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Royal Institute of Technology, Group of Geodesy, SE-100 44 Stockholm, Sweden
e-mail: sjoberg@geomatics.kth.se; Tel.: +46-8-7907330; Fax: +46-8-7907343

Received: 6 February 2002 / Accepted: 18 November 2002

Abstract. The analytical continuation of the surface
gravity anomaly to sea level is a necessary correction
in the application of Stokes’ formula for geoid
estimation. This process is frequently performed by
the inversion of Poisson’s integral formula for a
sphere. Unfortunately, this integral equation corre-
sponds to an improperly posed problem, and the
solution is both numerically unstable, unless it is well
smoothed, and tedious to compute. A solution that
avoids the intermediate step of downward continuation
of the gravity anomaly is presented. Instead the effect
on the geoid as provided by Stokes’ formula is studied
directly. The practical solution is partly presented in
terms of a truncated Taylor series and partly as a
truncated series of spherical harmonics. Some simple
numerical estimates show that the solution mostly
meets the requests of a 1-cm geoid model, but the
truncation error of the far zone must be studied more
precisely for high altitudes of the computation point.
In addition, it should be emphasized that the derived
solution is more computer efficient than the detour by
Poisson’s integral.

Keywords: Analytical continuation – Downward
continuation – Poisson’s integral – Stokes’ formula

1 Introduction

The determination of the geoidal height by Stokes’
formula requires that the effect of the Earth’s topogra-
phy is reduced or removed and that the surface gravity
anomaly is reduced to sea level. The second reduction
yields the effect of downward continuation (DWC) on
gravity anomaly and the geoid. Mathematically the
DWC effect on gravity anomaly can be expressed by the
Taylor series

dDgDWC ¼ Dg� � Dg ¼ �H
oDg
oH

þ H2

2

o2Dg
oH2

� � � � ð1Þ

where Dg� and Dg are the gravity anomalies analytically
continued down to sea level and at the Earth’s surface,
respectively. H is the orthometric height of the topog-
raphy.

As Eq. (1) is needed globally to determine the DWC
effect on the geoid, it would be expedient to evaluate the
vertical derivatives in terms of spherical harmonics.
However, the main problem with such an approach is
that these derivatives have significant signals at much
higher degrees and orders than the available sets of
potential coefficients. In addition, the convergence of the
Taylor series may be questioned.

Instead of applying Eq. (1) it appears more fruitful to
determine Dg� by solving Poisson’s integral equation
(see e.g. Heiskanen and Moritz 1967, Chap. 8; Martinec
and Vanicek 1994; Martinec 1998; Hunegnaw 2001).
However, as this formula is a Fredholm integral equa-
tion of the first kind, it corresponds to an improperly
posed problem. In practice, the precise solution needs
some kind of smoothing in order to avoid numerical
instabilities. For example, Martinec (1998, Chap. 8)
solved Poisson’s integral equation with satisfactory re-
sults in the Canadian Rocky Mountains using surface
blocks of size down to 50 	 50 (i.e. approximately
10 	 10 km2), but for smaller blocks (3000 	 6000) the
solution became numerically unstable. Hunegnaw (2001)
came to a similar conclusion in an application to Ethi-
opian gravity data.

However, the final goal of all these efforts is to
determine the DWC effect on the geoid. Sjöberg
(2001) emphasized that the Stokes integration implies
a process of smoothing of the gravity anomalies.
Hence, by avoiding the computation of the down-
ward-continued gravity anomaly, and by targeting
directly the DWC effect on the geoidal height, the task
should more easily be solved. This will also be the
spirit of the approach taken in this paper. Another
goal is to formulate a more practical solution than
that of Sjöberg (2001), where spectral smoothing
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stabilized the DWC effect on the geoidal height in an
optimum way.

