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Abstract. Recent advances in the performance of scalar
airborne gravimetry, routinely yielding gravity data
with an accuracy as high as 1 mGal with a minimum
spatial resolution (full wavelength) of 10 km, allow for
the use of airborne gravity in precise geoid computa-
tions. Theoretical issues related to geoid determination
from discrete samples of band-limited airborne gravity
and practical geoid computations based on high-
frequency synthetic data and actual observations are
discussed. The mathematical model for geoid determi-
nation from band-limited airborne gravity which is
introduced is based on Helmert’s reduction of gravity/
co-geoid and the application of the discretized integral
formula developed specifically for airborne gravity
data. Computational formulae are derived for the
following specifications of airborne gravity data: al-
most-white observation noise, a band-limited frequency
content of processed observations, and a smooth
regular surface on which gravity observations are
collected.

Two major applications of airborne gravity data for
geoid determination are discussed. Airborne gravimetry
can be used over areas with a sparse or no ground
gravity coverage to provide the medium- to high-
frequency components of the Earth’s gravity field.
These data can be used in combination with global
gravity models for the computation of the gravimetric
geoid. Airborne gravimetry can also be used to fill in
gaps in existing ground gravity coverage (mainly in
inaccessible areas). Both approaches are tested with
actual airborne data observed using an inertially
referenced airborne gravimeter at the Alexandria test
range near Ottawa, Canada. Observed airborne gravity
disturbances, combined with either ground or global
gravity data, are used for the determination of the
gravimetric geoid in the two applications outlined

above. The combined solutions are compared to the
latest official Canadian gravimetric geoid and to
available GPS/levelling data in the area. Numerical
results show that airborne data can be used for geoid
determination with centimetre-level accuracy (medium-
and high-frequency information) over areas with neg-
ligible topographical effects on gravity and the geoid.

Keywords: Geoid determination – Airborne
gravimetry – Downward continuation

1 Introduction

Vertical separations of the geoid from a reference
ellipsoid measured along the ellipsoidal normal can be
estimated with sufficient accuracy by the Bruns theorem.
The problem of geoid determination from airborne
gravity can thus be formulated as follows: find the
transformation of discrete observations of airborne
gravity at flight level into the disturbing gravity potential
at the geoid. Research on geoid determination from
airborne gravity has been pursued for some time and
results have appeared in the geodetic literature (see e.g.
Forsberg et al. 1996; Kearsley et al. 1998). Generally,
the research in this area started after airborne gravime-
try proved to provide reasonably accurate information
on the gravity field.

This contribution describes a new approach for geoid
determination from airborne gravity that is rigorous,
accurate, stable and complete. Before its mathematical
model is formulated, airborne data are compared to
ground gravity observations. Such a comparison helps
in the understanding of the airborne model, especially of
its differences from the generally well-known Stokes’s
solution commonly used for geoid determination from
ground gravity observations. In the case of ground
gravity observations, orthometric heights are usually
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assumed to be known. These orthometric heights,
estimated by spirit levelling and/or trigonometric height
differences, are of varying accuracy depending on loca-
tion, method and time of their determination (uncer-
tainties at the level of tens of metres can be found in
gravity databases). The knowledge of the orthometric
heights leads to the derivation of gravity anomalies. As a
consequence, the third boundary-value problem of
potential theory must be used. In contrast, airborne
gravimetry provides gravity data accompanied by
accurate geodetic heights [derived from global posi-
tioning system (GPS) observables] that result in gravity
disturbances and the second boundary-value problem of
potential theory.

Ground and airborne gravity data also differ sig-
nificantly in the geometric complexity of the corre-
sponding observation surfaces. The ground data
represent discrete samples of the continuous gravity
field that are collected at a very complex topographical
surface. Although this surface is usually considered
(under some mild idealization) to be a Lipschitz
boundary (Holota 2000), any boundary-value problem
with such a boundary has an extremely difficult solu-
tion. To avoid such a solution, the problem is usually
transformed into a free boundary-value problem with
the unknown geoid as a corresponding boundary sur-
face. In airborne gravimetry, the observation surface is
represented by known smooth flight trajectories which
can easily be approximated by a surface of a geocentric
ellipsoid of revolution or a geocentric sphere. A fixed
boundary-value problem can then be formulated and
solved.

Another difference between ground and airborne
gravity data lies in their observation errors. Although
ground observations are generally more accurate, their
quality is further deteriorated by the corresponding
height information. Since the ground data are also col-
lected over a long period of time, they usually face
problems with their consistency, including all instru-
mentation effects. In contrast, airborne gravimetry
provides data which result in consistent samples of
gravity covering certain geographically limited areas.
Recent investigations have shown that observation noise
has almost a constant power over the frequency spec-
trum currently considered in airborne gravimetry
(Bruton 2000). The observation noise of airborne gravity
is thus similar to white noise.

