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Abstract. Three independent gradiometric boundary-
value problems (BVPs) with three types of gradiometric
data, {T',,}, {T'}9,I,,} and {T'yy — I';;, Ty}, prescribed
on a sphere are solved to determine the gravitational
potential on and outside the sphere. The existence and
uniqueness conditions on the solutions are formulated
showing that the zero- and the first-degree spherical
harmonics are to be removed from {I,y,T,;} and
{Ty9 — Ty, Ty}, respectively. The solutions to the
gradiometric BVPs are presented in terms of Green’s
functions, which are expressed in both spectral and
closed spatial forms. The logarithmic singularity of the
Green’s function at the point y = 0 is investigated for
the component I',,. The other two Green’s functions are
finite at this point. Comparisons to the paper by van
Gelderen and Rummel [Journal of Geodesy (2001) 75:
1-11] show that the presented solution refines the former
solution.
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1 Introduction

Satellite gradiometry is expected to improve our knowl-
edge of the external global gravitational field of the
Earth. This hope is based on the fact that the attenuation
of the gravitational field with increasing distance from
the Earth is partly compensated by the effect of the
differentiation of the gravitational field. Prescribing
various linear combinations of the second-order deriva-
tives of the gravitational potential as boundary data on a
sphere (e.g. a mean-orbit sphere), one of the main
objectives is to convert them into gravitational potential,
geoid height, gravity anomaly or any other desired
gravity quantity. This aspect has recently been treated by

van Gelderen and Rummel (2001, 2002) (vGROI1
hereafter). Among solutions to various geodetic bound-
ary-value problems (BVPs), they introduced Green’s
function solutions to the gradiometric BVPs.

From the theoretical point of view, the vGRO1 gra-
diometric solutions can be refined. This motivates the
work of this paper. We present a detailed and systematic
derivation of the Green’s function solutions to the gra-
diometric BVPs with boundary data prescribed on a
sphere. The paper is organized as follows. We recall the
definition and basic properties of the gravitation tensor.
The tensor spherical-harmonics decomposition of the
gravitation tensor is used to group gradiometric ob-
servables into three independent gradiometric data sets.
For each data set, we formulate the gradiometric BVP
and specify the conditions of the existence and unique-
ness of solution. We then solve the three gradiometric
BVPs in terms of Green’s functions that are expressed in
spectral and closed spatial forms. We use the closed-
form solutions to discuss the singular behavior of the
gradiometric Green’s functions. Finally, we compare
our solutions with the vGRO1 gradiometric solutions.

2 Spherical harmonic representation
of the gravitation tensor

The gravitation tensor I' is defined as the double
gradient of the gravitational potential V (see e.g.
Rummel and van Gelderen, 1992),

I:=grad grad V . (1)

By this definition, the tensor I' is symmetric, r’'=r,
which reduces the nine components of I' to six
independent components. In addition, if the gravita-
tional potential is harmonic, V2>V = 0, the trace of T’
vanishes, trI' = 0. As a result, only five components of
the gravitation tensor are independent functions in the
region of harmonicity of the potential V.

In this paper, we consider the gravitational potential
V' represented in terms of scalar spherical harmonics
Y;n(Q) (see e.g. Varshalovich et al., 1989):
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where » and Q are spherical coordinates and Q := (¢, 1).
The double gradient of individual constituents may be

expressed in terms of tensor spherical harmonics ZE;} Q)
(Appendix A): ‘
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For a harmonic potenual that vanishes at infinity, V,m(r)
is proportional to »~/~! and eq. (3) reduces to

grad grad [r /7Y, (Q)] = /73 [(]' + 1)+ 2)Z](':n)(Q>
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Note that the trace of grad grad[r—~/~ 1Y,m(Q)] Vamshes
since the tensor spherical harmonics Z< )( Q) and Z 0 (Q)
are trace-free and

1
tr 2()(Q) =

Yin(Q), tr Z57(Q) = —2j(j + 1) ¥ ().

