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Abstract. Three independent gradiometric boundary-
value problems (BVPs) with three types of gradiometric
data, fCrrg, fCr#;Crkg and fC## � Ckk;C#kg, prescribed
on a sphere are solved to determine the gravitational
potential on and outside the sphere. The existence and
uniqueness conditions on the solutions are formulated
showing that the zero- and the first-degree spherical
harmonics are to be removed from fCr#;Crkg and
fC## � Ckk;C#kg, respectively. The solutions to the
gradiometric BVPs are presented in terms of Green’s
functions, which are expressed in both spectral and
closed spatial forms. The logarithmic singularity of the
Green’s function at the point w ¼ 0 is investigated for
the component Crr. The other two Green’s functions are
finite at this point. Comparisons to the paper by van
Gelderen and Rummel [Journal of Geodesy (2001) 75:
1–11] show that the presented solution refines the former
solution.
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1 Introduction

Satellite gradiometry is expected to improve our knowl-
edge of the external global gravitational field of the
Earth. This hope is based on the fact that the attenuation
of the gravitational field with increasing distance from
the Earth is partly compensated by the effect of the
differentiation of the gravitational field. Prescribing
various linear combinations of the second-order deriva-
tives of the gravitational potential as boundary data on a
sphere (e.g. a mean-orbit sphere), one of the main
objectives is to convert them into gravitational potential,
geoid height, gravity anomaly or any other desired
gravity quantity. This aspect has recently been treated by

van Gelderen and Rummel (2001, 2002) (vGR01
hereafter). Among solutions to various geodetic bound-
ary-value problems (BVPs), they introduced Green’s
function solutions to the gradiometric BVPs.

From the theoretical point of view, the vGR01 gra-
diometric solutions can be refined. This motivates the
work of this paper. We present a detailed and systematic
derivation of the Green’s function solutions to the gra-
diometric BVPs with boundary data prescribed on a
sphere. The paper is organized as follows. We recall the
definition and basic properties of the gravitation tensor.
The tensor spherical-harmonics decomposition of the
gravitation tensor is used to group gradiometric ob-
servables into three independent gradiometric data sets.
For each data set, we formulate the gradiometric BVP
and specify the conditions of the existence and unique-
ness of solution. We then solve the three gradiometric
BVPs in terms of Green’s functions that are expressed in
spectral and closed spatial forms. We use the closed-
form solutions to discuss the singular behavior of the
gradiometric Green’s functions. Finally, we compare
our solutions with the vGR01 gradiometric solutions.

2 Spherical harmonic representation
of the gravitation tensor

The gravitation tensor C is defined as the double
gradient of the gravitational potential V (see e.g.
Rummel and van Gelderen, 1992),

C :¼ grad grad V : ð1Þ

By this definition, the tensor C is symmetric, CT ¼ C,
which reduces the nine components of C to six
independent components. In addition, if the gravita-
tional potential is harmonic, r2V ¼ 0, the trace of C
vanishes, trC ¼ 0. As a result, only five components of
the gravitation tensor are independent functions in the
region of harmonicity of the potential V .

In this paper, we consider the gravitational potential
V represented in terms of scalar spherical harmonics
YjmðXÞ (see e.g. Varshalovich et al., 1989):
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V ðr;XÞ ¼
X1
j¼0

Xj
m¼�j

VjmðrÞYjmðXÞ ; ð2Þ

where r and X are spherical coordinates and X :¼ ð#; kÞ.
The double gradient of individual constituents may be

expressed in terms of tensor spherical harmonics Z
ðkÞ
jm ðXÞ

(Appendix A):

grad grad ½VjmðrÞYjmðXÞ


¼ d2Vjm
dr2

Z
ð1Þ
jm ðXÞ þ 2

d

dr
Vjm
r

� �
Z

ð2Þ
jm ðXÞ þ Vjm

2r2
Z

ð3Þ
jm ðXÞ

� 1

r
1

jðjþ 1Þ
dVjm
dr

� Vjm
2r

� �
Z

ð4Þ
jm ðXÞ: ð3Þ

For a harmonic potential that vanishes at infinity, VjmðrÞ
is proportional to r�j�1 and eq. (3) reduces to

grad grad ½r�j�1YjmðXÞ
 ¼ r�j�3
h
ðjþ 1Þðjþ 2ÞZð1Þ

jm ðXÞ

� 2ðjþ 2ÞZð2Þ
jm ðXÞ þ 1

2
Z

ð3Þ
jm ðXÞ

þ jþ 2

2j
Z

ð4Þ
jm ðXÞ

i
: ð4Þ

Note that the trace of grad grad½r�j�1YjmðXÞ
 vanishes
since the tensor spherical harmonics Z

ð2Þ
jm ðXÞ and Z

ð3Þ
jm ðXÞ

are trace-free and

tr Z
ð1Þ
jm ðXÞ ¼ YjmðXÞ; tr Z

ð4Þ
jm ðXÞ ¼ �2jðjþ 1ÞYjmðXÞ:

ð5Þ

The gravitation tensor can alternatively be repre-
sented in terms of the symmetric spherical dyadics eij
(Appendix A):

C¼Crrerrþ2Cr#er#þ2Crkerkþ
1

2
ðC##�CkkÞðe##� ekkÞ

þ2C#ke#kþ
1

2
ðC##þCkkÞðe##þ ekkÞ : ð6Þ

Representing the tensor spherical harmonics in eq. (4) in
terms of the symmetric spherical dyadics and comparing
the result with Eq. (6), the five independent components
of the gravitation tensor C can be grouped into three
second-order gradiometric data tensors Cð1Þ, Cð2Þ and
Cð3Þ as follows:

Cð1Þ ¼ Crrerr;

Cð2Þ ¼ 2Cr#er# þ 2Crkerk;

Cð3Þ ¼ 1

2
ðC## � CkkÞðe## � ekkÞ þ 2C#ke#k :

ð7Þ

These combinations of gradiometric observables were
proposed by Rummel and van Gelderen (1992).

Equation (6) shows that the gradiometric data com-
bination C## þ Ckk standing at the dyadic e## þ ekk can,
in principle, also be considered. However, this data
combination on a mean curvature of level surfaces does
not contain independent information on the gravita-
tional potential V because C## þ Ckk can be deduced

from the observations of the component Crr and the
trace-free condition on C, namely C## þ Ckk ¼ �Crr.

3 Formulation of the gradiometric BVPs

The three combinations of gradiometric observables
Cð1Þ, Cð2Þ and Cð3Þ enable us to formulate three different
gradiometric BVPs as follows. We aim at determining
the gravitational potential V ðr;XÞ on and outside the
reference sphere of radius R that is governed by one of
the following three gradiometric BVPs, which differ in
the usage of three different kinds of gradiometric
boundary data:

r2V ¼ 0 for r > R ; ð8Þ

grad grad V ¼ CðkÞ for r ¼ R ; ð9Þ

V � O
1

r

� �
for r ! 1 ; ð10Þ

where the gradiometric data CðkÞ, k ¼ 1; 2; 3, introduced
by Eq. (7) are assumed to be known tensor functions of
the angular variable X. The asymptotic condition (10)
implies that the harmonic function V approaches zero at
infinity. The BVPs for gradiometric data Cð1Þ, Cð2Þ and
Cð3Þ will be called the vertical-vertical gradiometric BVP,
the vertical-horizontal gradiometric BVP and the hori-
zontal-horizontal gradiometric BVP, respectively, since
Cð1Þ measures the vertical gradient of gravity, Cð2Þ

measures the horizontal gradient of gravity and Cð3Þ

measures the difference between the two principal radii
of curvature and the direction of the maximum radius of
curvature of the level surfaces of potential V .

The solution to the Laplace equation (8) can be
written in terms of solid spherical harmonics r�j�1YjmðXÞ
as follows:

V ðr;XÞ ¼
X1
j¼0

�
R
r

�jþ1 Xj
m¼�j

VjmYjmðXÞ ; ð11Þ

where Vjm are expansion coefficients to be determined
from the boundary condition (9). Making use of eq. (4),
we compute the double gradient of V and substitute the
result into the boundary condition (9):

1

R2

X1
j¼0

Xj
m¼�j

ðjþ 1Þðjþ 2ÞVjmZð1Þ
jm ðXÞ ¼ Cð1ÞðXÞ;

1

R2

X1
j¼0

Xj
m¼�j

ðjþ 2ÞVjmZð2Þ
jm ðXÞ ¼ � 1

2
Cð2ÞðXÞ;

1

R2

X1
j¼0

Xj
m¼�j

VjmZ
ð3Þ
jm ðXÞ ¼ 2Cð3ÞðXÞ :

ð12Þ

The last three equations allow us to investigate the
existence and uniqueness of the gradiometric BVPs (8)–
(10). Since

Z
ð2Þ
00 ðXÞ ¼ Z

ð3Þ
00 ðXÞ ¼ Z

ð3Þ
1mðXÞ ¼ 0 ; ð13Þ
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the existence of a solution to the problem (8)–(10) for
gradiometric data Cð2Þ is guaranteed if Cð2Þ does not
contain the zero-degree spherical harmonic. Likewise, a
solution to the problem (8)–(10) for gradiometric data
Cð3Þ exists if Cð3Þ does not contain the zero- and first-
degree spherical harmonics. Mathematically, the condi-
tions on the existence of a solution areZ
X0

Cr#ðXÞdX ¼
Z
X0

CrkðXÞdX ¼
Z
X0

C##ðXÞ � CkkðXÞ½ 
dX

¼
Z
X0

C#kðXÞdX ¼ 0;

Z
X0

C##ðXÞ � CkkðXÞ½ 
Y �
1mðXÞdX

¼
Z
X0

C#kðXÞY �
1mðXÞdX ¼ 0; m ¼ �1; 0; 1 ; ð14Þ

where the asterisk denotes complex conjugation,
dX :¼ sin#d#dk and X0 is the full solid angle. Through-
out the paper, we assume that the 10 existence condi-
tions (14) are satisfied. If these conditions are violated by
observational errors, the zero- and first-degree spherical
harmonics must be removed from the gradiometric data
Cð2Þ and Cð3Þ, respectively. As far as the vertical-vertical
gradiometric BVP for data type Cð1Þ is concerned, the
existence of the solution to this problem is uncondition-
ally guaranteed.