The most significant difference between ground and
airborne gravity observations is, however, in their fre-
quency content. In contrast to ground observations,
airborne data must be processed prior to their use for
geoid determination. In order to remove the high-fre-
quency observation noise caused mainly by the flight
dynamics and GPS data, the recorded signal is low-pass
filtered, which results in the removal of all high fre-
quencies from airborne gravity. This is a major draw-
back of airborne gravimetry which allows, however, for
the formulation of a new mathematical model that
avoids any numerically unstable solutions to inverse
integral formulae. The specifications of airborne gravity
data compared to ground observations are listed in

Table 1, which summarizes the main differences of these
two data sets and their consequences for geoid deter-
mination.

This manuscript is organized as follows: Theoretical
formulations of the mathematical model are given in
Sect. 2. A high-frequency synthetic geopotential model
is then used in Sect. 3 to verify the correctness of the
presented formulae and software, and for evaluation of
the noise propagation through the mathematical
model. The same data configuration, i.e. flight eleva-
tion and geographical extent, is used as in the case of
actually observed airborne data. Airborne data,
collected in the Alexandria test range near Ottawa,
Canada, using an inertially-referenced airborne gravi-
meter, are processed in Sect. 4. The quality of the
band-limited geoid models, based on a combination of
airborne/global data and airborne/ground data, is as-
sessed using the reference geoid computed from ground
data only. Obtained results are discussed in Sect. 5,
which also includes the conclusions of the presented
research.

2 Mathematical model

In airborne gravimetry, gravity observations are accom-
panied by precise GPS-based positioning (precise in
terms of the latest developments of kinematic GPS
positioning) which results in geodetic coordinates
ðh;/; kÞ of each observation point. In the following,
the spherical harmonic functions and the spherical
approximation of the geoid are used. The transforma-
tion of the geodetic coordinates (Jacobi’s ellipsoidal
coordinates) into the geocentric spherical coordinates
can easily be done for a selected reference sphere
(Heiskanen and Moritz 1967). Correspondingly, the
triad ðr;u; kÞ ¼ ðr;XÞ defines the position of the point of
interest in the geocentric spherical coordinate system
and the reference geocentric sphere is defined in terms of
radius R. It is assumed that flight trajectories can be
approximated by a geocentric sphere of constant radius
r ¼ Rþ D with D being the vertical separation of flight
level above the reference sphere. The topography can
be described by a two-dimensional (2-D)
function rðXÞ ¼ rgðXÞ þ HðXÞ � Rþ HðXÞ; rgðXÞ is the

Table 1. Properties of ground versus airborne gravity data

Specification Ground data Airborne data

Observed heights orthometric geodetic
Observation surface high level

of complexity
smooth

Boundary values gravity anomalies gravity
disturbances

Boundary-value
problem

first/third second

Boundary surface topography/geoid flight level
Observation noise varying (often

unknown)
approximately
white

Frequency content full spectrum band-limited
spectrum
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geocentric radius of the geoid and HðXÞ is the ortho-
metric height. Figure 1 shows the geometry of the
problem. Knowledge of the precise geodetic height h at
each observation point allows derivation of gravity
disturbances

dgðRþ D;XÞ ¼ gðRþ D;XÞ � cðRþ D;XÞ ð1Þ

where g stands for the magnitude of observed airborne
gravity and c for the magnitude of normal gravity
computed by a Somigliana–Pizzetti formula for a
selected international reference ellipsoid. Due to high-
frequency observation noise in the gravity signal,
airborne gravity disturbances must be processed by a
low-pass filter. This operation results in the low-
frequency gravity disturbances dg‘

dg‘ðRþ D;XÞ ¼ F ‘ dgðRþ D;XÞ½ 	 ð2Þ

In the following, ‘ is the maximum degree (cut-off
frequency of the filter) which can be resolved from
airborne gravimetry (currently, a maximum spatial
resolution of 10 km can be expected, corresponding to
degree ‘ � 2000 in terms of the spherical harmonic
expansion). A typical low-pass filter F , used in process-
ing of airborne gravity data, is described in Bruton
(2000). Reference gravity disturbances, generated from
the global geopotential model (GGM) up to degree
k � 1, are then subtracted from the low-frequency
gravity disturbances dg‘ obtained from Eq. (2). The
maximum degree L (greater than or equal to k � 1 for
k 
 l) of currently available geopotential models is 360.
Results are the band-limited gravity disturbances dgb at
flight level Rþ D

dgbðRþ D;XÞ ¼ dg‘ðRþ D;XÞ � GM

ðRþ DÞ2

�
Xk�1

n¼2

ðnþ 1Þ R
Rþ D

� �n

TnðXÞ ð3Þ

GM stands for the geocentric gravitational constant,
and Laplace’s coefficients Tn of the disturbing gravi-
ty potential T can be derived from the available
GGM up to n ¼ 360. The resulting band-limited
gravity disturbances dgb can be written in the spectral
form

dgbðRþ D;XÞ ¼ GM

ðRþ DÞ2
X‘

n¼k

ðnþ 1Þ R
Rþ D

� �n

TnðXÞ ð4Þ

with the band-limited spectrum between the frequency-
equivalent degrees k and ‘. Current maximum values are
361 for k (if the complete GGM is used) and approx-
imately 2000 for ‘.

