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Abstract. The dynamic figure of the Earth, character-
ized by the principal axes and principal moments of
inertia, is estimated from satellite-derived gravitational
harmonic coefficients of second degree in recent global
Earth gravity models and from the dynamic ellipticity
resulting from the precession constant observed
through very-long-baseline interferometry (VLBI).
Closed, exact formulae for the determination of
these parameters of the Earth’s tensor of inertia are
developed based on the exact solution of the eigen-
value–eigenvector problem, including a rigorous error
propagation. These formulae are applied to determine
(a) static components and accuracy of the Earth’s
tensor of inertia at epoch and (b) the variation with
time of the Earth’s tensor of inertia and its accuracy.
The best-fitting principal moments of inertia and
second-degree harmonic coefficients in the principal-
axes system are found from an adjustment involving
four global gravity field models and six different values
for the dynamic ellipticity. The evolution with time of
the dynamic figure of the Earth is determined from the
mean pole path and the observed secular rate of change
in the second-degree zonal coefficient. It is found that
differences in the principal moments of inertia change
significantly over the time interval from 1962 to 2000,
whereas changes in the absolute values cannot be
reliably resolved due to the uncertainty in the dynamic
ellipticity.
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1 Introduction

The investigation of temporal variations in the Earth’s
gravitational potential has attracted increased attention
with the launch of the CHAMP satellite on 15 July 2000.
With CHAMP, it will be possible to derive a time series
of the long-wavelength gravitational coefficients with a
step size of one to two months. The consistency of the
reference frame, and the proper modelling of the time
evolution within this frame underlying the sequence of
the gravity field solution, is of great importance for the
separation and interpretation of geophysically relevant
temporal gravity field variations. Therefore, this study
aims to derive the dynamic figure of the Earth, the
orientation of the principal axes and its evolution with
time from geodetic parameters represented by the
second-degree coefficients of the most recent global
gravity field models, and polar motion data, and the
astronomic dynamic ellipticity HD.

Based upon satellite observations, the latest gravity
field models contain precise values of the five harmonic
coefficients of degree 2, �CC2m and �SS2m, including temporal
variations. In addition, very-long-baseline interferome-
try (VLBI) observations have led to essential improve-
ments of precession–nutation theories and the
determination of the dynamic ellipticity HD. The com-
ponents of the Earth’s inertial tensor are derived from
these six parameters, and the �CC21ðtÞ, �SS21ðtÞ coefficients
define the path of the position of the polar figure axis �CC,
supposed to coincide with the mean pole axis. Therefore,
these coefficients represent a significant part of the time
variations in a dynamic reference frame. Thus, the de-
termination of the time-dependent components of the
inertial tensor and other associated parameters from
gravity field and astronomical parameters has to be
consistent with the observed polar motion data.

This study focuses on (a) the estimation of the
principal moments and products of inertia from anCorrespondence to: P. Schwintzer

Journal of Geodesy (2003) 76: 495–509
DOI 10.1007/s00190-002-0280-7



adjustment of various sets of coefficients �CC2m, �SS2m and
HD at a given epoch of time, and (b) the modelling of the
secular and long-periodic constituents in the �CC21, �SS21

coefficients to provide the time dependence in the com-
ponents of the Earth’s inertial tensor in view of a tem-
porally evolving reference frame. The theoretical
background is described in Sects. 2 to 6, and the for-
mulae are worked out to be applied in Sects. 7 and 8.

2 Transformation of second-degree harmonic coefficients
from initial to principal-axes coordinate system
(eigenvalue problem)

First, some closed non-linear expressions for the
transformation of the fully normalized gravitational
harmonic coefficients ( �CC2m; �SS2m) of second degree,
defined in an adopted Earth-fixed geocentric Cartesian
coordinate system (X ; Y ; Z), into the coordinate system
of the Earth’s principal axes of inertia ( �AA; �BB; �CC) are
given. The potential V2 of second degree (or potential
of the central gravitational quadrupole) may be written
in the form

V2ðPÞ ¼
ffiffiffiffiffi
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The matrices H and ~HH are defined in the geocentric
Cartesian coordinate system (X ; Y ; Z) and in the system
of principal axes of inertia ( �AA; �BB; �CC), respectively; the
vectors rT and ~rrT contain the Cartesian coordinates of
the current point P in these systems. GM is the product
of the gravitational constant G and the Earth’s mass
M ; a is the semi-major axis of the ellipsoid of
revolution; r is the distance from the origin of a
coordinate system to the current point P ; ( �CC2m; �SS2m)
and ( �AA20; �AA22) are fully normalized harmonic gravita-
tional coefficients in the system (X ; Y ; Z) and in the
Earth’s principal axes of inertia system ( �AA; �BB; �CC),
respectively.

The transformation of the harmonic coefficients re-
quires a transformation of the matrix H [Eq. (2)] into the
diagonal form ~HH [Eq. (3)]. This corresponds to a solu-
tion of the eigenvalue problem and leads in the case of
the quadratic form rTHr to the characteristic equation
for the eigenvalues Ki

K3 þ I2K � I3 ¼ 0 ½I1 ¼ TraceðHÞ ¼ 0� ð4Þ

The solution of Eq. (4) may be written in the following
non-linear form:
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where the auxiliary angle ~uu is expressed by means of the
invariants I2 ¼ �k2 and I3
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with
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Here, the second-degree variance k2 and I3 represent the
invariant characteristics of the Earth’s gravity field,
which are independent of linear transformations of the
coordinate system (X ; Y ; Z). The parameters ~kk1, ~kk2 and
~kk3 are eigenvalues of the so-called normalized quadratic
form of Eq. (1), which admits the closed solution
[Eq. (5)] of the eigenvalue problem (Marchenko and
Abrikosov 2001).