2 Formulation of the solution

The DWC effect on the geoid can be written

dNDWCðPÞ ¼ k
ZZ
r

SðwÞðDg�Q � DgQÞ drQ ð2Þ

where k ¼ R=ð4pc0Þ, R being the geocentric radius of
mean sea level and c0 being normal gravity on the
reference ellipsoid at the foot-print of the ellipsoidal nor-
mal passing through the computation point P . Further-
more, r is the unit sphere and SðwÞ is Stokes’ function
with the argument w being the geocentric angle between
P and the running point Q on the sphere. Equation (2)
can also be abbreviated to

dNDWCðPÞ ¼ ~ff�P � ðNP Þ ð3aÞ

where

~ff�P ¼ k
ZZ
r

SðwÞDg�Q drQ ð3bÞ

is the downward-continued re-scaled height anomaly ~ffP
(see below), and

ðNP Þ ¼ k
ZZ
r

SðwÞDgQ drQ ð3cÞ

is the approximate geoidal undulation (or height anom-
aly), directly determined from surface gravity anomalies
without any topographic corrections.

As the correct and re-scaled height anomalies, f and ~ff
respectively, are both defined by Bruns’ formula

fP ¼ TP
c

and ~ffP ¼ TP
c0

ð4Þ

where TP is the disturbing potential and c and c0 are
normal gravity values at normal height and at the
reference ellipsoid, respectively, they are related by the
simple equation

~ffP ¼ c
c0

fP ð5Þ

which we will apply below.
We now introduce the geocentric radius rP ¼ Rþ HP

at the point P on the Earth’s surface, and we subtract
and add R~ffP=rP on the right-hand side of Eq. (3a). This
yields

dNDWCðPÞ ¼ dN ð1Þ
DWCðP Þ þ dN ð2Þ

DWCðPÞ ð6aÞ

where

dN ð1Þ
DWCðPÞ ¼ f�P �

R
rP

fP þ DfP ð6bÞ

where, from Eq. (5)

DfP ¼ ~ff�P � f�P �
R
rP

ð~ffP � fP Þ ¼
c
c0

� 1

� �
f�P �

R
rP

fP

� �
ð6cÞ

and

dN ð2Þ
DWCðP Þ ¼

R
rP

~ffP � ðNP Þ ð6dÞ

As it can be seen from Eqs. (6b) and (6d), both
components include all the wavelengths of the gravity
field. However, as will be shown later, dN ð1Þ

DWC contrib-
utes mostly to the short-wavelength spectrum of the
signal, while the significant parts of dN ð2Þ

DWC are more
in the long wavelengths of the spectrum. To distinguish
between the two components, we will therefore call them
‘the short-wavelength effect’ and the ‘long-wavelength
effect’, respectively. Below we will develop them into
practical formulae.

2.1 The short-wavelength effect on the geoid

By expanding the downward-continued height anomaly
f� into a Taylor series at the point P, we obtain

f�P ¼
X1
k¼0

ð�HP Þk

k!
okf
oHk

� �
P
� fP � HP

of
oH

� �
P

þ H2
P

2

o2f
oH2

� �
P

ð7Þ

where we for the further analysis will omit terms of third
and higher derivatives of the height anomaly.

Differentiating Bruns’ formula, Eq. (4), with
respect to H and applying ‘the boundary condition’
of physical geodesy [Heiskanen and Moritz 1967, Eq.
(8–20)]

oT
oH

� �
P
¼ �DgP þ

oc
oH

TP
c

ð8Þ

we obtain the derivatives

of
oH

� �
P
¼ �DgP

c
ð9Þ

and

o2f
oH2

� �
P
¼ � 1

c
oDg
oH

� �
P
� 2DgP

crP
ð10Þ

where Eq. (10) was derived under the spherical approx-
imation

ðoc=orÞP � �2c=rP ð11Þ

Inserting Eqs. (7), (9) and (10) into Eq. (6b) we finally
arrive at the following solution to the short-wavelength
effect on the geoid:
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dN ð1Þ
DWCðPÞ �

HPDgP
c

þ HP

rP
fP �

H2
P

2c
oDg
oH

� �
P

� H2
PDgP
crP

þ DfP ð12Þ

In practice, the height anomaly needs to be known only
approximately, and the vertical gradient of gravity
anomaly (needed only for high elevations) can be esti-
mated from Heiskanen and Moritz [1967, Eq. (2–217)]

oDg
or

� �
P
¼ 1

16prP

ZZ
r

DgQ � DgP
sin3ðw=2Þ

drQ � 2DgP
rP

ð13Þ

where the last term is very small. Finally, considering
Eq. (6c) and the approximations

c � c0 �
2c0HP

rP

and, from Eqs. (7) and (9)

f�P � fP þ
HPDgP

c

we arrive at the following expression for the small term
DfP :

