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Abstract. A technique is proposed for Earth’s gravity
field modeling on the basis of satellite accelerations
that are derived from precise orbit data. The func-
tional model rests on Newton’s second law. The
computational procedure is based on the pre-condi-
tioned conjugate-gradient (PCCG) method. The data
are treated as weighted average accelerations rather
than as point-wise ones. As a result, a simple three-
point numerical differentiation scheme can be used to
derive them. Noise in the orbit-derived accelerations is
strongly dependent on frequency. Therefore, the key
element of the proposed technique is frequency-
dependent data weighting. Fast convergence of the
PCCG procedure is ensured by a block-diagonal pre-
conditioner (approximation of the normal matrix),
which is derived under the so-called Colombo assump-
tions. Both uninterrupted data sets and data with gaps
can be handled. The developed technique is compared
with other approaches: (1) the energy balance
approach (based on the energy conservation law)
and (2) the traditional approach (based on the
integration of variational equations). Theoretical con-
siderations, supported by a numerical study, show that
the proposed technique is more accurate than the
energy balance approach and leads to approximately
the same results as the traditional one. The former
finding is explained by the fact that the energy balance
approach is only sensitive to the along-track force
component. Information about the cross-track and the
radial component of the gravitational potential gradi-
ent is lost because the corresponding force compo-
nents do no work and do not contribute to the energy
balance. Furthermore, it is shown that the proposed
technique is much (possibly, orders of magnitude)
faster than the traditional one because it does not
require the computation of the normal matrix. Hints
are given on how the proposed technique can be
adapted to the explicit assembling of the normal
matrix if the latter is needed for the computation of
the model covariance matrix.
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1 Introduction

The compilation of a high-precision model of the
Earth’s gravity field is a very important task, with
numerous scientific and societal applications including
oceanography, geodesy, and solid-Earth physics. A
number of dedicated satellite missions have been
launched, or will be launched soon, in order to
accomplish this task: CHAMP in 2000 (Reigber et al.
1996), GRACE in 2002 (Tapley 1997), and GOCE in
2006 [European Space Agency (ESA) 1999]. These
missions exploit different measurement techniques but
have a common feature: they all use global positioning
system (GPS) receivers in order to collect so-called high–
low satellite-to-satellite tracking (hl-SST) data. These
data form the necessary input for a precise orbit
determination (POD) procedure. The computed orbit
contains information that can be used to improve the
Earth’s gravity field model, particularly in the range of
low spatial frequencies. Naturally, there are a number of
non-gravitational forces that also influence a satellite’s
motion. In order to take them into account, CHAMP
and GRACE satellites are equipped with accelerometers
that allow the contribution of non-gravitational forces
to be subtracted at the data pre-processing stage. The
GOCE satellite will be equipped with a drag-free control
system, which is intended to compensate for non-
gravitational forces in real time.

Two types of POD techniques for modeling of the
Earth’s gravity field exist: reduced-dynamic and kine-
matic techniques (Visser and van den IJssel 2000). In
our opinion, both of these should be used. We argue
that a clear distinction should be made between the
observations, which form a data vector in the functional
model, and observation points, which are the locationsCorrespondence to: P. Ditmar
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of the observations made. The best source of obser-
vations is the kinematic orbit. The reduced-dynamic
orbit would lead to a poorer estimation of the gravity
field because an orbit of this type is biased towards the
a priori model (Gerlach et al. 2003a). To clarify this
statement, we recall that the forces acting on the
satellite can be extracted explicitly from a satellite orbit
by means of double differentiation. The second deriv-
ative of the reduced-dynamic orbit corresponds not
to the actual gravity field but to the gravity field used
in the POD procedure. Exceptions are the points where
the artificial impulse forces have been applied in order
to minimize the misfits between the computed orbit and
the acquired data. The entire gravity field signal that is
not explained by the model used is, therefore, con-
centrated at these occasional points. Obviously, such a
‘compressed’ representation of the signal may distort
the data processing results. On the other hand, the
kinematic orbit is contaminated by relatively strong
noise and may occasionally be interrupted. Hence it is
inferior for the definition of observation points. The
reduced-dynamic orbit seems to be more appropriate
for this purpose. In this way, we may reduce errors in
positions and eliminate gaps. In view of the data pro-
cessing technique we propose, the latter aspect is
especially important.

There are a number of ways to compute the Earth’s
gravity field model from a satellite orbit. The most tra-
ditional approach formulates the functional model in
terms of the orbit disturbances, which are computed as
differences between the output of a POD procedure and
a reference orbit obtained on the basis of a reference
gravity field (Rowlands et al. 1995; Visser et al. 2001;
Reigber et al. 2002). In order to compute the partial
derivatives of orbit disturbances with respect to the
gravity field parameters, the so-called variational equa-
tions have to be integrated. One drawback of this
approach is the non-linearity of the functional model. In
addition, this approach usually includes an explicit
assembly of the normal matrix, which is a rather time-
consuming procedure. These are the reasons why alter-
native approaches have attracted attention in the course
of recent years. One of these is the energy balance
approach, which is based on the energy conservation
principle. The satellite orbit is used to compute the
kinetic energy of the satellite, which can then be related
directly to the gravitational potential at the given point
(O’Keefe 1957; Jekeli 1999; Sneeuw et al. 2002; Han
et al. 2002; Gerlach et al. 2003b; Howe et al. 2003). The
other alternative is to transform the precise orbit data
into satellite accelerations and then relate the latter to
the Earth’s gravity field according to Newton’s second
law. At first glance, the latter approach is the most
natural. A number of authors have already used it for
the determination of the gravity field of other planets
(see e.g. Barriot and Balmino 1992). However, the
application of this approach to high-precision modeling
of the Earth’s gravity field is still in its infancy and, in
spite of a number of recent publications (Schäfer 200l;
Reubelt et al. 2003a,b; Fengler et al. submitted) further
efforts in this direction are undoubtedly needed.

In this article, we present a new technique for mod-
eling of the Earth’s gravity field on the basis of satellite
accelerations. It is somewhat similar to those designed
earlier for processing of satellite gravity gradiometry
(SGG) data (Schuh 1996; Ditmar and Klees 2002;
Ditmar et al. 2003a; Klees et al. in press). The proposed
technique is based on the pre-conditioned conjugate-
gradient (PCCG) method. The issues deserving of our
special attention are: (1) the relation of orbit-derived
accelerations, which may differ from point-wise
(instantaneous) ones, to the gravity field parameters;
(2) a frequency-dependent data weighting, which is
needed to suppress high-frequency noise produced by
the double differentiation; and (3) efficient pre-condi-
tioning aimed at reducing the number of PCCG itera-
tions. Importantly, the developed technique can be
applied to observations with gaps. It should be added
that the concept of frequency-dependent weighting was
originally developed just in the context of SGG data
(Schuh 1996; Klees et al. 2003; Klees and Ditmar in
press), where frequency-dependent noise may also be a
problem.

An advantage of the PCCG method is that it does not
require the normal matrix, thanks to which the data
processing becomes very fast. It may be argued that the
normal matrix should be computed anyway, for example
because it is needed for generating the covariance matrix
of the estimated parameters. We believe, however, that
the gravity field modeling and the computation of the
normal/covariance matrix should be considered as
different tasks. With a fast gravity field modeling algo-
rithm, we may try a whole variety of data processing
strategies: different pre-processing schemes, different
data weighting, different regularization, etc. The com-
putation of the normal/covariance matrix is a much
more time-consuming procedure. Hence it makes sense
to start it only when the optimal data processing strat-
egy is found and the final gravity field model is obtained.
Application of the proposed methodology to the com-
putation of the normal/covariance matrix is beyond the
scope of this publication. However, we discuss this issue
briefly in Sect. 5.

Is it important to add that the issues related to the
regularization are also not covered by this publication.
This topic has already been discussed extensively by
Kusche and Klees (2002a, b) and Ditmar et al. (2003c) in
the context of the SGG data processing. The conclusions
drawn in these publications are also applicable to sa-
tellite accelerations.

The theoretical results presented in the paper are
supported by a numerical study. The proposed tech-
nique is evaluated and compared with the energy bal-
ance approach as well as with the method based on the
integration of variational equations.

With our publication, we try to debunk a myth that
satellite accelerations cannot be used for building an
accurate Earth’s gravity field model because they are too
noisy. We show, in particular, that three-component
accelerations and three-component orbit data contain
nearly the same information and lead to nearly the same
optimal estimation. The only difference between these
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quantities is that noise in orbit data can frequently be
treated as white and, therefore, the data processing can
be done without any data weighting. Noise in accelera-
tions, on the contrary, strongly depends on frequency.
Then, an accurate frequency-dependent data weighting
is a must.

2 Functional model

2.1 Point-wise accelerations

A commonly used procedure to represent the Earth’s
gravitational potential V (r, h, k) is the expansion into a
series of spherical harmonics (see e.g. Heiskanen and
Moritz 1984)

V ðr; h; kÞ ¼ GME

R
R
r
þ
X1

l¼2

R
r

� �lþ1
(

�
Xl

m¼0
ðClm cosmkþ Slm sinmkÞ �Plmðcos hÞ

)

ð1Þ

where r, h, k are the spherical coordinates; G is the
universal gravitational constant; ME is the Earth’s mass;
R is the semi-major axis of a reference ellipsoid; Clm, Slm
are the spherical harmonic coefficients; and �Plmðcos hÞ
are the fully normalized associated Legendre functions.
Naturally, in practice the series of Eq. (l) is always
truncated.

The goal of the orbit data processing is to improve
the estimations of the spherical harmonic coefficients
(Clm, Slm). Let us introduce the residual potential T (r, h,
k) – a correction to be applied to the chosen reference
field

T ðr; h; kÞ ¼ GME

R

XLmax

l¼Lmin

R
r

� �lþ1

�
Xl

m¼0
ðDClm cosmkþ DSlm sinmkÞ �Plmðcos hÞ

ð2Þ

with DClm, DSlm the corrections of individual spherical
harmonic coefficients. The contribution of the reference
field should be subtracted from the data during the pre-
processing. A reasonable choice of the maximum degree
Lmax is somewhere between 50 and 80 (or possibly a little
higher if the satellite altitude is very low, as will be the
case for the GOCE mission). The minimum degree Lmin

is usually set equal to 2: the zero-order coefficient can be
better estimated on the basis of data from high-orbiting
satellites (Ries et al. 1992), whereas the first-order terms
vanish when the origin of the coordinate system
coincides with the Earth’s center of mass.

