
Period variations of the Chandler wobble

H. Jochmann

GeoForschungsZentrum Potsdam (GFZ) Department 1, Geodesy and Remote Sensing,
Postfach 60 07 51, 14407 Potsdam, Germany; e-mail: h.jochmann@t-online.de; Tel.: +49-3328-304798; Fax: +49-331-2881163

Received: 12 March 2003/ Accepted: 25 June 2003

Abstract. Variations in the period of the Chandler
wobble have been discussed since its discovery by
Chandler in 1892. Various authors engaged in the
investigation of polar motion time series suggest both
a variable and an invariable period. It cannot be
resolved by the analysis of time series whether the
Chandler period is variable. By studying the influence of
mass redistributions on the Chandler period it has been
found that it is in fact variable, but the magnitude of
such variation is much smaller than that found by polar
motion time series analysis. For the currently available
time series of polar motion, it is sufficient to assume an
invariable Chandler period.
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1 Introduction

The temporal variation of the Chandler period has been
discussed since its discovery by Chandler in 1892.
Chandler (1892) suggested a variable period increasing
by ca. 2 months within a century. Newcomb (1892), who
had explained the difference between the Eulerian (306
days) and Chandler period (435 days), replied that,
perturbations aside, any variation of the period is in
such direct conflict with the laws of dynamics that it can
be considered impossible. These contradictory points of
view have been discussed by several authors engaged in
the analysis of polar motion time series. A number of
these (e.g. Okubo 1982; Kuehne and Wilson 1996;
Vicente and Wilson 1997) accepted and provided
evidence for a invariable Chandler period, while others
(e.g. Melchior 1954, 1957; Sekiguchi 1972, 1976; Carter
1981) suggested a temporally variable period.

Recently, the increased accuracy of polar motion data
sets has inspired new efforts to study the characteristics of
polar motion and some authors (Liu et al. 2000; Schuh

et al. 2001; Hoepfner 2002, submitted) have found a
temporal variation of the Chandler period.

These different and partly contradictory results show
that analyses of polar motion time series are not suitable
to decide whether the Chandler period changes with
time. Subsequently, the Chandler period will not be
treated as a quality of a polar motion time series, but as
an eigenvalue of the differential equations of polar mo-
tion.

2 The Chandler frequency and mass redistributions
of the Earth

The polar motion of an Earth model passively coupled
to a fluid core is described by the differential equation

dm
dt
� irCHm ¼ �irCHw ð1Þ

in complex notation, where the circular frequency of the
Chandler wobble is given by

rCH ¼
C � AþB

2

AM
x0ð1�

D11 � iE11

C � AþB
2

Þ ð2Þ

In Eq. (1) the pole coordinates are

m ¼ m1 þ im2 ð3Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

and the excitation function w is given by

w ¼ A
AM

c
C � A

þ h
ðC � AÞx0

�

� i
x0

c
C � A

þ h
ðC � AÞx0
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In Eq. (2) A, B, C, and AM are the principal moments of
inertia of the Earth and the Earth’s mantle respectively.
D11 and E11 are parameters depending upon the
rheology of the Earth (see Moritz and Mueller 1989).
The principal moments of inertia depend upon the
distribution of the Earth’s masses, and if this distribu-
tion varies over time a corresponding modulation of the
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Chandler frequency will also take place. Since the mass
redistribution caused by geophysical processes mainly
influences the excitation function by variations of the
products of inertia

c13 ¼
Z

M

x1x3 dm; c23 ¼
Z

M

x2x3 dm ð4aÞ

[in Eq. (4) combined in the complex quantity c], a similar
variation of the principal moments of inertia written as

A ¼
Z

M

ðx21 þ x23Þ dm; B ¼
Z

M

ðx22 þ x23Þ dm;

C ¼
Z

M

ðx21 þ x22Þ dm ð5Þ

can be supposed. This contradicts the statement of
Newcomb and apparently supports the assertions of
authors claiming a variable Chandler period. However,
the question remains whether the variations found in
analyses of polar motion time series are physically
reasonable.