The transformation of the band-limited gravity dis-
turbances dgb at flight level Rþ D (vertical gradient of
the band-limited disturbing gravity potential) into the
band-limited disturbing gravity potential T b at the geoid
R can be performed using boundary-value problems of
potential theory. This requires, however, that the
Earth’s gravity field is harmonic everywhere above the
geoid, i.e. the band-limited disturbing gravity potential
must be expandable into a convergent series of elemen-
tary harmonic functions, such as spherical harmonics.
Band-limited airborne gravity disturbances in Eq. (3),
which would correspond to such a harmonic field, can
be derived by applying an appropriate gravity reduction.
There are many possibilities for the derivation of the
harmonic gravity field. Generally, the direct topo-
graphical effect must be applied

dgh;bðRþ D;XÞ ¼ dgbðRþ D;XÞ þ dAbðRþ D;XÞ ð5Þ

where dAb is the band-limited direct effect on airborne
gravity. The direct effect accounts for the change of the
Earth’s gravity due to ‘harmonization’ of the external
Earth’s gravity field.

The evaluation of the band-limited direct effect on
airborne gravity dAb using the second Helmert conden-
sation (see e.g. Heck 1993) is briefly discussed in this
article. Considering mass-preserving condensation (the
mass of the topography equals the mass of the con-
densed topography), the band-limited direct topo-
graphical effect on airborne gravity reads (Novák et al.
2001)

AbðRþ D;XÞ ¼ �2p
G.
R

X‘

n¼k

nðnþ 1Þ
2nþ 1

R
Rþ D

� �nþ2

H2
n ðXÞ

� 2p
G.
R2

X‘

n¼k

nðnþ 1Þðnþ 3Þ
2nþ 1

� R
Rþ D

� �nþ2

H3
n ðXÞ þ O H4

n ðXÞ
R3

� �
ð6Þ

with G the universal gravitational constant and . the
constant mean topographical mass density. O stands for
the Landau symbol. The complex Laplace harmonics of
the squared topographical heights are defined as follows:

H2
n ðXÞ ¼

Xn
m¼�n

H2
n;mYn;mðXÞ

¼ 2nþ 1

4p

Z Z
H

H2ðX0ÞPnðcoswÞdX0 ð7Þ

and the complex Laplace harmonics of the cubed
topographical heights as follows:Fig. 1. Geometry of geoid determination from airborne gravity
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H3
n ðXÞ ¼

Xn
m¼�n

H3
n;mYn;mðXÞ

¼ 2nþ 1

4p

Z Z
H

H3ðX0ÞPnðcoswÞdX0 ð8Þ

In Eqs. (7) and (8), H stands for the full spatial angle.
The corresponding spherical harmonic functions Yn;m
read (Hobson 1931)

Yn;mðXÞ ¼ eimkPn;mðsinuÞ; for n � m ^ i ¼
ffiffiffiffiffiffiffi
�1

p
ð9Þ

with Pn;m being the associated trigonometric Legendre
functions of the first kind (Hobson 1931). The second
method of Helmert reduction of gravity is usually
applied due to the relatively small values of both the
direct and indirect effects. The impact of the unknown
density distribution . and erroneous topographical
heights H can be minimized in this way, especially over
mountainous areas. On the other hand, the gravity field
that is obtained by this method can be even rougher
than the free-air gravity field, which complicates some
numerical evaluations, such as the downward continu-
ation. Generally, less restrictive specifications (such as
the discretization step of topographical masses) are
required for correct evaluation of the direct effect on
airborne gravity than for evaluation of the correspond-
ing effect on ground gravity. For more details on this,
see Novák et al. (2001).

In the spherical approximation of the geoid by the
geocentric reference sphere, the transformation of the
reduced band-limited gravity disturbances dgh;b at flight
level into the band-limited disturbing potential T h;b on
the geoid, i.e. at rg � R, can be written as follows:

r2T h;bðr;XÞ ¼ 0 for r > R

dgh;bðr;XÞ ¼ �oT h;bðr;XÞ
or

����
r

for r ¼ Rþ D

T h;bðr;XÞ ¼ Oðr�k�1Þ for r ! 1 ð10Þ

The solution to the problem of Eqs. (10) exists and is
unique, but can be unstable. The original improperly
posed problem can be transformed to a properly posed
problem due to the band-limited character of the
airborne gravity data. Moreover, the airborne data are
collected on a smooth surface which can easily be
approximated by a sphere. Therefore, a direct solution
of the pseudo-boundary-value problem of Eqs. (10) for
the band-limited disturbing gravity potential T h;b can be
derived (Novák and Heck 2002). It results in the
following solution formula for the reduced band-limited
gravity disturbances dgh;b given at flight level Rþ D:

T h;bðR;XÞ¼RþD
4p

Z Z
H

dgh;bðRþD;X0ÞJ bðR;w;RþDÞdX0

ð11Þ

The band-limited integration kernel J b reads (Novák
and Heck 2002)

J bðR;w;Rþ DÞ ¼
X‘

n¼k

2nþ 1

nþ 1

Rþ D
R

� �nþ1

PnðcoswÞ

ð12Þ

The Legendre polynomials Pn can easily be generated by
a convenient recurrence relation of the form (Paul 1973)

PnðcoswÞ ¼ 2n� 1

n
coswPn�1ðcoswÞ

� n� 1

n
Pn�2ðcoswÞ; for n � 2 ð13Þ

with P0ðcoswÞ ¼ 1 and P1ðcoswÞ ¼ cosw. Applying a
simple quadrature rule, and considering the truncation
error resulting from spherical cap integration (the
full spatial angle H is replaced by the spherical cap of
radius wo), the discretized integral of Eq. (11) takes the
form

T h;bðR;XiÞ �
GM

2ðRþ DÞ

�
XL
n¼k

ðnþ 1Þ R
Rþ D

� �nþ1

QnðD;woÞTnðXiÞ

¼ Rþ D
4p

XK
j¼1

dgh;bðRþ D;XjÞ

� J bðR;wij;Rþ DÞDXj; for k < L ð14Þ

where DXj is the area of the trapezoidal cell corre-
sponding to the jth data point, K stands for the number
of points within the spherical cap of radius wo, and L is
the maximum degree of the GGM. If the full reference
field is removed from gravity data, the truncation errors
cannot be computed. The truncation coefficients Qn
related to the function J b are

QnðD;woÞ ¼
X‘

m¼k

2mþ 1

mþ 1

Rþ D
R

� �mþ1

Rn;mðwoÞ ð15Þ

The coefficients Rn;m

Rn;mðwoÞ ¼
Zp

wo

PnðcoswÞPmðcoswÞ sinw dw ð16Þ

can conveniently be computed by an iterative expression
[Paul 1973; Eq. (5)]. The matrix form of Eq. (14) can be
concisely written as

Th;bðRÞ ¼ Adgh;bðR þDÞ ð17Þ

where the unknown vector Th;bðRÞ is reduced by the
contribution of the corresponding remote-zone data
given by the spherical harmonic series on the left-hand
side of Eq. (14). Since no inverse is involved in Eq. (17),
there are no instabilities in the numerical evaluation of
this relationship. The off-diagonal entries of the matrix
operator A within the integration cap of radius wo can
be defined as
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Aij ¼
Rþ D
4p

J bðR;wij;Rþ DÞDXj; wij < wo ð18Þ

The corresponding diagonal entries are then given as

Aii ¼
Rþ D

2

X‘

n¼k

2nþ 1

nþ 1

Rþ D
R

� �nþ1

RnðwoÞ

� Rþ D
4p

Xk
j¼1;j 6¼i

J bðR;wij;Rþ DÞDXj ð19Þ

where k stands for the number of points within the
spherical cap. The coefficients Rn read

RnðwoÞ ¼
Z p

wo

PnðcoswÞ sinw dw ð20Þ

which can conveniently be computed by the same
iterative expression as the coefficients Rn;m; see Eq. (16)
for m ¼ 0. The radius wo of the spherical cap in the
integral formula of Eq. (14) should correspond to
the required bandwidth of the geoid (the larger the
cap, the longer the wavelengths of the geoid which can
be determined) computed from the local gravity data. A
value of wo � 6� is usually used due to fast attenuation
of the integration function J b.

The band-limited geoid is obtained by Bruns’s for-
mula (Heiskanen and Moritz 1967)

NbðXÞ ¼ T h;bðR;XÞ
cðuÞ þ dV bðR;XÞ

cðuÞ ð21Þ

where c is the magnitude of normal gravity at the
ellipsoid computed for latitude u. The second term on
the right-hand side of Eq. (21) is the indirect
topographical effect on the geoid. Considering again
mass-preserving condensation, the band-limited residual
topographical potential dV b at the geoid can be
computed as follows (Novák et al. 2001):

dV bðR;XÞ¼�2pG.
X‘

n¼k

nþ1

2nþ1
H2

n ðXÞ

þ2p
G.
3R

X‘

n¼k

ðnþ1Þðn�2Þ
2nþ1

H3
n ðXÞþO H4

n ðXÞ
R2

� �

ð22Þ

Finally, the low-frequency geoid is obtained by restoring
the reference gravity field computed by the spherical
harmonic expansion from the GGM

N ‘ðXÞ ¼ NbðXÞ þ R
Xk�1

n¼2

TnðXÞ ð23Þ

where an approximation GM=R2¼: c is used. In the
solution N ‘, all frequencies above the cut-off value ‘ are
obviously missing. The contribution of this part of the
spectrum, for ‘ � 2000, is rather small and currently
within the observation noise propagated through the
model.