(5)

The gravitation tensor can alternatively be repre-
sented in terms of the symmetric spherical dyadics e;;
(Appendix A):

1
I'=T,e,+2Iyey+2I e+ 3 (Tog —T12)(egs —ens)

1
+2T ey, + B (Tyo+T ) (egs+e) . (6)

Representing the tensor spherical harmonics in eq. (4) in
terms of the symmetric spherical dyadics and comparing
the result with Eq. (6), the five independent components
of the gravitation tensor I' can be grouped into three
second-order gradiometric data tensors '), I'® and
I'® as follows:

r(l) - 1—‘rrerr,

r® — 2l 9e + 210584, (7)
1

') =~ (Tyy — T1:)(ess — e:) + 2950, .
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These combinations of gradiometric observables were
proposed by Rummel and van Gelderen (1992).
Equation (6) shows that the gradiometric data com-
bination I'yy + I'j; standing at the dyadic egy + €;; can,
in principle, also be considered. However, this data
combination on a mean curvature of level surfaces does
not contain independent information on the gravita-
tional potential V' because I'yy + I';; can be deduced

from the observations of the component I',, and the
trace-free condition on I', namely Tyy + T';;, = —T,,..

3 Formulation of the gradiometric BVPs

The three combinations of gradiometric observables
'™, r® and I'® enable us to formulate three different
gradlometrlc BVPs as follows. We aim at determining
the gravitational potential ¥ (r,Q) on and outside the
reference sphere of radius R that is governed by one of
the following three gradiometric BVPs, which differ in
the usage of three different kinds of gradiometric
boundary data:

V¥V =0 forr>R, (8)

grad grad ¥ =T%W forr=R , 9)
1

Vo~ 0<r> for r — oo , (10)

where the gradiometric data '), 2 =1,2,3, introduced
by Eq. (7) are assumed to be known tensor functions of
the angular variable Q. The asymptotic condition (10)
implies that the harmonic function V' approaches zero at
mﬁmty The BVPs for gradiometric data IV, T® and
I'®) will be called the vertical-vertical gradzometrzc BVP,
the vertical-horizontal gradiometric BVP and the hori-
zontal-horizontal gradiometric BV P, respectively, since
'Y measures the vertical gradient of gravity, I'®
measures the horizontal gradient of gravity and I'’)
measures the difference between the two principal radii
of curvature and the direction of the maximum radius of
curvature of the level surfaces of potential V.

The solution to the Laplace equation (8) can be
written in terms of solid spherical harmonics 7~/~'Y},(Q)
as follows:

i (I—:yﬂ ,,,Zj_:,- VimYim(Q) (11)

J=0

V(r,Q) =

where Vj,, are expansion coefficients to be determined
from the boundary condition (9). Making use of eq. (4),
we compute the double gradient of 7 and substitute the
result into the boundary condition (9):
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The last three equations allow us to investigate the
existence and uniqueness of the gradiometric BVPs (8)—
(10). Since

2 3 3
Zi (@) = 24 () = Z3,(@) =0 , (13)
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the existence of a solution to the problem (8)—(10) for
gradiometric data T'® is guaranteed if I'® does not
contain the zero-degree spherical harmonic. Likewise, a
solution to the problem (8)—(10) for gradiometric data
I'®) exists if I'®) does not contain the zero- and first-
degree spherical harmonics. Mathematically, the condi-
tions on the existence of a solution are

/ [(Q)dQ = / I,;(Q)dQ = / [Tya(Q) — [;(Q)]dQ

Q Q Q
~ [ ru@da—o
Q
[ Twi@ - ra@r, @
Qo
:/m(Q)Yl*m(Q)szo, m=-1,0,1, (14)
Q
where the asterisk denotes complex conjugation,

dQ := sin¥dv¥dA and € is the full solid angle. Through-
out the paper, we assume that the 10 existence condi-
tions (14) are satisfied. If these conditions are violated by
observational errors, the zero- and first-degree spherical
harmonics must be removed from the gradiometric data
I'® and T'®, respectively. As far as the vertical-vertical
gradiometric BVP for data type I'!) is concerned, the
existence of the solution to this problem is uncondition-
ally guaranteed.

