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Abstract. It is the aim of the GOCE mission to
determine a model of the Earth’s gravity field with high
accuracy and resolution. For this purpose, gravity
gradients will be measured in combination with high–
low satellite-to-satellite tracking. The gravity gradients
are derived from pair-wise differenced accelerations as
determined by the six three-axes accelerometers that
form the GOCE gradiometer. Since the measured
accelerations suffer from errors of a random and
systematic nature, the gravity gradients may suffer from
random and systematic errors as well. Systematic errors
are, for example, a scale factor and a bias. The common
accelerations of the paired accelerometers also are
contaminated with such errors. The common accelera-
tions are used in the drag-free control of the satellite and
are important for the separation of the gravitational and
non-gravitational forces in the gravity field determina-
tion. The checking of the gravity gradients and the
common accelerations against independent data (i.e.
external to the GOCE satellite) in order to free the
observations as well as is possible from systematic errors
is called external calibration. The possibilities and
limitations of using terrestrial gravity data and global
gravity models for external calibration of the gravity
gradients are reviewed. It turns out that the determina-
tion of a gravity gradient scale factor and bias using just
the accurate knowledge of the central term and the
flattening (J2) of the Earth’s gravity field is not good
enough. When global gravity field models are used for
the calibration, higher degrees and orders should be
taken into account as well. With today’s existing global
models it seems to be possible to remove the greater part
of the systematic errors of the GOCE gradients. A
gravity gradient bias can accurately be recovered using
terrestrial gravity data in a regional approach with least
squares collocation. However, since regional data are
used it may not be possible to determine calibration
parameters valid for the whole (global) gravity gradient

data set. Nevertheless, regional terrestrial gravity data
could be used to validate the measured and calibrated
gravity gradients. In addition, a possible use of GOCE
high–low satellite-to-satellite tracking data to calibrate
the common accelerations is explored; it is shown that
this approach fails. If more accurate gravity field
information becomes available then such a calibration
may become feasible.
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1 Introduction

The main goal of the GOCE mission gravity field and
steady-state ocean circulation explorer (expected to be
launched 2006) is to provide unique models of the
Earth’s gravity field and of its equipotential surface, as
represented by the geoid, on a global scale with high
spatial resolution and to very high accuracy [European
Space Agency (ESA) 1999]. For this purpose, GOCE
will be equipped with a global positioning system (GPS)
receiver for high–low satellite-to-satellite tracking (SST-
hl) observations, and with a gradiometer for observation
of the gravity gradients (SGG). The gradiometer
consists of six three-axis accelerometers mounted in
pairs along three orthogonal arms. From the readings of
each pair of accelerometers the so-called common mode
(CM) and differential mode (DM) signals are derived.
The CM observations are used to obtain information
about the linear accelerations and are input to the DFC
(drag free control) system. The measurements of the CM
are also needed for accurate separation of the gravita-
tional and remaining non-gravitational forces in theCorrespondence to: J. Bouman
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orbit determination process and are also important for
the long wavelength gravity field recovery from SST
measurements. The DM observations are used to derive
the gravity gradients. The gradiometer is designed such
as to give the highest achievable precision in the
measurement bandwidth (MBW) between 5 and
100mHz. For the diagonal gravity gradients
ðVXX ;VYY ;VZZÞ in a local orbital reference frame (LORF)
(X -axis in the velocity direction, the Z-axis approxi-
mately radially outward and the Y -axis complementing
the right-handed frame) the errors will not exceed 4 mE/
ffiffiffiffiffiffiffi

Hz
p

(1 E = 10�9 s�2) in the MBW (Cesare 2002).
The measurements will be contaminated with sto-

chastic and systematic errors (see e.g. SID, 2000; Cesare
2002). For the GOCE gradiometer, systematic errors
typically are due to instrument imperfections such as
misalignments of the accelerometers, scale factor mis-
matches, etc. Values for the absolute scale factors of the
accelerometers (which are required to convert the
accelerometer read-out voltages to m/s2) are determined
with an accuracy of 1% prior to the mission by the so-
called on-ground calibration using a test bench. In
addition, the CM and DM couplings, which are the re-
sult of such instrument imperfections, can be determined
on the ground to a relative accuracy level of 10�2–10�4.
Note that calibration is more than a removal of sys-
tematic errors due to instrument imperfections. It com-
prises also the conversion of the instrument read-outs
(digital numbers) to physically sensible quantities in
accordance with basic constants, standards and defini-
tions. This is, however, not the topic of this paper, in
which we will concentrate on the error in the observa-
tions instead.

A so-called internal calibration procedure has been
proposed (ESA 1999), by which the CM and DM cou-
plings can be determined to an accuracy level at which
their effect on the gradients in the MBW stays below the
required 4 mE/

ffiffiffiffiffiffiffi

Hz
p

. The values of the calibration
parameters (which are often referred to as the elements
of the calibration matrix in which they are grouped) are
measured by putting a known acceleration signal on the
gradiometer in orbit using the thrusters (shaking). By
‘calibration parameters’ we mean here the scale factors,
misalignment angles and couplings. After this proce-
dure, the CM and DM read-outs of the gradiometer are
corrected using the measured calibration parameters.
The extreme accuracy level of the GOCE measurements
may require the internal calibration procedure to be
repeated each month, since there will be drifts due to, for
example, temperature changes. Note that in order for
the internal calibration procedure to work well, it must
be ensured that the thrusters work according to the
specifications and are calibrated themselves to a suffi-
cient accuracy.

The gravity gradients are derived from the internally
calibrated DM accelerations. The internal calibration,
however, is not sensitive to all instrument imperfections,
such as the read-out bias and the accelerometer mis-
positioning. Therefore, in order to possibly correct for
remaining errors after internal calibration (outside or
inside the MBW), a third calibration step is proposed

which is called external calibration (or ‘absolute’
calibration). It is performed during or after the mission
and typically makes use of external gravity data. In
principle, not only gravity gradients may be externally
calibrated, but also observations such as the CM accel-
erations, in order, for example, to improve the knowl-
edge of the CM scale factors.

We will discuss our external calibration model in
Sect. 2. In Sects. 3–5 three methods for external cali-
bration are discussed. First of all, Sect. 3 considers the
use of existing global gravity field information. Al-
though GOCE is designed to deliver global gravity field
information with unprecedented accuracy, the
improvement is most noticeable in the MBW. Below the
MBW, the GOCE gravity gradients may not be as
accurate as existing or near future global gravity field
information. Second, it is expected that in certain re-
gions there is dense enough terrestrial gravity data with
high enough accuracy to calibrate the GOCE gravity
gradients in a regional approach. In Sect. 4 it is dis-
cussed how well a gravity gradient bias can be estimated
using least squares collocation (LSC). Finally, the
comparison of high–low SST data with the CM obser-
vations is reviewed. The CM observations are used in
combination with the SST data to recover the long-
wavelength gravity field. Conversely, it may be possible
to check the CM observations from a combination of
existing gravity field information and the SST data.
Earlier results can be found in Arabelos and Tscherning
(1998) and Koop et al. (2002).

Along with the external calibration of the observa-
tions themselves, their error needs to be assessed. Al-
though important, error assessment is not discussed here
[see e.g., Koop et al. (2002)]. Accurate calibration of
gravity gradients, CM observations, etc. would in the
ideal case lead to properly calibrated geoid heights and
gravity anomalies, for example. These products can be
compared with existing data sets of, for example, in-situ
gravimetry observations in order to assess their accu-
racy. This process is referred to as validation. For a large
part the same methods can be used as for external cali-
bration, the difference being that validation provides
information about the success of the calibration of the
original measurements, but does not provide corrections
to the data. Of course, different independent data sets
should be used for validation and external calibration.
Validation will not be discussed in detail here.