In addition, in order to ensure the uniqueness of a
solution, the zero-degree spherical harmonic and the
zero- and first-degree spherical harmonics must be re-
moved from the potential V for the vertical-horizontal
and horizontal-horizontal gradiometric BVPs, respec-
tively. Mathematically, the asymptotic condition (10)
must be replaced by a more precise condition of the form

V � O
�

1

rk

�
for r ! 1 ; ð15Þ

where k ¼ 1, 2 and 3 for the vertical-vertical, vertical-
horizontal and horizontal-horizontal gradiometric BVP,
respectively,

The existence, uniqueness and stability of a solution
to the gradiometric BVPs was investigated by Schreiner
(1994). Making use of the concept of the Sobolev space,
the theory of pseudodifferential operators and the
assumption that gradiometric observables satisfy the
conditions (14), he proved (Schreiner 1994, Theorem

3.3.1.) that solutions to the gradiometric BVPs exist and
are unique. In addition, he assumed that gradiometric
observables are elements of the Sobolev space h�1=2ðXÞ.
Since the construction of the norm of this functional
space may be difficult if gradiometric observables are
not represented in terms of spherical harmonics, we
impose a stronger constraint on the gradiometric ob-
servables and assume that they are square-integrable
functions of X, CðkÞ 2 L2ðXÞ. This is allowed, because the
space of square-integrable functions L2ðXÞ is embedded
in h�1=2ðXÞ, i.e. L2ðXÞ � h�1=2ðXÞ.

4 Solution in the spectral domain

Under the assumption that the gradiometric data
tensors are square-integrable functions of X, they can
be expanded into a series of tensor spherical harmonics:

CðkÞðXÞ¼
X1
j¼k�1

1

½N ðkÞ
j 
2

�
Xj
m¼�j

Z
X0

CðkÞðX0Þ : Z
ðkÞ
jm ðX0Þ

h i�� �
dX0Z

ðkÞ
jm ðXÞ ;

ð16Þ

where the colon denotes the double-dot product of
tensors and

	
N ðkÞ
j


2
is the square norm of Z

ðkÞ
jm ðXÞ

(Appendix A). Considering expansion (16) in eq. (12)
and comparing the coefficients standing at tensor
spherical harmonics Z

ðkÞ
jm ðXÞ results in

Vjm¼

R2

ðjþ1Þðjþ2Þ

Z
X0

Cð1ÞðX0Þ : Z
ð1Þ
jm ðX0Þ

h i�� �
dX0;

� R2

jðjþ1Þðjþ2Þ

Z
X0

Cð2ÞðX0Þ : Z
ð2Þ
jm ðX0Þ

h i�� �
dX0;

R2

ðj�1Þjðjþ1Þðjþ2Þ

Z
X0

Cð3ÞðX0Þ : Z
ð3Þ
jm ðX0Þ

h i�� �
dX0 :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17Þ

Applying the decomposition (7) of the gradiometric data
tensors CðkÞðXÞ in Eq. (17) and evaluating the double-
dot products of the symmetric spherical dyadics with the
tensor spherical harmonics, the coefficients Vjm can be
expressed in more explicit forms:

Vjm ¼

R2

ðjþ 1Þðjþ 2Þ

Z
X0

CrrðX0ÞY �
jmðX0ÞdX0;

� R2

jðjþ 1Þðjþ 2Þ

Z
X0

Cr#ðX0ÞE�
jmðX0Þ þ CrkðX0ÞF �

jmðX0Þ
h i

dX0;

R2

ðj� 1Þjðjþ 1Þðjþ 2Þ

Z
X0

½C##ðX0Þ þ CkkðX0Þ
G�
jmðX0Þ � 2C#kðX0ÞH�

jmðX0Þ
h i

dX0 ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ
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where the functions EjmðXÞ, FjmðXÞ, GjmðXÞ and HjmðXÞ
are defined in Appendix A. Finally, substituting these
expressions into eq. (11), interchanging the order of
summation over J and m and integration over X0 due to
the uniform convergence of the series expansion (11), the
solutions to the three gradiometric BVPs (8)–(10) read

where we have introduced five gradiometric Green’s
functions:

Grrðt;X;X0Þ :¼ 4p
X1
j¼0

tjþ1

ðjþ1Þðjþ2Þ
Xj
m¼�j

Y �
jmðX0ÞYjmðXÞ;

Gr#ðt;X;X0Þ :¼�4p
X1
j¼1

tjþ1

jðjþ1Þðjþ2Þ
Xj
m¼�j

E�
jmðX0ÞYjmðXÞ;