In order to obtain an explicit relationship between
the corrections (DClm, DSlm) and the (point-wise) resid-
ual satellite accelerations, let us introduce the

geographical reference frame, i.e. a local right-handed
Cartesian frame where the X -axis points to the north,
the Y -axis to the west, and the Z-axis radially outwards.
In this frame, the residual acceleration vector DaðGÞ can
be related to the residual potential as

DaðGÞx ¼ � 1

r
@T
@h

; DaðGÞy ¼ � 1

r sin h
@T
@k

; DaðGÞz ¼ @T
@r
ð3Þ
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with

�P 0lmðxÞ ¼
d �PlmðxÞ

dx

Furthermore, we find it more practical to use for the
definition of the functional model not the geographical
but the so-called local orbital reference frame (LORF):
the frame where the X -axis is directed along the track,
the Y -axis coincides with the direction of the orbital
angular momentum, and the Z-axis completes the frame
as a right-handed one. The advantages of this frame are:
(1) consistency with the orientation of the on-board
accelerometer (CHAMP and GRACE missions) or
gradiometer (GOCE mission), and (2) a nearly block-
diagonal normal matrix (see Sect. 3.3 for more details).
Transformation of the residual acceleration vector from
the geographical frame into the LORF can be performed
by a standard rotation

DaðLÞ ¼ Ryð�aÞRzð�bÞDaðGÞ ð5Þ

where Rzð�bÞ is the matrix of rotation around the Z-axis
with b being the satellite track azimuth (counted from
the north clock-wise), and Ryð�aÞ is the matrix of
rotation around the Y -axis with a being the angle
between the horizon and the satellite track (counted
upwards).
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2.2 Orbit-derived accelerations

All the expressions presented so far are valid for point-
wise accelerations. On the other hand, we propose to
derive satellite accelerations from a precise orbit accord-
ing to a simple three-point scheme

�aðtÞ ¼ xðt � DtÞ � 2xðtÞ þ xðt þ DtÞ
ðDtÞ2

ð6Þ

where xðtÞ is a component of the satellite position vector
at time t and Dt is the data sampling interval. In Sect. 5
we discuss the advantages of this approach over a multi-
point scheme, which strives for accurate extraction of
point-wise accelerations from a satellite orbit (Reubelt
et al. 2003a). Therefore, satellite accelerations derived by
the three-point formula of Eq. (6) cannot be treated as
point-wise. However, there is still a way to relate them to
the gravity field model exactly.

It is obvious that the single numerical differentiation
of a position results exactly in the average velocity
within the differentiation interval (this follows from the
definition of the average velocity). A similar statement
holds also for accelerations. The acceleration �aðtÞ
obtained with Eq. (6) can be interpreted as the exact
average acceleration

�aðtÞ ¼
ZDt

�Dt

wðsÞaðt þ sÞds ð7Þ

with a weight function

wðsÞ ¼ Dt � jsj
ðDtÞ2

ð8Þ

(cf. Fig. 1). To prove this statement, it is sufficient to
integrate Eq. (7) by parts
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8
<

:

9
=
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ðDtþ sÞvðtþ sÞj0s¼�Dt�
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�Dt

vðtþ sÞds

8
<

:

þðDt� sÞvðtþ sÞjDt
s¼0þ

ZDt

0

vðtþ sÞds

9
=

;

¼ 1

ðDtÞ2
fxðt�DtÞ� 2xðtÞþ xðtþDtÞg ð9Þ

where vðtÞ is a component of the satellite velocity
vector as a function of time: aðtÞ ¼ v0ðtÞ ¼ x00ðtÞ. Notice
that the satellite positions must be differentiated in an
inertial frame in order to yield the absolute accelera-
tions (i.e. accelerations without centrifugal and Coriolis
terms), which can be directly related to the gravity
field.

A formal treatment of Eq. (7) would imply that, in
order to proceed from point-wise accelerations to aver-
age ones, we should know the satellite position in an
inertial frame at each moment within the averaging
interval. A more practical procedure, which does not
require such knowledge, is discussed in Sect. 3.1.2.

It is important to remember that the total satellite
accelerations derived from a satellite orbit have to be
converted into residual accelerations by subtracting the
contribution of the reference gravity field. The discus-
sion of a practical way to compute reference average
accelerations is postponed until Sect. 4.2.

2.3 Optimal estimation of the gravity field

Obviously, the observed data (average residual acceler-
ations) depend on the unknown parameters (spherical
harmonic coefficients) in a linear manner. Assume that
noise in the observations is random and Gaussian. Then,
the functional model connecting the data and the
unknowns is a standard Gauss–Markov model

Efdg ¼ Ax; Dfdg ¼ Cd ð10Þ
where E and D denote the expectation and dispersion
operators, respectively; d is the vector of observations
(average residual accelerations); x is the vector of
unknowns (corrections of the spherical harmonic coef-
ficients); A is the design matrix; and Cd is the noise
covariance matrix.

In the absence of a regularization, the optimal solu-
tion x̂ of the problem of Eq. (10) can be found by means
of solving the system of normal equations

x̂ ¼ N�1ðATC�1d dÞ ð11Þ

where N is the normal matrix

N ¼ ATC�1d A ð12Þ

An efficient algorithm with which to do this is the PCCG
method (Hestenes and Stiefel 1952; Bertsekas 1982;
Schuh 1996). In the simplest form, this method can be
presented as follows.

1. x0 ¼ 0; r0 ¼ ATC�1d d; p0 ¼ s0 ¼ ~N
�1
r0; k ¼ 0

2. qk ¼ Npk

3. ak ¼ rT
k
pk

qT
k
pk

4. xkþ1 ¼ xk þ akpk
5. rkþ1 ¼ rk � akqk
6. If convergence reached, set x̂ ¼ xkþ1 and stop

7. skþ1 ¼ ~N�1rkþ1
8. bkþ1 ¼

rT
kþ1skþ1
rT
k
sk

9. pkþ1 ¼ skþ1 þ bkþ1pk
10. k ¼ k þ 1; go to step (2)

Fig. 1. Weight function that describes the averaging of the acceler-
ations derived with the three-point differentiation scheme
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In the description, we have introduced a so-called
pre-conditioner ~N – an approximation of the normal
matrix, which can be computed much faster than the
exact one. The stopping criterion may be chosen in
different ways. The one we prefer is to check whether the
models at two successive iterations differ in average by
less than 0.1 mm in terms of geoid heights.

An attractive feature of the PCCG method is that the
only role of the true normal matrix is to be applied to a
certain vector pk (step 2). According to the definition of
Eq. (12), this operation can be performed as a sequence
of three matrix-to-vector multiplications

Npk ¼ ðAT ðC�1d ðApkÞÞÞ ð13Þ

Thus, an explicit computation of the normal matrix,
which may be a very time-consuming operation, is
avoided.

Multiplication of the design matrix with the vector
pk is just a synthesis, i.e. prediction of the data on the
basis of the model built from this vector. The appli-
cation of matrix C�1d can be understood as data
weighting: this operation is needed for any data set
unless noise is uncorrelated and has unit variance.
Finally, the multiplication of the matrix AT with a
vector is a transposed operation with respect to the
synthesis; we will refer to this operation as the co-
synthesis. In the following paragraphs, we consider
these three steps – the synthesis, the data weighting,
and the co-synthesis – as well as the design of an effi-
cient pre-conditioner one by one.

3 Steps of the PCCG method

3.1 Synthesis and co-synthesis

As explained above, the synthesis consists, in essence, of
two procedures: (1) point-wise synthesis and (2) averag-
ing. Both operations are linear, hence the following
representation of the synthesis is valid:

y ¼ Ap ¼ EApwp ð14Þ

where p is the synthesis input; Apw is the point-wise
design matrix (i.e. the matrix describing the point-wise
synthesis); E is the averaging matrix; and the vector y
is the synthesis output. A discussion on the length of
the matrix Apw (i.e. the number of points where the
synthesis has to be performed) and the explicit
representation of the matrix E is postponed until
Sect. 3.1.2. As follows from Eq. (14), the co-synthesis –
transposed synthesis – can be implemented in a similar
way provided that all the operations are understood in
the transposed sense and performed in the reverse
order

q ¼ AT
pwE

T z ð15Þ

where z is the co-synthesis input and q is the co-synthesis
output. First of all, let us consider the point-wise
synthesis and co-synthesis.

3.1.1 Point-wise synthesis and co-synthesis
The simplest way to perform these operations is to
compute the design matrix explicitly [cf. Eqs. (4), (3), and
(5)], and then to carry out the standard matrix-to-vector
multiplication. However, this method is relatively time-
consuming. Therefore, an alternative approach has been
implemented. It is based on the fast synthesis/co-
synthesis procedures developed earlier in the context of
SGG data processing (Koop et al. 2000; Ditmar et al.
2003a). The fast synthesis consists of three steps. In the
first step, the accelerations are computed at the nodes of
a regular three-dimensional (3-D)spherical grid in the
local geographical frame. This step can be implemented
very efficiently thanks to fast Fourier transform (FFT),
as well as to the fact that the Legendre functions have to
be computed only once per latitude. Importantly, the
time expenditure required by this step is independent of
the number of observation points. In the second step, the
computed accelerations are interpolated onto the obser-
vation points. The implemented interpolation approach
makes use of the 3-D Overhauser splines (Overhauser
1968; Ditmar et al. 2003a). Interpolation of this type
results in a relatively high accuracy; in addition, it is fast
because only 43 ¼ 64 neighboring grid nodes participate
in each interpolation operation. In the third step, the
computed accelerations are rotated from the local
geographical frame into the LORF (a fast operation,
which requires only a few operations per point). Note
that the number of operations required by the straight-
forward matrix-to-vector multiplication would be of the
order of L2

max per observation point. Thus, the fast
synthesis algorithm may be much more efficient than the
straightforward one, especially if the maximum degree
Lmax and the number of points are large. Furthermore,
each of the three fast synthesis steps can be represented as
a matrix-to-vector multiplication. Therefore, we can
implement the fast co-synthesis simply by understanding
these steps in the transposed sense and performing them
in the reverse order (Ditmar et al. 2003a). The number of
operations required by the fast co-synthesis is approxi-
mately the same as in the case of the fast synthesis.

3.1.2 Averaging
3.1.2.1 Averaging as a filter operation. Let us start the
discussion from the case of synthesis. The most obvious
way to apply the averaging is to perform the point-wise
synthesis at a sufficient number of points (distributed
much more densely than the original observation points)
and then to compute the integral of Eq. (7) for each
observation point numerically. Positions of the interme-
diate points can be found by means of an interpolation:
a satellite orbit is a very smooth function of coordinates.
On the other hand, the point-wise accelerations com-
puted along the orbit can also be represented by a very
smooth function. Therefore, it is smarter to perform an
interpolation directly in terms of accelerations! Further-
more, we can represent the accelerations in a given time
interval analytically (say, as a polynomial). Then, the
integral in Eq. (7) can also be computed analytically. Let
us consider the latter strategy in detail.
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Let a current observation point be characterized by
time t. Assume further that a sequence of point-wise
accelerations is known in the time interval
½t � nDt; t þ nDt� with step Dt (where n is an integer
number). On the basis of this information, we can
uniquely approximate the accelerations within the
above-defined interval as a polynomial of the degree 2n

aðt þ sÞ ¼
X2n

j¼0
cjsj; s 2 ½�nDt; nDt� ð16Þ

where cj ¼ cjðtÞ are the coefficients of the polynomial
and the scalar function aðt þ sÞ represents one of the
acceleration components in an inertial frame.