2 External calibration of gravity gradients

In this section we will start with the relation between the
measured accelerations and the GOCE gravity gradients.
The detailed relation between the measured accelera-
tions, the CM and DM accelerations and the gravity
gradients is given in the Appendix. Furthermore, the
gradiometer instrument errors and the on-ground and
internal calibration are briefly discussed in the Appendix.
In this section we introduce the external calibration
model for the gravity gradients, which is based on the
error characteristics of the GOCE gravity gradients.
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The gravity gradiometer consists of six three-axis
accelerometers. The differenced accelerations (DM
accelerations) between two accelerometers along one of
the three axes of the LORF (arms of the gradiometer)
contain contributions from accelerations due to the sa-
tellite angular velocity x and angular acceleration _x,
and due to the gravity gradients (for details, see the
Appendix). From the DM accelerations, the gradiome-
ter rotation and subsequently the gravity gradients in the
LORF can be derived. Ideally, the three axes of one
accelerometer are orthogonal and, for example, the x-
axes of two accelerometers along the X -axis are parallel.
Since in practice such an ideal situation does not occur,
calibration is needed to determine instrument imper-
fections.

If it is assumed that the on-ground and internal cal-
ibration have been performed according to the specifi-
cations, then we may also assume that in the MBW the
error of the gravity gradients is below the required level.
However, this does not imply that no systematic errors
are left in the gradients, either inside or outside the
MBW. We can try to reduce the gradient error even
further in order to improve the quality of the observa-
tions. For example, DM acceleration biases are not
estimated at all in the on-ground or internal calibration
and such biases lead to gravity gradient biases. Correct
gravity gradients can therefore only be obtained using
independent gravity field information in a next calibra-
tion step. This is the role of external calibration. Fur-
thermore, the mispositioning of the accelerometers as
well as the non-orthogonality of the physical gradiom-
eter arms with respect to the LORF do not show up in
the on-ground and internal calibration. These errors do
however propagate to the estimated gravity gradients,
and could perhaps be taken care of in the external cal-
ibration. Gravity gradients may also be contaminated
with errors coming from the star-tracker observations,
since these are required to determine the satellite angular
velocity x. The gravity gradients are derived from the
DM accelerations and the angular velocity (see the
Appendix). Finally, external calibration offers the pos-
sibility to remove large systematic errors below the
MBW that are caused by the misalignment between the
accelerometers and the LORF, etc. The on-ground and
internal calibration are specified such that the errors in
the MBW are below specified levels; below the MBW the
specifications are much less stringent. Nevertheless, it is
desirable to produce a gravity gradient that is as clean as
possible. With independent gravity field information this
can be taken care of. External calibration will be called
‘calibration’ in this paper from Sect. 3 onward.

We could question whether external calibration of the
gravity gradients is necessary or even possible. In the
MBW it is unlikely that there is more accurate external
gravity field information available, while the larger error
below the MBW is compensated by the SST data, which
provide accurate long-wavelength information. How-
ever, the gravity gradients themselves are important and
it is desirable to remove systematic errors as much as
possible. Also, when the gradiometer data are combined
with the SST data to compute geoid heights or gravity

anomalies, it may be an advantage to have ‘clean’
gravity gradients in order to benefit as much as possible
from the correct information content of the gradients.
For example, the implementation of so-called ARMA
filters, which account for the gradient error correlation,
may profit from the reduction of systematic gradient
errors (Schuh 2002).

The difference between the external calibration of
gravity gradients and that of accelerations is that in the
former case we try to reduce the net effect of instrument
and other errors on the gravity gradients, while in the
latter case we try to estimate accelerometer scale factors
etc., which are more directly linked to the instrument.
However, this would require a somewhat different cali-
bration model as compared to internal calibration since,
as explained above, not all instrument errors are included
in the latter. More seriously, a proper external calibra-
tion requires the use of independent data. Such data are
available for the gravity gradients but not for the accel-
erations. Besides the gravitational part of the accelera-
tions, we also need independent information on the
satellite rotation, which is not available. An additional
complicating factor is that the DM accelerations, and
hence their errors, are differenced, integrated, squared,
and so on. It is therefore not straightforward how the
DM errors propagate to gravity gradient errors, while
the gravity gradients are the functionals we want to
obtain. Hence we choose to calibrate gravity gradients.

The calibration model we use should be related to the
gravity gradient errors. The accelerometer scale factor
errors and biases result in similar gravity gradient errors,
whereas the accelerometer non-orthogonality and mis-
alignment project part of the signal (due to satellite
rotation and the gradients themselves) onto the mea-
sured accelerations. Because the signal has most of its
power at 1 and 2 cycles per revolution (cpr), the DM
acceleration errors and the gravity gradient errors will
also show 1, 2 etc. cpr errors. The mispositioning of the
accelerometer pairs along the axes of the LORF directly
results in gravity gradient scale factor errors, when the
gradients are derived from the DM accelerations. In
addition, the non-orthogonality of the gradiometer arms
in the LORF (which is due to accelerometer misposi-
tioning perpendicular to the LORF axes) again errone-
ously projects part of the signal onto the gravity
gradients. Therefore, in a somewhat simplified but ra-
ther general approach, the time series of gravity gradi-
ents y after internal calibration can be written as

yðtÞ¼ k½ysðtÞþDyþy0 � tþ
X

K

k¼1
ðak coskxðtÞþbk sinkxðtÞÞ

þnðtÞþother� ð1Þ

where k is the scale factor, ys are the ‘true’ gravity
gradients, Dy is a constant offset (bias), y0 is a trend,
x ¼ 2pt=T , t is the time, T is the mean orbital period,
ak; bk are Fourier coefficients, and n is the observation
noise. The term ‘other’ contains the remaining errors,
such as outliers (neglected here). The number of
unknowns is 3þ 2K, i.e. a scale factor, bias, trend and
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2K Fourier coefficients. The trend is included to model,
for example, slow bias variations in time, cf. CHAMP
results (Reigber et al. 2003).

It should be noted that the external calibration of the
gravity gradients involves the determination of other
parameters than those in the internal calibration. We
assume the latter has been performed to the specifica-
tions, so that the error in the MBW is below the required
level.

The subscript s of ‘ys’ refers to the static gravity field.
It is here assumed that a correction is applied for the
temporal part of the Earth’s gravity field. The true val-
ues ys are of course unknown, but we can compute
approximate values from an existing global gravity field
model. In order to compute the calibration gradients the
position of the instrument needs to be known. The GPS
receiver on board GOCE should enable accurate orbit
determination, down to the centimetre level (Visser and
van den IJssel 2000), which is accurate enough for this
purpose.

Under the assumption that the longer wavelengths of
such a global gravity field model are accurately deter-
mined at the time that GOCE flies, it is fair to expect
that external calibration using global models could re-
move systematic long-wavelength errors from the grav-
ity gradient time series. Hence, calibration parameters
k;Dy; y0 and ak; bk can be estimated using measured
gradients yðtÞ and calibration gradients ysðtÞ. For low
frequencies, below the MBW, the latter have a smaller
error than the former. If it is assumed that the gravity
gradient scale factors do not depend on frequency, then
they are also valid in and above the MBW, even though
they have been mainly determined by the long-wave-
length part of the gravity field signal, since the power at
0, 1 and 2 cpr dominates the signal.