DfP � �2
HP

rP

HP

rP
fP þ

DgP
c0

HP

� �
ð14Þ

2.2 The long-wavelength effect on the geoid

The long-wavelength DWC effect on the geoid is given
by Eq. (6d) including ~ffP :

Formally ~ffP is given by the extended Stokes integral
[Bjerhammar 1963; Heiskanen and Moritz 1967, Eq. (8–
89)]

~ffP ¼ k
ZZ
r

SðrP ;wÞDg�Q drQ ð15aÞ

where SðrP ;wÞ is the so-called extended Stokes function

SðrP ;wÞ ¼
X1
n¼2

2nþ 1

n� 1

R
rP

� �nþ1

Pnðcos wÞ ð15bÞ

including the Legendre polynomial Pnðcos wÞ, related to
the fully normalized spherical harmonic Ynm [see also
Eqs. (18a) and (18b) below] through the addition
theorem

Pnðcos wÞ ¼ 1

2nþ 1

Xn
m¼�n

YnmðP ÞYnmðQÞ ð16Þ

For rP ¼ R, the kernel of Eq. (15b) becomes the
standard Stokes function SðwÞ.

Let us first develop the downward-continued and the
surface gravity anomalies into spherical harmonics

Dg�P ¼
X1
n¼2

DgnðP Þ ð17aÞ

and (Heiskanen and Moritz 1967, Sect. 2–23)

DgP ¼
X1
n¼2

R
rP

� �nþ2

DgnðPÞ ð17bÞ

where

DgnðPÞ ¼
n� 1

R

Xn
m¼�n

AnmYnmðPÞ ð17cÞ

Here Anm is the potential coefficient related to the fully
normalized spherical harmonic (cf. Heiskanen and
Moritz 1967, p. 31)

Ynm ¼ �PPnjmjðcos hÞ
cosmk; if m  0

sin jmjk; if m < 0

(
ð18aÞ

where h is the co-latitude, k is the longitude and �PPnm is
the associated Legendre function, normalized in such a
way that

1

4p

ZZ
r

YnmYpq dr ¼
1; if n ¼ p; m ¼ q

0; otherwise

(
ð18bÞ

Let us also introduce the expansion of the gravity
anomaly at the arbitrary point Q on the sphere of radius
rP as

DgðrP ;QÞ ¼
X1
n¼2

R
rP

� �nþ2

DgnðQÞ ð19Þ

Inserting the last formula as well as the spectral form of
Stokes’ function, i.e. Eq. (15b) for rP set to R, into the
following integral, we obtain

k
ZZ
r

SðwÞDgðrP ;QÞ drQ ¼ R
c0

X1
n¼2

R
rP

� �nþ2DgnðP Þ
n� 1

¼ R
rP

~ffP ð20Þ

Here the last equality can be shown as follows: insert
Eqs. (15b), (16) and (17a) into Eq. (15a) and note the
orthogonality property of Eq. (18b). Then we readily
arrive at the spectral form of the height anomaly

~ffP ¼ R
c0

X1
n¼2

R
rP

� �nþ1 DgnðP Þ
n� 1

ð21Þ

which proves the last equality of Eq. (20). Hence, by
taking advantage of the relations of Eqs. (19) and (20)
we can write the second term of the DWC effect on the
geoid, Eq. (6d), in the following form:

DN ð2Þ
DWCðP Þ ¼ k

ZZ
r

SðwÞ DgðrP ;QÞ � DgQ
� �

drQ ð22Þ
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This integral has the nice property, in contrast to the
original integral, Eq. (2), that its contribution from the
integrand vanishes at the singularity point of Stokes’
function (i.e. for w ¼ 0). [See also Eq. (24) below.] This
implies that Eq. (22) is less sensitive to short wave-
lengths of the gravity anomaly than the original Eq. (2).
In addition, the equation does not include the down-
ward-continued gravity anomaly at sea level, but the
upward-or downward-continued anomaly to the level
of the computation point P . Hence, except from a near-
zone cap r0 around P , it should be possible to take
advantage of a set of potential coefficients to estimate
the integral. For that purpose we decompose the
integral into

dN ð2Þ
DWCðPÞ ¼ dN ð2;1Þ

DWCðP Þ þ dN ð2;2Þ
DWCðPÞ ð23aÞ

where

dN ð2;1Þ
DWCðPÞ ¼ k

ZZ
r0

SðwÞ DgðrP ;QÞ � DgQ
� �

drQ ð23bÞ

is the near-zone contribution and

dN ð2;2Þ
DWCðPÞ ¼ k

ZZ
r�r0

SðwÞfDgðrP ;QÞ � DgQg drQ ð23cÞ

is the far-zone contribution. If the near zone is limited to
a few kilometres, it can be approximated by a disk of
radius s0 ¼ Rw0, Stokes’ kernel be approximated by
2R=s and the surface element R2 dr becomes s ds da,
where s is the radius and a is the azimuth in polar
coordinates. Thus we obtain

dN ð2;1Þ
DWCðPÞ ¼

1

2pc

Z2p

0

Zs0

0

DgðrP ;QÞ � DgQ
� �

ds da ð24Þ

and by inserting the approximation

DgðrP ;QÞ � DgQ ¼ DHPQ
oDg
or

� �
P

ð25aÞ

where

DHPQ ¼ HP � HQ ð25bÞ

into Eq. (24) we arrive at the practical formula

dN ð2;1Þ
DWCðPÞ ¼

DHs
c

oDg
or

� �
P

ð26aÞ

where

DHs ¼ 1

2p

Z2p

0

Zs0

0

DHPQ ds da ¼ HPs0 �
1

2p

Z2p

0

Zs0

0

HQ ds da

ð26bÞ

and oDg
or

� 	
P

is a representative value for the vertical

gradient of the gravity anomaly in the cap. Although the

latter component is typically in the high-frequency
spectrum of gravity, it contributes relatively little to
the DWC effect if s0 is small. (See Chap. 4.)

The remaining far-zone contribution we develop into
a series of spherical harmonics

dN ð2;2Þ
DWCðP Þ ¼ c

X1
n¼2

Qnðw0Þ



R
rP

� �nþ2

DgnðP Þ � ðDgsÞnðPÞ
�

ð27Þ

where c ¼ R=ð2c0Þ;Qnðw0Þ are the so-called Molodensky
truncation coefficients (Heiskanen and Moritz 1967,
p. 260)

Qnðw0Þ ¼
Zp

w0

SðwÞPnðcos wÞ sin w dw ð28Þ

which can be developed into a recurrence relation (Paul
1973), DgnðP Þ are the gravity anomaly harmonics of Eq.
(17c), while ðDgsÞnðP Þ is the corresponding Laplace
harmonic of the surface gravity anomaly, given by the
formula

ðDgsÞnðPÞ ¼
n� 1

R

Xn
m¼�n

BnmYnmðPÞ ð29aÞ

where Bnm is defined by

Bnm ¼ R
4pðn� 1Þ

ZZ
r

DgQYnmðQÞ drQ ð29bÞ

In practice, the infinite sum of Eq. (27) must be
approximated to some maximum upper limit, say
nmax ¼ 360. The truncation error of such an approxi-
mation will be studied in the next section.