Grkðt;X;X0Þ :¼�4p
X1
j¼1

tjþ1

jðjþ1Þðjþ2Þ
Xj
m¼�j

F �
jmðX0ÞYjmðXÞ;

G##kkðt;X;X0Þ :¼ 4p
X1
j¼2

tjþ1

ðj�1Þjðjþ1Þðjþ2Þ

�
Xj
m¼�j

G�
jmðX0ÞYjmðXÞ;

G#kðt;X;X0Þ :¼ 4p
X1
j¼2

tjþ1

ðj�1Þjðjþ1Þðjþ2Þ

�
Xj
m¼�j

H�
jmðX0ÞYjmðXÞ ; ð20Þ

with the symbol t :¼ R=r for convenience. From a
numerical point of view, the spectral forms (20) of
gradiometric Green’s functions may appear inconve-
nient, because some of them have a singularity at
ð1;X;XÞ. At this point, it is necessary to sum the spectral
series up to high degrees and orders, which may be time
consuming and numerically unstable. We thus aim at
converting the spectral forms of the Green’s functions to
closed spatial forms. However, the actual satellite
gradiometric data will be band limited and the summa-
tions over j will be finite and bounded.

5 Analytical forms of addition theorems
for spherical harmonics

We now present the method of summing the series over
the azimuthal order m occurring in eq. (20). The
approach is based on the Laplace addition theorem for

scalar spherical harmonics that we consider in the form
(see e.g. Varshalovich et al., 1989, sect. 5.17.2)

Xj
m¼�j

Y �
jmðX0ÞYjmðXÞ ¼ 2jþ 1

4p
PjðcoswÞ ; ð21Þ

where PjðcoswÞ is the Legendre polynomial of degree j
and w is the angular distance between the computation
point ð#; kÞ and an integration point ð#0; k0Þ referred to
the point ð#; kÞ. Differentiating Eq. (21) with respect to
#0 and k0, respectively, yields

Xj
m¼�j

oY �
jmðX0Þ
o#0 YjmðXÞ ¼ 2jþ 1

4p
oPjðcoswÞ

o#0 ;

Xj
m¼�j

1

sin#0
oY �

jmðX0Þ
ok0

YjmðXÞ ¼ 2jþ 1

4p
1

sin#0
oPjðcoswÞ

ok0
:

ð22Þ

The partial derivatives of Legendre polynomials
PjðcoswÞ with respect to #0 and k0, respectively, are
expressible in terms of the ordinary derivatives of the
Legendre polynomials with respect to cosw. By the chain
rule of differentiation, Grafarend (2001) showed that

o

o#0 ¼ cos a0 sinw
o

o cosw
;

1

sin#0
o

ok0
¼ � sin a0 sinw

o

o cosw
;

ð23Þ

where a0 is the azimuth of the computation point ð#; kÞ
with respect to an integration point ð#0; k0Þ. Changing
the differentiation on the right-hand side of eq. (22)
according to the rule (23), we obtain

Xj
m¼�j

oY �
jmðX0Þ
o#0 YjmðXÞ¼2jþ1

4p
cosa0 sinw

dPjðcoswÞ
dcosw

;

Xj
m¼�j

1

sin#0
oY �

jmðX0Þ
ok0

YjmðXÞ¼�2jþ1

4p
sina0 sinw

dPjðcoswÞ
dcosw

;

ð24Þ

which may be regarded as the addition theorems for the
first-order derivatives of scalar spherical harmonics.

Next, we derive the analytical forms of the addition
theorems for the second-order derivatives of spherical
harmonics. The differentiation of Eq. (22) with respect
to #0 and k0, respectively, yields

V ðr;XÞ ¼

R2

4p

Z
X0

CrrðX0ÞGrrðt;X;X0ÞdX0;

R2

4p

Z
X0

h
Cr#ðX0ÞGr#ðt;X;X0Þ þ CrkðX0ÞGrkðt;X;X0Þ

i
dX0;

R2

4p

Z
X0

h
½C##ðX0Þ � CkkðX0Þ
G##kkðt;X;X0Þ þ 2C#kðX0ÞG#kðt;X;X0Þ

i
dX0 ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ
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Xj
m¼�j

o2Y �
jmðX0Þ

@ð#0Þ2
YjmðXÞ ¼ 2jþ 1

4p
o2PjðcoswÞ

oð#0Þ2

Xj
m¼�j

o

o#0

�
1

sin#0
oY �

jmðX0Þ
ok0

�
YjmðXÞ

¼ 2jþ 1

4p
o

o#0

�
1

sin#0
oPjðcoswÞ

@k0

�
;

Xj
m¼�j

o2Y �
jmðX0Þ

oðk0Þ2
YjmðXÞ ¼ 2jþ 1

4p
o2PjðcoswÞ

oðk0Þ2
:

ð25Þ

The differential operators on the right-hand sides can
again be expressed as ordinary differential operators in
terms of cosw. After some manipulations, we obtain the
following second-order differential identities:

o2

oð#0Þ2
� cot#0 o

o#0 �
1

sin2#0
o2

oðk0Þ2
¼ cos2a0 sin2w

o2

oðcoswÞ2
;

o

o#0
1

sin#0
o

ok0

� �
¼�1

2
sin2a0 sin2w

o2

oðcoswÞ2
:

ð26Þ

This allows us to reduce eq. (25) to the form

Xj
m¼�j

o

o#0
1

sin#0
oY �

jmðX0Þ
ok0

 !
YjmðXÞ

¼ � 2jþ 1

8p
sin 2a0 sin2 w

d2PjðcoswÞ
dðcoswÞ2

;

Xj
m¼�j

o2Y �
jmðX0Þ

oð#0Þ2
� cot#0 oY

�
jmðX0Þ
o#0 � 1

sin2 #0

o2Y �
jmðX0Þ

oðk0Þ2

 !

� YjmðXÞ ¼ 2jþ 1

4p
cos 2a0 sin2 w

d2PjðcoswÞ
dðcoswÞ2

: ð27Þ

Introducing functions EjmðXÞ, FjmðXÞ, GjmðXÞ and
HjmðXÞ defined in Appendix A, the addition theorems
(24) and (27) can be written in the compact forms

Xj
m¼�j

E�
jmðX0ÞYjmðXÞ¼ 2jþ1

4p
cosa0 sinw

dPjðcoswÞ
dcosw

;

Xj
m¼�j

F �
jmðX0ÞYjmðXÞ¼�2jþ1

4p
sina0 sinw

dPjðcoswÞ
dcosw

;

Xj
m¼�j

G�
jmðX0ÞYjmðXÞ¼ 2jþ1

4p
cos2a0 sin2w

d2PjðcoswÞ
dðcoswÞ2

;

Xj
m¼�j

H�
jmðX0ÞYjmðXÞ¼�2jþ1

4p
sin2a0 sin2w

d2PjðcoswÞ
dðcoswÞ2

:

ð28Þ

6 Closed spatial forms of Green’s functions

We are now ready to express the gradiometric Green’s
functions in closed spatial forms. Substituting the addi-

tion theorems (21) and (28) into eq. (20), the spectral
forms of the gradiometricGreen’s functions are expressed
as the products of the part depending on the azimuth a0

and the part depending on the angular distance w (the
exception is the Green’s function for the vertical-vertical
gradiometric BVP that depends on w only):

Grrðt;X;X0Þ ¼ Krrðt; coswÞ;
Gr#ðt;X;X0Þ ¼ � cos a0KrXðt; coswÞ;
Grkðt;X;X0Þ ¼ sin a0KrXðt; coswÞ
G##kkðt;X;X0Þ ¼ cos 2a0KXXðt; coswÞ;
G#kðt;X;X0Þ ¼ � sin 2a0KXXðt; coswÞ :

ð29Þ

The three isotropic kernels Krrðt; coswÞ, KrXðt; coswÞ
and KXXðt; coswÞ are given by infinite series of Legendre
polynomials and their derivatives:

Krrðt;xÞ :¼
X1
j¼0

2jþ 1

ðjþ 1Þðjþ 2Þ t
jþ1PjðxÞ;

KrXðt;xÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p X1
j¼1

2jþ 1

jðjþ 1Þðjþ 2Þ t
jþ1 dPjðxÞ

dx
;

KXXðt;xÞ :¼ ð1� x2Þ
X1
j¼2

2jþ 1

ðj� 1Þjðjþ 1Þðjþ 2Þ t
jþ1 d

2PjðxÞ
dx2

;

ð30Þ

where x :¼ cosw. We now replace the infinite series for
the isotropic kernels by closed-form expressions. The
fractions occurring in these series can be decomposed as

2jþ1

ðjþ1Þðjþ2Þ¼� 1

jþ1
þ 3

jþ2
;

2jþ1

jðjþ1Þðjþ2Þ¼
1

2j
þ 1

jþ1
� 3

2ðjþ2Þ ;

2jþ1

ðj�1Þjðjþ1Þðjþ2Þ¼
1

2

1

j�1
�1

j
� 1

jþ1
þ 1

jþ2

� �
:

ð31Þ

Substituting the partial-fraction decomposition (31) into
Eq. (30) and summing up the particular constituents by
making use of the formulae listed in Appendix B, we
arrive, after some algebraic manipulations, at

Krrðt; xÞ ¼
3

t
ðg� 1Þ þ 3x

t
� 1

� �
ln

gþ t � x
1� x

� �
;

KrXðt; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p 3

2g
þ t2ðgþ 1Þ
2gðgþ 1� txÞ þ 1� 3x

2t

� ��

� 1

1� x
� gþ t
gðgþ t � xÞ

� �
� 3

2t
ln

gþ t � x
1� x

� ��
;

KXXðt; xÞ ¼ � t
2
þ 3

2
xt2 þ gt þ 1

t
ð1� gÞ þ x2t3

gþ 1� tx

þ xðx� tÞ
tð1� xÞ �

x2

tðgþ t � xÞ ;

ð32Þ
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where g � gðt; xÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 � 2tx

p
, �1 � x � 1, 0 <

t � 1, is the reciprocal generating function of Legendre
polynomials.

