and DgB represent the mean gravity, mean
normal gravity, and the Bouguer anomaly, respectively.

4 Numerical tests and comparative analysis

One of the most rugged areas in the Canadian Rocky
Mountains, bounded by latitude between 49� N and
54� N and longitude between 236� E and 246� E, is
selected to compute different gravimetric geoid solutions
with the gravimetric reductions presented in the previous
sections. A total of 9477 measured gravity values are
used for this test, the distribution of which is shown in
Fig. 3. The normal gradient of 0.3086 mGal/m is used
for the computation of free-air anomalies and the
standard constant topographical density of 2670 kg/m3

is assumed. A digital terrain model with 6 arc-second
grid resolution is used in the computations (Fig. 4). The
maximum elevation in the test area is 3937 m (mean
1396 m; standard deviation ±543 m). The attraction of

Fig. 3. The distribution of gravity points in
the test area

Fig. 4. The digital terrain model in the test
area (m)
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the topography, the attraction of the compensating
masses, and the attraction of the inverted masses are
computed using a radius of 300 km around the compu-
tation point. The reference gravity field is computed
from the EGM96 geopotential model (Lemoine et al.
1998) complete to degree and order 360. The compen-
sation depth for the PH model is taken as 100 km, while

the normal crust thickness for the AH model is assumed
equal to 30 km. The density contrast between the
Earth’s crust and the upper mantle is taken equal to
600 kg/m3 for this test.

The statistics of the reduced gravity anomalies for
different gravimetric reductions are presented in Ta-
ble 1. The values in parentheses show the statistics of the

Fig. 5. Helmert anomalies (mGal)

Fig. 6. Rudzki anomalies (mGal)

Fig. 7. Correlation between helmert anoma-
lies and topography

Fig. 8. Airy-Heiskanen topographic-isostatic
anomalies (mGal)
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reduced gravity anomalies when the EGM96 component
of the gravity signal is removed. The higher the moun-
tains in the test area, the more negative the values of the
Bouguer anomalies are. These large negative Bouguer
anomalies suggest that the topographic masses of the
Rocky Mountains are compensated according to some
models of isostasy.

The Rudzki anomalies fluctuate between a maximum
value of 124 mGal and a minimum value of )122 mGal.
The maximum and minimum values are seen at stations
in high mountains and low valleys, respectively. The
statistics of Rudzki, FA, and Helmert anomalies look
similar compared to those of the topographic–isostatic
anomalies. However, the range of the maximum and
minimum values and the standard deviation of Rudzki
anomalies are smaller than those of FA and Helmert
anomalies. Figures 5 and 6 show the Helmert and
Rudzki anomalies. The correlation of the Rudzki and
FA anomalies with topography is as strong as that of the
Helmert anomalies (Fig. 7).

The topographic–isostatic anomalies using the AH and
PH models show nearly the same statistics. These
reductions show the best statistics in terms of the stan-
dard deviation and the range of maximum and mini-
mum values compared to all reduction methods used in
this investigation. Figure 8 shows the AH anomalies.
The small difference in the statistics between these two
sets of topographic–isostatic anomalies indicates that
the attraction of compensating masses using AH and PH
models is nearly equal. The correlation of the PH
anomalies with the topography looks similar to that of
the AH anomalies (Fig. 9), which is much smaller
compared to that of other reduction schemes. The RTM
anomalies (Fig. 10) exhibit statistics very close to those
of AH and PH anomalies.

The statistics of the reduced gravity anomalies in
Table 1 show that the standard deviation and the range
of maximum and minimum values decrease for Rudzki,
FA, Helmert, and RTM anomalies, but increase for
Bouguer, AH, and PH anomalies. It is not theoretically

Fig. 9. Correlation between Airy-Heiska-
nen anomalies and topography

Fig. 10. Residual Terrain Model anomalies
(mGal)

Fig. 11. Indirect effect on the geoid for
Helmert’s scheme (m)
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correct to use EGM96 to subtract the long-wavelength
component for all gravimetric reduction schemes.
EGM96 is nominally based on FA anomalies, and
therefore either a geopotential model corresponding to
each reduction scheme should be used, or the corre-
sponding correction for each reduction method should
be applied to the coefficients (also see Kuhn 2003).
However, it is difficult in practice to create geopotential
models based on each reduction scheme.

The indirect effect on gravity for Helmert, AH, and
PH models is considered before applying Stokes’s for-
mula for these reductions. The statistics of the indirect
effects on gravity and the geoid are given in Table 2. The
indirect effect on gravity for Helmert’s method is very
small (sub-mGal), while that of the PH topographic–
isostatic reduction reaches a maximum of 3 mGal. The
indirect effect on geoid undulations for the PH reduction
changes the geoid by nearly 10 m, while that for
Helmert’s method changes the geoid by only 47 cm. The

indirect effects on gravity and the geoid for the AH and
PH models have similar statistics. Figures 11 and 12
show the indirect effect on the geoid for Helmert’s sec-
ond method of condensation [Eq. (25)] and the PH
model. The maximum indirect effect for all reductions is
seen in the mountainous regions. The restored terrain
effect on the quasigeoid for the RTM reduction reaches
nearly 1 m.

