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Abstract. The geodetic boundary value problem
(GBVP) was originally formulated for the topographic
surface of the Earth. It degenerates to an ellipsoidal
problem, for example when topographic and downward
continuation reductions have been applied. Although
these ellipsoidal GBVPs possess a simpler structure than
the original ones, they cannot be solved analytically,
since the boundary condition still contains disturbing
terms due to anisotropy, ellipticity and centrifugal
components in the reference potential. Solutions of the
so-called scalar-free version of the GBVP, upon which
most recent practical calculations of geoidal and quasi-
geoidal heights are based, are considered. Starting at the
linearized boundary condition and presupposing a
normal field of Somigliana–Pizzetti type, the boundary
condition described in spherical coordinates is expanded
into a series with respect to the flattening f of the Earth.
This series is truncated after the linear terms in f, and
first-order solutions of the corresponding GBVP are
developed in closed form on the basis of spherical
integral formulae, modified by suitable reduction terms.
Three alternative representations of the solution are
discussed, implying corrections by adding a first-order
non-spherical term to the solution, by reducing the
boundary data, or by modifying the integration kernel.
A numerically efficient procedure for the evaluation of
ellipsoidal effects, in the case of the linearized scalar-free
version of the GBVP, involving first-order ellipsoidal
terms in the boundary condition, is derived, utilizing
geopotential models such as EGM96.

Keywords: Geoid – Quasigeoid – Geodetic boundary
value problem – Stokes’ formula – Ellipsoidal correction

1 Introduction

Considering the presently achievable precision of GPS
positioning, the need for highly precise local and
regional geoid and quasigeoid determination has strongly
increased. As a consequence, precise modelling of the
terrestrial gravity field in the framework of the geodetic
boundary value problem (GBVP) has become a central
subject in geodesy. Facing these new challenges, the
classical theory of the GBVP, originating from G.G.
Stokes (Stokes 1849) and M.S. Molodenskii (Moloden-
skii et al. 1962) and extended first of all by T. Krarup
(Krarup 1973) and H. Moritz in the 1970s (Moritz
1980), is no longer adequate. In particular, the approx-
imations used in the individual solution steps (Rummel
1988) have to be reflected upon, and the respective
approximation errors have to be analysed. As a second
step, suitable reduction and evaluation procedures have
to be developed which remove the approximation errors
with sufficient precision and low numerical effort.

Comparisons of gravimetrically determined (quasi-)
geoidal heights and differences between GPS and
levelled heights at discrete points have shown that short-
and long-wavelength errors of several centimetres exist
in the resulting (quasi-) geoidal heights (Torge and
Denker 1999), which may partly be due to the neglection
of ellipsoidal effects. For this reason considerable effort
has been put into the analysis of the first-order solution
of the so-called ‘ellipsoidal GBVP’. Based on the clas-
sical work by Sagrebin (1956), Bjerhammar (1962),
Molodenskii et al. (1962) and Moritz (1980), formulae
for the calculation of the ellipsoidal reduction – in first-
order approximation with respect to the Earth’s flat-
tening – have been derived by different authors (see e.g.
Koch 1968; Mather 1973; Zhu 1981; Martinec and
Grafarend 1997; Martinec 1998a, b; Fei 2000; Fei and
Sideris 2000; Brovar et al. 2001). In Huang et al. (2003)
a numerical comparison between four main approaches
(Molodenskii et al. 1962; Moritz 1974; Martinec andCorrespondence to: B. Heck
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Grafarend 1997; Fei and Sideris 2000) is carried out,
indicating that the main differences are in the first-de-
gree spherical harmonic terms, but otherwise the results
are equivalent. Although the solution procedures are
quite different, the formulae for the calculation of the
ellipsoidal corrections in first-order approximation are
mostly represented by spherical integral formulae, partly
involving rather complicated integral kernels.

The main purpose of the present paper is the study of
first-order solutions to the ellipsoidal GBVP, based on
the linearized, scalar-free GBVP. As a preparation, a
short review of the scalar-free GBVP at successive levels
of approximation is provided in Sect. 2, followed by a
discussion of first-order solutions of the ‘simple Molo-
denskii problem’ referring to an ellipsoidal boundary.
The more general case of the linearized scalar-free
GBVP involving first-order ellipsoidal terms is tackled in
Sect. 4, resulting in a numerically efficient procedure for
calculating the ellipsoidal effects, which is based on
spherical harmonic expansions.

2 Review of the scalar-free GBVP at various levels
of approximation

Starting at the highest level of complexity, the non-
linear, scalar-free version of the GBVP for an arbitrary,
star-shaped boundary surface S can be formulated as
follows (Sacerdote and Sansò 1986; Heck 1989, 1997;
Grafarend et al. 1999).

Let the observables g (modulus of gravity) and C
(geopotential number with respect to a global funda-
mental point Po) be given in continuous form on the
star-shaped boundary surface S (representing the
Earth’s topographical surface), where

g ¼ rW jj jS ð1Þ

C ¼ Wo � W jS ð2Þ

S : X ug; k; h ug; k
� �� �

ð3Þ

The gravity potential W is composed of a known
reference (normal) potential U and the unknown
disturbing potential T, harmonic outside S and regular
at infinity

W ¼ U þ T ð4Þ

r2 T ¼ 0 outside S ð5Þ

T � 0
1

r

� �
; r ! 1 ð6Þ

The surface S is described by the position vector X,
parameterized in terms of geodetic coordinates (geo-
detic latitude ug, longitude k, ellipsoidal height h,
referring to an ellipsoid of revolution SE with given size
and orientation) where the unknown ellipsoidal height
h(ug; k) is a function of the horizontal coordinates ug
and k as well as the boundary data gðug; kÞ and
Cðug; kÞ, assuming that ug and k are known at any
point P 2 S.