The entire scheme for the derivation of the band-
limited gravimetric geoid from airborne gravity outlined
in this section is shown Fig. 2. The entire approach is
based on the assumptions that the reduced gravity field
as close to the actual harmonic field above the geoid as
possible can be derived and that the possible misfit of
these two fields would not significantly affect practical
geoid computations. The solution is derived in terms of
the Green integral formula with the integration kernel
reflecting the shape of the boundary surface, i.e. the
geocentric sphere of radius Rþ D. The values of the sub-
integral function also refer to flight level Rþ D. Another
problem arises from the fact that the Green integral
formula should be evaluated over the full spatial angle
H, which requires global knowledge of the gravity data.
Although truncation errors can be computed, small er-
rors can still be expected due to imperfections (especially
in high frequencies) of currently available GGMs.

3 Numerical tests using synthetic gravity data

The high-frequency synthetic geopotential model (SGM)
was used to verify numerically the mathematical model
described in Sect. 2 and to test the numerical accuracy of
developed programs; for details see Novák et al. (2001).
Its spherical harmonic coefficients of degrees and orders
361 to 2160 were created as a smooth extension of
EGM96 (Lemoine et al. 1998) with a comparable
magnitude to the GPM98b (Wenzel 1998). This syn-
thetic model was used for the computation of the band-
limited gravity disturbances dgb at flight level Rþ D and
the band-limited geoid Nb for degrees 181–2160, which
correspond to spatial resolutions of approximately 10–
100 km full wavelength. The same data configuration
and the same mean flight height D as for the actual
airborne gravity data observed at the Alexandria test
range (processed in the next section) were utilized in this
test, see Fig. 3. This corresponded approximately to
3000 discrete values of the band-limited gravity
disturbances referred to the average flight height of

Fig. 2. Computation scheme of geoid determination from airborne
gravity
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D ¼ 604 m. A random noise of 1.5 mGal was introduced
into these gravity disturbances. Its characteristic values
can be found in the first row of Table 2.

Synthetic degree 181–2160 airborne gravity distur-
bances dgb, generated along actual flight lines (see Fig.
3), were used for prediction of data on a regular geo-
graphical grid with a homogeneous spatial resolution of
300 arcsec. This spatial resolution corresponds to the
horizontal spacing between individual flight lines of
approximately 10 km. Least-squares collocation (LSC)
was used for the prediction of gravity data on the reg-
ular grid (Moritz 1980). The data area was expanded for
additional gravity disturbances that were computed only
from EGM96, i.e. for k ¼ 181 and ‘ ¼ L ¼ 360. These
data were utilized to minimize edge effects in the dis-
cretized integral formula [Eq. (14)] deployed in the
computations. The grid of the synthetic degree 181–2160
airborne gravity disturbances was used to compute
values of the degree 181–2160 disturbing gravity po-
tential T b at level R by the discretized integral formula in
Eq. (14). The degree 181–2160 geoid Nb was finally de-
termined using the spherical Bruns formula. This solu-
tion was tested against values generated directly by the
spherical harmonic expansion. The computational
scheme of the entire test is shown in Fig. 4. The statistics
of the obtained differences are compiled in Table 2; row
2 contains statistics of the gravity errors after the least-
squares (LS) prediction, and the geoid errors eN after the
numerical integration are given in row 3. The geoid
errors eN are also plotted in Fig. 5. These differences,
which theoretically should be equal to zero everywhere,
can be used for accuracy evaluation of the mathematical
model represented by the combined use of LSC and the
discretized integral formula in Eq. (14), i.e. model and
numerical errors.

Another test was performed in order to simulate
computations used for actually observed ground and
airborne gravity data deployed in the next section. Its
main purpose was to compare the accuracy of the
mathematical models and their computer realization
used for processing of airborne gravity data as de-
scribed in this manuscript, and for the processing of
ground gravity data based on the inverse solution to
the discretized Abel–Poisson and Stokes integrals. In-
put data for the airborne model were represented by
synthetic degree 181–2160 gravity disturbances and for
the ground model by synthetic degree 181–2160 gravity
anomalies. The tests were performed for both noise-
free data and erroneous data, which were obtained by
adding 1.5-mGal random noise to both ground and
airborne data sets. It should be noted that this noise
represents quite well the noise in actual airborne data,
but its applicability for ground data could easily be
challenged. The results of this test are shown in Table
3. Values in this table represent the statistics of the
differences obtained after relating the results from the
ground and airborne models to the reference solution,
which is represented by the degree 181–2160 geoid
computed directly from the SGM by the series ex-
pansion. The results for the ground and airborne
models were then also compared with respect to each
other.