The (propagated) error of the global gravity model
used to compute the calibration gradients is not taken
into account here. One way to do so is to introduce the
calibration gradients themselves as observations with
their corresponding propagated error, and to estimate
calibration parameters together with calibrated gradients
using a model of condition equations. A major problem
of such an approach is that the system of equations be-
comes very large due to the error correlation. Bouman
and Koop (2003) used condition equations and neglected
all error correlations, and their results are similar to the
results presented in this paper for VZZ (second radial
derivative of the gravitational potential).

We remark that an alternative method for external
calibration could be to estimate calibration parameters
together with the gravity field parameters in the data
reduction step (gravity field inversion process). This
method is not further discussed here (see e.g. Reigber
et al. 2003).

3 Calibration of GOCE SGG data using global
gravity field models

In this section we will use global gravity field models to
determine the calibration parameters of the model in

Eq. (1) and calibrated gradients. We must rely on
simulated measurements because there are no real
SGG data available yet. In Sects. 3.1–3.3 we will
describe the simulated data set, and we will focus on
the determination of some or all of the unknowns in
Eq. (1) and on the success of the external calibration, in
terms of gravity gradient error reduction.

3.1 Description of the test measurement data set

A GOCE-like orbit was generated using the EGM96
model (Lemoine et al. 1998) truncated at spherical
harmonic degree and order L ¼ 300. The orbit has an
inclination of 96:6�, a height of approximately 250 km,
and an eccentricity of 10�3. Gravity gradients were
generated using the same global gravity field model
(EGM96) along the orbit for a mission length of 30 days
and a sampling interval of 5 s. Thus the number of data
points is approximately half a million. The three main
gradient observables are VXX ;VYY and VZZ in the LORF.
(In the Appendix, VXX etc. are the gravity gradient tensor
components at one point. Here VXX etc. are time series of
gravity gradients.)

Realistic errors have been generated with the SRON
SGG instrument simulator (see SID 2000). The simu-
lated errors, which are the remaining errors after inter-
nal calibration, were added to the gravity gradients and
the resulting erroneous gradients serve as our observa-
tions that need to be externally calibrated.

3.2 Calibration of gravity gradients without errors

In Sect. 3.3 the calibration of the gravity gradients with
simulated errors is discussed. Prior to this, however, we
will set benchmarks of existing and near future global
gravity field models for calibration. True gravity gradi-
ents yðtÞ, generated with EGM96 complete up to degree
and order L ¼ 300, were calibrated using three different
global gravity field models. In ESA (1999) it is suggested
to determine the gradiometer’s absolute scale factors
using the accurate knowledge of the J2 gravity gradient
variations and the coupling between the central term (or
J0) and the radial orbit variations [case (1)]. One
disadvantage of using just J0 and J2 is that the gravity
gradient omission error may be large. We therefore also
considered OSU91A (Rapp et al. 1991) complete up to
degree and order L ¼ 300 [case (2)], which gives an
indication of today’s achievable accuracy (conservative
estimate). Finally, a GRACE-like global gravity field
model is considered. With the launch of GRACE in
March 2002, it was expected that the Earth’s long-
wavelength gravity field could accurately be determined
(Tapley and Reigber 1999). The EGM96 model com-
plete up to degree and order L ¼ 120 was used as a
GRACE gravity field model [case (3)]. Despite the
omission error, the calibration results are likely to be
optimistic in this case, since the spherical harmonic
coefficients up to degree and order L ¼ 120 are without
error.
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Calibration gravity gradients ysðtÞ were computed,
using models (1)–(3), at the same orbit points at which
the true gravity gradients were simulated. Next, scale
factors k and biases for the three diagonal gravity gra-
dients were determined in an iterative least squares (LS)
adjustment using a linearised version of Eq. (1). Ideally,
the scale factors so determined are equal to one, while the
biases could compensate for the (small) mean difference
between the true gradients and the calibration gradients.

Table 1 lists the scale factor errors j1� kj for the
three types of gravity gradients for the three cases. These
errors are 10�4 using J0 and J2 to compute the calibra-
tion gradients. For the OSU91A case the scale factor
error for the VXX component is reduced by three orders
of magnitude to 10�7 and it is reduced to 10�5 for VYY
and VZZ , which are reductions by factors of 2.5 and 20
respectively. The large reduction for the VXX gradient
may be due to its sensitivity to the lumped zonal coef-
ficients that are accurately known, whereas VYY , for
example, is less sensitive to the zonals. The GRACE case
shows that an improved knowledge of the long-wave-
length gravity field decreases the scale factor errors by a
factor of two to three as compared to calibration with
OSU91A.

It should be noted that the bias and scale factor are
heavily correlated (correlation of almost �1). The mean
and root mean square (RMS) about the mean of the
signals VXX ;VYY and VZZ , for the current simulation, are
(�1371 E, 5.6 E), (�1369 E, 4.5 E) and (2740 E, 10.1 E)
respectively. Thus the signal RMS is small compared to
the size of the signal. Therefore, a scale factor and a bias
have almost the same effect and cannot be determined
independently using only a global gravity field model for
calibration.

3.3 Calibration of gravity gradients with errors

It can be concluded from the calibration of gravity
gradients without errors that it seems better to

determine gravity gradient scale factors using a full
global gravity field model. Hence, in this section we will
only use the OSU91A and GRACE gradients to
calibrate the simulated gravity gradients with errors.

The 30-day time series of the VXX errors (simulated
� true) are shown in Fig. 1. There is a large mean error
of �1:5E, and the error RMS increases toward the end
of the 30-day period. The latter is related to the in-
crease of the radial orbit variation, which is also shown
in Fig. 1. The height of the satellite above a reference
sphere is shown. As the orbital height decreases, the
signal, e.g. VZZ , increases, and vice versa. Since the
gradiometer is not perfect (for example, one acceler-
ometer may be rotated with respect to its nominal po-
sition), a part of the VZZ signal may leak into the VXX
measurement. In the VXX measurement, this leaked VZZ
signal part contributes to the error. The gravity gradi-
ent errors and the signal are therefore correlated; see
also the Appendix. Whereas the VZZ errors show a
behaviour similar to the VXX errors, the VYY errors are
slightly different. Because the satellite mainly rotates
around the Y -axis, the error in the recovery of this
rotation, from the measured accelerations, directly
maps onto the VXX and VZZ measurements, but not onto
the VYY measurements.

In Fig. 2 the PSD of the VXX errors is shown. Clearly,
the errors at 1, 2, 3 and 4 cpr are large (peaks between
10�4 and 10�3 Hz), and in addition the errors on the low
frequencies between 0 and 1 cpr are large. The former
are caused by the coupling between the error and the
signal, which is large at 1 and 2 cpr due to the Earth’s
flattening and the orbital eccentricity, while the latter are
due to the accelerometer instability for lower frequen-
cies. The VZZ errors show similar behaviour, while the
VYY errors at 3 and 4 cpr are relatively small (not
shown).