Due to Eqs. (1) and (2) the boundary values gðug; kÞ
and C(ug; k) depend on the unknown functions T and h
in a non-linear way. A second level of approximation of
the scalar-free GBVP is achieved by linearization,
referring to the normal potential U and an approximate
surface, the telluroid R, which is constructed from the
given boundary values by some telluroid mapping.
Throughout this paper Molodenskii’s telluroid mapping
P ! Q; P 2 S; Q 2 R is applied (see Fig. 1).

ugðQÞ¼
!
ugðPÞ

kðQÞ¼! kðP Þ

9=
;� nðQÞ ¼ nðP Þ

UðQÞ � Uo ¼! W ðP Þ � Wo ¼ �CðPÞ ð7Þ

where Uo = const. is the normal potential of Somigli-
ana–Pizzetti type on the surface of the reference ellipsoid
SE, to which the horizontal coordinates ug; k refer. The
unit vector n denotes the direction of the ellipsoidal
normal, parameterized by ug and k. It should be noted
that the deviations between the telluroid R and the
ellipsoid SE are small over oceanic regions, their size
being comparable with the order of magnitude of sea
surface topography.

Linearization of Eqs. (1) and (2) with respect to the
normal potential U and the telluroid R, after elimination
of the height unknown, yields the general linearized
boundary condition, valid on R

T � hc; ni
hc;M � ni � hc;rT i ¼ Dwo �

c � hc; ni
hc;M � ni � Dg ð8Þ

In Eq. (8), c ¼ rU denotes the normal gravity vector,
c ¼ jcj the normal gravity, M ¼ rrU the second-order
Marussi tensor of normal gravity gradients; these
quantities, as well as T, have to be evaluated at the
running point Q 2 R. The gravity anomaly

Fig. 1. Geometry of the scalar-free GBVP
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Dg ¼ gðP Þ � cðQÞ is defined in the sense of Moloden-
skii’s surface free-air anomaly. In the following, the
unknown constant Dwo ¼ Wo � Uo is set to zero for
reasons of simplicity; for a discussion of the conse-
quences of this assumption see e.g. Heck and Rummel
(1990). The detailed form of the linearized boundary
condition of Eq. (8) for various normal gravity fields has
been derived by Grafarend et al. (1999), based on
elliptical coordinates. It has been shown by Heck and
Seitz (1993) that the errors due to linearization may
amount to 2 cm globally and can easily be taken into
account by reductions.

The next approximation step consists of expanding
the coefficients in Eq. (8), depending on c; n and M, in
binomial series with respect to the flattening f of the
reference ellipsoid. In general, f is replaced by the
square of the first numerical eccentricity e2. In consis-
tence with spherical harmonics, which will be applied
in Sect. 3 for the description of harmonic functions,
spherical coordinates ðr;u; kÞ are introduced instead
of the geodetic coordinates ðh;ug; kÞ for parameterizing
the position vector of arbitrary points on and outside
the telluroid R; u is the geocentric latitude. Seitz (1997)
has derived a complete second-order theory for the
development of the linearized boundary condition of
Eq. (8), based on a general reference field and specified
for a Somigliana–Pizzetti field. A rough estimate of
the second-order terms [see Seitz 1997, Eq. (3–22)]
gives a maximum value of about 3 � 10�8 m s�2, prov-
ing that the series expansion of the coefficients in
Eq. (8) can safely be truncated after the linear term.
The linearized boundary condition in first-order
approximation with respect to e2 for a Somigliana–
Pizzetti normal field takes the following form (Heck
1991; Seitz 1997):

�
� 2

a
1þ 1

2
e2 2 sin2 u � 1
� �

þ �mm
� 	

� T

� oT
or

� e2 sinu cosu � oT
aou

	




R

¼ Dgðu; kÞ ð9Þ

where a is the semi-major axis of the reference ellipsoid,
and the parameter �mm ¼ x2a3=l depends on the angular
velocity of the Earth’s rotation and the geocentric
gravitational constant l. Terms of order 0ðh=aÞ have
been neglected in Eq. (9). It should be noted that the
anisotropic term in Eq. (9) depending on the horizontal
derivative of the disturbing potential is due to the
difference between the radial direction and the direction
of -c.

For reasons of simplicity the further approximation
�mm � e2=2 (Moritz 1980) can be introduced, resulting in
the boundary equation

�
� 2

a
ð1þ e2 cos2 uÞ � T � oT

or
� e2 sinu cosu � oT

aou

	




R

¼ Dgðu; kÞ ð10Þ

a rough estimate based on the parameters of the GRS80
yields a maximum approximation error of about
4 � 10�8 m s�2:

Neglecting the terms of order 0(e2) in Eq. (10) pro-
vides the next level in the approximation scheme, often
denoted as ‘spherical’ or ‘isotropic’ approximation.
In this way the boundary condition of the ‘simple’
Molodenskii problem (Krarup, 1973) is generated

� 2

a
� T � oT

or

� 	




R

¼ Dg u; kð Þ ð11Þ

which still refers to the telluroid as boundary. Consid-
ering the order of magnitude of the terms omitted in
Eq. (11), amounting to about 0:6 � 10�5 m s�2 (Cruz
1986; Seitz 1997), it becomes obvious that they have to
be balanced by some ellipsoidal corrections in order to
fulfil the actual precision requirements.

A further level of approximation is attained by con-
sidering Dgðu; kÞ as boundary values on the reference
ellipsoid SE rather than on the telluroid R. The effect of
this approximation is generally taken into account by
Molodenskii’s series expansion or by application of
Moritz’s L-operators (Moritz 1980; Sideris 1990) in the
context of the harmonic downward continuation to sea
level. In the boundary condition the respective effects
may amount to some tens of milliGals, propagating
into a 1–2 m effect in the (quasi-)geoidal heights (Seitz
1997, p. 57 and 93). It should be mentioned that no
closed solution of the GBVP exists at this level of sim-
plification.