3 Practical considerations

Summarizing the derivations of Sect. 2, we have arrived
at the following practical formulae for the effect of
DWC of gravity anomaly on Stokes’ formula:

dNDWCðP Þ ¼ dN ð1Þ
DWCðPÞ þ dN ð2Þ

DWCðP Þ ð30aÞ

where

dN ð1Þ
DWCðP Þ ¼

HPDgP
c

þ HP

rP
fP �

H2
P

2c0

oDg
or

� �
P

� H2
PDgP
c0rP

þ DfP ð30bÞ

DfP ¼ �2
HP

rP

HP

rP
fP þ HP

DgP
c

� �
ð30cÞ
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dN ð2Þ
DWCðPÞ ¼

DHs
c

oDg
or

� �
P
þ c

Xnmax

n¼2

Qnðw0Þ

	 R
rP

� �nþ2

DgnðPÞ � ðDgsÞnðPÞ
( )

ð30dÞ

and c ¼ R=ð2c0Þ. The explicit expressions of the Laplace
harmonics of the gravity anomalies in Eq. (30d) are
given by Eqs. (17c), (29a) and (29b). This means that
also the surface gravity anomaly must be expanded into
a series of spherical harmonics complete through degree
nmax.

Let us now estimate the magnitude of several of the
individual terms of Eqs. (30b)–(30d). Assuming that

fj j � 100 m; DgPj j � 200 mGal;
oDg
or


 � 0:03 mGal/m

we obtain for HP set to 5(8.8) km

HDg
c


 � 1:02ð1:79Þm;

Hf
r


 � 0:08ð0:14Þm;

H2

2c
oDg
or

� �
 � 0:38ð1:18Þm

H2Dg
cr


 � 1ð3Þmm; DfPj j � 5 mm

Moreover, for s0 ¼ 1 km and DHs
  � 5s0 km2 for s0

given in kilometres, we obtain that

DHs
c

oDg
or


 � 0:17 m

These calculations show that the DWC effect may
be of the order of a few metres in the highest
mountains. In addition we conclude that the last two
terms of Eq. (30b) can be neglected for geoid
estimates of 1-cm precision. Also, if the vertical
gradient of the gravity anomaly is of the order of
0.03 mGal/m, it follows from above that the terms
with the vertical gradient must be considered whenever
the height of the computation point is about 1700 m
or higher and/or the magnitude of the mean value
DHs exceeds 700 m2.

There are two types of truncations involved in Eqs.
(30): the truncation of the Taylor series [Eq. (7)] re-
sulting in Eq. (30b), and the truncation of the harmonic
series [Eq. (30d)] at the maximum degree nmax. The first
two omitted terms of Eq. (30b) are

S3 ¼ �H3
P

6

o3f
oH3

� �
P

and S4 ¼ H4
P

24

o4f
oH4

� �
P

ð31Þ

Starting from Eq. (21), we can easily derive

S3 ¼ H3
P

6cr2
P

X1
n¼2

R
rP

� �nþ2 ðnþ 1Þðnþ 2Þðnþ 3Þ
n� 1

DgnðP Þ

ð32aÞ

and

S4 ¼ H4
P

24cr3
P

X1
n¼2

R
rP

� �nþ2

	 ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ
n� 1

DgnðPÞ ð32bÞ

In the global RMS sense these sums become

�SS3 ¼ H3
P

6cr2
P

X1
n¼2

R
rP

� �nþ2
"(

	ðnþ 1Þðnþ 2Þðnþ 3Þ
n� 1

�2

cn

)1
2

ð33aÞ

and

�SS4 ¼ H4
P

24cr3
P

X1
n¼2

R
rP

� �nþ2
"(

	ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ
n� 1

�2

cn

)1
2

ð33bÞ

where cn are the gravity anomaly degree variances. In
Table 1 we estimate these terms for various heights with
the degree variances taken from Tscherning and Rapp
(1974). Table 1 shows that the first term is within 1.5 cm
and the second one is less than a 1 cm even for the
extreme elevation of Mt. Everest. This shows that the
first type of truncation error can usually be omitted in
practice.

The truncation error of the long-wavelength contri-
bution [Eq. (30d)] is given by

eT ¼�c
X1

n¼nmaxþ1

Qnðw0Þ
R
rP

� �nþ2

DgnðP Þ�ðDgsÞnðPÞ
( )

ð34Þ

which can be estimated in the RMS sense by

mT ¼ 1

4p

ZZ
r

e2
T dr

8<
:

9=
;

1
2

� c
X1

n¼nmaxþ1

Q2
nðw0Þcn

R
rP

� �nþ2

�1

" #2
8<
:

9=
;

1
2

ð35Þ

where the right-hand side of the inequality corresponds
to the worst (but not very likely) case that all the Earth
of the far zone is without topography.