The calibration of Sect. 3.2 is repeated, but now for
the gravity gradients with errors. The estimated cali-
bration parameters are a scale factor, a bias and a trend
for the total data set (30 days) for each of the three
diagonal gradients. The errors of the calibrated VXX and
VYY gradients are shown on the left in Fig. 3 (calibrated
� true), while the error reductions with respect to the
uncalibrated measurements are listed in Table 2. The
mean error now is approximately zero, but systematic
long-wavelength errors at 1; 2; . . . cpr or at other fre-
quencies cannot be removed. Estimating in addition
Fourier coefficients for 1, 2, 3 and 4 cpr for VXX ;VZZ , and

Table 1. Scale factor errors j1� kj when scale factor and bias are
estimated

VXX VYY VZZ

(1) GM ; J2 2 � 10�4 5 � 10�5 2 � 10�4
(2) OSU91A 2 � 10�7 2 � 10�5 1 � 10�5
(3) GRACE 7 � 10�8 9 � 10�6 4 � 10�6

Fig. 1. Simulated VXX gravity gradient er-
rors before calibration (top panel) and the
variation of the orbital height with respect to
a reference sphere (bottom panel)
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for 1 and 2 cpr for VYY removes part of the systematic
effect at these frequencies and further reduces the total
error (see Table 2, third row). Calibration with the
GRACE model is only marginally better than calibra-
tion with OSU91A.

Although the gravity gradient errors have been
reduced, we are now confronted with at least two

limitations of our model Eq. (1). The first is that long
wavelengths between 0 and 1 cpr are largely uncali-
brated, only a scale factor and a trend have effect at
these low frequencies. Second, as explained above, the
gravity gradient errors are correlated with the orbital
height variation, which changes slowly but significantly
with time. Therefore, the signal and the errors at
1; 2; . . . cpr vary in time as well, and the estimated
Fourier coefficients are not representative of the whole
30-day period. One way to deal with these problems is to
divide the calibration period into shorter calibration
windows and to estimate new calibration parameters for
each observation window. If the window is small en-
ough, then the estimated Fourier coefficients are repre-
sentative of this window. In addition, this windowing
will remove part of the long-wavelength errors below 1
cpr: if calibration gradients are very accurate at the long
wavelengths, then the window size determines the lon-
gest possible wavelength of the errors in the calibrated
gradients.

The total observation period of 30 days has been
divided into six windows of 5 days. For each of these

Fig. 2. PSD of VXX gravity gradient errors
before (external) calibration (left panel).
Errors after calibration with OSU91A
estimating scale factor, bias, trend and up to
4-cpr Fourier coefficients for each calibra-
tion window of 5 days (right panel). For
display clarity the PSD’s have been
smoothed

Fig. 3. Time series of gravity gradient errors
after calibration. The title of each sub-panel
indicates the calibration window length as
well as the maximum frequency (in cpr) of
the Fourier coefficients to be estimated.
Other calibration parameters are scale
factor, bias and trend for each window

Table 2. Standard deviation of the errors after calibration with
OSU91A. The numbers give the fraction with respect to the stan-
dard deviation of the errors before calibration. The numbers for
calibration with GRACE gradients are given in parentheses.
Besides a scale factor, bias and trend, VXX and VZZ are calibrated
with 4-cpr coefficients (except for the 0-cpr case), while VYY is
calibrated with 2-cpr coefficients (except for the 0 cpr case)

Window cpr VXX VYY VZZ

1� 30 days 0 0.87 (0.87) 0.85 (0.84) 0.74 (0.74)
1� 30 days 2/4 0.64 (0.64) 0.84 (0.80) 0.54 (0.53)
6� 5 days 2/4 0.29 (0.29) 0.54 (0.42) 0.32 (0.27)
30� 1 day 2/4 0.25 (0.24) 0.68 (0.30) 0.37 (0.23)
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windows we determined the full set of calibration
parameters, that is, scale factor, bias, trend and up to 2-
cpr Fourier coefficients for VYY and up to 4-cpr Fourier
coefficients for the other two gradients. Results for VXX
are shown in Fig. 2, while Table 2 summarizes the
reduction of the standard deviation of the errors with
respect to the original uncalibrated gradients. As ex-
pected, the long-wavelength errors are reduced using
shorter calibration periods. A period of 5 days, for
example, corresponds to 2:3� 10�6 Hz, and it is clear
from Fig. 2 (right panel) that the errors below this fre-
quency have indeed become smaller. Furthermore, the
errors at 1–4 cpr have been largely reduced. Calibration
with the GRACE model is better than calibration with
OSU91A, except for VXX . Again, the latter may be due
to our accurate knowledge of the zonal harmonics to
which VXX is particularly sensitive.

As mentioned above, model Eq. (1) gains validity
for shorter calibration windows, but for a shorter cal-
ibration window fewer observations are used in the
determination of the calibration parameters. Therefore,
the calibration window cannot be made arbitrarily
small. The shorter the calibration window, the more
accurate the calibration gradients must be, and the
better long-wavelength errors can be removed from the
GOCE gradients. Conversely, the longer the calibration
window, the more the errors in the calibration gradi-
ents are averaged, which improves the calibration re-
sults, be it that long-wavelength errors remain. This is
illustrated by Table 2. A calibration period of 1 day
improves the results for VXX , but the errors for VYY and
VZZ become larger. Calibration with the GRACE model
is significantly better than calibration with OSU91A,
except for VXX . The latter results show that, if a very
accurate long-wavelength global gravity field model is
available, the error standard deviation of the calibrated
gradients can be reduced to between one-third and one-
quarter of the original uncalibrated gravity gradient
error. Note that although the error reduction with re-
spect to the original uncalibrated gradients for VYY is
not as much as for the other two diagonal components,
the total error for VYY is small. The limited accuracy
with which we can derive the Y -rotation will only
contaminate VXX and VZZ , which yields smaller VYY
errors (see Table 3).

The mean of the error of the calibrated gradients is
very small, but not equal to zero. This is caused by
the difference in the mean between OSU91A and
EGM96 for VXX and VYY . Maybe this small mean error

can be reduced using the accurate knowledge of the
GOCE orbit after precise orbit determination (POD).
As a rule of thumb, an orbit error of 10 cm in the
radial direction yields a gradient error of 0.1mE due
to the change in GM=r3. Since the POD is expected to
give an average orbit error at centimetre level, it is
may be possible to decrease the mean of the gravity
gradient errors to 0.1mE or less. This is, however, an
open issue.

One way to determine the calibration window length
in practice is to use the a priori error models of
the measured gradients and the calibration gradients.
The error model of the latter is obtained by propagat-
ing the error model of the spherical harmonic coeffi-
cients to the respective gravity gradients (this is the
commission error). Assuming that the calibration gra-
dients are more accurate at longer wavelengths than the
measured gravity gradients, while the latter are more
accurate at shorter wavelengths, there will be a cross-
over frequency where they are equally accurate. It
probably does not make sense to use window lengths
shorter than the window length corresponding to that
frequency, which may be different for different gradi-
ents. If the omission error of the calibration model is
relatively large, then this should be added to the com-
mission error. In addition, if Fourier coefficients are to
be estimated, the minimum window length should be at
least a couple of revolutions. Alternatively, we could
estimate, in a sensitivity analysis, the accuracy of the
calibration parameters for different window lengths.
The shorter the calibration window, the less accurate
the calibration parameters for that window will be. We
should decide by some criterion what calibration
parameter accuracy is acceptable, which will determine
the window length.

A possible drawback of estimating new calibration
parameters for each window is that the calibrated
gravity gradients may show discontinuities going from
one window to another. A discontinuity would indicate
that the long-wavelength error of the calibration gra-
dients is large compared to the measurement noise on
the GOCE gradients. Therefore, if the global gravity
field model, used to compute the calibration gradients,
is accurate at long wavelengths and/or the window
length is not too small, then it is not expected that
discontinuities will appear. Nevertheless, we could try
to avoid discontinuities by changing the calibration
model Eq. (1). A simple idea is to estimated scale
factor, bias and trend for the whole calibration period
and new Fourier coefficients for each window, which
will reduce the discontinuity risk. The Fourier terms
are anyway the parameters that are expected to vary in
time, while the others are expected to be constant for
longer periods. Another idea is to replace the bias and
trend estimate by a spline function, which guarantees
continuity, be it that new Fourier coefficients for each
window and/or a scale factor could violate this. An
even more drastic change with respect to our original
calibration model is to use a different analysis tech-
nique, for example wavelets. This is, however, outside
the scope of this paper.