Finally the boundary surface can formally be
replaced by a sphere Sa of radius a, resulting in the
boundary condition

� 2

a
� T � oT

or

� 	




Sa

¼ Dg u; kð Þ ð12Þ

Associated with the Laplace equation r2T ¼ 0 holding
outside the sphere Sa, this corresponds formally to a
third boundary value problem of potential theory for a
spherical boundary which is solvable in closed form by
Stokes’ integral (Stokes 1849)

T ðr;u; kÞ

¼ a
4p

ZZ
r

Dg u0; k0ð Þ � S r;wð Þ � a
r

h i
dr þ T1 r;u; kð Þ

ð13Þ
Sðr;wÞ is the Stokes–Pizzetti function (Heiskanen and
Moritz 1967), r the domain of the unit sphere with the
surface element dr ¼ cosu0 � du0 � dk0 ¼ sinw � dw � da
(w spherical distance, a azimuth), and u0; k0ð Þ denote the
position of the variable integration point. It is well-
known that the first-degree term T1 (r;u; k) in Eq. (13)
cannot be determined at this level of approximation,
often denoted as ‘spherical and constant radius approx-
imation’.

The sequence of approximations described above is
summarized in Table 1. It becomes clear that the com-
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plexity decreases with the approximation level, starting
at level 0 which is related to the full non-linear GBVP,
up to level 5 which is analytically solvable. The solution
of the GBVP at the respective upper levels can be
obtained by an iterative scheme, using the solution
available from the lower level (Rummel 1988). It has
been shown by Seitz (1997) that such an iterative pro-
cedure between the levels 0 and 4 provides a fast
numerical convergence, while the iteration between the
levels 0 and 5 proves to be divergent. It follows that
the convergence behaviour depends on both the initial
solution and the form of the boundary surface. For this
reason, the use of ellipsoidal corrections should provide
a significant improvement. It is worth mentioning that
this procedure is strongly related to the ‘change of
boundary’ method proposed by Sansò and Sona (1995).

3 First-order solutions of the simple Molodenskii
problem on a reference ellipsoid

Before the solution of the more realistic ‘ellipsoidal’
GBVP at level 2 is investigated in Sect. 4, first the
simpler problem at level 4 is studied in detail, reflecting
on the behaviour of the harmonic continuation from a
spherical to an ellipsoidal surface and vice versa.
Starting from Eq. (11), specified for an ellipsoidal
boundary surface, the respective basic equations for
the ‘simple’ Molodensky problem on the ellipsoid SE are
as follows:

� 2

a
� T � oT

or

� 	




r¼rE uð Þ

¼ Dg u; kð Þ ð14Þ

r2 T ¼ 0 outside SE

T ¼ 0
1

r

� �
for r ! 1 ð15Þ

where rE uð Þ represents the geocentric radius of the
ellipsoidal surface which can be developed into a Taylor
series

rE uð Þ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

1�e2 cos2u

s

¼ a
�
1�1

2
e2 sin2u�1

8
e4 sin2u 4�3sin2u

� �
þ���

�
ð16Þ

neglecting terms of order 0ðe6Þ.
The harmonic disturbing potential T can be repre-

sented by a series of solid spherical harmonics

T r;u; kð Þ ¼
X1
n¼0

a
r

� �nþ1 Xþn

m¼�n

Tnm � Ynm u; kð Þ ð17Þ

where Ynm u; kð Þ denote the Laplacian surface spherical
harmonics of degree n and order m. The coefficients Tnm
can be interpreted as the spherical harmonic coefficients
of the function T restricted to the sphere of radius a.
Equation (17) is generally used in satellite geodesy, but
cannot be applied directly in the present context, since it
might diverge between the sphere Sa and the ellipsoidal
boundary surface SE. Due to the validity of the Runge–
Krarup theorem (Moritz 1980) the disturbing potential
outside SE can be approximated arbitrarily well by the
representation

T r;u; kð Þ ¼
X1
n¼0

b
r

� �nþ1 Xþn

m¼�n

�TT nm � Ynm u; kð Þ ð18Þ

where b is the semi-minor axis of the reference ellipsoid.
Equation (18) converges in the domain outside the
Bjerhammar sphere Sb with radius b and represents the
harmonic downward continued potential between Sb
and SE (Fig. 2). The coefficients �TT nm correspond to the
spherical harmonic coefficients of the downward con-
tinued function on the sphere Sb.

Due to the well-known relationship

b ¼ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð19Þ

the coefficients �TT nm can be transformed into Tnm

Table 1. GBVP: sequence of
approximations Level Denotation Equation

number of the
boundary
condition

0 Non-linear GBVP (1), (2)
‹ Linearization (normal field, telluroid mapping)

1 Linearized GBVP, boundary surface = telluroid (8)
‹ First-order approximation of the boundary operator

2 Linearized GBVP, including first-order ‘ellipsoidal effects’ (9) or (10)
‹ Zero-order approximation of the boundary
operator (‘spherical approximation’)

3 ‘Simple’ GBVP involving only radial components
in the boundary operator; boundary = telluroid

(11)

‹ Downward continuation to ‘sea level’
4 ‘Simple’ GBVP for an ellipsoidal surface (oblique derivative) (11)

‹ Constant-radius approximation
5 ‘Simple’ GBVP for a spherical surface (normal derivative) (12)
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Tnm ¼ 1� e2
� �nþ1

2 � �TT nm ð20Þ

The gravity anomaly Dg u; kð Þ, given on the ellipsoid SE
as a function of u; kð Þ, can be expanded into a series of
surface spherical harmonics

Dg u; kð Þ ¼
X1
n¼0

Xþn

m¼�n

Dgnm � Ynm u; kð Þ ð21Þ

Inserting Eqs. (18), (16) and (21) into the boundary
condition of Eq. (14) results in