In addition, in order to ensure the uniqueness of a
solution, the zero-degree spherical harmonic and the
zero- and first-degree spherical harmonics must be re-
moved from the potential ' for the vertical-horizontal
and horizontal-horizontal gradiometric BVPs, respec-
tively. Mathematically, the asymptotic condition (10)
must be replaced by a more precise condition of the form

VNO(I.) for r — oo , (15)
r/L

where A =1, 2 and 3 for the vertical-vertical, vertical-
horizontal and horizontal-horizontal gradiometric BVP,
respectively,

The existence, uniqueness and stability of a solution
to the gradiometric BVPs was investigated by Schreiner
(1994). Making use of the concept of the Sobolev space,
the theory of pseudodifferential operators and the
assumption that gradiometric observables satisfy the
conditions (14), he proved (Schreiner 1994, Theorem
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3.3.1.) that solutions to the gradiometric BVPs exist and
are unique. In addition, he assumed that gradiometric
observables are elements of the Sobolev space /_;/»(Q).
Since the construction of the norm of this functional
space may be difficult if gradiometric observables are
not represented in terms of spherical harmonics, we
impose a stronger constraint on the gradiometric ob-
servables and assume that they are square-integrable
functions of Q, T¥ e L, (Q). This is allowed, because the
space of square-integrable functions L,(Q) is embedded
in h_1/2(Q), i.e. LQ(Q) - h_]/z(Q).

4 Solution in the spectral domain

Under the assumption that the gradiometric data
tensors are square-integrable functions of Q, they can
be expanded into a series of tensor spherical harmonics:

SN
r' Q)=
jz;l[N}Z)F

«S / (roe): [zi@)] )az@),
m==jg,

(16)

where the colon_ denotes the double-dot product of
tensors and [Nj(’“)] is the square norm of Z;'(Q)
(Appendix A). Considering expansion (16) in eq. (12)
and comparing the coefficients standing at tensor
spherical harmonics ZW(Q) results in
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Applying the decomposition (7) of the gradiometric data
tensors I'”(Q) in Eq. (17) and evaluating the double-
dot products of the symmetric spherical dyadics with the
tensor spherical harmonics, the coefficients ¥, can be
expressed in more explicit forms:

(Q’)} e, (18)

/ [[FM(Q'> + [ (Q)] G, () — 2T, (Q)H, () | dQ
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where the functions E;,,(Q), Fju(Q), G (Q) and H;,,(Q)
are defined in Appendix A. Finally, substituting these
expressions into eq. (11), interchanging the order of

scalar spherical harmonics that we consider in the form
(see e.g. Varshalovich et al., 1989, sect. 5.17.2)

summation over J and m and integration over Q' due to i Y (Q)Yn(Q) = 2j+ 1Pj(cos v 1)
the uniform convergence of the series expansion (11), the =, J ‘ 4n
solutions to the three gradiometric BVPs (8)—(10) read
RZ
e I,(Q)G,(1,Q,Q)d,
Q
R2 / / / / /
V) = { 1 [T Q)G (1,2, Q) + T ()G (1,2, 2) | €Y, (19)
Q
R2 / / / / /
1 | [[Toa(@) = T @)]Gonsa (1,2, Q) + 2004 Q) Gs (1,2, @) | 4
Q

where we have introduced five gradiometric Green’s
functions:

Piad! J

G (1,Q,9) —4nz(]+l G573 Z Y (@)Y (Q),
t/+l
G(1,Q,Q): 4nz FEREsP Z im(Q),
G (1,0,Q) := 47IZ v ZF* @)y,
" JG+D(+2) )
t/+l

Gyo(1,Q,Q) —4n2 N ESES)

m=-j
tj+l
Goi(1,Q,9Y) _4”2(;—1)1(/+1>(1+2>
x ZH,,,, )Yim(€) | (20)
m=-j

with the symbol 7:=R/r for convenience. From a
numerical point of view, the spectral forms (20) of
gradiometric Green’s functions may appear inconve-
nient, because some of them have a singularity at
(1,Q,Q). At this point, it is necessary to sum the spectral
series up to high degrees and orders, which may be time
consuming and numerically unstable. We thus aim at
converting the spectral forms of the Green’s functions to
closed spatial forms. However, the actual satellite
gradiometric data will be band limited and the summa-
tions over j will be finite and bounded.