The coefficients cj can be found explicitly, as the
solution of a Vandermonde-type system of linear equa-
tions:

c ¼ V�1a ð17Þ

where a is the vector composed of point-wise acc-
elerations at times ðt � nDt; . . . ; t þ nDtÞ; c ¼
ðc0; c1; . . . ; c2nÞT ; and V is the following square matrix:

V ¼

1 �nDt � � � ð�nDtÞ2n

1 �ðn� 1ÞDt � � � ð�ðn� 1ÞDtÞ2n

..

. ..
. ..

.

1 nDt � � � ðnDtÞ2n

0

BBBBB@

1

CCCCCA
ð18Þ

It is worthwhile to mention that such a system rapidly
becomes very ill posed as the degree of the polynomial
increases, therefore it must be solved with a tailored
algorithm (see e.g. Press et al. 1992).

It easy to show that the polynomial representation of
Eq. (16) yields an analytical expression for the integral
of Eq. (7)

�aðtÞ ¼ wT c ð19Þ

where elements of the vector w are defined as

fwgj ¼
2ðDtÞj 1

jþ1� 1
jþ2

� �
for even j ðj ¼ 0; 1; . . . ; 2nÞ

0 for odd j

(

ð20Þ

From Eqs. (17) and (19) it follows that the average
acceleration �aðtÞ can be directly related to the vector of
point-wise accelerations a as

�aðtÞ ¼ eT a ð21Þ

where

e ¼ ðVT Þ�1w ð22Þ

Importantly, elements of the vector e are constant: they
play the role of filter coefficients, which can be computed
just once for the whole data set.

It is now obvious that we can represent the matrix E
in Eq. (14) as

E ¼ RI!LEIRL!I ð23Þ

where RL!I is the matrix for rotation of the whole data
set from the LORF into an inertial frame; RL!I is
the matrix for rotation in the opposite direction
ðRI!L ¼ RT

L!IÞ; and the matrix EI represents the
averaging filter. It consists of three independent frag-
ments related to the X, Y and Z data components,
respectively

EI ¼
E
ðxÞ
I

E
ðyÞ
I

E
ðzÞ
I

0
B@

1
CA ð24Þ

In the absence of data gaps, each of these fragments is
just a Toeplitz matrix filled with elements of the vector e
(at least, if we are not too close to an edge of the data
set). Notice that according to Eqs. (19) and (20), only
even degrees of the polynomial participate in the
computation of the average acceleration. This means
that the averaging filter is symmetric.

In the case of the second-order polynomial, elements
of the vector e can be easily computed with Eq. (22)
analytically: (1/12, 5/6, 1/12).

3.1.2.2 Averaging at the edges and in the presence of gaps
The way we handle the edges and gaps is based on the
following concept. Assume for a moment that the data
set contains no gaps and is infinite in time (or, at least,
much longer than the actually collected one). Then, the
corresponding Gauss–Markov model can be written as
follows:

Efd1g ¼ A1x; Dfdg ¼ C1d ð25Þ

where d1, A1, and C1d are ‘infinite’ extensions of the
arrays d, A, and Cd, respectively. Assume further that the
actual data set is obtained from the infinite one by
deliberate ‘picking’ of selected measurements. In terms of
linear algebra, such a picking can be performed by the
application of a ‘mask matrix’M, which can be produced
from the infinite unit matrix by retaining only those rows
that correspond to actually made measurements. This
means that the actual arrays d, A, and Cd can be related
to their infinite counterparts by the relationships

d ¼Md1 ð26Þ

A ¼MA1 ð27Þ

Cd ¼MC1d MT ð28Þ

The infinite data set concept, combined with the
expression for the averaging matrix of Eq. (23), allows
the synthesis formula of Eq. (14) to be re-written as
follows:

y ¼MR1I!LE
1
I R1L!IA

1
pwp ð29Þ

This expression means that we should make the point-
wise synthesis not only at the true observation points but
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also at the points where the observations are missing, as
well as at the points preceding and following the actual
data set (this should not be a problem if the observation
points are defined by a reduced-dynamic POD proce-
dure). Then, we must rotate the results into an inertial
frame, apply the averaging filter assuming that the

matrices E
ðxÞ
I , E

ðyÞ
I and E

ðzÞ
I are purely Toeplitz, and

perform the rotation back to the LORF. Finally, we
should pick up the values corresponding to the true
observation points. In practice, the ‘infinite’ data set can
be produced by adding only n points at the beginning
and at the end of the actual one (where n has the same
meaning as in the previous section).

3.1.2.3 Averaging in the co-synthesis. A somewhat similar
approach can also be followed in the context of the
co-synthesis. By analogy with Eq. (29), the co-synthesis
formula of Eq. (15) can be re- written as follows:

q ¼ ðA1pwÞ
T
R1I!LE

1
I R1L!IM

T z ð30Þ

This means that the input vector for the co-synthesis
should be extended to become sufficiently long and
uninterrupted, even if the actual data have gaps. In
doing so, the new elements should be filled with zeros.
The result of this operation is subject to the averaging
filtering in an inertial frame. As long as the matrix E1I is
symmetric ½ðE1I Þ

T ¼ E1I �, application of the averaging
filter in the co-synthesis does not differ from that in the
synthesis. Finally, the point-wise co-synthesis should be
performed. In doing so, values at the true observation
points and at the points introduced during the extension
should be treated in the same way.

3.2 Data weighting

As long as noise in orbit-derived accelerations is corre-
lated, a proper data weighting is crucial. As was shown in
Sect. 2.3, the data weighting can be implemented by
applying the inverse covariance matrix C�1d to a certain
vector at each iteration of the PCCG method. In other
words, we must solve at each iteration a system of linear
equations with the matrix Cd. Thereafter, we discuss how
this can be done under the assumption that noise in
satellite positions is white: in this case, the data weighting
can be implemented in a particularly simple and efficient
way. We will start the discussion from an approximate
data weighting scheme, which is based on the theory of
circulant matrices (Davis 1979; Voevodin and Tyrtyshni-
kov 1987) and applicable to uninterrupted data sets.
After that, we will show how an exact data weighting
algorithm can be built on the basis of the approximate
one. Finally, we will consider the case of data with gaps.

3.2.1 Circulant approximation of the covariance matrix
According to the definition of the functional model, the
input for the gravity field modeling is a set of residual
accelerations in the LORF. The relationship between the

acceleration variations dd and the orbit data variations
in an inertial frame dr is as follows:

dd ¼ RI!LDdr ð31Þ

where D is a matrix that represents the double
numerical differentiation: a fragment of this matrix
related to a given data component is a tridiagonal
matrix with elements ð1=ðDtÞ2;�2=ðDtÞ2; 1=ðDtÞ2Þ. Let
the noise covariance matrix of the orbit data be
Cr ¼ r2I, where r2 is the noise variance (equal for all
three observational components). Then, the data
covariance matrix Cd, which is used in the definition
of the functional model of Eq. (10), can be represented
as

Cd ¼ RI!LCdIRL!I ð32Þ

where CdI is the covariance matrix of the orbit-derived
accelerations in an inertial frame: CdI ¼ r2DDT . The
inverse of Eq. (32) reads

C�1d ¼ RI!LC
�1
dI
RL!I ð33Þ

This means that the multiplication of the matrix C�1d and
a vector can be split into three steps: (1) rotation from
the LORF to an inertial frame; (2) solving the system of
linear equations with matrix CdI ; and (3) rotation back
to the LORF.

The matrix CdI consists of three Toeplitz sub-matri-
ces, each of which corresponds to one of the components
of the acceleration vector

C
ðxjyjzÞ
dI

¼ r2

ðDtÞ4

6 �4 1

�4 6 �4 1

1 �4 6 �4 . .
.

1 �4 6 . .
.

. .
. . .

. . .
.

0

BBBBBB@

1

CCCCCCA
ð34Þ

where ‘(xjyjz)’ denotes one of the components: ‘x’, ‘y’, or
‘z’. For the sake of brevity, this superscript will hereafter
be omitted.

Let us approximate the component-related matrix CdI

with a circulant one, i.e. with a matrix each row of which
can be produced from the previous one by putting the
last element into the first place, so that the whole row
gets shifted to the right by one position. This approxi-
mation looks as follows:

~CdI ¼
r2

ðDtÞ4

6 �4 1 . .
.

1 �4
�4 6 �4 1 . .

.
1

1 �4 6 �4 1 . .
.

. .
. . .

. . .
. . .

. . .
.

. .
.

1 �4 6 �4 1

1 . .
.

1 �4 6 �4
�4 1 . .

.
1 �4 6

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

ð35Þ
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Obviously, the circulant approximation ~CdI differs from
the true matrix CdI by only three elements in the upper
right and in the lower left corner.

The circulant approximation yields the explicit rep-
resentation for the square root of the covariance matrix
ð ~CdIÞ

1
2, which plays a significant role in the proposed

data weighting algorithm. It can be checked directly
that

ð ~CdIÞ
1
2 ¼ r

ðDtÞ2

2 �1 . .
.

�1
�1 2 �1 . .

.

. .
. . .

. . .
.

. .
.

�1 2 �1
�1 . .

.
�1 2

0

BBBBBBBB@

1

CCCCCCCCA

ð36Þ

We may also treat the matrix ð ~CdIÞ
1
2, up to the sign, as a

circulant approximation of the matrix rD (or, more
precisely, of its fragment related to a given component).
As far as the sign is concerned, we can define it
arbitrarily, just as in case of the square root of a scalar
value. The definition we prefer corresponds to the
positive semidefinite matrix ð ~CdIÞ

1
2 (i.e. such that its

eigenvalues are non-negative).
Furthermore, the inverse of a circulant matrix can be

found with ease by means of the discrete Fourier
transform (Davis 1979). Let us introduce the matrix of
discrete Fourier transform F

fFgj;k ¼ ei2pðj�1Þðk�1ÞN ; j; k ¼ 1; . . . ;N ð37Þ

where N is the number of rows/columns in the circulant
matrices defined above. It can be easily checked that
FF� ¼ F�F ¼ NI; where F� is the Hermitian conjugate
(transposed complex-conjugate) of F.