The values in Table 3 can be used to draw the fol-
lowing conclusions. For the noise-free data, the expected
accuracy of both models was approximately at the level
of 2–3 cm with a comparable bias of 2 cm. Both the
ground and airborne noise-free data yielded almost
identical geoidal heights; the standard deviation of the
fit was equal to 0.7 cm. The situation for the erroneous
data did not change significantly. The fit of both solu-

Fig. 3. Alexandria test range and flight-line
configuration
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tions with respect to the reference geoid was still at the
level of 2–3 cm with the same bias of 2 cm. The fit of the
geoid based on the ground and airborne models was in
this case two times worse than that for the noise-free
data but it still remained at a reasonable 1.5 cm. We can
conclude that the numerical accuracy obtained using the
ground and airborne model was at the centimetre level
for both the errorless and noisy data, assuming the
resolution, elevation and noise level of gravity data used
in these tests. Both models provided almost identical
solutions of the geoid, assuming again the data charac-
teristics used in the tests.

The tests described above provided information on
the expected accuracy of the band-limited geoid com-
puted by the approach adopted in the computation
scheme. These tests could not, however, give any in-
formation on the expected accuracy of additional
computational steps, especially of those related to the
gravity/co-geoid reduction. A complete synthetic grav-
ity field, currently under construction (IAG Special
Study Group 3.177), would have to be used in this case
to evaluate the accuracy of complete geoid determina-
tion. Due to the small values of topographical effects in
the test area, these steps did not affect the solutions
significantly.

Table 2. Random noise in synthetic gravity and its propagation
through the model

Noise Minimum Maximum Mean Sigma Unit

Initial (white) )4.163 4.608 0.070 1.420 mGal
After prediction )5.235 5.376 )0.042 1.410 mGal
After integration )0.049 0.047 )0.012 0.021 m

Fig. 4. Scheme of the test procedure using the synthetic data

Fig. 5. Propagation of random
errors through the model (m)

Table 3. Accuracy of geoid
models based on airborne and
ground synthetic data (m)

Solution Noise Minimum Maximum Mean Sigma RMS

Airborne–reference no )0.069 0.058 0.022 0.025 0.033
yes )0.068 0.069 0.020 0.029 0.035

Ground–reference no )0.045 0.053 0.021 0.022 0.031
yes )0.056 0.064 0.022 0.024 0.032

Airborne–ground no )0.016 0.024 0.000 0.007 0.007
yes )0.043 0.044 0.002 0.015 0.015
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4 Numerical evaluations using actual airborne data

The entire computational scheme as described in Sect. 2
was applied in processing of actual airborne data
observed by the Canadian geophysical company Sander
Geophysics Ltd. at the Alexandria test range. Figure 3
shows the geometry of flight lines used for collection of
gravity data using the inertially referenced (Schuler-
tuned system) airborne gravimeter AIRGrav during an
observation campaign in April 2000. Additional data
were then observed in May 2001. The test observations,
reported in Argyle et al. (2000), indicate the relatively
high accuracy of the gravimeter. Data repeatability of
better than 1 mGal for spatial resolutions up to 5 km
can be obtained. Good temperature control of gravity
sensors and modelling is responsible for long-period
stability of 1 mGal or better.

The Alexandria test range, known for significant
changes of gravity induced by density variations rather
than rough topography, is very suitable for testing the
accuracy of geoid determination from airborne gravity.
The advantage of this test range consists of small (al-
most negligible) topographical effects on gravity (direct
effect) and the co-geoid (indirect effect). Thus these ef-
fects had only a little impact on the main objective of the
test: use of the actual airborne gravity observations for
geoid determination. The topography of the test range
and its surrounding area, based on the 30� 30 arcsec
digital elevation model, is shown in Fig. 6, which clearly
shows the flat character of the topography in this region.
The gravity field in terms of the ground gravity anom-
alies is shown in Fig. 7. Statistics of these two parame-
ters are given in Table 4.

The band-limited disturbing gravity field, derived
from observed airborne gravity, was predicted first on
the homogeneous 300� 300 arcsec geographical grid.
Band-limited airborne gravity disturbances dgb were

next reduced using the Helmert reduction procedure and
the spherical harmonic model GTM3A of maximum
degree 1800 (Wenzel 1999). Values of the direct topo-
graphical effect on gravity at flight level are shown in
Fig. 8. The magnitude of the direct topographical effect
remained within the noise level of the airborne gravity
data (1.5 mGal) and its effect on the final geoid was thus
very small in this case. Values of the indirect topo-
graphical effect on the co-geoid are plotted in Fig. 9.
Elementary statistics of these two effects can also be
found in Table 4. As pointed out already, the small
magnitude of both topographical effects is a significant
advantage of the Alexandria test range. Over areas with
more complex topography, the topographical effects
play a significant role in geoid determination. In extreme
cases, such as the Rocky Mountains, the topographical
effects can easily reach values that are comparable to the
magnitude of the disturbing gravity. The topographical
effects must then be evaluated very carefully using the
best-available height and density data. Despite recent
significant advances in the modelling of the topograph-
ical effects, these values remain one of the limiting fac-
tors for resolving the geoid with centimetre accuracy.
Due to the almost constant height associated with air-
borne gravity data, the atmospheric reduction of gravity
can easily be achieved by adding the constant direct
atmospheric effect of 0.81 mGal to all values of airborne
gravity. The indirect atmospheric effect on the geoid is
negligibly small (6 mm) for the accuracy level of the
current airborne data.