Table 3. Standard deviation and mean of the errors before and
after calibration with OSU91A

VXX VYY VZZ

Standard deviation
Before calibration 11.2 mE 4.4 mE 12.0 mE
6� 5 days 3.2 mE 2.4 mE 3.9 mE
Mean
Before calibration )1.49 E )0.82 E 2.31 E
6� 5 days )0.2 mE 0.2 mE 0.0 mE
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4 Calibration of GOCE SGG data using
terrestrial gravity data

In addition to calibration of GOCE SGG data using
global gravity field models, it is also possible to combine
a global model with terrestrial gravity data in a regional
approach. Since the long-wavelength gravity field is not
well represented by the local data, the contribution of a
global gravity field model was subtracted from the local
terrestrial data, which removes most of the long-
wavelength part. Furthermore, this makes the local data
statistically more homogeneous, which is an advantage
for LSC (Moritz 1980). Later on, the removed effects
can be restored.

In this study, only one area is used. It is therefore not
possible to estimate all parameters of Eq. (1) indepen-
dently. In particular, the errors of the measured gravity
gradients at long wavelengths, e.g. 1 and 2 cpr, appear to
be constant in a limited region. Hence, when we estimate
a bias, it is in effect a ‘lumped’ bias comprising the
effects of scale factor, bias and errors at long wave-
lengths. This situation may improve when several
regional calibration areas are used. It should be noted
that the SGG measurements are calibrated over a wide
range of values, because we start with the absolute val-
ues, which are however converted to anomalies in the
remove–restore framework.

The external calibration of the GOCE gradiometer
measurements using terrestrial data has been studied by
Arabelos and Tscherning (1998) using real data for an
area in Western Canada, but east of the Rocky Moun-
tains, where the gravity field is very smooth. Using LSC,
gravity gradient data were generated at satellite altitude
along simple north-going or east-going tracks. First a
bias and second a tilt were added to the data, and it was
demonstrated how these quantities could be recovered
using LSC with simultaneous bias and/or tilt parameter
estimation by combining the ground data and the sa-
tellite data. Meanwhile the GOCE orbit has been fixed
(ESA 1999), so that now realistic orbits can be gener-
ated.

The original investigation used, as mentioned, data
generated and later recovered by LSC. We wanted to
design a slightly more ‘difficult’ test by using data gen-
erated from a spherical harmonic model (EGM96) both
at ground and at satellite level. A total of 10201 gravity
values were generated from EGM96 in a 0:1� 0:15� grid
in the area bounded by 35–45�N, 5–20�E, i.e. including
35�N (the Alps), and therefore having a much larger
gravity variance than the one used in the Canadian
plains (see Fig. 4). In addition, from the data set de-
scribed in Sect. 3.1, GOCE orbit points were selected in
an inner area: 37–43�N, 8–17�E, which amounts to a
total of 532 points with the second-order radial deriva-
tive VZZ (the gradients without errors were used). The
subsequent computations are simplified by rotating the
Z-axis such that it becomes exactly radial. Note that due
to the small eccentricity of the GOCE orbit the differ-
ences between the LORF and the radial frame are small.
Instead of VZZ we could have used any other component
of the SGG measurements, which furthermore could

have been given in the instrument frame (Tscherning
1976, 1993).

From the two sets of values, gravity and gravity
gradients, the contribution of OSU91A to degree 72 was
subtracted, which is equivalent to using the OSU91A
coefficients as observed quantities in LSC, where the
errors of the coefficients are taken into account by the
covariance function model (see Knudsen 1987). The two
resulting sets will be called GA and OA (see also Table
4). We are now dealing with gravity anomalies Dg and
gravity gradient anomalies TZZ instead of full gravity
values and gravity gradients. Hence gravity gradients are
here denoted as TZZ instead of VZZ . The gravity variance
of set GA was large: 1349 mGal2. The empirical
covariance function was estimated for the area, and an
analytical model (Tscherning–Rapp model) was fitted to
the estimated values using the program COVFIT
(Knudsen 1987). From the analytical model the signal
RMS of TZZ was found to be 0.09 E. For the inner area
the signal was found to have a mean of 0.0217 E and a
signal RMS of 0.0988 E.

In addition, TZZ was predicted from the ground
gravity, set GA, using LSC. This will be called set OL.
The gravity data had been assigned an error of 1 mGal
in the LSC normal equations, but no noise was added to
the data, so that it was possible to verify the consistency
of the two data sets OA and OL. The results for the
differences are summarized in the second column of
Table 5. There is a small bias, but otherwise LSC pre-
dicts the TZZ values correctly. Although this bias is at an

Table 4. The different Dg and TZZ data sets

Set Model No. points Quantity

GA EGM96 – OSU91A (L ¼ 72) 10 201 Dg
OA EGM96 – OSU91A (L ¼ 72) 532 TZZ
OL OA from GA with LSC 532 TZZ

Fig. 4. Location of grid with gravity anomalies (grey) and the GOCE
ground tracks (black)
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acceptable level, further improvements are foreseen by
abandoning the spherical approximation and possibly
by expanding the area size. The larger the outer region
with gravity data, the more reliable the upward contin-
uation will be, which reduces the bias.

The LSC error estimates of the predicted gravity
gradients were generally of the order of 3 mE. Conse-
quently, if we are able to upward continue the gravity
data and determine the gravity gradients with an error
of this magnitude, a simple comparison with the
observations may reveal contingent scale factors, biases
or tilts (drifts). For this purpose we could use a cali-
bration model such as Eq. (1) and estimate, for
example, calibration parameters per track. The proce-
dure therefore consists of two steps. First, gravity
gradients are predicted at satellite level using LSC:
second, calibration parameters and calibrated gradients
may be determined.

Instead of the two-step procedure described in the
previous paragraph, LSC with parameters (Moritz 1980)
may be used to estimate such parameters (scale factors,
biases, etc.) in one step by combining ground and
satellite data, the advantage being that the error due to
the ground data distribution may be calculated. The
error of such estimates will depend on how many points
on a track are inside a calibration area. We therefore
extracted from the data set all tracks for which at least
18 points were located within the area. In total, 28 tracks
with 532 observations were used. The ground tracks of
most of the tracks crossed each other. The bias was
determined using the ‘true’ gradients (set OA) in com-
bination with the ground data. The calculation of error
estimates of the biases resulted in a standard error of
1mE. This is a very satisfactory result. The bias recov-
ered is the one already seen when comparing observed
and predicted gravity gradient values, i.e. �5:8mE, (see
Table 5). It is slightly different for the different tracks,
their standard deviation is 0.5mE.

The results are in good agreement with the earlier
results from the Canadian plains, and it is shown that
external calibration is possible in areas with larger
gravity variations, the problem being that in such areas
we seldom have data of the same high quality as found
on the Canadian plains. However, airborne gravimetry
now has the capability of measuring gravity at the
1mGal level. It might be worthwhile to use airborne
gravity data for the establishment of calibration data in
areas with a large gravity signal.