In addition to a temporal variation in the principal
moments of inertia, the Chandler frequency could
vary because of changes in the coefficients D11 and E11.
Subsequently, the influence of only mass redistributions
will be considered, since it can be assumed that globally
distributed variations in rheology do not take place over
shorter time scales.

In the following discussions, it is necessary to take
into account the relationship between the components of
the inertia tensor and the second degree Stokes coeffi-
cients, which read for fully normalized spherical har-
monics (see e.g. Hopfner 1933, Lambeck 1980)

C20 ¼
1
ffiffiffi

5
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Ma2

� �
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Generally, the coefficients A, B, and C in Eq. (6) are not
principal moments of inertia because they are related to
the axes of the reference system used for determining the
Stokes coefficients. Only when the coefficients C21, S21,
and S22 are zero will the axes of the defined coordinate
system coincide with the axes related to the principal
moments of inertia. In the case of the gravity field, the
x3 axis deviates little from the axis related to the
principal moment of inertia C. Therefore, C obtained
from Eq. (6) can be considered the principal moment of
inertia. The axes in the equatorial plane are rotated at a
larger rate with respect to the axes of the principal
moments of inertia, but because rotations in the
equatorial plane do not change the sum Aþ B, DC20

does not vary due to these rotations. These conditions
allow the following relationships between variations in

DC20 and the real part of the Chandler frequency to be
written

DrCH ¼
DC � DAþDB

2

AM

1� D11

C � A

� �

x0

¼ �
ffiffiffi

5
p Ma2

AM
DC20 1� D11

C � A

� �

x0

¼ x0DfCH ð7Þ

Equation (7) allows the modulation of the Chandler
frequency caused by geophysical processes to be studied.
A convenient way could be the use of the temporal
variations inDC20 given by gravity field representations as
measured bymodern satellite missions (e.g. CHAMP and
GRACE). If information dealing with geophysical pro-
cesses allows the determination of the accompanying
mass redistribution, the temporal variation in the second-
degree Stokes coefficient is obtained according to

DC20 ¼
1

4
ffiffiffi

5
p

Ma2

Z

V

r2Dqðr;u; k; tÞð1� cos2 uÞ dV ð8Þ

where the mass redistribution is described by the
temporal variation of the local densities q.

3 The influence of different geophysical processes
on the Chandler period

The influence of secular seasonal and tidal mass
redistributions on the length of the Chandler period
will now be discussed. Secular variations of mass
redistributions are caused by different geophysical
processes, e.g. land uplift due to glacial rebound, and
water mass redistributions between the continents and
oceans. These processes cause a secular increase in the
C20 component . In Marchenko and Schwintzer (2003),
the time rates of change are given for different gravity
field models. The most accurate value is

dC20

dt
1011 year�1 ¼ 1:1655� 0:04

It can be assumed that this value represents the secular
variation of C20 because it only changes by 10�14

between 1986 and 1997. Following Eq.(7) the secular
variation of the Chandler frequency is given by

drCH

dt
¼ 6:293 � 10�11x0 year�1

where the corresponding change of the period is

dTCH

dt
¼ � 1

x0
T 2
CH

drCH

dt
¼ �1:1907 � 10�5 days year�1

indicating a decrease of 1 day over 105 years.
Seasonal variations of C20 are mainly caused by the

dynamics of geophysical surface fluids. In Table 1
(Jochmann et al. 2001; Reigber et al. 2003) the param-
eters describing the annual variations of DC20 due to
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atmosphere and ocean dynamics and continental water
storage are given for the notation

DC20 ¼ a1 cosrt þ a2 sin rt ¼ a cosðrt � cÞ ð9Þ

These seasonal mass redistributions create an annual
modulation of the Chandler frequency with an ampli-
tude of

DfCH ¼ 6:44� 10�10 day�1

corresponding to a variation in the period of 10.53 sec.
The influence of tidal forces on the principal mo-

ments of inertia has been comprehensively studied in
Bursá (1983 ) and Vondrák (1984). For this discussion,
we refer to Rikitake et al. (1986), where the changes in
the moments of inertia due to variations of the pole
distances [in Eqs. (10), (11), and (12) replaced by the
declination d] and longitudes of the attracting celestial
bodies are given. From these relations and Eq. (2) the
modulation of the Chandler frequency follows as