X1
n¼0

1� e2
� � nþ2ð Þ=2

b
n� 1ð Þ þ n nþ 1ð Þ

2
� e2 sin2 u þ � � �

� 	

�
Xþn

m¼�n

�TT nm � Ynm u; kð Þ ¼
X1
n¼0

Xþn

m¼�n

Dgnm � Ynm u; kð Þ

ð22Þ

where the terms of order 0 n2 � e2
� �

can be attributed to
the procedure of downward continuation. From Moritz
[1980, Eq. (39–76)] it follows that the product
sin2 u � Ynm u; kð Þ can be expressed on the basis of surface
spherical harmonics

sin2 u � Ynm u; kð Þ ¼ anm � Ynþ2;m u; kð Þ þ bnm

� Ynm u; kð Þ þ cnm � Yn�2;m u; kð Þ
ð23Þ

involving the coefficients

anm ¼ n� k þ 1ð Þ n� k þ 2ð Þ
2nþ 1ð Þ 2nþ 3ð Þ

bnm ¼ 2n2 � 2k2 þ 2n� 1

2n� 1ð Þ 2nþ 3ð Þ

cnm ¼ nþ kð Þ nþ k � 1ð Þ
2n� 1ð Þ 2nþ 1ð Þ ; k ¼ mj j

ð24Þ

These coefficients tend to finite constants for n ! 1, i.e.
they have the order 0ðn0Þ. Inserting Eq. (23) into
Eq. (22) and rearranging the left-hand side in terms of
Ynm u; kð Þ provides the basis for a comparison of
coefficients of the same degree and order. This procedure
results in the system of algebraic equations

1� e2
� � nþ2ð Þ=2

b
�
"
n� 1ð Þ �TT nm þ e2

2
n� 2ð Þ n� 1ð Þð

� an�2;m �TT n�2;m þ n nþ 1ð Þbnm
�TT nm þ nþ 2ð Þ nþ 3ð Þ

� cnþ2;m �TT nþ2;m
�
þ 0 e4

� ��
¼ Dgnm; 8n � 0 ð25Þ

(For n � 1 the coefficients �TT n�2;m have to be set equal to
zero).

On the other hand, the potential function on SE can
be expressed in the spectral domain, involving the
coefficients ~TT nm

T rE uð Þ;u; kð Þ ¼
X1
n¼0

Xþn

m¼�n

~TT nm � Ynm u; kð Þ ð26Þ

This expression can be compared with Eq. (18), specified
for r ¼ rE uð Þ

T rE uð Þ;u; kð Þ ¼
X1
n¼0

b
rE uð Þ

� �nþ1 Xþn

m¼�n

�TT nm � Ynm u; kð Þ

ð27Þ

where

b
rE uð Þ

� �nþ1
¼ b

a

� �nþ1
� a

rE

� �nþ1
¼ 1� e2

� � nþ1ð Þ=2

� 1þ nþ 1

2
e2 sin2 u þ � � �

� �
ð28Þ

This term can be inserted in Eq. (27). After rearranging
the term sin2 u � Ynm u; kð Þ with the aid of Eq. (23) and
performing a comparison of the respective coefficients in
Eq. (26), a relationship between the coefficients �TT nm of
the spatial function T in terms of solid spherical
harmonics and the coefficients ~TT nm of the surface
function T rE uð Þ;u; kð Þ is obtained

1� e2
� � nþ1ð Þ=2� �TT nm þ e2

2
n� 1ð Þ � an�2;m

��
� �TT n�2;m þ nþ 1ð Þ � bnm � �TT nm þ nþ 3ð Þ � cnþ2;m
� �TT nþ2;mÞ þ � � �

i
¼ ~TT nm

ð29Þ

Combining Eqs. (29) and (25) results in the spectral
relationship between the surface functions T rE uð Þ;u; kð Þ
and Dg u; kð Þ, neglecting any terms of order 0(e4)

n� 1ð Þ
a

� ~TT nm þ e2

2
�an�2;m ~TT n�2;m þ nþ 1

n� 1
bnm

~TT nm

��

þ3 nþ 3

n� 1
cnþ2;m ~TT nþ2;m

�
þ � � �

	
¼ Dgnm ð30Þ

The ellipsoidal correction terms in Eq. (30) have an
impact of order 0 e2 � n0

� �
, while in Eq. (25) the corre-

sponding expressions increase with n, showing the order
0 e2 � n1
� �

.
Equation (30) provides a system of equations which

can be solved iteratively for n 6¼ 1, starting with the
‘spherical’ solution

Fig. 2. Ellipsoidal boundary SE and spheres Sa and Sb
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~TT
ð0Þ
nm ¼ a

n� 1
Dgnm ð31Þ

If a suitable global geopotential model with coefficients
Tnm is available, this prior information can also be used
for evaluating the terms of order 0(e2) in Eq. (30), which
yields

~TT nm ¼ a
n� 1

Dgnm þ e2

2
an�2;mTn�2;m � nþ 1

n� 1
bnmTnm

�

�3 nþ 3

n� 1
cnþ2;mTnþ2;m

�
þ 0 e4

� �
ð32Þ

Due to the factor (n� 1) in Eq. (30), the solution for
n=1 has to be considered separately. Applying Eq. (25)
for n ¼ 1 yields

1� e2

a
� e2 b1m �TT 1m þ 6c3m �TT 3mð Þ ¼ Dg1m ð33Þ

where, by further application of Eq. (25) for n ¼ 3 and
neglecting terms of order 0(e2), �TT 3m can be replaced by

�TT 3m ¼ a
2

Dg3m þ 0ðe2Þ ð34Þ

This results in the expressions

�TT 10 ¼
5 � a � Dg10
3e2 1� e2ð Þ �

6

7
� a � Dg30 ð35aÞ

�TT 1;�1 ¼
5a

e2 1� e2ð ÞDg1;�1 �
36

7
a � Dg3;�1 ð35bÞ

proving that for the non-spherical GBVP the first-degree
coefficients of the external potential can be determined
from the boundary data Dg, at least in principle (Heck
1991); obviously the first-degree coefficients cannot be
calculated very precisely due to the small denominators
in Eqs. (35a) and (35b). On the other hand, even if the
first-degree terms �TT 1m (or equivalently T1m) of the
spatial, harmonic function T vanish, the first-degree
surface harmonics Dg1m of the surface function Dg u; kð Þ
will not disappear, as is obvious from Eq. (33).
Furthermore, from Eq. (29) it follows that when
�TT 1m � 0 (or T1m � 0), the first-degree terms of the
boundary values of T on SE will not vanish either