Due to the limited geographical extent of the com-
putation area (approximately 1� � 1�), only the solution
of band-limited gravimetric geoids could be attempted.
In terms of the spherical harmonic expansion, the term
‘band limited’ stands for degrees 181 � n � 2000. Any
longer wavelengths, i.e. lower frequencies, could not be
determined from this area, and shorter wavelengths, i.e.

Fig. 6. Topography of the
Alexandria test range (m)
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higher frequencies, were missing due to the filtering of the
airborne data and the averaging of ground data. The first
geoid model was derived combining only the band-
limited airborne and global gravity data. This
combined band-limited disturbing gravity field at flight
level D ¼ 604 metres is shown in Fig. 10. Airborne
gravity data are clearly distinguishable from global
gravity, mainly due to their different frequency contents:
airborne data contain spherical harmonic degrees of
approximately 181 � n � 2000 while the global gravity
data contain only 181 � n � 360. The second geoid
model was then derived combining the band-limited
ground and airborne gravity data. These data sets,
combined at the geoid, are shown in Fig. 11. Airborne
data can hardly be distinguished in this figure, indicating
the reasonable consistency of these two gravity data sets.
The frequency content of ground and airborne data was
in this case approximately the same, i.e. 181 � n � 2000,
since the ground data represented mean values computed
by averaging point gravity observations within 300� 300
arcsec geographical cells. In both cases, the data
combination was achieved by simple merging of the two
data sets.

In order to evaluate the accuracy of both geoid
models, a reference geoid was computed using only the
ground gravity anomalies obtained from the Canadian
gravimetric database; see Fig. 12. A classical approach,
based on the convolution of the inverse solution to the
discretized Abel–Poisson integral with the Stokes func-
tion at the reference sphere, was deployed. Due to a
favourable ratio of the data spacing to their elevation,
no numerical instabilities were observed during the
downward-continuation procedure. An iterative
approach was used for evaluation of the inverse
solution. Ground gravity anomalies were reduced prior
the numerical integrations for the direct effects, and the
obtained co-geoid was corrected for the corresponding

indirect effects. Since this approach is generally well
known, no details are given here of the solution. This
reference solution was added to the global geoid com-
puted from EGM96 and compared to the latest official
Canadian geoid model GSD95 (Véronneau 1995). The
agreement of these two geoids was about 1.2 cm (stan-
dard deviation of the fit) after removing a constant bias.
The Geodetic Survey Division (GSD) model has a very
good agreement to GPS/levelling data in the area and a
centimetre-level fit can generally be expected. It was thus
concluded that the derived reference solution represents
the medium and short wavelength of the geoid with
centimetre-level accuracy. Therefore it can successfully
be used as a reference for the corresponding wavelengths
of the geoid computed from airborne data.

The first geoid model, based on combination of air-
borne and global gravity data, was subsequently derived
using the approach outlined in Sect. 2. The band-limited
gravity disturbances at flight level were first reduced by
the corresponding direct topographical effect, see Eq.
(5). The reduced band-limited gravity disturbances dh;b

were transformed from flight level Rþ D via the dis-
cretized integral formula in Eq. (14) into band-limited
disturbing gravity potential T h;b at the geoid, approxi-
mated by the sphere of radius R. The band-limited
co-geoid Nh;b was then computed using the Bruns

Fig. 7. Anomalous gravity field
of the Alexandria test range
(mGal)

Table 4. Statistics of topographical heights, gravity anomalies and
topographical effects in Alexandria test range

Parameter Minimum Maximum Mean Sigma Unit

Topographical
height

24.8 461.3 137.4 95.8 m

Ground
gravity anomaly

)31.45 26.28 )8.56 12.51 mGal

Direct effect )0.552 0.773 0.074 0.144 mGal
Indirect effect )0.022 0.000 )0.003 0.004 m
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formula and corrected for the corresponding indirect
topographical effect in Eq. (21). The second geoid
model, based on a combination of airborne and ground
data, was derived using a slightly modified approach.
The band-limited airborne gravity disturbances were
first downward continued from flight level to the refer-
ence sphere using a stable solution described in Novák
and Heck (2002)

dgh;bðR;XÞ¼ 1

4p

Z Z
H

dgh;bðRþD;X0Þ�KbðR;w;RþDÞdX0

ð24Þ

with the band-limited integration kernel

KbðR;w;Rþ DÞ ¼
X‘

n¼k

ð2nþ 1Þ Rþ D
R

� �nþ2

PnðcoswÞ

ð25Þ

The ground band-limited gravity anomalies were also
downward continued to the reference sphere using the
inverse solution to the discretized Abel–Poisson integral
equation. Airborne gravity disturbances were trans-
formed into anomalies and combined with the ground
gravity anomalies. The band-limited co-geoid was

Fig. 8. Direct topographical ef-
fect on airborne gravity (mGal)

Fig. 9. Indirect topographical
effect on the co-geoid (m)
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derived by applying the Bruns formula to the results of
the Stokes integration.