5 Analytical forms of addition theorems
for spherical harmonics

We now present the method of summing the series over
the azimuthal order m occurring in eq. (20). The
approach is based on the Laplace addition theorem for

where P;(cos ) is the Legendre polynomial of degree j
and  is the angular distance between the computation
point (¥, 1) and an integration point (¢', ") referred to
the point (44, 1). Differentiating Eq. (21) with respect to
¥ and /', respectively, yields

S @) k18R (osy)
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sing’ oA/ 4 siny X

m=—j

(22)

The partial derivatives of Legendre polynomials
P;(cosy) with respect to ¢ and /', respectively, are
expressible in terms of the ordinary derivatives of the
Legendre polynomials with respect to cos . By the chain
rule of differentiation, Grafarend (2001) showed that

— = cosoc’sint//L
o dcosy’
(23)
1 0 l// 0
sing' 0 — sinosin ocosy ’

where o is the azimuth of the computation point (¢, 1)
with respect to an integration point (¢, 2"). Changing
the differentiation on the right-hand side of eq. (22)
according to the rule (23), we obtain

J oY (@) 2j—|—1 dP;(cosy)

M Ty (=L ¢
3 o= st ng LD,
/1 0Y;,(Q) 2j+1 ., . dP(cosy)
m;jsim?’ o m(Q) == msinalsing =g =

(24)

which may be regarded as the addition theorems for the
first-order derivatives of scalar spherical harmonics.

Next, we derive the analytical forms of the addition
theorems for the second-order derivatives of spherical
harmonics. The differentiation of Eq. (22) with respect
to ¥ and /', respectively, yields
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The differential operators on the right-hand sides can
again be expressed as ordinary differential operators in
terms of cos . After some manipulations, we obtain the
following second-order differential identities:

o . o’
=cos2o/sin y———,

0 9.0 1
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This allows us to reduce eq. (25) to the form
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Introducing functions E;,,(Q), Fju(Q), G;u(Q) and
H;,(Q) defined in Appendix A, the addition theorems
(24) and (27) can be written in the compact forms

J : .
S B (@)Y (@) = 2]4; L cosasiny 2E1€0SY)

= dcosy

2j+1 . . dP;(cosy)
* / _ / J
m_Z_JF}m Q = —?Slna Sin I/IW,
2j+1 ’p;

Z o ( I H cos2d! sinzl//LCOSlg)

— 4rn d(cosy)
2j+1 d’p;

Z H;, (Q)Yjm(Q)=— J+ sin 20/ sin’ l/ILSl/;)

= 4n d(cosy)

(28)

6 Closed spatial forms of Green’s functions

We are now ready to express the gradiometric Green’s
functions in closed spatial forms. Substituting the addi-
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tion theorems (21) and (28) into eq. (20), the spectral
forms of the gradiometric Green’s functions are expressed
as the products of the part depending on the azimuth of
and the part depending on the angular distance y (the
exception is the Green’s function for the vertical-vertical
gradiometric BVP that depends on y only):

G (1,Q,Q) = K,,.(t,cos ),
Go(t,Q,Q) = —cosdK,q(t,cos ),
Gi(t,Q,Q) = sin o/ K,q(t, cos ) (29)
Gy (t,Q, Q) = cos 20/ Kaq(t, cos ),
Gy (1,Q,Q) = —sin 20/ Koq(t, cos ) .
The three isotropic kernels K, (1,cosy), Kiqa(t,cos)

and Koo (#, cos ) are given by infinite series of Legendre
polynomials and their derivatives:

- 2j+l
r)lx :Z ]+2
Jj=

o/ N 2j+1 1 4P;(x)
Kaltx)=vV1-23 Sy e
J=1

“11’]'(96)7

oS 2j+1 o1 (%)
Kaalt) =000 Gonieng+’ e
(30)

where x := cosy. We now replace the infinite series for
the isotropic kernels by closed-form expressions. The
fractions occurring in these series can be decomposed as

2ji+1 1 3

G+D(G+2) j+1 j+2’
2j+1 —i+ 13

JU+DG+2) 2/ j+1 2(j+2)

2j+1 1 <J 1 1 1 n 1 )
G-1jG+0G+2) 2\/-1 j j+1 j+2)°
(31)
Substituting the partial-fraction decomposition (31) into
Eq. (30) and summing up the particular constituents by

making use of the formulae listed in Appendix B, we
arrive, after some algebraic manipulations, at

o =301+ (1) m( ),

—[3 2(g+1) 3x
KrQ(ta'x)_ 1 —x2 [2g+—2g(g+l—tx)+ (lz)
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_ _ (i
X(l—x g(g+t—x)> 2;“( T —x )}

t 3 1 X283
KQQ(tax) _§+2XI +gt+-— (1_g)+m

x(x — 1) x?