The application of the matrix F to a certain vector v
with a subsequent scaling results in the spectrum of this
vector

F½v� ¼ 1

N
Fv ð38Þ

whereas the application of the matrix F� to the spectrum
restores the original vector

v ¼ F�ðF½v�Þ ð39Þ

Let us introduce a diagonal matrix SD obtained by
distributing the spectrum of the first row of the matrix
ð ~CdIÞ

1
2 along the main diagonal

SD ¼ diag
1

N
F ð ~CdIÞ

1
2

n o

1

� �
ð40Þ

Then, the matrix ð ~CdIÞ
1
2 can be restored from the matrix

SD as follows (Davis 1979):

ð ~CdIÞ
1
2 ¼ F�SDF ð41Þ

From this representation, it immediately follows that the
inverse of the matrix ð ~CdIÞ

1
2 can be found by taking the

inverse spectrum with a proper re-scaling

ð ~CdIÞ
�1

2 ¼ 1

N 2
F�ðSDÞ�1F ð42Þ

Importantly, the inverse of a circulant matrix is also
circulant (Davis 1979). Thus, the application of either the
original matrix ð ~CdIÞ

1
2 or its inverse to a certain vector is

nothing but a cyclic convolution, i.e. filtering. Then, the
above-written method of inverting a circulant matrix is in
agreement with the well-known statement that a
de-convolution can be performed in the Fourier domain
by multiplication with the inverse spectrum. The filter
represented by the matrix ð ~CdIÞ

�1
2 is sometimes called

‘whitening’ because the application of this matrix to a
data set makes the data noise white (except for the edges).

The elements of the diagonal matrix SD can be
computed analytically from Eqs. (36), (37), and (40)

SDgkk ¼
2r

NðDtÞ2
1� cos

2pk
N

� �
¼ 2r

NðDtÞ2
ð1� cosxkDtÞ;

k ¼ 0; i; . . . N�1 ð43Þ

where xk is the cyclic frequency corresponding to the
k-th spectral line: xk ¼ 2pk=ðNDtÞ.

Let us consider the spectrum of Eq. (43) at low fre-
quencies: xkDt � 1. Under this condition, the function
cosxkDt can be approximated as 1� ðxkDtÞ2=2, hence
Eq. (43) transforms into

fSDgkk �
r
N

x2
k ð44Þ

This expression is in agreement with the well-known fact
that the double differentiation of a function is equivalent
to the multiplication of the function spectrum with the
factor �x2.

Unfortunately, the expressions of Eqs. (43) and (44)
reach zero at the zero frequency, so that the spectrum is
not invertible. This is not surprising because the matrix
ð ~CdIÞ

1
2 is ill-posed: it has a zero eigenvalue that corresponds

to the eigenvector ð1; 1; . . . ; 1ÞT . In other words, the
double-differentiation operation, if approximated by the
matrix ð ~CdIÞ

1
2, always returns a function with zero mean.

3.2.2 Regularization
One possible way to make the matrix ð ~CdIÞ

1
2 invertible is

to introduce a regularized matrix ð ~Creg

dI
Þ
1
2 by adding a

small positive value a2c to the diagonal elements of the

original matrix

ð ~Creg

dI
Þ
1
2 ¼ r

ðDtÞ2

2þ a2c �1 . .
.

�1

�1 2þ a2c �1 . .
.

. .
. . .

. . .
.

. .
.

�1 2þ a2c �1

�1 . .
.

�1 2þ a2c

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð45Þ

Then, the corresponding representation in the Fourier
domain S

reg

D becomes
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fSreg

D gkk ¼
r

NðDtÞ2
2ð1� cosxkDtÞ þ Dt

s

� �2
" #

ð46Þ

with s � Dt=ac. The low-frequency approximation of
this expression is as follows:

fSreg

D gkk �
r
N

x2
k þ

1

s2

� �
ð47Þ

Thus, the goal is reached: the spectrum is not equal to
zero at zero (or any other) frequency, hence it is
invertible. Dependence of the obtained model on the
parameter s is considered in Sect. 4.4.

Adding a regularization to the covariance matrix can
be understood as postulating that the data uncertainties
are not infinitesimal at any frequency. Then, the weights
assigned to the data, which are inversely proportional to
the uncertainties, are never infinite.

3.2.3 Whitening filter design
Equations (39), (42), and (46) allow the coefficients of
the whitening filter to be obtained numerically: it is
enough to take elements of the diagonal matrix
1

N2 ðSreg

D Þ
�1, arrange them as a vector and perform the

inverse Fourier transform (i.e. apply the matrix F�). We
will show, however, that it is more practical to build the
whitening filter analytically. This can be done on the
basis of the low-frequency approximation of Eq. (47),
which has to be inverted, re-scaled, and subject to the
inverse Fourier transform as

1

Nr

XN�1

k¼0
e�ixkDt x2

k þ
1

s2

� ��1
; j ¼ 0; . . . ;N � 1 ð48Þ

Assume further that the sampling interval tends to zero
whereas the duration of the data series tends to infinity.
Then, Eq. (48) turns into the Fourier integral, which
provides the whitening filter f ðtÞ as a continuous
function

f ðtÞ ¼ 1

2pr

Z 1

�1
e�ixt x2 þ 1

s2

� ��1
dx; t 2 ½�1;1�

ð49Þ

The computation of the integral can easily be done
analytically, yielding

f ðtÞ ¼ s
2r

e�
jtj
s ð50Þ

or after discretization

fj ¼
Dts
2r

e�
jjjDt

s ¼ Dts
2r

e�jjjac ð51Þ

Thus, the parameter s may be interpreted as the
characteristic half-width of the whitening filter: at the
time t ¼ s the filter coefficients approach the level of 37%
of the maximum, which is reached at the time t ¼ 0.

We compared the analytically derived filter with the
exact one – obtained numerically from Eq. (46) – for
several ratios s=Dt. We found that for s=Dt 	 10 the

analytical expression offers a sufficiently good approxi-
mation of the whitening filter; the difference between the
two filters does not exceed 1%. Furthermore, we will
show in Sect. 3.2.5 that the accuracy of the whitening
filter specification does not influence the obtained model
at all if the exact data weighting scheme is applied.
However, the analytical expression of Eq. (51) allows
the whitening filter to be implemented in a very efficient
way. Hence we routinely use the analytically derived
whitening filter in the computations presented below.

3.2.4 Whitening filter implementation.
As long as the filter coefficients have been derived, it is
no longer necessary to assume that the filtering is carried
out by means of the cyclic convolution; the conventional
convolution can be used instead. Then, the application
of the filter of Eq. (51) to an input vector y generates the
output vector z according to the formula

zn ¼
Dts
2r

X1

j¼�1
ynþje

�jjjac ð52Þ

Equation (52) suggests that indices in the input vector
run from ‘minus infinity’ to ‘plus infinity’. For the time
being, let us assume that the input vector elements
outside the range from 1 to N are simply set equal to
zero. A somewhat more elaborate approach is consid-
ered in Sect. 4.4.2.

The summation in Eq. (52) can be split into two: over
non-positive indices j and over positive ones, so that we
have zn ¼ z�n þ zþn with

z�n ¼
Dts
2r

X0

j¼�1
ynþje

jac ð53Þ

and

zþn ¼
Dts
2r

X1

j¼1
ynþje

�jac ð54Þ

Consider the first term. Let us re-write Eq. (53) for the
output element number nþ 1

z�nþ1 ¼
Dts
2r

X0

j¼�1
ynþjþ1e

jac

¼ Dts
2r

ynþ1 þ
X�1

j¼�1
ynþjþ1e

jac

" #

¼ Dts
2r

ynþ1 þ e�ac
X0

j¼�1
ynþje

jac

" #
ð55Þ

The summation in the latter expression is exactly equal
to that in Eq. (53) for element n. Thus, we have obtained
a recursive relationship

z�nþ1 ¼
Dts
2r

ynþ1 þ e�ac z�n ð56Þ

A similar recursive scheme can also be derived for the
second term, Eq. (54). The only difference is that in
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order to make the recursive computations stable we
should relate the current element not to the previous
element but to the next one

zþn ¼ e�ac
Dts
2r

ynþ1 þ zþnþ1

� �
ð57Þ

Equations (56) and (57) allow the filtering to be
implemented very efficiently.

It is important to remember that the filter presen-
ted is the whitening filter, which represents the square
root of the matrix ~Creg

dI
. Therefore, this filter must be

applied twice at each iteration of the PCCG method.

3.2.5 Exact data weighting
The weighting procedure we have derived so far is based
on the circulant approximation of the covariance
matrix, i.e. is by definition inexact. In Sect. 4, we will
show that the errors introduced for this reason may be
very significant. Therefore, it is preferable to multiply
the inverse covariance matrix with a vector more
accurately. This can be done by means of a low-level
PCCG procedure (Klees and Ditmar in press). Such a
procedure is similar to the high-level PCCG procedure
presented in Sect. 2.3, provided that: (1) the normal
matrix N is replaced by the covariance matrix C

reg

dI
; (2)

the data vector d is replaced by the vector to which the
matrix ðCreg

dI
Þ�1 has to be applied; (3) the pre-conditioner

is re-defined (see below); and (4) the length of all the
vectors involved is now equal to N. The low-level PCCG
procedure contains two core operations: (1) exact
multiplication of the covariance matrix C

reg

dI
with a

vector and (2) approximate multiplication of the inverse
covariance matrix with a vector (pre-conditioning). The
first operation is straightforward because the covariance
matrix is just a five-diagonal Toeplitz matrix with
explicitly known elements

C
reg

dI
¼ r2

ðDtÞ4

�

2þða2c þ2Þ2 �2ða2c þ 2Þ 1

�2ða2c þ2Þ 2þða2c þ 2Þ2 �2ða2c þ 2Þ . .
.

1 �2ða2c þ 2Þ 2þða2c þ 2Þ2 . .
.

. .
. . .

. . .
.

0

BBBBBBB@

1

CCCCCCCA

ð58Þ

As far as the pre-conditioning is concerned, the filtering
procedure presented in Sects. 3.2.3 and 3.2.4 offers a fast
and efficient way to carry out this operation. Simulations
show that the system of linear equations with matrix
C

reg

dI
can be solved by the low-level PCCG procedure in

only a few iterations (typically, not more than 10). This
is important because this procedure is executed at each
iteration of the high-level PCCG procedure.

Hereafter, we will refer to this algorithm as the ‘exact
data weighting’. It is important to emphasize that it is
exact only in the sense that it does not approximate the

covariance matrix with a circulant one. A regularization
of the covariance matrix still remains essential.