The above simulations show that a bias is introduced
in the GOCE calibration gradients that are computed
using LSC in spherical approximation and terrestrial
gravity data in a limited area. The bias is at the 1–10-mE
level (assuming that the terrestrial gravity data them-
selves do not suffer from an offset). A bias in the GOCE
gravity gradients can therefore be recovered up to this
accuracy level. If the bias, introduced by the spherical
approximation and/or upward continuation, could be
reduced using no approximation or larger areas with
ground data, then the recovery of the bias in the GOCE
gravity gradient data would be better.

Alternatively, the above results may be used to
compute a priori the bias introduced by the spherical
approximation and/or the upward continuation. If this
‘model’ bias is taken into account, then the second part
of the simulations show that a bias recovery is very
possible with LSC. If this is done, the zero bias in set OA
is found to be �0:1mE with a standard deviation of
0.5mE. A prerequisite is, however, that the a priori
gravity model which is used to compute a priori the
‘model’ bias is very accurate. Although it was not pos-
sible to estimate the calibration parameters of Eq. (1)
independently, for we used only one area with terrestrial
data, our results show that it may be possible to com-
pute gravity gradients from terrestrial data for valida-
tion purposes.

5 Calibration of the CM accelerations

In the preceding two sections the external calibration of
the GOCE gravity gradients was discussed. The gravity
gradients are derived from the DM accelerations. In this
section we will explore the possible calibration of the
CM accelerations. With externally calibrated CM accel-
erations it may be possible to improve the separation of
the gravitational and remaining non-gravitational
forces, which is necessary for both POD (precise orbit
determination) and gravity field determination.

In principle, the GPS receiver provides the informa-
tion for deriving the orbit of the GOCE satellite, which
is the integrated effect of all forces driving its motion.
The following relation can be derived for the accelera-
tion of GOCE:

€x ¼ acf þ al þ arem ð2Þ

where x denotes the 3-D position of the satellite in an
Earth-centred pseudo-inertial reference frame and €x its
second-order time derivative (acceleration). The accel-
eration

acf ¼ aeg þ a3rd þ atid ð3Þ

represents the effect of the most important contributing
gravitational forces aeg (Earth’s gravity field), a3rd (third
bodies, such as the Moon, Sun and planets) and atid
(solid Earth and ocean tidal forces). The linear acceler-
ation

al ¼ adrag þ asol þ aDFC ð4Þ

Table 5. Differences between TZZ values directly from EGM96 and
LSC predicted values from ground data generated with EGM96
(second column). Bias recovery results using LSC with parameter
(bias) estimation (third column)

Differences Bias recovery

Mean )5.7 mE )5.8 mE
Standard deviation 1.7 mE 0.5 mE
LSC error estimate 3 mE 1 mE
Maximum 1.8 mE )4.7 mE
Minimum )10.6 mE )6.5 mE
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represents the effect of the most important non-gravita-
tional forces adrag (atmospheric drag), asol (solar radia-
tion pressure) and aDFC (control forces from the GOCE
DFC system). In the following we will neglect the
remaining accelerations arem from Eq. (2).

5.1 CM calibration principle

In principle the CM of the gradiometer measures the
linear accelerations al, [see Eq. (A3)]. Two possibilities
can be distinguished for checking these observations:

(1) compare al with a priori models for the atmospheric
drag (adrag), solar radiation (asol) and accelerations
modelled from the information from DFC-telemetry
(aDFC);

(2) use a priori gravitational force models to derive acf
and reduce the GPS-based acceleration €x to the lin-
ear acceleration al.

Since the current knowledge on atmospheric drag
models is still relatively poor, especially at low altitudes
as for GOCE, the first possibility will not be further
elaborated on here. For the second possibility, the ideal
situation would be that x and indirectly €x could be
derived perfectly from the GPS observations (€x ¼ €xGPS)
and that the gravitational force models acf ¼ acf ;mod are
known perfectly. In that case the linear accelerations
could be derived without error [using Eq. (2)] as

al;GPS ¼ €xGPS � acf ;mod ð5Þ

They could then be compared with the measured linear
accelerations al;CM from the gradiometer CM when
transformed to the same reference frame.

In reality, the position of GOCE can be only recon-
stituted to a certain precision (so that x and €x will not be
known perfectly), introducing an error

d€xGPS :¼ €x� €xGPS ð6Þ

Also, all gravitational force models are only accurate to
a certain degree, introducing an error

dacf :¼ acf � acf ;mod ¼ daeg þ da3rd þ datid ð7Þ

Furthermore, the transformation of the linear acceler-
ations to the relevant frame to enable comparison can
only be done to a certain accuracy, introducing an error
datransf. Considering all these errors, the estimated GPS-
based linear acceleration is [using Eq. (2)]

al;GPS ¼ al þ datransf � d€xGPS þ dacf ð8Þ

It has to be assessed whether, possibly only for certain
spectral bands

dal :¼ al;GPS � al ð9Þ
is below the accelerometer observation noise level.

5.2 Simulation

To assess whether the error Eq. (9) is below the noise
level the effect of aliasing of one dynamic model error,

namely the uncertainty of the gravity field model (daeg),
has been assessed. The most important error source in
modelling the orbit and accelerations of a very-low-
flying satellite like GOCE is the uncertainty of existing
gravity field models. In order to simulate a realistic
gravity field model error, the differences between two
relatively recent gravity field models, EGM96 and
JGM3 (Tapley et al. 1996), were taken, where EGM96
is supposed to represent the real world and JGM3 the
reference model. These two models are within each
other’s calibrated error bounds, so that the differences
indeed represent realistic gravity field model errors,
assuming that the calibration was done correctly.

First, the EGM96 and JGM3 coefficient differences
were propagated to an amplitude spectrum of accelera-
tion differences along a GOCE-like orbit. As an exam-
ple, the accelerations caused by these differences for a
satellite flying at 250 km altitude with an orbit inclina-
tion of 96� are displayed in Fig. 5. The RMS of the
accelerations is equal to 0.40, 0.46 and 0.37mGal
(1mGal = 10�5 m/s2) for the radial, along-track and
cross-track direction, respectively. These numbers are
significantly above the foreseen accuracy level of the
accelerometer observations to be derived from the CM
of the gradiometer (specified in ESA 1999).

Fig. 5. Radial (top), along-track (middle) and cross-track (bottom)
accelerations due to JGM3-EGM96 model differences for a GOCE-
like orbit
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Second, a precise orbit determination experiment
was conducted for a GOCE-type orbit based on simu-
lated error-free GPS observations. The simulation ap-
proach is based on error-free double differences, where
use is made of a network of 24 ground stations. The
approach is similar to those described in detail in ESA
(2000), SID (2000) and Visser van den IJssel (2000). The
real-world gravity field is described by the EGM96
model, truncated at degree and order 70. One set of
average radial, along-track and cross-track GOCE
accelerations is estimated for one orbital arc from the
GPS observations using the JGM3 model as reference
model. Different orbital arc lengths have been selected,
ranging from 1 to 6 revolutions. This approach enables
us to quantify the aliasing of EGM96/JGM3 model
differences in accelerations that are estimated from GPS
observations in a POD environment as a function of the
averaging interval, in this case equal to the orbital arc
length.

The results displayed in Table 6 show that the alias-
ing of gravity field model error is very serious, even for
averaging intervals up to six orbital revolutions (about 9
hours): although the along-track acceleration has a
value of �0:0001 mGal, the accelerations in the other
two directions have much higher values, the cross-track
acceleration even being as large as 0.1 mGal. In fact, the
obtained values seem to depend in a rather random
fashion on the orbital arc length. Based on these results,
it may be concluded that it will be very difficult to cal-
ibrate the CM accelerations to the required accuracy
level when using GPS observations. Moreover, it has to
be noted that the only error present was the gravity field
model error.