~TT 1m ¼ 2 3þ jmjð Þ 2þ mj jð Þ
35

e2 � �TT 3m; �1� m� 1 ð36Þ

Imposing the condition T1m � 0 on the external potential
will produce three consistency conditions for the bound-
ary data Dg, resulting from Eqs. (35a) and (35b)

Dg10 ¼
18

35
e2 � Dg30; Dg1;�1 ¼

36

35
e2 � Dg3;�1 ð37Þ

or in integral formZZ
r

Dg u0; k0ð Þ � P1 u0ð Þ � 6

5
e2 � P3 u0ð Þ

� 	
dr ¼ 0 ð38aÞ

Z Z
r

Dg u0; k0ð Þ � P11 u0ð Þ � 2

5
e2 � P31 u0ð Þ

� 	
cos k0

sin k0

� �
dr ¼ 0

ð38bÞ

In general, the data will not fulfil these conditions, but it
is reasonable to assume that the bias generated in the
solution will be negligibly small.

As a final step, Eq. (26) involving the coefficients ~TT nm
can be summed up by using Eq. (32). A ‘near-closed’
solution on the ellipsoidal surface is constructed by
separating a dominant ‘spherical’ part TS and an ‘ellip-
soidal correction’ dTE

T rE uð Þ;u; kð Þ ¼
X1
n¼0

Xþn

m¼�n

~TT nm � Ynm u; kð Þ

¼ TS u; kð Þ þ dT E u; kð Þ
ð39Þ

Assuming that the usually applied conditions
T00 � 0; T1m � 0 (or equivalently �TT 00 � 0; �TT 1m � 0) hold,
the ‘spherical’ part can be expressed by the well-known
Stokes integral

TS rE uð Þ;u; kð Þ ¼
X1
n¼2

Xþn

m¼�n

a
n� 1

Dgnm � Ynm u; kð Þ

¼ a
4p

ZZ
r

Dg u0; k0ð Þ � S wð Þ � dr
ð40Þ

where S(w) denotes the original Stokes function. Then
the ‘ellipsoidal correction’, based on Eq. (32), is given by

dTE rE uð Þ;u;kð Þ

¼
XN
n¼0

Xþn

m¼�n

~TT nm � a
n� 1

Dgnm
� �

� Ynm u;kð Þ

¼ e2

5
T20 þ

12

7
T30 � sinu

�

þ 24

7
T31 � cos kþ T3;�1 � sin k
� �

� cosu
i

þ e2

2
�
XN
n¼2

Xþn

m¼�n

�
an�2;m � Tn�2;m � nþ1

n�1 � bnm � Tnm

� 3
nþ 3

n� 1
� cnþ2;m � Tnþ2;m

�
� Ynm u; kð Þ þ 0 e4

� �
ð41Þ

truncating the infinite series at the upper limit n ¼ N .
This form of the ellipsoidal correction can easily be
evaluated on the surface of the reference ellipsoid by
means of a global geopotential model containing
spherical harmonic coefficients up to degree n = N,
e.g. EGM96 (Lemoine et al. 1998), where N ¼ 360.
Since the coefficients of Eq. (41) behave like 0 e2 � n0

� �
for large n, the resulting function is practically as
smooth as the potential function itself. For this reason,
the series shows a fast numerical convergence, justifying
a truncation at N ¼ 360 or less.
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The solution of the simple Moldenskii problem on an
ellipsoidal surface, as derived above, is presented in the
form

T rE uð Þ;u; kð Þ ¼ a
4p

ZZ
r

Dg u0; k0ð Þ � S wð Þdr þ dTE u; kð Þ

ð42Þ

consisting of a ‘spherical’ part and an ‘ellipsoidal
correction’ acting on the solution. Different equivalent
solution formulae, also based on ‘ellipsoidal corrections’
with respect to Stokes integral, have been derived and
proposed in the geodetic literature. Using Green’s
identities, Fei (2000) and Fei and Sideris (2000) derived
a form similar to Eq. (42), but representing dTE u; kð Þ by
a spherical integral, i.e. (in the present notation)

dTE u; kð Þ ¼ e2

5
T20 þ

12

7
T30 � sinu

�

þ 24

7
T31 � cos k þ T3;�1 � sin k
� �

� cosu

	

þ e2

4p

ZZ
r

T rE u0ð Þ;u0; k0ð Þ � fo w;u;u0ð Þdr

ð43Þ

involving the anisotropic kernel function fo w;u;u0ð Þ. It
can be proved by manipulating Eq. (41) that for N ! 1
the alternative expressions of Eqs. (41) and (43) will
provide the same results, if terms of order 0(e4) are
omitted.

A second alternative is generated by modifying the
gravity anomaly data instead of correcting the disturbing
potential, resulting in the following form of the solution:

T rE uð Þ;u; kð Þ

¼ a
4p

ZZ
r

Dg u0; k0ð Þ þ dgE u0; k0ð Þ½ �S wð Þdr ð44Þ

Here the form of the solution as a spherical integral of
Stokes type has been retained, and the impact of the
ellipsoidal boundary has been integrated in the modified
boundary data. As Moritz (1980) has shown, this result
can be interpreted as a continuation of the boundary data,
originally given on the ellipsoid SE, to the enclosing sphere
Sa, followed by the solution of the spherical problem on Sa
and downward continuation of the potential from Sa to
SE. The correction term dgE can easily be represented in
series form, using Eqs. (32) and (39).

dgE u; kð Þ ¼ � e2

2a

X
n

X
m

�
n� 1

��
an�2;m � Tn�2;m

� nþ 1ð Þbnm � Tnm
� 3 nþ 3ð Þ � cnþ2;m � Tnþ2;m�Ynm u; kð Þ

ð45Þ

As a third alternative, the spherical Stokes kernel can be
modified to allow for the consideration of the ellipticity
of the boundary surface

T rE u; kð Þ;u; kð Þ

¼ a
4p

ZZ
r

Dg u0; k0ð Þ � S wð Þ þ dSE w;u;u0ð Þ½ � dr ð46Þ

The ellipsoidal correction kernel dSE w;u;u0ð Þ is aniso-
tropic, depending on the latitudes u;u0 (besides the
spherical distance w) or, equivalently, on the azimuth of
the integration point. This approach to the solution of
the ellipsoidal GBVP has been elaborated by Martinec
(1998a, b) and Martinec and Grafarend (1997), based on
the use of ellipsoidal harmonics. It can be proved (but is
not worked out here in more detail) that the same result
can be derived by manipulation of Eq. (41) for N ! 1.