(1—x) tlg+t—x)
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where g=g(t,x):=V1+2-2tx, -1<x<1, 0<
t <1, is the reciprocal generating function of Legendre
polynomials.

7 Singularity investigations of the isotropic kernels

The above formulae enable us to study the behaviour of
the three isotropic kernels in the vicinity of the point
(t=1, =0), i.e. the case when an integration point
approaches the computation point, both lying on the
reference sphere R. First, let us study the case ¢t = 1.

Then, the generating function ¢(l,cosy) = 2sin %,

1 — cosy = 2sin” > and eq. (32) reduces to

in¥
Krr(l,cosxp)——3+6sinlg+(l—3cos1ﬁ)1n<1 o xb)’

i 3 in¥
KrQ(LCoslﬁ):2003£+%+_Sin¢ln Sm.2 ).
2 2(1+sing) 2 [sind

1 1
Koa(1,cosy) :§+§cos¢ .

(33)

Consequently, the function K,,(z,cos) has a logarith-
mic singularity at the point (¢+= 1,y =0), that is
K.(l,cosyy) ~ =2In(y/2) for y — 0. On the other
hand, functions K,o(l,cosy) and Kqq(l,cosy) are
bounded at the point Y =0, K(l,1)=2 and
Koa(l,1) = 1. Consequently, even after removing a
low-frequency part of the gradiometric data, e.g. by a
global gravity model, the contribution of the far-zone
gradiometric data to the integral (19) remains relatively
large and, in principle, cannot be neglected as, for
instance, in the case of the Stokes’s integral. The
functions K,,(1,cosy), K,o(l,cosyy) and Koo(1,cosy)
within the interval 0° < < 180° are shown in Fig. 1.

Second, let us study the limiting case x = 1 for z < 1.
The generating function then reduces to g(z,1) =1 —+¢.
Making use of the I’'Hospital rule, we can find, after
some manipulations, that

(34)

lim x—t  x _t(t—-2)

—I\l—-x g+t—x) 2(1—1¢)"’

which holds for # < 1. The isotropic kernels then reduce
to the forms

K. (t,1)=-3+ (1 —%) In(1 —9)
KrQ(tv 1) = KQQ(t7 1) =0,

(35)

which are shown in Fig. 1.

8 Comparison with the van Gelderen
and Rummel solution

Van Gelderen and Rummel (2001, 2002) presented
solutions to geodetic BVPs in a spherical approxima-
tion for various types of observation. Since our
solutions differ partly from those presented in vGROI
(Sects. 4.4 and 4.6), we briefly discuss the differences.

First, the summation of the spherical harmonic se-
ries for the Green’s functions applied to the gradio-
metric data {I',z} and {x, '} runs from degree £ = 2 up
to infinity (vGRO1, Table 2). The zero- and the first-
degree spherical harmonics are removed in order to
achieve the consistency with other BVPs solved there.
However, as Eq. (15) shows, the zero- and the first-
degree spherical harmonics can be considered, without
any restrictions, in the solution of the vertical-vertical
gradiometric BVP and the first-degree spherical har-
monics in the solution of the vertical-horizontal gra-
diometric BVP. As far as the horizontal-horizontal
gradiometric BVP is concerned, the summation of
spherical harmonic series for the Green’s function
starts at degree two, as shown in Eq. (15). This is in
agreement with the Green’s function for data
{T'xx — I}y, 2@, } considered in vGROI.