Thus, if harmonic coefficients ( �CC2m; �SS2m) are given,
Eqs. (5)–(8) provide the computation of the harmonic
coefficients ( �AA20; �AA22) in the principal-axes coordinate
system via the simple expressions

�AA20 ¼
ffiffiffi
3

p
K3

2
; �AA22 ¼

K1 � K2

2
ð9Þ

since the diagonal elements of Eq. (3) represent the
eigenvalues K1, K2 and K3.

Note now that the matrix ~HH can be used in the fol-
lowing way:

B þ C � 2A 0 0

0 A þ C � 2B 0

0 0 A þ B � 2C

0
B@

1
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where A;B and C are respectively the first and second
equatorial and polar Earth’s principal moments of
inertia normalized by the factor 1=Ma2. As a result, if
the eigenvalues Ki are determined, the relationships for
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differences between these normalized moments of inertia
follow after some easy algebra

B � A ¼
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3
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These differences may also be represented by means of
the harmonic coefficients ( �AA20; �AA22) in the system of
principal axes [Eq. (9)]
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Similarly, these differences can be expressed through
parameters of the Earth’s gravitational quadrupole
(Marchenko 1998)
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where M2 is the moment of the gravitational quadrupole
and ~cc is the angle between two quadrupole axes, located
in the plane of the axes �AA and �CC of inertia.

3 Error propagation for the eigenvalue problem

In order to prepare for the error propagation from the
starting values to the fundamental parameters of the
Earth, shown in Sect. 4, the variance–covariance matrix
of the eigenvalues Ki [Eq. (5)] is derived here. The
vector g containing the second-degree harmonic coef-
ficients

g ¼ �CC20; �CC21; �SS21; �CC22; �SS22½ �T ð15Þ

(hereafter the symbol T denotes transposition) and the
(5 � 5) variance–covariance matrix Cgg of the coeffi-
cients are given as initial information. Starting from
Eqs. (5)–(8), the necessary matrices of partial derivatives
and subsequently the variance–covariance matrix of the
eigenvalues Ki are obtained by applying the error
propagation rule. Thus, defining the vectors

K ¼ K1 Jð Þ;K2 Jð Þ;K3 Jð Þ½ �T; J ¼ k2 gð Þ; I3 gð Þ½ �T ð16Þ

we require the (3 � 5) matrix
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of partial derivatives of K1, K2 and K3 with respect to
the harmonic coefficients ( �CC2m; �SS2m). Differentiating

Eq. (5), we obtain for the first component of the right-
hand side in Eq. (17) the expression
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The second component of the right-hand side of Eq. (17)
may be expressed as
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where h1, h2 and h3 are three column vectors of the
initial fundamental matrix H
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The matrices H1, H2 and H3 represent the skew-
symmetric matrices
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constructed for every vector (h1; h2; h3), respectively. The
(3 � 5) matrices A1;A2 and A3 are found from the
following derivatives:

A1 ¼
oh1 gð Þ
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Hence Eq. (20) allows us to apply the error propagation
rule for the computation of the variance–covariance
matrix CJJ of the invariants k2 and I3 from the variance–
covariance matrix Cgg

CJJ ¼
oJ

og
Cgg

oJ

og

 !T

ð28Þ

Considering Eq. (18), the computation of the variance–
covariance matrix CKK of the eigenvalues K1;K2 and K3

follows from

CKK ¼ oK
og
Cgg
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4 Some fundamental parameters of the Earth
as a planet and estimation of their uncertainty

Defining the vector a consisting of the harmonic
coefficients �AA20 and �AA22 in the principal-axes system

a ¼ �AA20; �AA22½ �T ð30Þ

and taking into account Eq. (9), we find the (2 � 3)
matrix of partial derivatives with respect to the eigen-
values K1;K2 and K3
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so that the variance–covariance matrix Caa becomes
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CKK
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with CKK according to Eq. (29).
In order to create the covariance matrix CDD of the

differences of normalized principal moments of inertia
[Eq. (12)] and the covariance matrix CQQ of the quad-
rupole parameters �MM2 and cos ~cc [Eqs. (13), (14)], two
new vectors are defined as

D ¼ C � A;C � B;B � A½ �T; Q ¼ �MM2; cos ~cc½ �T ð33Þ

Through the relation of these vectors to the harmonic
coefficients in the vector a we obtain, after straightfor-
ward computations, the corresponding matrices of
partial derivatives
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and the variance–covariance matrices CDD and CQQ

CDD ¼ oD
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CQQ ¼ oQ
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Thus, the determination of the harmonic coefficients �AA20

and �AA22 and their variance–covariance matrix Caa

provides a simple method of estimating the values and
uncertainties of the fundamental parameters of Eq. (33)
and of the following characteristic planetary quantities.
The estimation of the normalized principal moments of
inertia can be obtained by involving the dynamic
ellipticity HD
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Substitution of Eq. (37) into Eq. (12) gives
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The vector Im of the Earth’s normalized principal
moments of inertia

Im ¼ C; B; A½ �T C > B > Að Þ ð39Þ

follows from the three parameters in vector
b ¼ �AA20; �AA22; HD

" #T
. In order to create the vari-

ance–covariance matrix of Im, the partial derivatives are
derived
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The variance–covariance matrix CII of the normalized
moments of inertia then follows from