DrCH ¼
1

4

kM�a5

r�3AM
3 cos 2dðtÞ � 1ð Þ 1� D11

C � A

� �

x0

¼ x0DfCH ð10Þ

for the tides of the solid Earth and

DrCH ¼
1

5

pk0ð1þ k � hÞGM�qwa6

gr�3AM
3 cos 2dðtÞ � 1ð Þ

� 1� D11

C � A

� �

x0 ¼ x0DfCH ð11Þ

for the ocean tides.
In Eqs. (10) and (11) M* and r* are the masses and

distances of the tide-generating celestial bodies. a is the
Earth’s radius. k, h, and k0 are the Love numbers for
deformation and load respectively, G is the gravitational
constant and qw the density of sea water. To calculate the
influence of Eqs. (10) and (11) upon the Chandler
frequency, only the variable part of DrCHðtÞ needs
to be taken into account. Therefore, the difference
drCH ¼ DrCHðd ¼ maxÞ � DrCHðd ¼ 0Þ will be consid-
ered. From Eqs. (10) and (11)

drCH ¼ 3Gzð1� cos2dmaxÞ 1�D11

AM

� �

x0 ¼x0 dfCH ð12Þ

is obtained, where

Gz ¼
1

4

kM�a5

r�3AM
þ 1

5

pk0ð1þ k � hÞGM�qwa6

gr�3AM

The tidal deformations of the Earth depend largely on
the attraction towards the Moon and the Sun. Intro-
ducing in Eq. (12) the maximal declinations for the
Moon (dmax ¼ 28:5�) and the Sun (dmax ¼ 23:5�), the
results displayed in Table 2, for the maximal and
minima distances of both celestial bodies, are obtained.

Assessing the values in Table 2, we note that they are
amplitudes of periodic variations. Therefore, their
influence on the results of Eq. (1) is much smaller, as
indicated by the already small values in Table 2.

Polar motion creates a mass redistribution similar to
that caused by tidal forces. This pole tide effect produces
changes in sea level due to varying centrifugal forces. If
the pole tide is considered as an equilibrium tide, it
contributes only to the amount of D11 in Eq. (2) (see
Munk and McDonald 1960; Lambeck 1980). In the case
of a time delay between polar motion and the reaction of
the oceans, a non-equilibrium theory must be applied
that results in the following expression of the Chandler
frequency

r0 ¼ rCH 1� 1

2
Q�2w þ

1

2
Q�1w i

� �

ð13Þ

(Lambeck 1980, 1989), where Qw is the quality factor
and rCH the Chandler frequency corrected for the
influence of the equilibrium pole tide. According to
Eq. (13) the non-equilibrium pole tide influences the
period and damping of the Chandler wobble. This may
explain positive correlations between the variations of
the amplitude and the period of the Chandler wobble
determined by several authors (e.g. Melchior 1957;
Carter 1981). Lambeck (1980) suggested that the larger
the amplitude, the greater the pole tide currents and the
greater the dissipation and lag, assuming that non-linear
bottom friction is a dominant mechanism. However, it
has not been determined whether the pole tide should be
treated as an equilibrium or non-equilibrium tide. Some
authors suggest only a small departure from the
equilibrium pole tide (Schweydar 1916; Dickman 1985;
Carton and Wahr 1986; O’Conner and Starr 1986;
Lambeck 1989), which justifies the application of the
equilibrium theory. This conclusion was disproved by
Molodenskiy (1985), who studied the problem for a
more detailed land–sea–distribution. These more realis-
tic ocean geometries led to the conclusion that the
departures from the equilibrium tide become significant.