Second, the Green’s functions in spatial domain
are only tabulated for the computation point on the
reference sphere R (vVGRO1, Table 2). Such forms do

Amplitude
Amplitude

Fig. 1. The isotropic parts K,,(¢,cos ),

0 60 120 180
vy (degree)

v (degree)

K,o(t,cos ) and Koa(t,cosy) of the
gradiometric Green’s functions for the cases
t =1 (left) and ¢ = 0.95 (right)



not provide a solution to the gradiometric BVPs in the
space outside the reference sphere, which is desired,
for instance, in continuing gradiometric data from a
non-spherical satellite orbit to a mean-orbit sphere.
Equations (19), (29) and (32), derived in this paper,
provide the solutions to the gradiometric BVPs on and
outside the reference sphere. In particular, if the
computation point is on the reference sphere, that is
when » = R, the gradiometric Green’s functions reduce
to the form (33). Omitting the zero- and first-degree
spherical harmonics in K,.(l,cosy) and the first-
degree spherical harmonics in K,(l,cosy), the
Green’s functions (33) have the same forms as those
tabulated in vGROl (Table 2) for data {I',z} and
{x,T'}, respectively. As far as the function
Kaa(1,cosyy) is concerned, it has the same form as
that for data {I',, —I'},,2Iy,} considered in VGROI.

Third, since the gradiometric Green’s functions are
harmonic outside the reference sphere, their spatial de-
pendence is of the form t~/~1P;(cos ), as eq. (20) dem-
onstrates. The form /=P, (cos ) presented in vGRO1
(section 4.4) is incorrect in the radial dependence In the
notation used in vGRO1, the formula for I'), is to be
divided by R

Fourth, vGRO1 does not discuss the conditions on
the existence of a solution. The existence conditions
associated with the vGRO1 gradiometric solutions are
stronger than those considered in the present paper or
by Schreiner (1994). The 10 general existence conditions
(14) are to be supplemented by the conditions requiring
that the zero- and first-degree spherical harmonics are
removed from the observations I',, and the first-degree
spherical harmonics from I'y; and I',.. The vGRO1 gra-
diometric solutions then exist.

9 Conclusion

This work was motivated by the recent approval of the
GOCE gradiometry mission and the effort to create an
adequate mathematical tool for inverting gradiometric
observables to information on the external gravita-
tional potential of the Earth. We have managed to
solve gradiometric BVPs in terms of Green’s functions
that have been expressed in spectral form as series of
tensor spherical harmonics. This form of the solution
can be applied to develop the gravitational field in
terms of spherical harmonics from the GOCE data.
Alternatively, by means of the addition theorems for
spherical harmonics and the infinite-sum formulae for
Legendre polynomials, the spectral forms have been
converted to closed spatial forms. These forms can
used to construct the upward- and downward-contin-
uation operators that can be applied to transform the
measured gradiometric data from a non-spherical
satellite orbit to a mean-orbit sphere. The results
presented in this paper have been compared with those
recently published by van Gelderen and Rummel
(2001). We found that the vGROl1 gradiometric
solution can be refined.
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Appendix A
Tensor spherical harmonics

The spherical harmonic representation of a tensor field
was considered by Regge and Wheeler (1957), Backus
(1967), Zerilli (1970), Phinney and Burridge (1973),
James (1976), Jones (1985) and others. The Zerilli and
James tensors are defined by the irreducible tensor
product of the scalar spherical harmonics Y}, (Q) and the
second-rank cyclic-covariant base dyadics. The Regge—
Wheeler and Backus tensors are the result of applying
the operators e,, Vo and Lg to the scalar spherical
harmonics Y},,(€). Throughout this paper, we use the
Regge—Wheeler definition and restrict ourselves to the
second-order, symmetric, spherical harmonic tensors
with trace. There are six such tensor spherical harmonics
(Zerilli, 1970):

Z,,/(Q) = lere, V(@)
Z3)(Q) = [eVaYn(Q)],
Z8)(Q) := [VaVaYu(Q) + 2¢,Va¥(Q) — LaLa¥u(Q)],
Z;,)(Q) := [VaVa¥u(Q) + LaLaY (@),