The residual errors of the first geoid model, based on
the combination of airborne and global gravity data, are
shown in Fig. 13. The residual errors of the second geoid
model, based on the combination of airborne and ground
gravity data, are shown in Fig. 14. In both cases the
values of the residual errors were obtained by referring
these two solutions to the reference geoid. Statistical
values of the residual errors are shown in Table 5. The
solution based on the combination of the band-limited

airborne and global gravity data has a slightly worse fit
than the solution based on the band-limited airborne and
ground data. Both solutions provided a very good
agreement to the reference solution, which confirms that
the airborne data can successfully be used for accurate
geoid determination. The values in Table 5 correspond to
a relative accuracy of approximately 20% (5 vs 25 cm).
These values represent, however, the fit of two solutions
based on different noisy gravity data sets. From this
perspective, and from the perspective of accuracies ob-
tained for the synthetic data in Table 4, these results are

Fig. 10. Combined airborne and
global gravity field for
181 � n � 360–2000 (mGal)

Fig. 11. Combined airborne
and ground gravity field for
181 � n � 2000 (mGal)
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very promising. It should be emphasized that no addi-
tional corrections, such as a bias and/or linear trend re-
moval, were applied, which is common practice in many
geoid computations. The accuracy of the total geoid
would further be affected by the accuracy of the degree
2–180 geoid that can be computed from the GGM with a
relative accuracy of approximately 1% in the test area.
For the degree 2–180 geoid, this error would reach about
35 cm. It is expected that this accuracy will be signifi-
cantly improved by the dedicated satellite missions, at
least for the spherical harmonic degrees n � 300.

5 Conclusions

The scheme for geoid determination from airborne data
(see Fig. 1) consists of the following operations:

� low-pass filtering of observed gravity disturbances to
remove high-frequency observation noise;

� removal of the reference gravity from the low-passed
gravity disturbances using a GGM;

� reduction of band-limited gravity disturbances using
the corresponding direct effect on gravity;

� prediction of reduced band-limited gravity distur-
bances on a regular geographical grid;

� transformation of reduced band-limited gravity dis-
turbances into the disturbing potential;

� reduction of the band-limited disturbing potential
using the corresponding indirect effect;

� transformation of the disturbing gravity potential into
the band-limited geoid;

� addition of the reference geoid to the band-limited
geoid.

This computation scheme for geoid determination
was tested using both band-limited synthetic and actu-
ally observed (using an inertially referenced airborne
gravimeter) airborne gravity data over the Alexandria
test range near Ottawa, Canada. Results obtained for
the synthetic airborne gravity data provided information
on the maximum accuracy of the geoid model achievable
with the accuracy and typical geographical coverage of
currently available airborne gravity data. This test in-
dicated that the numerical and model accuracy of the
approach is at the centimetre level, neglecting all
possible errors originating from an incomplete and/or
inaccurate gravity/co-geoid reduction. The actual accu-
racy of the current geoid models, especially over
mountainous areas, however, would be at least one
order of magnitude worse.

Two band-limited geoid models were computed
combining the actual airborne gravity data with either
global or ground gravity data. Both geoid models were
compared with the reference geoid computed only from
the ground gravity data. The accuracy of this reference
model, neglecting any low-frequency bias, is expected to
be at the centimetre level. The first geoid model, based
on combination of the band-limited airborne and global
gravity data, had a standard deviation of 5.5 cm. The
second geoid model, based on combination of the band-
limited airborne and ground gravity data, had a stan-
dard deviation of 4.7 cm. Values of the standard devi-
ations were computed from the residual errors obtained
by comparison of both models to the reference geoid; see
Figs. 13, 14 and Table 5. Both accuracies refer only to
the band-limited part of the geoid spectrum, neglecting
the low-frequency bias in the solutions. This is justifiable

Fig. 12. Reference band-limited geoid computed from ground gravity
(m)

Fig. 13. Residual errors of the band-limited geoid based on airborne
and global gravity (m)
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with respect to the extent of the airborne gravity data
used for geoid determination.

The obtained results proved the applicability of air-
borne gravity data for determination of the medium- to
high-frequency components of the gravimetric geoid.
Both applications can successfully be used for geoid de-
termination with relatively high accuracy, assuming that
the low-frequency geoid can be accurately computed from
the GGM. The knowledge of the reference gravity field
should improve significantly in the near future due to the
forthcoming satellite missions dedicated to the mapping
of the global gravity field. A combination of the satellite
and airborne gravity data could then be used for an ef-
fective geoid mapping over all wavelengths.
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