In addition to the three basic types of solution of
Eqs. (42), (44) and (46), mixed forms are also possible,
including the formula given by Molodenskii et al.
(1962). Despite of the equivalence of these approaches
from the analytical point of view, the numerical prop-
erties of the ellipsoidal terms to be evaluated are quite
different. A preliminary inspection of the numerical
properties of the procedures described above reveals that
the approach based on Eqs. (39) and (41) may have
some advantages over the other methods, since the
ellipsoidal term dTE is a comparatively smooth function,
represented by a rapidly converging spherical harmonic
series, which can easily be evaluated on the basis of a
given geopotential model up to degree N.

4 ‘Near-closed’ solutions of the linearized
scalar-free GBVP involving first-order
ellipsoidal terms

The procedure applied in Sect. 3 for the simple Molo-
denskii problem will now be applied to the linearized
scalar-free GBVP including first-order ellipsoidal terms,
defined in Sect. 2 as approximation level 2, which
models terrestrial gravity anomaly data more closely to
reality. It is assumed that the boundary surface has an
ellipsoidal shape, approximating the telluroid surface R.
This implies that the boundary data Dg have already
been properly reduced for topographic effects. This level
is based on the boundary equation [Eq. (10)], completed
by the field equation [Eq. (15)] for the disturbing
potential, i.e.

�2

a
1þ e2 cos2 u
� �

� T � oT
or

� e2 sinu cosu � oT
aou

� 	




r¼rE uð Þ

¼ Dg u;kð Þ ð47Þ

r2T ¼ 0 outside SE ð48Þ

T ¼ 0
1

r

� �
for r ! 1

Again the representations of Eqs. (17) and (18) of the
disturbing potential T, Eq. (16) for rEðuÞ, and Eq. (21)
for the function Dg u; kð Þ referring to the ellipsoidal
surface will be used, resulting in
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X1
n¼0

Xþn

m¼�n

1� e2
� � nþ2ð Þ=2

b
n� 1ð Þ þ e2

n2 þ nþ 4

2

���

� sin2 u � 2
��
Ynm u; kð Þ � e2 sinu � cosu

oYnm u; kð Þ
ou

	

� �TT nm ¼
X1
n¼0

Xþn

m¼�n

DgnmYnm u; kð Þ

ð49Þ

Similar to the product sin2 u � Ynm u; kð Þ [see Eqs. (23)
and (24)], the derivative of Ynm u; kð Þ with respect to u,
multiplied by sinu � cosu, can be represented on the
basis of the surface spherical harmonics (Moritz 1980)

sinu � cosu � oYnm u; kð Þ
ou

¼ �n � anmYnþ2;m u; kð Þ

þ 3bnm � 1

2
Ynm u; kð Þ þ nþ 1ð ÞcnmYn�2;m u; kð Þ ð50Þ

where the coefficients anm; bnm and cnm are given in
Eq. (24). Inserting Eqs. (23) and (50) into Eq. (49) and
comparing the coefficients of the surface spherical
harmonics Ynm u; kð Þ results in the system of algebraic
equations

1� e2
� � nþ2ð Þ=2

b
� n� 1ð Þ �TT nmþ

e2

2

�
n2� nþ 2
� ��

� an�2;m �TT n�2;mþ n2þ nþ 1
� �

bnm� 3
� �

�TT nm

þ n2
�

þ3nþ 4Þcnþ2;m �TT nþ2;m
�
þ 0 e4

� �	
¼Dgnm; 8n� 0

ð51Þ

(again, for n � 1 the coefficients �TT n�2;m have tobe set equal
to zero). Combining Eqs. (51) and (29) yields the spectral
relationship between the surface functions T rE uð Þ;u; kð Þ
and Dg u; kð Þ, neglecting terms of order 0(e4)

n� 1

a
~TT nm þ e2

2

nþ 1

n� 1
an�2;m ~TT n�2;m

��

þ bnm
nþ 2

n� 1
� 3

n� 1

� �
~TT nm

þ nþ 7

n� 1
cnþ2;m ~TT nþ2;m

�
þ � � �

	
¼ Dgnm ð52Þ

Just as in Sect. 3 [Eq. (30)], the ellipsoidal correction
terms have an impact of order 0 e2 � n0

� �
, while in

Eq. (51) the corresponding expressions increase with
increasing n, showing the order 0 e2 � n1

� �
.