7 Singularity investigations of the isotropic kernels

The above formulae enable us to study the behaviour of
the three isotropic kernels in the vicinity of the point
ðt ¼ 1;w ¼ 0Þ, i.e. the case when an integration point
approaches the computation point, both lying on the
reference sphere R. First, let us study the case t ¼ 1.

Then, the generating function gð1; coswÞ ¼ 2 sin
w
2
,

1� cosw ¼ 2 sin2
w
2
, and eq. (32) reduces to

Krrð1;coswÞ¼�3þ6sin
w
2
þð1�3coswÞln

sinw
2

1þsinw
2

 !
;

KrXð1;coswÞ¼2cos
w
2
þ sinw

2 1þsinw
2

� �þ3

2
sinwln

sinw
2

1þsinw
2

 !
;

KXXð1;coswÞ¼
1

2
þ1

2
cosw :

ð33Þ

Consequently, the function Krrðt; coswÞ has a logarith-
mic singularity at the point ðt ¼ 1;w ¼ 0Þ, that is
Krrð1; coswÞ � �2 lnðw=2Þ for w ! 0. On the other
hand, functions KrXð1; coswÞ and KXXð1; coswÞ are
bounded at the point w ¼ 0, KrXð1; 1Þ ¼ 2 and
KXXð1; 1Þ ¼ 1. Consequently, even after removing a
low-frequency part of the gradiometric data, e.g. by a
global gravity model, the contribution of the far-zone
gradiometric data to the integral (19) remains relatively
large and, in principle, cannot be neglected as, for
instance, in the case of the Stokes’s integral. The
functions Krrð1; coswÞ, KrXð1; coswÞ and KXXð1; coswÞ
within the interval 0� � w � 180� are shown in Fig. 1.

Second, let us study the limiting case x ¼ 1 for t < 1.
The generating function then reduces to gðt; 1Þ ¼ 1� t.
Making use of the l’Hospital rule, we can find, after
some manipulations, that

lim
x!1

gþ t � x
1� x

¼ 1

1� t
;

lim
x!1

x� t
1� x

� x
gþ t � x

� �
¼ tðt � 2Þ

2ð1� tÞ ;

ð34Þ

which holds for t < 1. The isotropic kernels then reduce
to the forms

Krrðt; 1Þ ¼ �3þ 1� 3

t

� �
lnð1� tÞ

KrXðt; 1Þ ¼ KXXðt; 1Þ ¼ 0 ;

ð35Þ

which are shown in Fig. 1.

8 Comparison with the van Gelderen
and Rummel solution

Van Gelderen and Rummel (2001, 2002) presented
solutions to geodetic BVPs in a spherical approxima-
tion for various types of observation. Since our
solutions differ partly from those presented in vGR01
(Sects. 4.4 and 4.6), we briefly discuss the differences.

First, the summation of the spherical harmonic se-
ries for the Green’s functions applied to the gradio-
metric data fC; zg and fx;Cg runs from degree ‘ ¼ 2 up
to infinity (vGR01, Table 2). The zero- and the first-
degree spherical harmonics are removed in order to
achieve the consistency with other BVPs solved there.
However, as Eq. (15) shows, the zero- and the first-
degree spherical harmonics can be considered, without
any restrictions, in the solution of the vertical-vertical
gradiometric BVP and the first-degree spherical har-
monics in the solution of the vertical-horizontal gra-
diometric BVP. As far as the horizontal-horizontal
gradiometric BVP is concerned, the summation of
spherical harmonic series for the Green’s function
starts at degree two, as shown in Eq. (15). This is in
agreement with the Green’s function for data
fCxx � Cyy ; 2Cxyg considered in vGR01.

Second, the Green’s functions in spatial domain
are only tabulated for the computation point on the
reference sphere R (vGR01, Table 2). Such forms do

Fig. 1. The isotropic parts Krrðt; coswÞ,
KrXðt; coswÞ and KXXðt; coswÞ of the
gradiometric Green’s functions for the cases
t ¼ 1 (left) and t ¼ 0:95 (right)
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not provide a solution to the gradiometric BVPs in the
space outside the reference sphere, which is desired,
for instance, in continuing gradiometric data from a
non-spherical satellite orbit to a mean-orbit sphere.
Equations (19), (29) and (32), derived in this paper,
provide the solutions to the gradiometric BVPs on and
outside the reference sphere. In particular, if the
computation point is on the reference sphere, that is
when r ¼ R, the gradiometric Green’s functions reduce
to the form (33). Omitting the zero- and first-degree
spherical harmonics in Krrð1; coswÞ and the first-
degree spherical harmonics in KrXð1; coswÞ, the
Green’s functions (33) have the same forms as those
tabulated in vGR01 (Table 2) for data fC; zg and
fx;Cg, respectively. As far as the function
KXXð1; coswÞ is concerned, it has the same form as
that for data fCxx � Cyy ; 2Cxyg considered in vGR01.