However, it may be argued that at the very low fre-
quencies the drag compensation will probably not be
complete and a relatively large long-period signal may
remain that is above the gravity field model error and
thus visible by the common mode of the gradiometer.
Furthermore, at the time GOCE flies, our gravity field
knowledge will certainly be improved, especially at the
long wavelengths, as a result of the CHAMP and
GRACE missions. The risk of circular reasoning arises,
however, as CHAMP and GRACE will also make use of
accelerometer and GPS observations. In fact, the first
CHAMP-based gravity field models are based on a
simultaneous estimation of accelerometer and gravity
field unknowns (Reigber et al. 2001). Although it seems
that this approach leads to significant improvements in

gravity field modelling, the separation of gravitational
and non-gravitational accelerations cannot be guaran-
teed.

6 Conclusions

A full calibration setup for GOCE data includes a pre-
flight on-ground test, a repeated in-flight internal
calibration procedure and post-mission external calibra-
tion. In the external calibration step, GOCE data are
compared with external data sources, and corrections
are computed. If in the on-ground and internal calibra-
tion steps the CM and DM accelerometer scale factors
are accurately determined, then the absolute accelerom-
eter scale factors are accurately determined as well.
However, this does not immediately imply that the
gravity gradient scale factors are known accurately.
There are error sources for which the on-ground and
internal calibration are insensitive. In addition, the
requirements for the internal calibration are such that in
the MBW maximum sensitivity is obtained. Large
systematic errors below the MBW could therefore go
undetected. It is desirable to correct the gravity gradi-
ents for such errors because the gradients are an
important end product in themselves. External calibra-
tion is needed to correct for the remaining errors.

Depending on the choice of the (external) calibration
data, several calibration methods can be distinguished,
for example using ground-based gravity data or global
gravity field models. The latter external data source of-
fers the possibility to correct for systematic errors in the
GOCE SGG data in the longer wavelength part below
the MBW. If the gravity gradient scale factors are con-
stant for all frequencies, then our calibration method
also calibrates inside the MBW, although the scale fac-
tors are mainly determined by the long-wavelength
gravity field signal. The current simulations show that
the error RMS after the internal calibration can be re-
duced by a factor of two to three, depending on the
particular gravity gradient. Today’s global gravity field
models have sufficient long-wavelength accuracy for
calibration purposes, but in the near future CHAMP and
GRACE models may improve the calibration results.

The determination of gravity gradient scale factors
using just the knowledge of the central term and the
flattening of the Earth’s gravity field is not accurate
enough. Instead, it is necessary to use higher-degree and-
order terms of the spherical harmonic expansion as well.
Moreover, if systematic errors at 1–4 cpr are to be re-
moved, then GM and J2 cannot be used. For that pur-
pose the use of higher-degree global gravity field models
is recommended.

Due to the variations in orbital height during the
mission, the frequency characteristics of some of the
systematic errors, which depend on the signal, are not
constant in time. External calibration of the gravity
gradients for the full 30-day period between successive
internal calibrations is therefore not as good as external
calibration for shorter time windows. How long
these time windows should be depends on the

Table 6. Estimated constant accelerations obtained from simu-
lated GPS-based precise orbit determinations for GOCE in the
presence of JGM3/EGM96 gravity field model differences (values
in mGal)

Arc length (rev) Along-track Cross-track Radial

1 0.0308 0.0657 0.0131
2 )0.0120 0.0244 )0.0663
3 )0.0037 0.0359 )0.0725
4 )0.0003 )0.0035 )0.0792
5 0.0009 )0.0070 )0.0020
6 )0.0001 )0.0246 0.1062

134



long-wavelength accuracy of the calibration model
compared to the gravity gradients.

External calibration using terrestrial gravity in an
LSC approach shows that currently bias determination
is possible down to the 1–10 mE level. This lower limit
may be reduced using a larger area with ground data
and/or the actual positions of the points in space instead
of a spherical approximation. While it may be difficult to
calibrate the whole global gravity gradient data set with
local data, it may be possible to use terrestrial data for
validation purposes.

The possibilities of checking the CM observations
with the SST data are strongly limited by the errors in
the gravity force modelling. With the improved gravity
field knowledge from CHAMP and GRACE, the
calibration of the CM may become feasible.
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Appendix

From accelerations to gravity gradients

The GOCE gravity gradiometer consists of six acceler-
ometers, which measure in three orthogonal directions
(see Fig. A1) In this appendix we will describe the
relation between the measured accelerations and com-
mon and differential mode accelerations, as well as how
to derive gravity gradients from the DM accelerations.
In addition, the different error sources and the on-
ground and internal calibration are briefly discussed.

In each accelerometer a proof mass is electro-stati-
cally suspended and actively controlled at the centre of a
cage by means of a feedback mechanism. The proof
mass displacement relative to the electrodes is measured
by capacitive sensors. The control voltages are repre-
sentative of the accelerations of the proof mass relative
to the cage. The relative acceleration aia of the proof
mass with respect to the cage is (ESA 1999; Cesare 2002)
(i refers to the accelerometer number, a to the spatial
direction, i ¼ 1; 2 represents the two accelerometers on
one gradiometer arm)

aia¼ alþ€riaþ2x� _riaþx�x� ria

þ _x� ria�V00ria� sia�mia; i¼ 1;2;a¼X ;Y ;Z ðA1Þ

where

al is the linear acceleration of the satellite
COM (centre of mass) due to all non-
gravitational forces,

ria is the cage centre position vector relative to
the satellite COM, with _ria and €ria its time
derivatives,

x is the satellite angular velocity about the
COM,

V00 is the gravity gradient tensor (second deriv-
atives of the gravitational potential V );

sia is the acceleration of the proof mass due to
other satellite masses (satellite self-gravity);

mia is the acceleration due to the coupling of the
proof mass with the external magnetic field,

x� x� ria is the centrifugal acceleration due to the
satellite angular rotation;

_x� ria is the acceleration due to the satellite
angular acceleration,

2x� _ria is the Coriolis acceleration.

Since the cage is rigidly connected to the satellite, its
velocity and acceleration with respect to the satellite
COM are zero, _ria ¼ €ria ¼ 0. If the accelerometer was in
the COM then ria ¼ 0 and the accelerometer would only
sense the non-gravitational forces and the self-gravity
and magnetic field forces. This is the GRACE concept
where the non-gravitational forces are measured (Tapley
and Reigber 1999).

A1 Common and differential mode
Thecommonmodeanddifferentialmode accelerationsare

aca

ada

� �

:¼ 1

2

a1a þ a2a
a1a � a2a

� �

; a ¼ X ; Y ; Z ðA2Þ

Thus the 18 observed accelerations in aia are trans-
formed to three common mode accelerations aca (= nine
observations) and three differential mode accelerations
ada (= nine observations). If it is assumed that the
centre of the frame formed by the six accelerometers is in
the COM, and if the self-gravity and magnetic field
forces are neglected, then

aca

ada

� �

¼ al

x� x� r1a þ _x� r1a � V00r1a

� �

ðA3ÞFig. A1. The six accelerometers in the local orbital reference frame
(LORF)
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under the condition that r1a ¼ �r2a, (see Cesare 2002).
The common mode (CM) is therefore proportional to
the non-gravitational forces and these measurements
will be used in the drag-free control. The gravity
gradient tensor is part of the differential mode (DM).
The gravity gradients V00 are not measured directly since
the angular velocities and angular accelerations are
projected onto the DM as well.