3.2.6 Data with gaps
First of all, let us consider how an adaptation to data
with gaps can be done in the case of exact data
weighting. The approach we follow was originally
developed by Klees and Ditmar (in press) in the
context of the ARMA (AutoRegressive – Moving
Average) filters. We reproduce this idea below, using
the notion of the mask matrix, which allows us to
make the description very concise and clear.

The accuracy of the exact data weighting algorithm
depends on how precisely we perform step 2 in the
PCCG method, i.e. the multiplication of the covariance
matrix with a vector. According to the infinite data set
concept [cf. Eq. (28)], step 2 can be re-written in the
presence of gaps as follows:

�qk ¼MðCreg

dI
Þ1MT �pk ð59Þ

where vectors �pk and �qk are supplied with bars in order
to distinguish them from vectors pk and qk in the high-
level PCCG procedure. Notice that the ‘infinite exten-
sion’ is applied to the component-dependent covariance
matrix in the inertial frame, not to the actual covariance
matrix Cd. This is justified if the gaps in all three
observational components are identical. Equation (59)
can be executed from the right to the left, which suggests
the following algorithm.

1. Take the original vector �pk and extend it by
appending zero elements at the beginning and at the
end as well as inside the gaps.

2. Apply the filter with coefficients ð1;�2ða2c þ 2Þ;
2þ ða2c þ 2Þ2;�2ða2c þ 2Þ; 1Þ (one row of the matrix
C1d ).

3. Pick up the values that correspond to the actual
measurements made.

The other operation to be considered is the pre-
conditioning, i.e. application of the whitening filter. As
long as this operation does not influence the final
results, we are reasonably flexible in choosing a way
to implement it. For example, we can fill the gaps
with zeros prior to filtering and ignore them there-
after.

Finally, the approximate data weighting scheme
needs an adaptation to data with gaps too. In the first
instance, the approximate data weighting can be imple-
mented in the same way as the pre-conditioning in the
low-level PCCG procedure. A somewhat better (though
empirical) approach is considered in the course of the
numerical study; see Sect. 4.4.2.

3.3 Pre-conditioning

In order to minimize the number of iterations in the
high-level PCCG procedure, we must specify a proper
pre-conditioner, i.e. an approximation of the normal
matrix. The requirements for the selection of a
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pre-conditioner are somewhat contradictory. On the one
hand, it must be sufficiently close to the normal matrix.
On the other hand, it must be quickly computable,
otherwise a speed-up due to a reduced number of
iterations will be over-balanced by the CPU time
required for the generation of the pre-conditioner itself.
Ideally, a pre-conditioner should also allow for a fast
solution of the corresponding system of linear equations.
In general, building a good pre-conditioner is a non-
trivial problem, which does not have a universal
solution. Fortunately, some satellite data (in particular,
satellite accelerations) offer a natural way to build an
efficient pre-conditioner with a minor computational
load.

A column of the point-wise design matrix Apw can be
split into three fragments, each of which corresponds to a
certain observational component. Consider the column
elements within one of these fragments, having in mind
that the observational components are defined in the
LORF.Then, as was shown byColombo (1986, 1989), the
column elements can be represented by the sum of a very
limited number of sinusoidal/co-sinusoidal functions of
different frequencies, provided that the following condi-
tions are met: (1) the radius and inclination of the satellite
orbit are constant; (2) the angular velocity of the satellite
and the orbit precession rate are constant; (3) the data
have no gaps and the sampling rate is constant; (4) the
orbit is repeat, i.e. the number of nodal days Nd and the
number of satellite revolutions Nr are integer values. If,
furthermore, the satellite makes a sufficient number of
revolutions (at least 2Lmax þ 1) without returning to the
original track in the terrestrial frame, the frequencies re-
lated to the designmatrix cohimns of different ordersmdo
not coincide. In the absence of data weighting, each ele-
ment of the normal matrix is produced at a scalar product
of two design matrix columns. This operation is equiva-
lent (up to a scaling factor) to computing the scalar
product of column spectra. It means that two columns
related to different orders produce a zero element in the
normal matrix. Moreover, an element of the normal ma-
trix is also equal to zero if the two design matrix columns
belong to the same order but one of them is related to a
‘C-’ coefficient in the gravity fieldmodel whereas the other
one is related to an ‘S-’ coefficient. For these reasons, the
normal matrix becomes block-diagonal under Colombo’s
assumptions: it gets split into 2Lmax þ 1 independent
blocks, the size of which does not exceed
(Lmax þ 1Þ � ðLmax þ 1) (Koop l993). Naturally, the cor-
responding systems of linear equations can be solved with
ease.

It is well known that a block-diagonal approximation
of the normal matrix can also be derived for the case of
colored noise in the data (Schrama 1990; Koop 1993;
Ditmar and Klees 2002). Let us show how this approxi-
mation will look like in the presence of both frequency-
dependent data weighting and averaging filtering.
Equations (12), (23), and (33), in combination with the
definition of the design matrix A ¼ EApw, yield the
following representation of the normal matrix:

~N ¼ ~AT
pwðRI!LEIRL!IÞ

�
RI!LðCreg

dI
Þ�1RL!I

�

� ðRI!LEIRL!IÞ~Apw

¼ ~AT
pwRI!LEIðCreg

dI
Þ�1EIRL!I

~Apw ð60Þ

where the ‘tilde’ indicates the Colombo approxima-
tion.

The presence of rotation matrices RI!L and RL!I

ensures that filtering is performed in an inertial frame. In
a sufficiently short time period, however, the orientation
of the satellite velocity changes insignificantly, so that
the LORF itself can be considered as an inertial frame.
Therefore, the rotation matrices can be omitted in
Eq. (60) under the assumption that the averaging and
the whitening filters are short, i.e. much shorter than the
satellite revolution period. Then, the normal matrix can
be represented as

~N ¼ ~BT ~B ð61Þ

where

~B � ðCreg

dI
Þ�

1
2 EI

~Apw ð62Þ

is a filtered design matrix; each column of it is produced
by applying the whitening and the averaging filter to the
corresponding column of the matrix ~Apw. Importantly,
the filtering operations handle all three observational
components independently, so that Eq. (62) can also be
understood in the component-wise sense. Then, Eq. (61)
can be re-written as

~N ¼ ~BðxÞ
T
~BðxÞ þ ~BðyÞ

T
~BðyÞ þ ~BðzÞ

T
~BðzÞ ð63Þ

In the rest of the discussion, we will refer to the design
matrix and to the filters in the sense of a particular
observational component.

Following the approach presented in Sect. 3.2, let us
assume that the averaging and the whitening filters are
implemented as the cyclic convolution, so that the

matrices EI and ðCreg

dI
Þ�

1
2 can be approximated as

EI � F�SEF; ðCreg

dI
Þ�

1
2 � F�SWF ð64Þ

where SE and SW are diagonal matrices filled with the
spectra of averaging and whitening filters, respectively
(the superscript referring to a particular observational
component is omitted). Furthermore, let us introduce a
matrix of spectral amplitudes A as the result of the
Fourier transform applied to the columns of the point-
wise design matrix

A ¼ 1

N
F~Apw ð65Þ

Under Colombo’s assumptions, the matrix A is very
sparse: the number of non-zero elements in each column
of this matrix equals the number of spectral lines in the

corresponding column of the matrix ~Apw. The substitu-
tion of Eq. (64) into Eq. (62) yields
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~B ¼ F�SEFF
�SWF~Apw ¼ N 2F�SWSEA ð66Þ

It is convenient to assume that the spectra SE and SW

are represented as continuous functions, SEðxÞ and
SW ðxÞ respectively. Then, we can say that the applica-
tion of filters changes the amplitude of a spectral line at
frequency x by the factor N2SEðxÞSW ðxÞ.

Hereafter, we present the explicit expressions for
elements of each block in the approximated normal
matrix ~N. These expressions are slightly different for
‘CC’ and ‘SS’ elements of the normal matrix (a
‘CC element’ means that it is produced from two
design matrix columns related to ‘C’ coefficients in the
gravity model; a similar explanation holds for an ‘SS
element’)

f~NðCCÞ;ðmÞgl1;l2

f~NðSSÞ;ðmÞgl1;l2

( )
¼N

2
Pl1;l2

ð1þ dm;oÞ
ð1� dm;oÞ

� �

�
Xminðl1;l2Þ

k¼�minðl1;l2Þ
ðHl1;m;kHl2;m;k

� ½N 4S2
Eðxk;mÞS2

W ðxk;mÞ�Þ ð67Þ

The notation used is as follows: Pl1;l2 is the parity
function

Pl1;l2 ¼
1 if l1 and l2 have the same parity
0 if l1 and l2 have a different parity

�

ð68Þ

dm;0 is the Kronecker symbol

dm;0 ¼
1 if m ¼ 0
0 if m 6¼ 0

�
ð69Þ

xk;m is the cyclic frequency of a given spectral line:
xk;m ¼ 2pðkNr þ mNdÞ=ðNDtÞi Hl;m;k ¼ H ðxjyjzÞl;m;k is a com-
ponent-dependent factor

H ðxÞl;m;k ¼k
GME

R2

R
r

� �lþ2
Fl;m;kðIÞ

H ðyÞl;m;k ¼
GME

R2

R
r

� �lþ2
F �l;m;kðIÞ ð70Þ

H ðzÞl;m;k ¼� ðlþ 1ÞGME

R2

R
r

� �lþ2
Fl;m;kðIÞ

where r is the orbit radius; I is the orbit inclination; and
Fl;m;kðIÞ and F �l;m;kðIÞ are the so-called inclination func-
tions and cross-track inclination functions, respectively
(Kaula 1966; Betti and Sansò 1989; Schrama 1990;
Sneeuw l992; Koop l993).

The factor in square brackets in Eq. (67) indicates the
contribution of the averaging and the whitening filters.
The spectrum SEðxÞ can be obtained numerically by
applying the discrete Fourier transform to the averaging
filter coefficients, which are given by Eq. (22). The
spectrum SW ðxÞ can readily be obtained by inverting
Eq. (46) and applying, according to Eq. (42), the scaling
factor N�2

SW ðxÞ ¼
ðDtÞ2

Nr
½2ð1� cosxDtÞ þ a2c �

�1 ð71Þ

It is worth adding that the inclination functions Fl;m;kðIÞ
are equal to zero when indices l and k have a different
parity, so that the summation in Eq. (67) can be done
with stride 2 in the case of the x and z components.
Furthermore, the cross-track inclination functions
F �l;m;kðIÞ are equal to zero when indices l and k have
the same parity, so that in case of the y components the
summation in Eq. (67) can be done with stride 2 from
�minðl1; l2Þ þ 1 to minðl1; l2Þ � 1.

The final expression for a block in the block-diagonal
approximation of the normal matrix is the sum of
Eqs. (67) over all three components [cf. Eq. (63)].