Although the problem of whether the pole tide is an
equilibrium or non-equilibrium tide is still debated, a
possible influence on the Chandler period can be esti-
mated according to Eq. (13). If a very small value

Table 1. DC2010
11

a1 a2 a c ð�Þ

Atmosphere 3.43 2.87 4.48 39.9
Ocean dynamics 4.51 0.47 4.54 6.0
Sea level 0.60 0.80 1.00 53.1
Continental water storage 2.20 1.06 2.44 25.7
Sum 10.74 5.20 11.93 25.8

Table 2. dfCH109 and dTCH due to the tidal influence of the Moon
and the Sun

dfCH109 day�1 dfCH [sec]

rM
max 9.31 152

rM
min 14.01 229

rS
max 3.37 55

rS
min 3.72 61
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Qw ¼ 50 is assumed, and provided that it is the maximal
variation due to the pole tide, a modulation of
DfCH � �4:6 � 10�7 day�1 would be produced, corre-
sponding to an increase of the period of 0.087 days (or
two hours). However, even such an unlikely large pole
tide effect would produce a small variation in the
Chandler period.

4 Discussion and conclusions

If the variations of the Chandler period created by mass
redistributions resulting from different geophysical pro-
cesses are compared with those obtained from analyses
of polar motion data, it is found that large variations of
several days (e.g. Carter 1981, 10 days within 3 years)
are very unlikely. To confirm this conclusion, a mass
redistribution between an equatorial zone (bounded by
the latitudes u ¼ �30� and u ¼ 30�) and both polar
caps is simulated. According to Eq. (8) and taking into
account mass conservation for a periodic mass move-
ment (circular frequency r and amplitude Dh), the
corresponding modulation of the Chandler frequency

DfCH ¼
3

2

a4p
AM

qð1þ k0Þ 1� D11

C � A

� �

Dh cos rt ð14Þ

is obtained. Equation (14) reads for the mean density of
the Earth (q ¼ 5:514 � 103 kg m�3)

DfCH ¼ 2:603 � 10�7Dh0 cos rt ð15Þ

A period variation of 1 day is equivalent to a frequency
modulation of DfCH ¼ 5:275 � 10�6 day�1. The necessary
amplitude of the corresponding mass movement
amounts to Dh ¼ 20:2m, which shows that the above-
mentioned large period variations are physically not
reasonable.

This conclusion requires a discussion of the causes for
the apparently large period variations found from the
analyses of polar motion time series. Mathematical
methods used to determine periodic constituents of time
series (Fourier analysis, spectral analysis, wavelet anal-
ysis) are based on the calculation of the expression

ak cosð2pkt þ aÞ ð16Þ

which can be exactly determined only if the physical
process consists of a series of harmonic functions, i.e. if
the amplitudes ak and phases a do not vary over time.
This is generally not the case and a periodic function
with temporally varying parameters will be split into a
number of periodic functions by Fourier or spectral
analyses. The properties of the periodic constituents
obtained by these analyses depend on the variations of
the amplitude and phase of the physically given
function. In limited intervals of the time series, a
periodic term can be considered harmonic if its param-
eter variations are sufficiently small. Calculations over
different time intervals will possibly result in different
values for the amplitude, the phase, and the period, and
imitate in this way an apparent period variation.

The Chandler wobble is in fact not harmonic, but its
period can be considered as invariable following the
above discussion. An apparent period variation can be
easily explained if the effect of a phase variation

a0 þ antn

is considered. This expression can appear as phase or
frequency modulation in Eq. (16)

ak cosð2pkt þ a0 þ antnÞ

¼ ak cos 2p k þ an

2p
tn�1

� �

t þ a0
� �

ð17Þ

According to Eq. (17), it is impossible to differentiate
between phase and period variations with the available
analysis methods. Even if the function is apparently
harmonic, the frequency cannot be exactly determined
because a linear phase variation (n ¼ 1) can possibly
cause a frequency delay. It can therefore be decided only
by physical arguments whether the frequency of a
periodic term is variable.

The frequency of the Chandler wobble is in fact
variable, but the order of magnitude of these variations
allows it to be treated as invariable for the length of the
time series presently available. Period variations pres-
ently identified must be considered as phase variations
caused by the influence of poorly known excitations of
the Chandler wobble.
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Reigber Ch, Jochmann H, Wünsch J, Neumayer KH, Schwintzer P
(2003) First insight into gravity variability from CHAMP. In:
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