The 258 GPS benchmarks available in the test area
(Fig. 13) are used as control for estimating the accuracy
of the gravimetric geoid solutions. There are no GPS-
leveling points above the elevation of 2000 m. A four-
parameter trend surface is applied to fit the gravimetric
geoid solutions to the GPS-leveling. The statistics of the
differences between the gravimetric geoid undulations
and GPS-leveling, before and after the fit, are given in
Table 3. The gravimetric geoid solution based on Rud-
zki’s reduction shows almost the same differences as the
RTM and Helmert methods in terms of standard devi-
ation and the range of maximum and minimum values
after the fit. However, it is interesting that the absolute
magnitudes of maximum, minimum, and mean values of
the difference between the Rudzki gravimetric solution
and GPS-leveling before fit are the smallest, and those
based on topographic-isostatic gravimetric solutions of
AH and PH models are the largest. As mentioned in the
earlier paragraph, the main reason for this large bias is
due to the use of EGM96, which is based on FA coef-
ficients. These biases are removed by the fit to the GPS-
leveling data, and the range of maximum and minimum
values for these models becomes nearly the same as for
the Rudzki, Helmert, and RTM methods. However,
their standard deviation is 6 cm bigger than that for
other methods.

Fig. 12. Indirect effect on the geoid for the
Pratt-Hayford model (m)

Table 2. Indirect effects on gravity (mGal) and on geoid undula-
tion (m)

Geoid
model

Indirect
effect

Max Min Mean Standard
deviation

Helmert gravity 0.26 0.00 0.04 0.03
geoid 0.01 )0.47 )0.12 0.08

Pratt–Hayford gravity 3.08 0.18 1.35 0.75
geoid 9.97 0.59 4.36 2.41

Airy–Heiskanen gravity 2.61 0.09 1.04 0.64
geoid 8.46 0.31 3.36 2.06

RTM
(restrored
terrain effect)

quasigeoid 1.07 )1.03 )0.33 0.46

Table 1. The statistics of grav-
ity anomalies (mGal)a Reduction scheme Max Min Mean Standard

deviation

Free air 166.38 (125.47) )183.58 ()185.77) )22.39 ()16.53) 50.71 (44.03)
Bouguer )5.52 (26.61) )212.87 ()261.30) )110.08 ()104.23) 43.62 (64.21)
Helmert (Faye) 251.56 (214.65) )152.67 ()155.74) )15.06 ()9.20) 58.22 (50.15)
Airy–Heiskanen 49.86 (65.38) )118.83 ()136.98) )25.14 ()19.29) 18.54 (28.41)
Pratt–Hayford 49.86 (62.80) )107.58 ()144.13) )29.78 ()23.93) 18.05 (29.59)
RTM 115.45 (67.59) )89.91 ()78.29) )0.57 (5.20) 23.49 (15.29)
Rudzki 123.69 (77.04) )122.34 ()118.16) )17.38 ()11.54) 35.85 (24.22)

aValues in parentheses are reduced gravity anomalies.

280



5 Conclusions

This paper shows the importance of studying other
gravimetric reduction schemes both in theory and in
practice in the context of precise geoid determination, in
addition to the usual Helmert’s second method of
condensation and the RTM method. Rudzki anomalies
have smaller standard deviation and range than those of
Helmert anomalies. Helmert anomalies yield the rough-
est gravity field in the test area, while topographic–
isostatic anomalies with AH and PH models produce a
smoother field, as well as less correlation with topogra-
phy. The removal of the EGM96 contribution does not
improve the statistics of the AH and PH anomalies but
does improve those of the Helmert and Rudzki anom-
alies because Helmert and Rudzki gravity anomalies
possess statistics similar to those of FA anomalies.

The indirect effect of topographic–isostatic reduc-
tions on geoid undulations reaches 10 m, while the
indirect effect of Helmert’s method is only 47 cm. The
maximum restored terrain effect on the quasigeoid for
the RTM reduction is nearly 1 m.

The Rudzki geoid performs as well as the Helmert
and RTM geoids, and better than the AH and PH ge-
oids compared to GPS-leveling. It has the smallest bias
among all other reduction schemes. The Rudzki reduc-
tion is, therefore, a viable tool for gravimetric geoid
determination in mountainous regions. The main
advantage of using this method is that we do not have to
deal with the computational burden of the indirect effect
on the geoid, which is required for the other reduction
schemes. On the other hand, the Helmert and RTM
methods require not only the computation of indirect
effects on the geoid and restored terrain effects on the
quasigeoid, respectively, but also some additional com-
putations; in Helmert’s second method of condensation,
we need to use different reduction methods for smooth

gravity interpolation, while in the RTM reduction the
transformation from quasigeoid to geoid is required for
geoid determination. More practical studies using the
Rudzki inversion scheme (not only in planar, but also in
spherical approximation) should be carried out in dif-
ferent parts of the world, especially in areas of high
mountains. The large bias in the topographic–isostatic
geoid solutions indicates that we should use a corre-
sponding topographic–isostatic geopotential model to
extract the low-frequency part of the gravity signal.
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