Third, since the gradiometric Green’s functions are
harmonic outside the reference sphere, their spatial de-
pendence is of the form t�j�1PjðcoswÞ, as eq. (20) dem-
onstrates. The form t�j�3PjðcoswÞ presented in vGR01
(section 4.4) is incorrect in the radial dependence. In the
notation used in vGR01, the formula for Ci

‘m is to be
divided by R2.

Fourth, vGR01 does not discuss the conditions on
the existence of a solution. The existence conditions
associated with the vGR01 gradiometric solutions are
stronger than those considered in the present paper or
by Schreiner (1994). The 10 general existence conditions
(14) are to be supplemented by the conditions requiring
that the zero- and first-degree spherical harmonics are
removed from the observations Czz and the first-degree
spherical harmonics from Cxz and Cyz. The vGR01 gra-
diometric solutions then exist.

9 Conclusion

This work was motivated by the recent approval of the
GOCE gradiometry mission and the effort to create an
adequate mathematical tool for inverting gradiometric
observables to information on the external gravita-
tional potential of the Earth. We have managed to
solve gradiometric BVPs in terms of Green’s functions
that have been expressed in spectral form as series of
tensor spherical harmonics. This form of the solution
can be applied to develop the gravitational field in
terms of spherical harmonics from the GOCE data.
Alternatively, by means of the addition theorems for
spherical harmonics and the infinite-sum formulae for
Legendre polynomials, the spectral forms have been
converted to closed spatial forms. These forms can
used to construct the upward- and downward-contin-
uation operators that can be applied to transform the
measured gradiometric data from a non-spherical
satellite orbit to a mean-orbit sphere. The results
presented in this paper have been compared with those
recently published by van Gelderen and Rummel
(2001). We found that the vGR01 gradiometric
solution can be refined.
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Appendix A

Tensor spherical harmonics

The spherical harmonic representation of a tensor field
was considered by Regge and Wheeler (1957), Backus
(1967), Zerilli (1970), Phinney and Burridge (1973),
James (1976), Jones (1985) and others. The Zerilli and
James tensors are defined by the irreducible tensor
product of the scalar spherical harmonics YjmðXÞ and the
second-rank cyclic-covariant base dyadics. The Regge–
Wheeler and Backus tensors are the result of applying
the operators er, $X and LX to the scalar spherical
harmonics YjmðXÞ. Throughout this paper, we use the
Regge–Wheeler definition and restrict ourselves to the
second-order, symmetric, spherical harmonic tensors
with trace. There are six such tensor spherical harmonics
(Zerilli, 1970):

Z
ð1Þ
jm ðXÞ :¼ ½ererYjmðXÞ
s;

Z
ð2Þ
jm ðXÞ :¼ ½er$XYjmðXÞ
s;

Z
ð3Þ
jm ðXÞ :¼ ½$X$XYjmðXÞ þ 2er$XYjmðXÞ � LXLXYjmðXÞ
s;

Z
ð4Þ
jm ðXÞ :¼ ½$X$XYjmðXÞ þ LXLXYjmðXÞ
s;

Z
ð5Þ
jm ðXÞ :¼ ½erLXYjmðXÞ
s;

Z
ð6Þ
jm ðXÞ :¼ ½LX$XYjmðXÞ þ erLXYjmðXÞ
s;

ðA1Þ

where $X is the angular part of the gradient operator

$X :¼ e#
o

o#
þ ek

1

sin#

o

ok
; ðA2Þ

and LX stands for the angular part of the angular
momentum operator

LX :¼ er � $X: ðA3Þ

The subscript s denotes the symmetric part of second-
order tensor A with trace, i.e. ½A
s :¼ 1

2 ðA þ AT Þ. Creat-
ing the dyadic products of spherical unit base vectors er,
e# and ek and taking the symmetric part of the result, we
define the symmetric spherical dyadics

eij :¼ ½ei � ej
s i; j 2 fr; #; kg: ðA4Þ

Making use of these dyadics and of the spherical
components of the operators $X and LX, the dyadic
components of the tensor spherical harmonics are
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Z
ð1Þ
jm ðXÞ ¼ YjmðXÞerr;

Z
ð2Þ
jm ðXÞ ¼ EjmðXÞer# þ FjmðXÞerk;

Z
ð3Þ
jm ðXÞ ¼ GjmðXÞðe## � ekkÞ þ 2HjmðXÞe#k;

Z
ð4Þ
jm ðXÞ ¼ �jðjþ 1ÞYjmðXÞðe## þ ekkÞ;

Z
ð5Þ
jm ðXÞ ¼ �FjmðXÞer# þ EjmðXÞerk;

Z
ð6Þ
jm ðXÞ ¼ GjmðXÞe#k � HjmðXÞðe## � ekkÞ;