Table 1. Numerical values of the terms �SS3 and �SS4

HP (km) �SS3 (mm) �SS4 (mm)

1 0 0
2 2 1
5 2 3
8.8 14 7

98



As illustrated in Table 2, for HP set to the extreme
elevation of Mt. Everest and the near-zone radius set to
1 km, the RMS error is within 11 cm for nmax ¼ 360 or
higher. The error limit increases with elevation of
computation point and decrease of near-zone disk
radius. For s0 and HP set to 5 km and 4 km, respectively,
the error is limited to 3.6 cm. Although the error limit
provided by Eq. (35) might be too pessimistic, already
these results are promising for most moderate elevations
of topography.

In order to reduce the truncation error of the long-
wavelength contribution DN ð2Þ

DWC we may modify the
Stokes-type integral of Eq. (22) into the form

dN ð2Þ
DWCðPÞ ¼ k

ZZ
r

SM ðwÞfg drQ

þ c
XM
n¼2

tn
R
rP

� �nþ2

DgnðPÞ � ðDgsÞP

" #
ð36aÞ

where the modified Stokes function reads (see e.g.
Sjöberg 1991)

SMðwÞ ¼ SðwÞ �
XM
n¼0

2nþ 1

2
tnPnðcos wÞ ð36bÞ

and M is the same as nmax. Also, the bracket f g is the
same as in Eq. (22), and the parameters tn, which are
formally arbitrary, should in the present application be
selected, e.g. according to Molodensky (Molodensky
et al. 1962), to reduce the truncation error of the Stokes
integral. If t0 is set to zero, this modification of Eq. (22)
will not change the estimate of the planar approximation
of the near-zone integral N ð2;1Þ

DWC, as all the Legendre
polynomials of the modified Stokes kernel vanish. Then
the long-wavelength contribution can be estimated by
the formula

dN ð2Þ
DWCðPÞ ¼ dN ð2;1Þ

DWCðP Þ þ dN ð2;2Þ
DWCðPÞ ð37aÞ

where dN ð2;1Þ
DWC was given by Eqs. (26a) and (26b) and

dN ð2;2Þ
DWCðPÞ ¼ c

XM
n¼1

QM
n ðw0Þ þ tn

� �

	 R
rP

� �nþ2

DgnðPÞ � ðDgsÞnðPÞ
( )

ð37bÞ

Here QM
n are the Molodensky-type truncation parame-

ters related to the modified Stokes kernel SM (see e.g.
Sjöberg 1991)

QM
n ðw0Þ ¼ Qnðw0Þ �

XM
k¼0

2k þ 1

2
tkenkðw0Þ ð38aÞ

and

enkðw0Þ ¼
Zcos w0

�1

PnðtÞPkðtÞdt ð38bÞ

Moreover, if the modification parameters tn are selected
according to Molodensky’s method of modification (see
e.g. Sjöberg 1991), all QM

n of Eq. (37b) vanish, which
simplifies the formula. Then we can expect that
the truncation error of the modified Stokes formula of
Eq. (36)

eT ¼�c
X1

n¼Mþ1

QM
n ðw0Þ

R
rP

� �nþ2

DgnðP Þ�ðDgsÞnðP Þ
( )

ð39Þ

is generally smaller than the original truncation error of
Eq. (34).

4 The DWC effect on the height anomaly

The DWC effect on the height anomaly is given by the
integral

dfDWCðP Þ ¼ k
ZZ
r

SðrP ;wÞfDg�Q � DgQg drQ

¼ ~ffP � ðNP Þ ¼ dN ð2Þ
DWCðPÞ þ

HP

rP
~ffP ð40Þ

where the last member stems from Eq. (6d). The
difference between the effects on the geoid and the
height anomaly can thus be estimated to