4 Numerical experiments

4.1 Simulated orbits

In order to illustrate the capacities of the developed
technique, we have performed a numerical study. Two
satellite orbits have been considered (see Table 1). Both
orbits have been computed with a numerical integration
technique (see e.g. Seeber 1993) by Dr. P. Visser
(Aerospace Department, Delft University of Techno-
logy), who used for that purpose the GEODYN
software (Pavlis et al. 1997). These orbits are purely
gravitational (non-conservative forces are not modeled),
which is consistent with the GOCE mission setup. The
direct and indirect tidal effects have been taken into
account. One of the orbits is considered as is, whereas
the other one is artificially contaminated by 1-cm white
noise. Each of the orbits is used both to derive the
satellite accelerations and to define the observation
points related to these accelerations.

The noise-free orbit is mostly used to compare the
performance of averaging filters of different orders. With
the noisy orbit, we demonstrate the influence of colored
noise in the data and the ability of different data
weighting schemes to cope with it.

In order to quantity the quality of computed gravity
field models, geoid height errors have been computed in
the latitudinal band 
80� with step 1� in both the lati-
tudinal and the longitudinal direction (the polar areas

Table 1. Parameters of the simulated orbits

Noise-free orbit Noisy orbit

‘True’ gravity field model

Truncated at degree/order

EGM96
(Lemoine et al. 1998)
50

EGM96

80
Duration 10 days 10 days
Number of revolutions 161 161
Mean inclination 96.6� 96.6�
Radius 6624 ± 6 km 6624 ± 6 km
Average elevation above
the equator

246 km 246 km

Noise – 1-cm white
noise

Sampling rate 30 s 1 s
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are eliminated from the evaluation because they are not
covered by the orbits). These errors are used to deter-
mine the root mean square (RMS) and the maximum
geoid height error for different data processing scenar-
ios.

4.2 Deriving residual accelerations

The double differentiation of the orbit data [Eq. (6)]
results in the total average accelerations at the points of
the observed orbit: �a ¼ �aðrobsÞ (as before, the bar
denotes average values). They have to be converted into
residual average accelerations D�aðrobsÞ

D�aðrobsÞ ¼ �aðrobsÞ � �a0ðrobsÞ ð72Þ

where �a0ðrobsÞ are the reference average accelerations at
the observed satellite positions. In this numerical study,
the reference accelerations are obtained by differentia-
tion of an auxiliary orbit computed on the basis of the
reference gravity field (Table 2). The auxiliary orbits
have been split into ten 1-day arcs in order to ensure
smaller differences with respect to the ‘observed’ orbits.
The derived sets of reference accelerations contain nine
two-sample gaps, which correspond to the beginnings/
ends of the arcs. In computing the residual accelerations,
we took into account the fact that the reference
accelerations �a0ðrrefÞ are related to the points at the
reference orbits. Therefore, the residual accelerations
have been corrected by the amount �a0ðrobsÞ � �a0ðrrefÞ.

It is worth adding that the average reference accel-
erations can also be computed without an auxiliary or-
bit. This option is discussed in Sect. 5.

4.3 Comparison of the averaging filters

In order to study the influence of the averaging filter on
the produced model, we have considered the noise-free
data set (Dt ¼ 30 s). First of all, we have tried to process
the data without the averaging filter at all. The resulting
RMS geoid height error in this case equals 4.4 cm. After
switching the averaging filter on, the model quality
improves. Figure 2 shows how the RMS geoid height
error decreases with increasing filter order. A ‘satura-
tion’ is reached at about the order 12, when the error
equals 0.044 cm. Further increasing the order yields only

negligible improvements (e.g. the 20th-order filter results
in an error of 0.043 cm). Therefore, the 12th-order
averaging filter is routinely used in the rest of the
numerical study. However, we realize that processing of
data with a shorter sampling interval could be done with
the averaging filter of a smaller order or without the
averaging filter at all. The latter case would mean that
we do not distinguish between average and point-wise
accelerations. Naturally, such an approximation may
be acceptable only in the context of residual accelera-
tions.

Figure 3 shows the map of geoid height errors when
the noise-free data set is processed with the 12th-order
averaging filter. The remaining errors are probably
caused by the limited accuracy of the orbit integration.

4.4 Optimal data weighting

4.4.1. Naive attempts
In this example, the noisy data set has been considered
(Dt ¼ 1 s). To be begin with, we have tried to process this
set without any data weighting. The model obtained,
however, shows strong edge effects at the beginning and
at the end of each arc (Fig. 4a). These are caused by the
fact that noise in accelerations is, roughly speaking,
proportional to the frequency squared, i.e. severely
colored. At high frequencies it can be very strong,
especially if the sampling interval is short [remember
that noise level is inversely proportional to the sampling
interval squared, cf. Eq. (36)]. At lower frequencies,
however, the noise rapidly decreases. This means that
the averaging of a noise realization over even a short
interval results in a near-zero value. The latter explains
why the model obtained is surprisingly insensitive to the
data noise in the areas that do not fall into the vicinity of
an arc edge.

Furthermore, a naive attempt to apply a whitening
filter as discussed in Sect. 3.2.4 fails (Fig. 4b). Increasing
the filter half-width leads to even worse results.

4.4.2 Suppression of edge effects
We interpret the severe edge effects shown above as
evidence that the averaging of the noise realization does
not return a near-zero value at the edges. This is

Table 2. Description of the reference gravity field model, auxiliary
orbits, and derived accelerations

Noise-free case Noisy case

Reference gravity field
model

JGM-3
(Tapley et al. 1996)

JGM-3

Truncated at degree and
order

50 70
(the full model)

RMS difference between the
‘observed’ and auxiliary orbit

6.797 m 8.697 m

Number of three-component
residual accelerations

28 781 863 981

Maximum degree solved for 50 80

Fig. 2. Processing of the noise-free data set, Dependence of the RMS
geoid height error on the order of the averaging filter. The zero order
corresponds to the computation without averaging
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Fig. 3. Processing of the noise-free data set.
Map of geoid height errors, 12th order
averaging filter is applied (RMS error
0.044 cm, maximum error 0.26 cm)

Fig. 4. Processing of the noisy data set. Maps
of geoid height errors when a no data
weighting is applied (RMS error 8.2 m,
maximum error 31.3 m) and b the data are
weighted by applying twice the whitening
filter (s ¼ 180 s) without suppression of edge
effects (RMS error 30.7 m, maximum error
602.2 m)
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not surprising because a part of noise samples that
contributes to a near-zero sum is lost (remember the
concept of an infinite data set and the ‘mask matrix’).

In view of this, we can try to compensate the noise
‘imbalance’ at an edge of an arc artificially. Consider as
an example the very beginning of the data set. Let us
append to the original data set one additional sample
(‘zero sample’). The value assigned to this sample should
be such that an averaging would produce a near-zero
result at the edge. In practice, this can be reached, e.g. by
assuming that the whitening filter returns exactly zero
for the zero sample. As long as the result of the filtering
is a smooth function, we can expect that the filter will
return near-zero values for the samples 1, 2, 3, . . ..

Obtaining the zero filter output for the zero sample is
especially simple if the data set starts from a sufficiently
long uninterrupted data fragment. Then, according to
Eq. (52), the zero sample obtains after the filtering the
following value:

z0 ¼
Dts
2r

X1

j¼0
yje
�jac ¼ Dts

2r
y0 þ

X1

j¼1
yje
�jac

 !
ð73Þ

Then, setting z0 ¼ 0 yields

y0 ¼ �
X1

j¼1
yje
�jac ð74Þ

A similar idea can also be used to handle the
beginning and the end of each arc, including short
arcs, although formulae in that case are slightly more
complicated.

Restoration of the ‘noise balance’ improves the
quality of the results dramatically. The filter half-width
s, however, should be kept rather short. Table 3 shows
that the optimal model is obtained with s ¼ 60 s. In an
attempt to use a longer filter, we face the problem of
edge effects again (Fig. 5a). Such a behavior is annoying
because s is inversely proportional to ac – the regulari-
zation parameter applied to the covariance matrix. We

could expect that by increasing s we would introduce a
smaller bias into the stochastic model, so that the quality
of the obtained models should increase.

We can probably think of a better empirical proce-
dure for the suppression of edge effects. There is, how-
ever, a more drastic remedy: to apply the exact data
weighting scheme based on the low-level PCCG proce-
dure as discussed in Sect. 3.2.5.

4.4.3 Exact data weighting
Indeed, the exact data weighting algorithm does a better
job (Table 3, Fig. 5b). First, the errors in the models
obtained are further reduced. Second, the dependence of
the model error on the filter half-width s is more
reasonable: the model quality improves as s increases, at
least until s ¼ 600 s. In practice, however, a somewhat
smaller value of s (namely, 180 s) seems to be preferable.
This gives a model of almost the same quality as
s ¼ 600 s but requires three times fewer PCCG itera-
tions (Table 3). It is worthwhile to add that setting
s > 600 s does not make much sense because the further
improvement of model quality is negligible, whereas
time expenditures increase dramatically.

Interestingly, switching off the averaging filter does
not introduce any noticeable error into the solution
when the 1-s data set is processed. To show this, we have
included in Table 3 the results of the corresponding
computation with s ¼ 180 s.

We have also assessed how important it is to perform
the data weighting in an inertial frame rather than in the
LORF. We have repeated the computations having
switched off the rotation in the data weighting procedure
[cf. Eq. (32)]. Results of these computations are listed in
Table 3 only for s 	 180 s, because for a smaller s the
differences with respect to the first series are negligible.
We can see that data weighting in the LORF does not
deteriorate the model, but may speed up the computa-
tions when s is large. The latter feature is not surprising
because in developing the pre-conditioner we neglected
the rotation to/from an inertial frame. The comparison

Table 3. Dependence of the
model quality and the numerical
performance on the data
weighting scheme and the para-
meter s

Data weighting
scheme

s (s) RMS geoid
error (cm)

Max geoid
error (cm)

Number of
PCCG iterations

CPU time on a
Pentium IV 2.4-GHz
laptop PC (min)

No data weighting – 81.63 3128 6 21.1

Double
whitening
filtering
(edge effects
are suppressed)

20 31.29 149 6 21.5
40 30.41 139 6 21.5
60 30.26 144 7 24.8
120 30.53 206 9 31.2
180 31.05 246 11 38.0
600 34.11 424 34 120.6

Exact data
weighting in
an inertial
frame

20 31.25 149 6 22.3
40 30.27 140 7 25.6
60 29.98 138 7 25.5
180 29.67 137 11 39.3
600 29.65 137 39 136.1
180a 29.66a 137a 11 35.9

Exact data weighting
in the LORF

180 29.68 136 10 35.4
600 29.70 136 35 121.1

a The averaging filter was switched off.
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shows that we can safely perform the data weighting in
the LORF.