CII ¼
oIm

ob
Cbb

oIm

ob

 !T

ð41Þ

Introducing the vector F containing the functions a; b
and c of the principal moments of inertia used in the
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integration of the Euler dynamical equations (see, for
example, Bretagnon et al. 1998; Hartmann et al. 1999)

F ¼ a ¼ C�B
A ; b ¼ C�A

B ; c ¼ B�A
C

" #T ð42Þ

and deriving their (3 � 3) matrix of partial derivatives
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we obtain the variance–covariance matrix CFF
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The variance–covariance matrix Cff of the vector f
representing the inverse geometrical polar (1/f ) and
equatorial (1/fe) flattening

fT ¼ 1=f ; 1=fe½ � ð45Þ

can be derived in a similar manner. The relation between
the �AA20 coefficient and the polar flattening 1/f reads, in
an expansion up to the second order (Heiskanen and
Moritz 1967, p. 78) with q ¼ x2a3=GM

�
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p
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2f
3

� q
3
� f 2

3
þ 2fq

21
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Here, instead of the coefficient �CC20, the coefficient �AA20

defined in the principal-axes system is used; x is the
angular velocity of the Earth’s rotation. The root of the
quadratic equation [Eq. (46)] is obtained as follows:

f ¼ 1 þ q � u
7

; u ¼
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1=f ¼ 7
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ð48Þ

Like the polar flattening is independent of the coefficient
�AA22, the inverse equatorial flattening 1/fe is independent
of the harmonic coefficient �AA20 (Marchenko 1979)

1=fe ¼
7 � 8q

7
ffiffiffiffiffi
15

p
�AA22

ð49Þ

Equations (48) and (49) are used to build up the (2 � 3)
matrix of derivatives of the components of the vector f
with respect to the components of the vector

c ¼ �AA20; �AA22; q
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that allows the computation of the variance–covariance
matrix Cff

Cff ¼
of

oc
Ccc

of

oc

 !T

ð51Þ

5 Orientation of the Earth’s principal axes
in the initial coordinate system (eigenvector problem)

Any eigenvector Xj is found as the non-trivial solution
of the following (in our case 3 � 3) homogeneous
system of linear algebraic equations:

H� KjI
� �

	 X
¼ h1 � K1e1; h2 � K2e2; h3 � K3e3ð Þ 	 X ¼ 0 ð52Þ

where h1, h2 and h3 are the column vectors [Eq. (21)] of
the initial matrix H in Eq. (2); e1; e2 and e3 are the unit
vectors of the identity matrix I for the adopted
coordinate axes. The eigenvectors Xj may be efficiently
computed from Marchenko and Abrikosov (2001)
through the vectors Zj ( j ¼ 1; 2; 3), which coincide with
the eigenvectors but are unnormalized

Zj ¼ Pþ KjSþ K2
jE ð53Þ

with [Hi from Eqs. (22)–(24)]

P ¼ HT
2 	 h1 þHT

3 	 h2 þHT
1 	 h3

¼ h1 � h2 þ h2 � h3 þ h3 � h1 ð54Þ

S ¼ h1 þ h2 þ h3 ð55Þ

and

E ¼ e1 þ e2 þ e3 ¼ 1 1 1½ �T ð56Þ

The three eigenvectors Xj resulting from the normal-
ization of Zj are nothing other than the unit vectors
pointing in the same directions as the principal axes �AA,
�BB and �CC of inertia, expressed in the adopted
coordinate system. For the following error propaga-
tion it is sufficient to use the vectors Z1, Z2 and Z3,
which allow simpler expressions for the required
partial derivatives than the normalized eigenvectors
Xj.

6 Error propagation for the eigenvector problem

The elements of the vectors Zj in Eq. (53) are a non-
linear function of the five harmonic coefficients in the
vector g of Eq. (15)

Zj gð Þ ¼ P gð Þ þ Kj gð Þ 	 S gð Þ þ K2
j gð Þ 	 E ð57Þ

Carrying out the differentiation of Eq. (57) with respect
to the elements of the vector g, we obtain the necessary
expression for the (3 � 5) matrices

oZj

og
¼ oP

og
þ Kj

oS

og
þ Sþ 2KjE
� � oKj

og
; ð j ¼ 1; 2; 3Þ

ð58Þ

of partial derivatives, where the (3 � 5) matrix oKj=og
has already been determined by Eqs. (17)–(20). Omitting
all auxiliary algebraic manipulations, we give only the
final relationships for the (3 � 5) matrices
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þ H2 �H1ð ÞA3 ð59Þ
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where A1, A2 and A3 are defined by Eqs. (25)–(27). The
variance–covariance matrices CZjZjð j ¼ 1; 2; 3Þ then fol-
low from
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The directions of the principal axes �AA; �BB and �CC of
inertia will now be expressed in spherical coordinates.
Let uj and kj denote the geocentric latitude and
longitude where the vector Zj (i.e. the principal axis)
intersects the unit sphere. The spherical coordinates
are computed from the components of the vectors
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For the error propagation, the partial derivatives of the
elements uj, kj of the vectors wj ¼ ui; kj½ �T with
respect to the components of the vector Zj are derived

owj

oZj
¼

� zj
1
zj
3

~rrjq2
j

� zj
2
zj
3

~rrjq2
j

~rrj
q2

j

� zj
2

~rr2
j

zj
1

~rr2
j

0

2
64

3
75; ~rrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzj1Þ

2 þ ðzj2Þ
2

q
ð63Þ

leading to the variance–covariance matrices Cwjwj
of the

spherical coordinates

Cwjwj
¼

owj

oZj
CZjZj

owj

oZj

 !T

¼
owj

oZj

oZj

og
Cgg

owj

oZj

oZj

og

 !T

ð64Þ

Given the second-degree spherical harmonic coefficients
ð �CC2m; �SS2mÞ of the Earth’s gravity field, the geometric
directions of all three principal axes ( �AA; �BB; �CC) of inertia
can be derived by means of Eqs. (53) and (62), and the
uncertainty of these directions as a function of the
uncertainty of the coefficients follows from Eqs. (61) and
(64).