dNDWCðP Þ � dfDWCðPÞ ¼ dN ð1Þ
DWCðP Þ �

HP

rP
~ffP ð41Þ

5 The DWC effect on the modified Stokes formula

Today Stokes’ formula is usually modified (e.g. accord-
ing to Sjöberg 1991) to take advantage of the fact that
the long-wavelength part of the geoid is better deter-
mined by an Earth gravity model than by the original
Stokes formula. The DWC effect on the geoid by the
modified Stokes formula becomes

dNL
DWCðP Þ ¼ k

ZZ
r0

SLðwÞ Dg�Q � DgQ
n o

drQ ð42aÞ

where

SLðwÞ ¼ SðwÞ �
XL
n¼0

2nþ 1

2
snPnðcos wÞ ð42bÞ

Table 2. The RMS truncation error mT (cm) for various eleva-
tions HP (km), near-zone radius s0 (km) and degrees of truncation
nmax

nmax s0: 1 5 5

HP: 8.85 4 2

180 15.9 5.9 3.2
360 11.1 3.6 2.0
720 6.3 1.5 0.9

1080 4.0 0.9 0.6
1440 2.6 0.9 0.6
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Here sn are arbitrary parameters of modification with
the upper degree L. By inserting Eq. (42b) into Eq. (42a)
we obtain

dNL
DWCðPÞ ¼ dNDWCðP Þ � k

ZZ
r�r0

SLðwÞ Dg�Q � DgQ
n o

drQ

� c
XL
n¼2

sn DgnðPÞ � ðDgsÞnðP Þ
� �

ð43Þ

where the second term on the right-hand side is caused
by the limitation of the area of integration to a spherical
cap around the computation point. It can also be written
as a spectral series

k
ZZ
r�r0

SLðwÞ Dg�Q � DgQ
n o

drQ

¼ c
X1
n¼2

QL
nðw0Þ DgnðP Þ � ðDgsÞnðP Þ

� �
ð44Þ

which in practice must be truncated at the upper limit
nmax of the sets of harmonics of anomalies. Thus we
obtain also the practical formula

dNL
DWCðPÞ ¼ dNDWCðP Þ � c

Xnmax

n¼2

QL
n þ s�n

� �
	 DgnðP Þ � ðDgsÞnðP Þ
� �

ð45aÞ

where

s�n ¼
sn; if 0 � n � minðL; nmaxÞ
0; otherwise



ð45bÞ

This concludes our derivations of a practical solution to
the effect on the geoid of the downward continuation of
gravity anomaly under Stokes’ integral.

6 Concluding remarks

In the current struggle to achieve a 1-cm geoid model,
we have derived what we believe is a practical tool to
evaluate the effect on Stokes’ formula of the analytical
continuation of the gravity anomaly. In most cases the
effect can be estimated from the orthometric height of
the computation point, its surface gravity anomaly and
the approximate height anomaly, as well as the set of
spherical harmonics representing the long-wavelength
effect. The truncation error of the harmonic series
should be analysed numerically in more detail. For
elevations roughly of the order of 1 km and higher, the
vertical gradient of the surface gravity anomaly at the
computation point must also be included as a significant
contributor.

Now, the reader might wonder what happened to the
original numerical instability of the analytical continu-
ation of the surface gravity anomaly. We can explain

this apparent controversy as follows. First, the inter-
mediate step of computing the difference between the
surface and the continued gravity anomaly is avoided by
the direct estimation of the integrated effect on the ge-
oid. This led us to a smoother difference between the
true and downward-continued height anomaly. Second,
the latter difference, dN ð1Þ

DWC, is evaluated by the Taylor
series of its vertical derivatives truncated after a few
terms with a negligible truncation error. Third, a
remaining contribution, dN ð2;2Þ

DWC, is expanded as a long-
wavelength series of spherical harmonics of the differ-
ence between the downward-continued and the surface
gravity anomaly. The truncated higher-degree harmon-
ics, representing the remaining instability of the process,
should be numerically insignificant. If this is not the
case, in particular for high elevations, the problem
might be solved by some kind of smoothing of the
gravity field. However, this is beyond the scope of the
present article.

Last, but not least, the derived technique should be
very computer efficient compared to current techniques
of first solving Poisson’s integral equation for Dg� before
applying Stokes’ formula.
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