Prior information about the coefficients Tnm from a
global geopotential model can be used for evaluating the
terms of order 0(e2) in Eq. (52), resulting in

~TT nm ¼ a
n� 1

Dgnm � e2

2

nþ 1

n� 1
an�2;mTn�2;m

�

þ bnm
nþ 2

n� 1
� 3

n� 1

� �
Tnm

þ nþ 7

n� 1
cnþ2;mTnþ2;m

�
þ 0 e4

� �
; n 6¼ 1 ð53Þ

Again the solution of Eq. (52) for the case n ¼ 1 has to
be considered separately. From Eq. (51), in combination
with Eq. (34), a formula for calculating �TT 1m can be
derived

T1m ¼ � 5a
3 1þ m2ð Þ

Dg1m
e2 1� e2ð Þ

�

� 2 3þ mj jð Þ 2þ mj jð Þ
35

Dg3m

�
; �1 � m � 1 ð54Þ

which proves that, in principle, the first-degree coeffi-
cients of the external potential can be determined from
the gravity anomalies given on SE. On the other hand,
due to the small denominator, these coefficients cannot
be calculated very precisely. Therefore it is preferable to
fix the first-degree coefficients to �TT 1m � 0; the first-
degree coefficients ~TT 1m of the surface potential
T rE uð Þ;u; kð Þ are then given by Eq. (36). Similarly, it
is often postulated to fix the zero-degree coefficient �TT 00

to zero, resulting in the condition

~TT00 ¼
e2

5
T20 þ 0ðe4Þ ð55Þ

Forcing the zero and first-degree coefficients T00, T1m to
be zero produces a (small) bias in the solution, since the
consistency conditions

Dg00 ¼
4

15
e2Dg20 ð56aÞ

Dg1m ¼ e2 � 2ð3þ jmjÞð2þ jmjÞ
35

Dg3m ð56bÞ

in integral formZZ
r

Dgðu0; k0Þ � 1� 4

3
e2 � P2ðu0Þ

� 	
dr ¼ 0 ð57aÞ

ZZ
r

Dgðu0; k0Þ � P1ðu0Þ � 4

5
e2 � P3ðu0Þ

� 	
dr ¼ 0 ð57bÞ

Z Z
r

Dgðu0;k0Þ � P11ðu0Þ � 4

15
e2 � P31ðu0Þ

� 	
cosk0

sink0

� �
dr¼ 0

ð57cÞ

in general will not be satisfied by the real boundary
data.

Finally, Eq. (26) can be summed, expressing the
coefficients ~TTnm by Eq. (53). Again a ‘near-closed’ solu-
tion on the ellipsoidal boundary surface is constructed in
the sense of the decomposition Eq. (39)

T rEðuÞ;u; kð Þ ¼ TSðu; kÞ þ dTEðu; kÞ ð58Þ

where thedominant ‘spherical’ partTSðu; kÞ is givenby the
Stokes integral [Eq. (40)]. Assuming that the conditions
T00 � 0; T1m � 0, or equivalently T � ð1=r3Þ for r ! 1,
hold true, the ‘ellipsoidal correction’ takes the form
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dTE rEðuÞ;u; kð Þ

¼ e2

5

�
T20 þ

12

7
T30 � sinu

þ 24

7
ðT31 � cos k þ T3;�1 � sin kÞ � cosu

	

� e2

2
�
XN
n¼2

Xþn

m¼�n

�
nþ 1

n� 1
an�2;m � Tn�2;m

þ bnm
nþ 2

n� 1
� 3

n� 1

� �
Tnm

þ nþ 7

n� 1
cnþ2;m � Tnþ2;m

�
� Ynmðu; kÞ þ 0ðe4Þ ð59Þ

Due to its fast numerical convergence, the series of
Eq. (59) can be truncated at a finite maximum degree N
and evaluated by means of a global geopotential model.

As discussed in Sect. 3, equivalent solutions to the
linearized scalar-free GBVP including first-order ‘ellip-
soidal effects’ can be constructed, corresponding to the
basic types

T ðrEðuÞ;u; kÞ

¼ a
4p

ZZ
r

Dgðu0; k0Þ � SðwÞ dr þ dTEðu; kÞ ð60aÞ

¼ a
4p

ZZ
r

ðDgðu0; k0Þ þ dgEðu0; k0ÞÞ � SðwÞdr ð60bÞ

¼ a
4p

ZZ
r

Dgðu0; k0Þ � ðSðwÞ þ dSEðw;u;u0ÞÞ dr ð60cÞ

or mixtures of these expressions (see e.g. Moritz 1980;
Martinec and Grafarend 1997; Martinec 1998a, b;
Fei 2000; Fei and Sideris 2000; Brovar et al. 2001).
From the numerical point of view, the solution of
Eq. (60a) – presented above in detail – might possess
some advantages in comparison with the other alterna-
tives, since the rapidly converging series of Eq. (59) can
easily be evaluated by the aid of a geopotential model.
Similar expressions can be obtained when the solution is
scaled to a sphere with the mean radius R of the Earth,
e.g. R ¼ ð2aþ bÞ=3 � að1� e2=6Þ, instead of using the
semi-major axis a.

Applying Bruns’ formula, the disturbing potential on
the surface of the ellipsoid can be transformed into the
geoidal height N

Nðu; kÞ ¼ 1

cðuÞ � T ðrEðuÞ;u; kÞ ð61Þ

where cðuÞ is the value of normal gravity on the ellipsoid
at the geocentric latitude u, consistent with the chosen
Somigliana–Pizzetti normal field, e.g. GRS80. It should
be pointed out that an additional ‘ellipsoidal correction’
term has to be considered if the latitude-dependent
normal gravity value in Eq. (61) is replaced by a global
constant value �cc (see e.g. Ardalan and Grafarend 2001).

Using the N ¼ 360 expansion of EGM96 (Lemoine
et al. 1998) as prior information for the potential

coefficients Tnm, the ‘ellipsoidal correction’
dNðu; kÞ ¼ dTEðu; kÞ=cðuÞ based on Eq. (59) has been
evaluated on a global grid (Fig. 3). This corroborates
that the ellipsoidal correction to the (quasi-)geoidal
height ranges between �0:5 and +0.3 m; compare also
Huang et al. (2003). The power spectrum of dN (Fig. 4)
features a strong decay for very small degrees n; in fact
this decay is even stronger than the decay in the spec-
trum of the disturbing potential T itself. This property
proves that dTEðu; kÞ and dNðu; kÞ are rather smooth
functions. This behaviour is also visible in Table 2,
where the fully normalized harmonic coefficients of low
degrees n � 2 have been printed, and from Figs. 5 and 6,

Fig. 3. Ellipsoidal correction dNE ¼ dTEðrEðu; kÞ;u; kÞ=cðuÞ in m,
0 � m � n � 360 (Hammer equal-area projection)

Fig. 4. Power spectrum of dNE (in m2) and T (in m4 s�4)

Table 2. Fully normalized spherical harmonic coefficients of the
ellipsoidal correction, Eq. (59), for small degrees and orders,
0� m � n � 3 (in mm)

m d�NNc
nm d�NNs

nm

0 0 0.03
1 0 21.41
1 1 37.06 4.54
2 0 12.33
2 1 24.03 21.25
2 2 115.35 )93.60
3 0 2.68
3 1 16.04 4.19
3 2 )1.12 )1.87
3 3 25.28 39.98
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showing the series terms up to n ¼ 1 and n ¼ 2, re-
spectively. The sectorial terms of degree 2 and order 2
are dominant, possessing an ‘energy content’ of about
50% of the whole effect; in contrast, the sum of the
terms between degrees 3 and 360 adds only another 50%
(Fig. 7).