The third axis �CC usually is close to the axis Z of the
coordinate system ðX ; Y ; ZÞ. In order to avoid instabili-
ties when computing the longitude for a point with a
latitude close to 90�, a polar Cartesian coordinate sys-
tem (x, y) is introduced for this axis, which is also used
by the International Earth Rotation Service (IERS;
McCarthy 1996) to describe the position of the pole.

With uC ¼ u3, kC ¼ k3 for axis �CC we obtain with the
pole distance

dc ¼
p
2
� uC ð65Þ

the coordinates

xC ¼ dC 	 cos kC

yC ¼ �dC 	 sin kC

ð66Þ

For the error propagation we define the new vectors

wC ¼ xC; yC½ �T; wC ¼ w3 ¼ uC; kC½ �T ð67Þ

and obtain by straightforward differentiation

owC

owC

¼
� xC

dC
yC

� yC
dC

�xC

2
64

3
75 ð68Þ

the variance–covariance [Cw3w3
taken from Eq. (64)]

CwCwC ¼ owC

owC
Cw3w3

owC

owC

 !T

¼ owC

owC

owC

oZC

oZC

og
Cgg

owC

owC

owC

oZC

oZC

og

 !T

ð69Þ

with

owC

oZC
¼ ow3

oZ3
;

oZC

og
¼ oZ3

og
ð70Þ

Setting

owC

owC

owC

oZC
¼ owC

oZC
ð71Þ

and denoting zi ¼ zCi ¼ z3
i , ~rr ¼ ~rrC ¼ ~rr3 and q ¼ qC ¼ q3,

we obtain

owC

oZC
¼

z2
1z3~rr þ dC 	 z2

2q
2

~rr3q2

z1z2ðz3~rr � dC 	 q2Þ
~rr3q2

� z1

q2

z1z2ðdC 	 q2 � z3~rrÞ
~rr3q2

� z2
2z3~rr þ dC 	 z2

1q
2

~rr3q2

z2

q2

2
6664

3
7775

ð72Þ

for a more explicit formulation of Eq. (69).
In matrix notation, Eq. (69) changes to

CwCwC ¼ owC

oZC

oZC

og
Cgg

owC

oZC

oZC

og

 !T

ð73Þ

which, applying Eqs. (58) and (72), allows the estimation
of the uncertainty of the location of the axis �CC in the
polar Cartesian coordinate system (x, y).

7 Estimation of the fundamental mechanical
and geometrical parameters of the Earth

The harmonic coefficients of second degree and their
temporal variations given in Table 1 are extracted from
the following gravity field models.
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1. JGM-3 (Tapley et al. 1996) and EGM96 (Lemoine
et al. 1998), which both result from a combination of
satellite tracking, altimetry and gravimetry data
(combined solutions).

2. GRIM5-S1 (Biancale et al. 2000) and GRIM5-S1CH1
(Reigber et al. 2001), which are both based purely on
the analysis of satellite orbit perturbations (satellite-
only solutions). GRIM5-S1CH1 differs from
GRIM5-S1 by the inclusion of 41 days (November/
December 2000) of CHAMP Global Positioning
System (GPS) satellite-to-satellite tracking data.

The four models are not fully independent, because
there are overlaps in the underlying satellite data. These
correlations between the models are neglected in the
following.

The time-variable coefficients in these models are
referred to different epochs with a spacing of 11 years in
between. EGM96 contains secular variations for
�CC20; �CC21 and �SS21.

The other solutions include only a drift in �CC20. To be
consistent, the following transformations were applied
to the initial values in Table 1: (a) prediction of �CC2mðtÞ
and �SS2mðtÞ for a common epoch 1997; (b) reduction of
�CC20 to a common permanent tide system; and (c) scaling
of these coefficients to common values of GM and a.

For the transformation of �CC20 (JGM3) from the
zero-frequency tide system �CCZ

20 to the tide-free system
�CC f

20, and later on vice versa, the relation

�CC f
20 ¼ �CCZ

20 þ 3:1108 	 10�8 	 0:3=
ffiffiffi
5

p
ð74Þ

is applied (Rapp 1989).
Among these four models, only the solutions of

GRIM5-S1 and GRIM5-S1CH1 have a complete
ð5 � 5Þ variance–covariance matrix Cgg of �CC2m and �SS2m.
The coefficients �CC21 and �SS21 of JGM-3 and EGM96 are
not adjusted, but based on the formulae (Lambeck 1971;
Reigber 1981)

�CC21 ¼ ð
ffiffiffi
3

p
�CC20 � �CC22Þ�xxp þ �SS22�yyp ð75aÞ

�SS21 ¼ �ð
ffiffiffi
3

p
�CC20 þ �CC22Þ�yyp � �SS22�xxp ð75bÞ

or, in approximate form

�CC21 

ffiffiffi
3

p
�CC20�xxp; �SS21 
 �

ffiffiffi
3

p
�CC20�yyp ð76Þ

with the mean pole coordinates �xxp, �yyp taken for the
epoch 1986, �xxp ¼ 0:04600; �yyp ¼ 0:29400 (McCarthy 1996).
This is why for the models JGM-3 and EGM96
the mean pole coordinates and their assumed uncer-
tainties of 0:0100 (IERS 2001) in each component were
used to compute varð �CC21Þ, varð�SS21Þ and covð �CC21; �SS21Þ
by error propagation [cf. Eq. (75)] to complete the
ð5 � 5Þ variance–covariance matrix Cgg for these two
models.