4.5 Comparison of the proposed technique
with other approaches

Naturally, it is important to compare the results
shown with those obtained by means of the other
methods: the energy balance approach and the tradi-
tional approach based on the integration of the varia-
tional equations.

4.5.1 Energy balance approach
In the energy balance approach, the input data set
consists of satellite kinetic energy measurements. In the
absence of non-gravitational forces, the kinetic energy
per unit mass KðtÞ can be related to the total gravita-
tional potential UðtÞ by the energy conservation law (see
e.g. Jekeli 1999)

KðtÞ ¼ UðtÞ �
Z t

t0

@UðtÞ
@t

dt þ const ð75Þ

where t0 is the time when an uninterrupted series of
measurements started (each interruption leads to a
re-definition of the constant term). The integral term
in this expression describes the energy that is ‘pumped’
in or out because of temporal gravity variations at a
given point in an inertial frame. Let us show that a set of
kinetic energy measurements leads to nearly the same
gravity field model as a set of along-track accelerations,
provided that the optimal estimation procedure is
followed in both cases.

The kinetic energy K at a given time is a function of
the velocity magnitude v: KðvÞ ¼ v2=2. The differentia-
tion of this relationship yields: K 0ðvÞ ¼ v 6¼ 0. There-
fore, a set of kinetic energy measurements and a set of
velocity magnitude measurements are equivalent in the
sense of the optimal estimation (see Appendix A).

Fig. 5. Processing of the noisy data set;
s ¼ 180 s. Maps of geoid height errors when
a the data are weighted by twice the whiten-
ing filter with suppression of edge effects
(RMS error 0.31 m, maximum error 2.46 m)
and b the exact (PCCG-based) data weighting
is used (RMS error 0.30 m, maximum error
1.37 m). The circles on the top picture
indicate the areas with remaining edge effects
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Furthermore, the time derivative of the velocity
magnitude results in the along-track component of the
acceleration vector

dv
dt
¼ aðLÞx ð76Þ

which can be related to the gravitational potential by
Newton’s second law

aðLÞx ¼
@U
@xðLÞ

ð77Þ

We can also derive the relationship of Eq. (77) from
Eq. (75) using the expression for the total derivative of
the gravitational potential at the satellite location with
respect to time

dU
dt
¼ @U
@xðLÞ

vþ @U
@t

ð78Þ

Let us re-write Eq. (76) in the finite-difference form

ax ¼ Dð1Þv ð79Þ

where v is an uninterrupted series of velocity magnitude
measurements; ax is the result of the numerical differ-
entiation; and Dð1Þ is the numerical differentiation
matrix

Dð1Þ ¼ 1

Dt

�1 1
. .

. . .
.

�1 1

0
@

1
A ð80Þ

If the matrix Dð1Þ was square and invertible, we could
claim that the data sets v and ax were also equivalent in
the sense of the optimal estimation (see Appendix B). In
reality, this is not the case, which is not surprising: the
differentiation leads to a loss of information about the
mean level in the original data. We can, however, extend
the vector ax by just one more value (e.g. the mean
velocity), so that the equivalence of the data sets is
restored. In practice, this additional measurement would
mostly be needed to determine the unknown constant
term in Eq. (75); its influence on the gravity field model
would be minor. Therefore, a set of velocity magnitudes
and a set of along-track accelerations derived by the
numerical differentiation are nearly equivalent.

Thus, the kinetic energy measurements contain nearly
the same information as measurements of only one – the
along-track – acceleration component and should lead
to nearly the same optimal model estimation. This has a
simple physical interpretation. The presence of the radial
and the cross-track components in the acceleration
vector is caused by the forces acting in the correspond-
ing directions. Such forces, however, do no work,
because they are always perpendicular to the elementary
path. Hence by measuring the kinetic energy we collect
no information about the forces in the radial and the
cross-track directions.

It is now obvious that we can assess the accuracy
deliverable by the energy balance approach using the
proposed processing technique provided that only the

along-track component is retained in the data vector.
Naturally, the data weighting can be performed only in
the LORF in this case. We have made such a compu-
tation with the noisy data set, using s ¼ 180 s and the
exact data weighting scheme. The obtained pattern of
geoid height errors turns out to be similar to that in
Fig. 5b, but the error level has increased: to 50.34 cm on
average and to 232 cm at maximum. This RMS error is
1.70 times larger than that we obtained when all three
components of the acceleration vector were used (cf.
Table 3). It is very close to the factor

ffiffiffi
3
p
� 1:73 that

could be expected from a purely statistical point of view
(provided that all three acceleration components con-
tribute equally to the solution).

One may argue that in practice Eq. (75) is not used
for data processing directly. Instead, the integral term is
replaced by an approximate estimation that can be ob-
tained from the data as follows (Jekeli 1999)

Z t

t0

@UðtÞ
@t

dt � �xe xðCÞðtÞ dyðCÞðtÞ
dt

� yðCÞðtÞ dxðCÞðtÞ
dt

� �

þ const ð81Þ

where xe is the Earth’s rotation rate and ðxðcÞ; yðcÞÞ are X
and Y coordinates of a point in the celestial frame. To
make the comparison of the techniques more compre-
hensive, we have also implemented the energy balance
approach explicitly. This required some modifications in
the synthesis, co-synthesis, and pre-conditioning algo-
rithms. The data weighting algorithm was almost
unchanged but the original covariance matrix was
replaced by the square root of it (we leave out a
discussion of how justified this is). Some precautions
were taken to account for an arbitrary constant term in
each uninterrupted data fragment. Data averaging was
not included, i.e. we do not distinguish between average
and point-wise measurements. Our justification is that
we deal with the 1-s sampling and with the residual
potential, which is derived from a pair of close orbits.
The developed procedure has been applied to the noisy
data set too. As before, the results of the computations
turn out to be fairly insensitive to the parameter s. In
particular, for s ¼ 180 s we obtain an RMS geoid height
error of 52.16 cm and a maximum error of 236 cm. The
pattern of the geoid height errors is similar to that
shown in Fig. 5b. This matches the results produced
from the along-trade accelerations very well. Thus, we
can see that the energy balance approach is indeed aboutffiffiffi
3
p

times less accurate than the proposed technique,
which is based on the satellite accelerations.

4.5.2 Traditional approach (integration
of variational equations)

The model obtained from the noise-free data set (Fig. 3)
can be directly compared with the one produced in the
traditional manner by Ditmar and Klees (2002). As far
as the noisy data set is concerned, we have down-
sampled the corresponding noisy orbit to 15 s, derived a
new set of accelerations, and computed new gravity field
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models, both without and with the first-order Tikhonov
regularization. In the latter case, the regularization
parameter has been selected in such a way as to
minimize the RMS geoid height error. The models
obtained in this way are comparable with those pro-
duced with the traditional approach by Ditmar et al.
(2003b).

Results of the comparison in terms of geoid height
errors and time expenditures are summarized in Table 4.
Importantly, the proposed technique requires only the
observation points and the orbit-derived accelerations as
input. In applying the traditional technique, on the
contrary, the design matrix was calculated by the GE-
ODYN software beforehand; these time expenditures
are, however, not included. Furthermore, the import of
the computed design matrix is a rather time-consuming
operation. Therefore, we compare only the time spent
on the data processing itself, leaving out the input/out-
put operations; nevertheless, the proposed technique
proves to be much faster.

Furthermore, Table 4 shows that the proposed and
the traditional techniques result in models of a very
similar quality in all the considered examples. This is not
surprising because the orbit data and the accelerations
contain nearly the same information, i.e. are practically
equivalent. We can easily show this using the same
argumentation as in the previous section.

Interestingly, changing the sampling interval in the
case of noisy data from 1 s to 15 s increases the RMS
model error 3.8 times (from 29.7 to 114 cm). This is very
close to the factor

ffiffiffiffiffi
15
p

� 3:9 that could be expected
from the purely statistical point of view. This confirms
that the model errors have a purely stochastic origin, i.e.
represent propagated data noise.

5 Discussion and conclusions

We have presented a new technique for a high-accuracy
computation of the Earth’s gravity field from orbit-
derived satellite accelerations. The technique is based on
the pre-conditioned conjugate gradient method, which
allows us to avoid an explicit computation of the normal
matrix and even of the design matrix (it is sufficient to
have algorithms for multiplication of the design matrix
and its transpose to vectors). Thanks to this, the

technique is very fast. This is particularly true for long
data sets. It has already been shown in the context of
SGG data that such a techniques require only OðNÞ
operations per PCCG iteration provided that the
number of data N is large (Ditmar et al. 2003a). On
the other hand, the traditional technique always requires
an explicit computation of the normal matrix. This is
mainly because a suitable approximation of the nor-
mal matrix that could be used as the pre-conditioner
in the PCCG procedure has not been found so far.
The assembly of the normal matrix is, however, a
time-consuming procedure: it requires OðNL4

maxÞ
operations.

One may argue that the normal matrix is a valuable
product of data processing on its own (e.g. because it
can be used for computation of the model covariance
matrix). However, we find it very uneconomical to
generate the normal matrix in every data processing
attempt. Furthermore, the technique we propose can
easily be adapted to the computation of the normal
matrix as well. First of all, we have to define a ‘unit
model vector’, i.e. a model with all the coefficients set to
0 except for one, which equals 1. A sequential applica-
tion of the synthesis, data weighting, and co-synthesis
just results in one column of the normal matrix. All the
columns can be computed in this way, one by one. At
present, such a computation is a standard option of our
software. Importantly, the number of operations per
column is equal to that at one iteration of the PCCG
scheme. Thus, the whole normal matrix can be assem-
bled in OðNL2

maxÞ operations. As a result, the proposed
technique remains, for large N , faster than the tradi-
tional one. A more detailed discussion about the com-
putation of the normal matrix with the fast synthesis/co-
synthesis algorithms can be found in Ditmar et al. (in
press). It is worth adding that the covariance matrix,
which is the inverse of the normal matrix, is usually
required with a much lower accuracy than a model of
the gravity field. This opens the door for various
approximations in computing the normal matrix. Our
technique offers a number of ways to speed up the
computations at the expense of the accuracy: (1) using
relatively large cells in the synthesis/co-synthesis on a
grid; (2) setting the orbit radius constant, thanks to
which the 3-D interpolation in the synthesis/co-synthesis
reduces to a 2-D one; and (3) usage of an approximate

Table 4. Comparison of the proposed technique with the traditional one (based on the integration of the variational equations). The time
expenditure refers only to the data processing itself, without input/output operations. In the case of the proposed technique, the exact data
weighting is applied in an inertial frame with s = 180 s

Data set Proposed technique Traditional technique

RMS geoid
error (cm)

Max geoid
error (cm)

CPU time, on a
Pentium IV 2.4-GHz
laptop PC (s)

Wall-clock time,
SGI Origin
38000 (s)

RMS geoid
error (cm)

Max geoid
error (cm)

Wall-clock time,
SGI Origin
38000 (s)

Noise-free 0.044 0.26 50 7 (10 CPUs) 0.044 0.22 169 (10 CPUs)
Noisy (15-s sampling,
without regularization)

114 492 379 26 (30 CPUs) 111 534 3422 (30 CPUfs)

Noisy (15-s sampling,
with regularization)

46.1 337 345 23 (30 CPUs) 46.0 396 3374 (30 CPUs)
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data weighting. Finally, we would like to point out that
the entries in a covariance matrix can also be approxi-
mately estimated by means of a Monte-Carlo method
(Gundlich et al. 2003).