5 Conclusions

Several approximation levels concerning the representa-
tion of the boundary condition in the case of the scalar-
free GBVP have been discriminated, starting from the
general non-linear form and ending at the level of the
spherical and constant-radius approximation, which
provides a closed analytical solution in the form of

Stokes’ integral formula. From the discussion in Sect. 2
it follows that analytical solutions in closed form at
higher, more realistic levels of approximation do not
exist in a strict sense. First-order solutions with respect
to the flattening f (or equivalently the square of the first
numerical eccentricity e2) related to an ellipsoidal
boundary surface have been derived and discussed for
two levels of approximation: (1) for the ‘simple’
Molodenskii problem, based on linear and spherical
approximation, and (2) for the linearized scalar-free
GBVP involving first-order ellipsoidal terms. The pre-
sented formulae make intensive use of the representation
of the boundary condition in terms of spherical har-
monics.

The discussion of the ‘simple’ Molodenskii problem
shows the close relationship between the solution of the
GBVP and the problem of upward/downward continu-
ation between the ellipsoidal surface SE and the
(enclosing) sphere Sa. Although the ellipsoidal terms due
to the non-sphericity of the boundary produce a
‘roughening’ effect on the spherical harmonic coeffi-
cients of the disturbing potential in space, this effect is
no longer existent in the spectral relationship between
the boundary data Dg and the potential considered at
the ellipsoidal surface [Eqs. (30) and (52)].

Furthermore, the first-degree terms in the spherical
harmonic representation of the disturbing potential T
are no longer indeterminate for an ellipsoidal boundary
surface, in contrast to the spherical case; on the other
hand, the coefficients T10, T11 and T1;�1 can be deter-
mined with a poor precision only, due to small terms in
the denominator. For this reason it is preferable to fix
the first-degree coefficients to zero, tolerating a slight
bias in the solution since the consistency conditions
[Eqs. (38a) and (38b) or (57b) and (57c)] will not be
satisfied by real data.

The solution of the ellipsoidal GBVP in first-order
approximation concerning e2 has been decomposed in
two parts, namely a dominating ‘spherical’ term con-
sisting of Stokes’ integral and a small ‘ellipsoidal cor-
rection’ [Eqs. (42) and (58)]. The ellipsoidal correction is
described in the form of a spherical harmonic series
involving the coefficients of the disturbing potential; for
this reason the ellipsoidal correction to be applied to
Stokes’ integral can easily be evaluated by utilizing a
global geopotential model. The ellipsoidal correction to
be added to the ‘spherically’ calculated (quasi-)geoidal
height ranges between �0:5 and +0.3 m globally; it
shows a dominant low-frequency behaviour, governed
by the sectorial terms of degree 2. A first comparison
with other, but principally equivalent, forms of ellip-
soidal corrections indicates that the result derived in the
present paper might possess some numerical advantages.
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reviewer for their constructive remarks and careful corrections of
the submitted version of the manuscript.

References

Ardalan AA, Grafarend EW (2001) Ellipsoidal geoid undulations
(ellipsoidal Bruns formula): case studies. J Geod 75:544–552

Bjerhammar A (1962) On an explicit solution of the gravimetric
boundary value problem for an ellipsoidal surface of reference.
Tech rep DA-91–591-EUC-2033, The Royal Institute of Tech-
nology, Stockholm

Brovar VV, Kopeikina ZS, Pavlova MV (2001) Solution of the
Dirichlet and Stokes exterior boundary problems for the Earth’s
ellipsoid. J Geod 74:767–772

Cruz J (1986) Ellipsoidal corrections to potential coefficients
obtained from gravity anomaly data on the ellipsoid. Rep 371,
Department of Geodetic Science and Surveying, The Ohio State
University, Columbus

Fei ZL (2000) Refinements of geodetic boundary value problem
solutions. Rep 20139, Department of Geomatics Engineering,
University of Calgary

Fei ZL, Sideris M (2000) A new method for computing the ellip-
soidal correction for Stokes’s formula. J Geod 74:223–231, 671

Grafarend EW, Ardalan A, Sideris MG (1999) The spheroidal
fixed–free two-boundary-value problem for geoid determination
(the spheroidal Bruns transform). J Geod 73:513–533

Heck B (1989) A contribution to the scalar free boundary value
problem of physical geodesy. Manuscr Geod 14:87–99

Heck B (1991) On the linearized boundary value problems of
physical geodesy. Rep 407, Department of Geodetic Science and
Surveying, The Ohio State University, Columbus

Heck B (1997) Formulation and linearization of boundary value
problems. From observables to a mathematical model. In:
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Sacerdote F, Sansó F (1986) The scalar boundary value problem of
physical geodesy. Manuscr Geod 11:15–28

Sagrebin DW (1956) Die Theorie des regularisierten Geoids. Veröff
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Gravimetrischen Quasigeoids EGG97 in Deutschland. Z Ver-
mess 124:154–166

Zhu ZW (1981) The Stokes problem for the ellipsoid using ellip-
soidal kernels. Rep 319, Department of Geodetic Science and
Surveying, The Ohio State University, Columbus

192