Equations (37) and (38) were used to determine the
Earth’s normalized principal moments of inertia A;B;C,
where HD results from the observed precession of the
Earth’s pole. HD is applied as a scale factor in precession
and nutation theories. Table 2 gives six current estima-
tions of HD and the values of the underlying precession
constant pA, and the applied standards for these con-
stants if given in the literature. The first five values of HD
are recommended in Dehant et al. (1999) as ‘the best
values to be used in nutation theory’. For only two HD
values are accuracy estimates found in the literature.
The sixth value was recently determined by Mathews
(2000).

With HD known, the computation of the polar mo-
ment of inertia (normalized by the factor 1=Ma2),
C ¼ �

ffiffiffi
5

p
�AA20=HD, the sum

A þ B ¼
ffiffiffi
5

p
�AA20 2 � 2

HD

 !
ð77Þ

and the trace A þ B þ C of the Earth’s tensor of inertia I

TrðIÞ ¼ A þ B þ C ¼
ffiffiffi
5

p
�AA20 2 � 3

HD

 !
¼ 3Im ð78Þ

according to Eqs. (37) and (38) is straightforward, if
the fully normalized harmonic coefficient �AA20 is given.

Table 1. Initial second-degree
normalized harmonic coeffi-
cients �CC2m and �SS2m, and their
secular variations _�CC�CC2m and _�SS�SS2m

Harmonic
coefficients

JGM-3a

(epoch: 1986)
EGM96b

(epoch: 1986)
GRIM5-S1c

(epoch: 1997)
GRIM5-S1CH1d

(epoch: 1997)

�CC20 	 106 )484.16954846 )484.16537174 )484.16511551 )484.16515921
±0.000047 ±0.000036 ±0.000020 ±0.0000042

_�CC�CC20 	 1011 1.16275534 1.16275534 1.36375910 1.16553188
[1/yr] – – ±0.14 ±0.04
�CC21 	 106 0.00018699 )0.00018699 )0.00016286 )0.00016522

(±0.000041) (±0.000041) ±0.000031 ±0.0000054
_�CC�CC21 	 1011 – )0.32 – –
[1/yr] –
�SS21 	 106 0.00119528 0.00119528 0.00132488 0.00136313

(±0.000041) (±0.000041) ±0.000026 ±0.0000048
_�SS�SS21 	 1011 – 1.62 – –
[1/yr] –
�CC22 	 106 2.43926075 2.43914352 2.43931947 2.43930284

±0.000037 ±0.000054 ±0.000014 ±0.0000031
�SS22 	 106 )1.40026640 )1.40016684 )1.40027653 )1.40029081

±0.000037 ±0.000054 ±0.000014 ±0.0000031

a Tapley et al. (1996)
b Lemoine et al. (1998)
c Biancale et al. (2000)
d Reigber et al. (2001)
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From this we obtain a direct dependence of A, B and C
and of the mean moment of inertia Im on the adopted
gravity field model and on the treatment of the
permanent tide in the �CC20 
 �AA20 coefficient. The
parameter B � A ¼ 2

ffiffiffiffiffi
15

p
�AA22=3 is also slightly depen-

dent on the adopted permanent tide system because �CC20

enters into the computation of the coefficient �AA22

through Eq. (9). The indirect effect of the permanent
tide (caused by the deformation potential) may be
either included in the �CC20 coefficient (zero-frequency
tide system) or excluded from it (tide-free system). The
zero-frequency tide system approximates better the real
figure of the Earth. It is assumed that the HD values
also are related to the zero-frequency tide system
(Bursa 1995; Groten 2000), although this problem is
not discussed in the precession–nutation literature as
referenced in Table 2.

From the values of the dynamic ellipticity HD given in
Table 2 (assumed to refer to J2000), the Hartmann et al.
(1999) and Mathews (2000) values differ in the preces-
sion constant adopted. In order to transform the asso-
ciated quantities from pA ¼ 50:288200/yr and
pA ¼ 50:28801800/yr, respectively, to the common value
pA ¼ 50:287700/yr, the differential relationship of Souc-
hay and Kinoshita (1996) is used; this is

dHD ¼ dHD

dpA
dpA ¼ 6:4947 	 10�7dpA ð79Þ

where dpA is expressed in arcseconds per Julian century
(cy); with dpA ¼ �0:0500/cy and dpA ¼ �0:031800/cy,
respectively, we obtain the values of HD given in
brackets in Table 2.

To reduce the values of HD from epoch J2000 to 1997,
an additional correction was applied. From Eqs. (37)
and (38), taking into account that the non-tidal varia-
tion dC in the moment of inertia C is a function of _�CC�CC20

only (Yoder et al. 1983), and the condition
Tr(I) = constant (Rochester and Smylie 1974) ‘as zonal
forces do not change the revolution shape of the body’
(Melchior 1978), we obtain for the secular variation of
HD

_HHD ¼
_�AA�AA20

�AA20

HDð1 � 2

3
HDÞ 


_�CC�CC20

�CC20

HDð1 � 2

3
HDÞ ð80Þ

Numerically this results in _HHD 
 �7:864 	 10�11=yr
(with _�CC�CC20 taken from the GRIM5-S1CH1 model)
amounting to dh ¼ 2:36 	 10�10 for the reduction of HD
from the year 2000 to 1997. The HD values used in the
following are the reduced ones and refer to the common
precession constant given above.