The conducted numerical study has shown that the
proposed technique is about

ffiffiffi
3
p

times more accurate
than the energy balance approach. However, this result
must be interpreted with caution. On the one hand, the
performance of the energy balance approach can be even
worse if the estimation procedure is not optimal (e.g.
without a data weighting at all). On the other hand, the
contribution of different components to the solution
may be not the same. If, for some reason, the along-
track measurements are much more accurate than the
measurements related to the other directions, the energy
balance approach may even deliver the same accuracy as
the other methods. Furthermore, in practice the solu-
tions are usually computed with a regularization, which
can be considered as an additional source of informa-
tion. Therefore, the relative loss of information due to
the use of the energy balance approach can also be
somewhat less than in the examples above. Finally,
errors in the solution may be of a systematic rather than
of a stochastic origin (e.g. because of unaccounted
temporal gravity field variations). Switching from the
energy balance approach to another data processing
technique will not help to minimize those errors at all.

The proposed technique suggests that the input data
– average satellite accelerations – are derived from a
precise orbit with the three-point scheme. The proper
adaptation of the functional model is performed by
incorporation of the averaging filter into the processing
procedure. Naturally, there is a more obvious way to
define the functional model: to assume that the mea-
sured accelerations are point-wise (Reubelt et al. 2003a).
We believe, however, that in practice such a functional
model is inferior. First, derivation of (approximately)
point-wise accelerations requires a high-order differen-
tiation scheme. Therefore, even one missing observation
in terms of orbit data causes a relatively broad gap in
terms of accelerations. Second, designing an accurate
and efficient data weighting procedure would be more
difficult in the case of a high-order differentiation.

An important feature of orbit-derived accelerations
is correlated noise. If the noise in orbit data is white,
the noise in accelerations increases, roughly speaking,
in proportion to the frequency squared. For a small
sampling rate, the noise in the range of highest
frequencies can exceed the signal by orders of magni-
tude. This explains why an accurate data weighting
proved to be a key to the success of the proposed
technique. Furthermore, our numerical study has
shown that the quality of the obtained models is not
very sensitive to the filter half-width s. However, our
results are probably valid only when data errors match
the considered stochastic model. In practice, the situ-
ation may be more complicated due to various reasons,
e.g.: (1) non-stationary (and, possibly, correlated) noise
in the kinematic orbit; (2) colored noise in measure-
ments of the non-gravitational satellite accelerations;
and (3) systematic errors caused by an imperfect

functional model. A stochastic model corresponding to
arbitrary stationary colored noise has been already
considered by Schuh (1996), Klees and Broersen (2002),
Klees et al. (2003), and Klees and Ditmar (in press),
who used recursive (ARMA) filters for the data
weighting. More complicated stochastic models are,
however, a matter for future studies.

In order to obtain the residual satellite accelerations,
we have to subtract the reference accelerations from the
observed ones. In our numerical study, we have com-
puted the reference accelerations from an auxiliary orbit,
which corresponds to the reference gravity field. The
reference gravity field, however, can also be used for the
direct computation of the reference accelerations. In
doing so, we must compute the point-wise accelerations
at the observation points and then apply the averaging.
The simplest way to do the latter operation is to use the
averaging filter as discussed in Sect. 3.1.2. We should
bear in mind, however, that inaccuracies of the filtering
procedure will be proportional to the signal filtered and
that the total accelerations are orders of magnitude
larger than the residual accelerations. Therefore, the
statements made above about tolerable approximations
in the averaging filtering will no longer be valid: a high-
order filter will be a must. The direct computation of the
reference accelerations is probably preferable when the
motion of a satellite is influenced by non-gravitational
forces, as is the case for the CHAMP and GRACE
missions.

Another important aspect of the proposed technique
is the convergence of the PCCG procedure. Our
numerical study shows that the block-diagonal pre-
conditioner described in Sect.3.3 leads to a sufficiently
fast convergence. It may have been noticed, however,
that repeat orbits were used in the numerical examples
considered. Then, the question arises whether a fast
convergence can also be reached for a non-repeat orbit
as well. Our latest experience tells that this is indeed the
case, provided that the data set is sufficiently long. This
can be explained as follows. The block-diagonal pre-
conditioner works efficiently when most of the normal
matrix elements vanish, so that the structure of the
matrix itself becomes nearly block-diagonal. Each ele-
ment of the normal matrix is a scalar product of two
filtered design matrix columns, each of which can be
approximated by a linear combination of sinusoidal
harmonics. A normal matrix element becomes equal to
zero if (1) the sets of frequencies in the two columns do
not coincide and (2) an integer number of cycles fit into
one column for every frequency. It is just the repeat
orbit configuration which makes the latter condition
satisfied. If, however, the orbit is sufficiently long, so
that the number of cycles is large, the product of two
harmonics of different frequencies is close to zero any-
way, no matter whether the number of cycles in a col-
umn is integer or not. On the other hand, it is important
to point out that the pre-conditioner we have used so far
is built under the assumption that the list of unknowns is
formed by the spherical harmonic coefficients only. In
practice, it may be necessary to include other unknown
parameters into the inversion scheme, in which case it
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will be more difficult to find a suitable pre-conditioner.
This is also a subject of further investigations.

The developed technique has been incorporated
into the GOCESOFT software, which is intended, first of
all, to process the data that will be acquired by the GOCE
satellite. This does not, however, exclude consideration of
data from other satellite missions. In particular, process-
ing of real SST data acquired by the CHAMP satellite is
currently in progress. The obtained results will be
presented and discussed in a forthcoming publication.

Appendix A

Invariance of a linearized least-square solution
with respect to functional transformations of the data

Assume that a model vector m of length M has to be
computed on the basis of a data vector y of length N ,
provided that there is a certain (possibly, non-linear)
functional relationship between the model and the data:
y ¼ UðmÞ. This relationship can be linearized by means
of the Taylor expansion, where the terms of the second
and higher order of smallness are neglected

y ¼ y0 þ Aðm�m0Þ ðA1Þ

with m0 an initial model; y0 ¼ U(m0), and A the matrix
of partial derivatives (design matrix)

Aij ¼
@UiðmÞ
@mj






m¼m0

ðA2Þ

Equation (A1) can be re-written in a more compact
form as

Ax ¼ d ðA3Þ

where x is the model correction to be found,
x ¼ m�m0, and d are the data residuals; d ¼ y� y0.
Let Cd be the data covariance matrix. Then, the optimal
estimation of the model can be found as follows [cf.
Eqs. (11) and (12)]

x̂ ¼ ðATC�1d AÞ�1ATC�1d d ðA4Þ

Assume that a certain functional transformation is
applied to the data prior to the model estimation

~yi ¼ f ðyiÞ i ¼ 1; 2; . . . ;N ðA5Þ

where ~yi is a transformed observation and f ðyÞ is an
arbitrary function (possibly non-linear).Variations of
the transformed data d~y can be related to those of the
original data dy as d~y ¼ Ddy, where D is a diagonal
matrix of derivatives

D ¼

f 0ðy1Þ
f 0ðy2Þ

. .
.

f 0ðyN Þ

0
BB@

1
CCA ðA6Þ

In the first-order approximation, the transformed data
residuals ~d can be related to the original data residuals d as

~d ¼ Dd ðA7Þ

Furthermore, the transformed data are characterized by
the following covariance matrix:

C~d ¼ DCdD ðA8Þ

The covariance matrix C~d is invertible if all the
derivatives f 0ðy1Þ; . . . ; f 0ðyN Þ are not equal to zero

C~d
�1 ¼ D�1C�1d D�1 ðA9Þ

The transformed data can be related to the model as

~y ¼ ~UðmÞ ¼ fðUðmÞÞ ðA10Þ

Furthermore, a linearized relationship can be written by
analogy with Eq. (A1)

~y ¼ ~y0 þ ~Aðm�m0Þ ðA11Þ

where ~A is the transformed matrix of partial derivatives.
By using the chain rule of differentiation, we can
represent the elements of the matrix ~A as follows:

~Aij ¼
@ ~UiðmÞ
@mj






m¼m0

¼ f 0ðyiÞAij ðA12Þ

Equation (A12) can be re-written with the matrix
notation as

~A ¼ DA ðA13Þ

The optimal model that can be derived from the
transformed data is equal, by analogy with Eq. (A4), to

~̂x ¼ ð~ATC�1~d
~AÞ�1 ~ATC�1~d

~d ðA14Þ

Substitution of Eqs. (A7), (A9), and (A13) into
Eq. (A14) yields

~̂x ¼ x̂ ðA15Þ

Thus, a linearized least-square solution is invariant with
respect to functional transformations of the data,
provided that the derivative of the transformation
function is not equal to zero for all the data.

Appendix B

Invariance of a least-square solution with respect
to linear transformations of the data vector

Assume that a data vector d is characterized by the co-
variance matrix Cd and related to an unknown model
vector x by a linear functional model represented by
Eq. (A3). Assume further that this functional model is
subject to linear transformation, so that the transformed
functional model is

A
�
x ¼ d

�
ðB1Þ

where A
�

is the transformed design matrix and d
�
is the

transformed data vector
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A
�
¼ BA; d

�
¼ Bd ðB2Þ

with B an arbitrary square non-singular matrix, so that
the matrix B�1 exists. The covariance matrix of the
transformed data C

d
� is

C
d
� ¼ BCdB

T ðB3Þ

whereas the inverse of it is equal to

C�1
d
� ¼ ðBT Þ�1C�1d B�1 ðB4Þ

The optimal model that can be derived from the
transformed data is given by

^
x
� ¼ A

�T

C�1
d
� A
�

� ��1
A
�T

C�1
d
� d
�

ðB5Þ

Substitution of Eqs. (B2) and (B4) into Eq. (B5) yields

^
x
� ¼ x̂ ðB6Þ

where x̂ is the optimal solution related to original
functional model, as given by Eq. (A4). Thus, a least-
square solution is invariant with respect to a linear
transformation of the data vector provided that the
transformation matrix is square and not singular.
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