ðA5Þ

where the abbreviations have the following meanings:

EjmðXÞ :¼ oYjmðXÞ
o#

;

FjmðXÞ :¼ 1

sin#

oYjmðXÞ
ok

;

GjmðXÞ :¼ o2

o#2
� cot#

o

o#
� 1

sin2 #

o2

ok2

� �
YjmðXÞ;

HjmðXÞ :¼ 2
o

o#

1

sin#

oYjmðXÞ
ok

� �
:

ðA6Þ

The orthogonality property of the spherical base vectors
and the scalar harmonics combine to give the orthog-
onality property of the tensor spherical harmonicsZ
X0

Z
ðkÞ
jm ðXÞ : Z

ðk0Þ
j0m0 ðXÞ

h i�
dX ¼ N ðkÞ

j

h i2
djj0dmm0dkk0 ðA7Þ

where the colon denotes the double-dot product of
tensors and ½N ðkÞ

j 
2 is the square norm of Z
ðkÞ
jm ðXÞ

N ðkÞ
j

h i2
¼

1 for k ¼ 1;
1
2 jðjþ 1Þ for k ¼ 2;
2ðj� 1Þjðjþ 1Þðjþ 2Þ for k ¼ 3;

2j2ðjþ 1Þ2 for k ¼ 4;
1
2 jðjþ 1Þ for k ¼ 5;
1
2 ðj� 1Þjðjþ 1Þðjþ 2Þ for k ¼ 6:

8>>>>>><
>>>>>>:

ðA8Þ

A collection of six tensor harmonics of all possible values
of j and m forms a complete set of tensor functions in the
domain 0 � # � p, 0 � k < 2p. Any second-order sym-
metric tensor sð#; kÞ whose components are square-
integrable functions of the angular variable X can be
expanded in a series of tensor spherical harmonicsZ

ðkÞ
jm ðXÞ

sðXÞ ¼
X1
j¼0

Xj
m¼�j

X6
k¼1

sðkÞjmZ
ðkÞ
jm ðXÞ; ðA9Þ

where the expansion coefficients sðkÞjm are obtained by a
systematic application of the orthogonality relation of
(A7).

Appendix B

Summation of infinite series of Legendre polynomials
and their derivatives

Let us recall some summation formulae for infinite series
of the Legendre polynomials and their derivatives

[others can be found in e.g. Pick et al. (1973, Sect.
D-18)].

S1ðt;xÞ :¼
X1
j¼2

tj�1

j�1
PjðxÞ¼�xþ1

t
�g

t
� x ln

gþ1� tx
2

� �
;

ðB1Þ

S2ðt; xÞ :¼
X1
j¼1

tj

j
PjðxÞ ¼ � ln

gþ 1� tx
2

� �
; ðB2Þ

S3ðt; xÞ :¼
X1
j¼0

tjþ1

jþ 1
PjðxÞ ¼ ln

gþ t � x
1� x

� �
; ðB3Þ

S4ðt;xÞ :¼
X1
j¼0

tjþ2

jþ2
PjðxÞ¼�1þgþx ln

gþ t� x
1� x

� �
; ðB4Þ

where g � gðt; xÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2 � 2tx

p
, �1 � x � 1 and

0 < t � 1. The partial derivatives of the sums Si,
i ¼ 1; . . . ; 4, with respect to x read

oS1ðt;xÞ
ox

¼�1þ1

g
þ txðgþ1Þ
gðgþ1� txÞ� ln

gþ1� tx
2

� �
ðB5Þ

oS2ðt;xÞ
ox

¼ tðgþ1Þ
gðgþ1� txÞ ðB6Þ

oS3ðt;xÞ
ox

¼ 1

1� x
� gþ t
gðgþ t� xÞ ðB7Þ

oS4ðt;xÞ
ox

¼� t
g
þ x
1� x

� xðgþ tÞ
gðgþ t� xÞþ ln

gþ t� x
1� x

� �
ðB8Þ

The partial second-order derivatives of the sums Si with
respect to x multiplied by 1� x2 are

ð1� x2Þo
2S1ðt;xÞ
ox2

¼ 3xþ2ðt� xÞ
g

þ t�x
g3

þ 2tx2ðgþ1Þ
gðgþ1� txÞ ;

ðB9Þ

ð1� x2Þo
2S2ðt;xÞ
ox2

¼ 1�1

g
þ tðt�xÞ

g3
þ 2txðgþ1Þ
gðgþ1� txÞ ;

ðB10Þ

ð1� x2Þo
2S3ðt;xÞ
ox2

¼ 2x
1� x

þ t2ðt� xÞ
g3

� 2xðgþ tÞ
gðgþ t�xÞ ;

ðB11Þ

ð1� x2Þo
2S4ðt;xÞ
ox2

¼ 2�g�1

g
þ 2x2

1� x
þ t3ðt� xÞ

g3

� 2x2ðgþ tÞ
gðgþ t� xÞ : ðB12Þ
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