The Earth’s principal moments of inertia A;B and C
are determined from a least-squares (LS) adjustment of
the astronomic and geodetic parameters, all referred to a
common permanent tide system and one epoch, 1997.
As ‘observations’ we take (a) the six values for HD
(Table 2) and (b) the four sets (Table 3) of harmonic
coefficients �AA20, �AA22 in the principal-axes system, com-
puted from the coefficients given in Table 1 by applying
Eq. (9). Table 4 gives the geodetic parameters in the
tide-free system for completness. Before, the harmonic
coefficients �CC2m; �SS2m were all transformed to the same
GM and a values as given in Table 3. The variance–
covariance matrices [Eq. (32)] are taken into account in
the adjustment.

Table 2. Various determina-
tions of the dynamical ellipticity
HD

Reference Precession constant
pA [00/yr], J2000

HD IERS standards

Williams (1994) 50.287700 0.0032737634 N/Ab

Souchay and Kinoshita
(1996)

50.287700 0.0032737548 IERS, 1992

Hartmann et al. 50.288200 0.003273792489 IERS, 1992
(1997, 1999) (50.287700)a (0.0032737600)a

Bretagnon et al. 50.287700 0.003273766818 IERS, 1992;
(1998) ±0.000000000023 IERS, 1996

Roosbeek and Dehant
(1998)

50.287700 0.0032737674 IERS, 1996

Mathews (2000) 50.288018 0.0032737875 N/A
±0.0000000005

(50.287700)a (0.0032737668)a

Table 3. Geodetic parameters in the zero-frequency system (GM = 398 600.4415 km3/s2; a = 6 378 136.49 m; epoch: 1997)

Parameter JGM-3 EGM96 GRIM5-S1 GRIM5-S1CH1

�AA20 	 106 )484.169392±0.000047 )484.169388±0.000036 )484.169284±0.000020 )484.1693282 ±0.0000041
�AA22 	 106 2.812603±0.000037 2.812452±0.000054 2.812660±0.000014 2.8126522±0.0000031
ðC � AÞ 	 106 1086.26673±0.00011 1086.26652±0.00010 1086.26656±0.00005 1086.266649±0.00001
ðC � BÞ 	 106 1079.00462±0.00011 1079.00480±0.00010 1079.00430±0.00005 1079.004412±0.00001
ðB � AÞ 	 106 7.26211±0.00010 7.26172±0.00014 7.26226±0.00004 7.262237±0.00001
1/f 298.256479±0.000016 298.256480±0.000013 298.256511±0.000009 298.256498±0.000007
1/fe 91 438.2±1.2 91 443.1±1.7 91 436.4±0.4 91 436.6±0.1

a Transformed to a common
value of the precession constant
[Eq. (79)]
b N/A = Not applicable
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Applying Eq. (12) and Eq. (37), we obtain the over-
determined system of non-linear observation equations

2C � A � B
2C

¼ H ðiÞ
D þ eðiÞH

1

2
ffiffiffi
5

p ðA þ B � 2CÞ ¼ �AA ð jÞ
20 þ eð jÞ20

3

2
ffiffiffiffiffi
15

p ðB � AÞ ¼ �AA ð jÞ
22 þ eð jÞ22

ð81Þ

with respect to the three unknown parameters, i.e. the

normalized principal moments A; B and C. H ðiÞ
D ði ¼

1; 2; . . . ; kÞ, �AA ð jÞ
20 , and �AA ð jÞ

22 ðj ¼ 1; 2; . . . ; lÞ are treated as
observations, with e being an error component.

For k (here k ¼ 6) values of H ðiÞ
D and for l (here l ¼ 4)

sets of second-degree harmonic coefficients �AA ð jÞ
20 , �AA ð jÞ

22 of l
gravity field models, we obtain after linearization the
system of ðk þ 2lÞ observation equations

� 1
2C0

� 1
2C0

A0þB0

2C2
0

1
2
ffiffi
5

p 1
2
ffiffi
5

p � 1ffiffi
5

p

� 3
2
ffiffi
5

p 3
2
ffiffi
5

p 0

0
BB@

1
CCA 	

dA

dB

dC

0
B@

1
CA

¼
H ðiÞ

D

�AA ð jÞ
20

�AA ð jÞ
22

0
BB@

1
CCAþ

eðiÞH

eð jÞ20

eð jÞ22

0
BB@

1
CCA ð82Þ

where A0;B0;C0 are some approximate values of the
principal moments A;B;C, and dA, dB, dC are the
corrections provided by the solution of the normal
equation system following from the linearized observa-
tion equation system of Eq. (82).

The initial values A0;B0;C0 in Eq. (82) are solved
straightforwardly from the system of the three non-lin-
ear equations of Eqs. (81), using only three ‘observa-
tions’, HD, �AA20 and �AA22, which are obtained a priori as

mean values from each set of H ðiÞ
D , �AA ð jÞ

20 and �AA ð jÞ
22 , re-

spectively, to determine the three unknowns A0 ¼ A,
B0 ¼ B and C0 ¼ C.

For each of the six values H ðiÞ
D , an identical standard

deviation of �0:456 	 10�8 derived from the scattering
about the mean value was used for the weighting in the
adjustment, because realistic accuracy estimates for
these values are not given in the literature (also see
Dehant and Capitaine 1997).