The angular accelerations _xa can be obtained by
taking certain linear DM combinations. For example:

_xX ¼
adYz

lY
� adZy

lZ
ðA4Þ

where adYz is the differential acceleration along the Y -axis
in the z-direction, and la :¼ kr1a � r2ak. Cyclic exchange
of X ; Y ; Z and x; y; z gives the angular accelerations
around the Y - and Z-axis. Integration of these acceler-
ations, which also requires star-tracker observations,
gives the angular velocities xa, with which the gravity
gradient tensor components V00 can be derived in
combination with the DM accelerations (Cesare 2002).
The diagonal tensor components are

VXX ¼ �2
adXx

lX
� x2

Y � x2
Z ðA5Þ

and the off-diagonal components are

VXY ¼ �
adXy

lX
� adYx

lY
� xX xY ðA6Þ

where again cyclic exchange in Eqs. (A5) and (A6) gives
all nine tensor elements.

A2 Error contributions
The accelerometer measurements are not perfect,
suffering from the following errors (for each of the six
accelerometers).

1. The accelerometer is not aligned perfectly with the
LORF; the pointing error of one accelerometer is
small, which is described by the rotation matrix Ria.

2. The three axes of the accelerometer are not perfectly
orthogonal, which results in cross couplings between
the accelerometer sensitivity axes; this is described by
the symmetric coupling matrix Cia.

3. The accelerations are measured with a scale factor,
which is described by the diagonal matrix Sia.

4. The proof mass is in a motionless condition some-
what away from the centre of the cage, which results
in the diagonal quadratic factor matrix Qia.

5. The electronics readout chain introduces a bias bia
and noise nia.

For the explicit formulation of these vectors and matrices
we refer to Cesare (2002). The measured accelerations
therefore are (underlined values are stochastic)

aia ¼ SiaRiaCiaaia þQiaa
2
ia þ bia þ nia ðA7Þ

where the notation of the quadratic term means that
each vector component is squared individually.

Because each accelerometer has two very sensitive
axes and one less sensitive axis, three of the CM and DM

accelerations will be more noisy than the other six. As a
result of the gradiometer configuration, the diagonal
gravity gradients VXX ; VYY , and VZZ in particular have a
high accuracy in the MBW.

A3 On-ground and internal calibration
Using Eqs. (A2) and (A7), the measured common and
differential accelerations are (Willemenot 1999; Cesare
2002)

aca

ada

� �

¼ ðIþMaÞ
aca

ada

� �

þQa

2

ðaca þ adaÞ2

ðaca � adaÞ2

 !

þ
bca

bda

� �

þ
nca

nda

� �

ðA8Þ

where the 6� 6 matrices Ma contain the common and
differential scale factors, misalignments and couplings
[coming from the evaluation and linearisation of the
matrix product SRC in Eq. (A7)], the 6� 6 matrices Qa
contain the common and differential quadratic factors,
and the last two terms are the common and differential
bias and noise respectively.

It is the purpose of the on-ground calibration to
measure the elements of Ma with an error smaller than
10�2 � 10�4; depending on the element. The common
scale factors, for example, are measured with an error of
10�2. The quadratic factors of Qa are measured and
physically adjusted to reduce them to as close to zero as
possible. The determination of the elements of Ma and
Qa is repeated in orbit. This is the so-called in-flight or
internal calibration, which should give more accurate
results than the on-ground calibration. During the
internal calibration the elements of the matrices Qa are
measured and physically reduced below the specified
limits by proof mass position adjustment. The outcomes
of the internal calibration are estimates of the matrices
Ma:

M̂a ¼Ma þ dMa ðA9Þ

where the differences dMa are due to measurement
errors and variations over time of the accelerometer
scale factors, misalignments and couplings.

A4 Gravity gradient and CM/DM scale factors
In the internal calibration, among others, the common
and differential accelerometer scale factors are deter-
mined. They are defined as

Scag

Sdag

� �

:¼ 1

2

S1ag þ S2ag

S1ag � S2ag

� �

; a ¼ X ; Y ; Z; g ¼ x; y; z

ðA10Þ

From the common and differential scale factors we can
immediately derive the absolute accelerometer scale
factors as

S1ag

S2ag

� �

¼ Scag þ Sdag

Scag � Sdag

� �

; a ¼ X ; Y ; Z; g ¼ x; y; z

ðA11Þ
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Therefore, if the internal calibration yields accurate
common and differential scale factors, then the acceler-
ometer absolute scale factors are accurately determined
as well.

However, this does not automatically imply that the
absolute scale factors of the gravity gradients have been
accurately determined. The non-orthogonality of
the instrumental realisation of the fX ; Y ; Zg frame
and the mispositioning of the accelerometers only show
up in the gravity gradients and not in the DM acceler-
ations. Furthermore, the relation between the gravity
gradients and DM accelerations is complicated and non-
linear, [see Eqs. (A3)–(A6)]. Also, the internal calibra-
tion is very accurate in the MBW, and less accurate
below the MBW, where most of the gravity gradient
signal is present. Consequently, the scale factor errors of
both the DM accelerations and the gravity gradients
may be small in the MBW, but the scale factor error for
the total gravity gradient signal can be as large as, for
example, 10�4. With external calibration this error can
be reduced, (see Sect. 3). Conversely, if we have accu-
rately determined the gravity gradient absolute scale
factors this does not mean that the differential scale
factors are accurately determined.

References

Arabelos D, Tscherning C (1998) Calibration of satellite
gradiometer data aided by ground gravity data. J Geod 72: 617–
625

Bouman J, Koop R (2003) Calibration of GOCE SGG data
combining terrestrial gravity data and global gravity field
models. In: Tziavos I (ed) Gravity and Geoid 2002; 3rd Meeting
of the IGGC, Ziti Editions, Thessaloniki, pp 275–280

Cesare S (2002) Performance requirements and budgets for the
gradiometric mission. Issue 2 GO-TN-AI-0027, Preliminary
Design Review, Alenia, Turin

European Space Agency (1999) Gravity Field and Steady-State
Ocean Circulation Mission. Reports for mission selection; the
four candidate earth explorer core missions. SP-1233(1),
European Space Agency, Noordwijk

European Space Agency (2000) From Eötvös to mGal. Final re-
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Vistas for geodesy in the new millenium. International Associ-
ation of Geodesy Symposia Vol 125. Springer, Berlin
Heidelberg New York, pp 167–174

Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D,
Cox C, Klosko S, Luthcke S, Torrence M, Wang Y,
Williamson R, Pavlis E, Rapp R, Olson T (1998) The devel-
opment of the joint NASA GSFC and the National Imagery
and Mapping Agency (NIMA) geopotential model EGM96. TP
1998-206861, NASA Goddard Space Flight Center, Greenbelt

Moritz H (1980) Advanced physical geodesy. Herbert Wichmann,
Karlsruhe

Rapp R, Wang Y, Pavlis N (1991) The Ohio State 1991 geopo-
tential and sea surface topography harmonic coefficient models.
Rep 410, Department of Geodetic Science and Surveying, The
Ohio State University, Columbus

Reigber C, Schwintzer P, Koenig R, Neumayer KH, Bode A,
Barthelmes F, Foerste C, Balmino G, Biancale R, Lemoine J-M,
Loyer S, Perosanz F (2001) Earth Gravity Field Solutions from
several months of CHAMP Satellite Data. EOS Trans AGU
82(47) (Fall Meet. Suppl): G4IC–02
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