Z)(Q) = [eLa¥n(Q),,

Z;,)(Q) := [LaVaYn(Q) +eLaYu(Q),

(A1)

where Vg, is the angular part of the gradient operator
Vo =¢ 6?9 e snll 9 aa (A2)

and Lg stands for the angular part of the angular
momentum operator

LQ =€, X VQ. (A3)
The subscript s denotes the symmetric part of second-
order tensor A with trace, i.e. [A]; :=1(A + A"). Creat-
ing the dyadic products of spherical unit base vectors e,,
ey and e; and taking the symmetric part of the result, we

define the symmetric spherical dyadics

e,-j = [e,- (29 ej]s l,] S {r,ﬁ,i}. (A4)
Making use of these dyadics and of the spherical
components of the operators Vg and Lg, the dyadic

components of the tensor spherical harmonics are



Zj(r1n> (Q) = ij(Q)erh
Z3)/(Q) = Ejn(Q)ers + Fin(Q)eri,
Z3)(Q) = Gyu(@) (e — €12) + 2Hju(Q)ess, "
Z,/(Q) = —j(j+ 1)V (Q)(es +€13),
Z]('fn)(Q) = —Fin(Q)ery + Ejn(Q)e,z,
Z3)(Q) = Gin(Q)ey; — Hin(Q)(ess — 12),
where the abbreviations have the following meanings:
0Y;n(Q)
Ejm (Q) = 1619 )
1 0Yn(Q)
F;,(Q) := /
im(€) sind 04 (A6)
0? 0 1 &
Gim(Q) == (w —cotd o5 — m@) Yim(Q),
0 1 0Y;n(Q)
Hp(Q) =2 (=7 .
im(€) oY (sim? Ry )

The orthogonality property of the spherical base vectors
and the scalar harmonics combine to give the orthog-
onality property of the tensor spherical harmonics

/ 29(Q) - [zﬁ’,; (Q)} do = [ } 3,7 Ommd,
Q

(A7)

where the colon denotes the double-dot %)roduct of

tensors and [Nj()')] is the square norm of Z Q)
1 for 2 =1,
3G+ 1) for A =2,
H12 ) 20-DjG+1)(+2) fori=3,
{Nj } ) 2P0+ 1) for 1 =4, (A8)
%](/ +1) for A =35,
SG-1jG+1D(+2) fori=6.

A collection of six tensor harmonics of all possible values
of j and m forms a complete set of tensor functions in the
domain 0 <9 <7, 0 <1< 2n. Any second-order sym-
metric tensor t(,4) whose components are square-
integrable functions of the angular variable Q can be
expanded in a series of tensor spherical harmonics VA% Q)

jm(
2 -3 3 Yzl

=0 m=—,

(A9)

where the expansion coefficients rj(;) are obtained by a
systematic application of the orthogonality relation of

(A7).

Appendix B

Summation of infinite series of Legendre polynomials
and their derivatives

Let us recall some summation formulae for infinite series
of the Legendre polynomials and their derivatives

[others can be found in e.g. Pick et al. (1973, Sect.
D-18)].

o= ! 1 +1—u
0= A7) =gt

1:21_1
(B1)
X ¢ g+1—1x
$(0.01= 35700 = -1 (575 (82)
500 =3 """ p()=n () (B3)
e R R N T
X pt2 g+t—x
Sult3):= 3 T3P —l+g+xin(—), (B4)
where g=g(t,x):=vV1+£—-2tx, —1<x<1 and
0 <t<1. The partial derivatives of the sums S;,
i=1,...,4, with respect to x read
381 (t,x) I tx(g+1) g+1—tx
=—1+- -1 B5
Ox g+g(g+1—tx) g 2 (B3)
oS 1
Ox g(g+1—1x)
0S5 (¢,x) 1 g+t
= — B7
Ox l—x glg+t—x) (B7)
0Sa(tx) t  x x(g+1) g+t—x
—— 1
Ox 1—x glg+t— )+ n( 1—x )
(B8)

The partial second-order derivatives of the sums S; with
respect to x multiplied by 1 — x? are

(1_xz)éle(;,x):3x+2(t—x) t—x 2tx2(g—|—1)’
Ox g g glg+1-m)
(B9)
2
1 — 2 1
(1_ 2)6S2(2t,x):1__+t(t zx) tx(g+ ) ,
Ox g g glg+1—1x)
(B10)
%S 2 (t— 2
(TSN 2 P gt
Ox I—x g glg+t—x)
(B11)
0%8,4(1,x) 1 22 A(t—x)
1) g g 2
(1= 0x2 g g+lfx g3
2
_M. (B12)
glg+1—x)
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