The final solution, computed for the epoch 1997,
is derived from the six values of H ðiÞ

D plus the second-

degree harmonics of the gravity field models JGM-3,
EGM96, GRIM5-S1 and GRIM5-S1CH1 (6 + 8 = 14
linear equations). The adjusted Earth’s principal mo-
ments of inertia A, B, C are given in Table 5. For such
an adjustment of astronomic and geodetic parameters, it
is characteristic that the correlation coefficients between
the solved parameters, i.e. the three moments of inertia,
are close to +1. In addition to the solved parameters,
the other fundamental parameters of the Earth derived
from the three moments of inertia are also given in Table
5, together with their accuracy estimates from error
propagation (cf. previous sections). Note finally that the
polar moment of inertia C and the mean moment of
inertia Im from Table 5 agree well with those of Williams
(1994): C ¼ 0:3307007, Im ¼ 0:3299789.

8 Dynamic reference system

8.1 Time-independent constituent

The vector g [Eq. (15)] of the second-degree harmonic
coefficients �CC2m and �SS2m, adopted in the Earth body-
fixed frame XYZ, will be denoted by

gZ 0 ¼ �AA20; �AA21; �BB21; �AA22; �BB22½ �T ð83Þ

if given in the coordinate system X 0Y 0Z 0, which is close to
XYZ but with a difference in the orientation of the third
axes with Z � Z 0 being equal to the mean pole coordi-

Table 4. Geodetic parameters in the tide-free system (GM = 398 600.4415 km3/s2; a = 6 378 136.46 m; epoch: 1997)

Parameter JGM-3 EGM96 GRIM5-S1 GRIM5-S1CH1

�AA20 	 106 )484.165223±0.000047 )484.165220±0.000036 )484.165116±0.000020 )484.1651592±0.0000041
�AA22 	 106 2.812603±0.000037 2.812452±0.000054 2.812660±0.000014 2.8126522±0.0000031
ðC � AÞ 	 106 1086.25741±0.00011 1086.25720±0.00010 1086.25724±0.00005 1086.257327±0.00001
ðC � BÞ 	 106 1078.99529±0.00011 1078.99548±0.00010 1078.99498±0.00005 1078.995090±0.00001
ðB � AÞ 	 106 7.26211±0.00010 7.26172±0.00014 7.26226±0.00004 7.262237±0.00001
1/f 298.257726±0.000016 298.257727±0.000013 298.257758±0.000009 298.257745±0.000007
1/fe 91 438.2±1.2 91 443.1±1.7 91 436.4±0.4 91 436.6±0.1

Table 5. Results of the simultaneous adjustment of the astronomic
HD and geodetic �AA20, �AA22 parameters (zero-frequency tide system;
GM = 398 600.4415 km3/s2; a = 6 378 136.49 m, epoch: 1997)

Parameter Six HD (Table 2) + four gravity models
(JGM-3, EGM96, GRIM5-S1, GRIM5-S1CH1)

Solved
A 0.32961433 ± 0.00000032
B 0.32962159 ± 0.00000032
C 0.33070060 ± 0.00000032

Derived
Im 0.32997884 ± 0.00000032
a ¼ ðC � BÞ=A (3273.5361 ± 0.0032) Æ 10)6

b ¼ ðC � AÞ=B (3295.4960 ± 0.0032) Æ 10)6

c ¼ ðB � AÞ=C (21.9602 ± 0.0001) Æ 10)6

HD ¼ H ðiÞ
D þ eðiÞH 0.003273763447 ± 0.0000000032

�AA20 	 106 )484.1693278 ± 0.0000068

�AA22 	 106 2.8126517 ± 0.0000088
1/f 298.256498 ± 0.000008
1/fe 91 436.6 ± 0.3
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nates. Applying again the standard approach (Lambeck
1971; Reigber 1981), second-order terms will also be
taken into account in the relationship

g ¼ Pxy 	 gZ 0 ð84Þ

where the matrix Pxy depends only on the coordinates
�xxp; �yyp of the mean pole and can be written in the
following form:

Pxy

¼

1� �xx2
pþ�yy2

p

2 �
ffiffiffi
3

p
�xxp

ffiffiffi
3

p
�yyp

ffiffi
3

p
ð�xx2

p��yy2
pÞ

2 �
ffiffiffi
3

p
�xxp�yypffiffiffi

3
p

�xxp 1 � �xx2
p �xxp�yyp ��xxp �yyp

�
ffiffiffi
3

p
�yyp �xxp�yyp 1 � �yy2

p ��yyp ��xxpffiffi
3

p
ð�xx2

p��yy2
pÞ

3
�xxp �yyp 1 0

� 2
ffiffi
3

p
�xxp �yyp

3 ��yyp �xxp 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð85Þ

Since the determinant DetðPxyÞ 6¼ 0, there exists also the
inverse linear transformation

gZ 0 ¼ P�1
xy 	 g ð86Þ

with the inverse matrix P�1
xy written also in an analytical

form

P�1
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p2
1

ffiffi
3

p
p3

p1p2
�2

ffiffi
3

p
�xxp �yyp

p1p2

�2
ffiffi
3

p
�xxpp3

3p2p2
1

1�p5

p2
1

2�xxp �yyp
p2

1

2�xxpp4

p1p2

�yypðp5�2Þ
p1p2

2
ffiffi
3

p
�yypp3

3p2p2
1

2�xxp �yyp

p2
1

1þp5

p2
1

2�yypð�xx2
pþ1Þ

p1p2

�xxpðp5þ2Þ
p1p2

2
ffiffi
3

p
p5

3p2
1

��xxpð2�yy2
pþ1Þ

p2
1

� �yypð2�xx2
pþ1Þ

p2
1

1
p1

0

�4
ffiffi
3

p
�xxp �yyp

3p6

�yypð1�p5Þ
p6

��xxpð1þp5Þ
p6

0 1
p1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð87Þ

where the following notations are adopted:

p1 ¼ �xx2
p þ �yy2

p þ 1

p2 ¼ �xx2
p þ �yy2

p þ 2

p3 ¼ �xx2
p þ �yy2

p þ 3

p4 ¼ �yy2
p þ 1

p5 ¼ �xx2
p � �yy2

p

p6 ¼ ð�xx2
p þ p4Þ2

ð88Þ

If the coefficients �CC2m and �SS2m are given, Eq. (86) can be
applied to compute the harmonic coefficients �AA2m and

�BB2m related to the axis Z 0 (zero mean pole at epoch t0).
�AA21 and �BB21 then read

�AA21 ¼ � 2
ffiffiffi
3

p
�xxpp3

3p2p
2
1

�CC20 þ
1 � p5

p2
1

�CC21 þ
2�xxp�yyp

p2
1

�SS21

þ 2�xxpp4

p1p2

�CC22 þ
�yypðp3 � 2Þ

p1p2

�SS22 ð89aÞ

�BB21 ¼
2
ffiffiffi
3

p
�yypp3

3p2p2
1

�CC20 þ
2�xxp�yyp

p2
1

�CC21 þ
1 þ p5

p2
1

�SS21

þ
2�yypð�xx2

p þ 1Þ
p1p2

�CC22 þ
�xxpðp5 þ 2Þ

p1p2

�SS22 ð89bÞ

where the coefficients �AA21 and �BB21 must be zero by
definition, if the axis Z 0 and the figure axis �CC coincide at
t0. From this, Eqs. (89a) and (89b) give a tool to test
whether the four gravity field models used here are
referred to a common axis �CC.

Table 6 lists the obtained differences about zero and
leads to the conclusion that the reference systems of the
models do not exactly match (differences up to four
times larger than the standard deviations). The other
second-degree coefficients differ only insignificantly
ð<10�15Þ between the two reference systems.

In order to avoid the differences in Table 6 when
fixing a unique figure axis �CC, one unique set of the co-
efficients �CC2m and �SS2m at epoch 1997 was determined
from an LS adjustment of the given four sets, taking into
account their variance–covariance matrices and the two
natural conditions for the left-hand sides of Eq. (89):
�AA21 ¼ �BB21 ¼ 0. For l adopted gravity models, the har-

monic coefficients �AAðjÞ
2m, �BBðjÞ

2m ðj ¼ 1; 2; . . . ; lÞ are initially
computed and treated further as observations.

Applying Eq. (86) we obtain the observation equa-
tions in the linear form

P�1
xy 	

�CC20

�CC21

�SS21

�CC22

�SS21

0
BBBBB@

1
CCCCCA ¼

�AAðjÞ
20

�AAðjÞ
21

�BBðjÞ
21

�AAðjÞ
22

�BBðjÞ
21

0
BBBBBBB@

1
CCCCCCCA

þ

eðjÞ1

eðjÞ2

eðjÞ3

eðjÞ4

eðjÞ5

0
BBBBBBB@

1
CCCCCCCA

ð90Þ

with the five unknown elements of the vector
g ¼ �CC20; �CC21; �SS21; �CC22; �SS22½ �T; eðjÞi are error components.
The matrix P�1

xy of this system depends only on the mean
pole coordinates selected for epoch 1997. The vector g
results from the solution of the normal system following
from Eq. (90) with the two additional conditions, i.e.
zero left-hand sides in Eqs. (89a) and (89b).

Table 6. Harmonic coefficients �AA21 and �BB21 (expectation values are zero) at t0 based on Eq. (89) for the adopted mean pole �xxp ¼ 0:04000 and
�yyp ¼ 0:34000 (from IERS at epoch 1997)

Parameter JGM-3 EGM96 GRIM5-S1 GRIM5 S1CH1

�AA21 	 109 )0.022±0.041 )0.057±0.041 0.002±0.031 0.000±0.005
�BB21 	 109 )0.183±0.041 )0.005±0.041 )0.054±0.026 )0.015±0.005
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Taking the harmonic coefficients �AAðjÞ
2m and �BBðjÞ

2m in the
X 0Y 0Z 0 frame as observations from all ðl ¼ 4Þ gravity
models, we obtain the adjusted harmonic coefficients
�CC2m and �SS2m at epoch 1997. The set of these �CC2m and �SS2m
values (Table 7) restores exactly the adopted mean pole
coordinate �xxp ¼ 0:04000, �yyp ¼ 0:34000 if inserted into
Eq. (75)

�xxp ¼
ð
ffiffiffi
3

p
�CC20 þ �CC22Þ �CC21 þ �SS22

�SS21

3 �CC2
20 � �CC2

22 � �SS2
22

;

�yyp ¼ �ð
ffiffiffi
3

p
�CC20 � �CC22Þ�SS21 þ �SS22

�CC21

3 �CC2
20 � �CC2

22 � �SS2
22

ð91Þ

Thus, instead of the approximate formulae [Eq. (76)]
recommended in the IERS Conventions (McCarthy
1996)

�xxp ¼
�CC21ffiffiffi
3

p
�CC20

; �yyp ¼ �
�SS21ffiffiffi
3

p
�CC20

ð92Þ

Eq. (91) is applied here since the differences between
both formulae amount to 0:0100, which is comparable to
the accuracy of the mean pole coordinates.

Applying Eqs. (62) and (64), the orientation of the
principal axes �AA; �BB and �CC is computed for each of the
four individual gravity field models and for the adjusted
set of second-degree coefficients. The results are given in
spherical coordinates in Table 8 and for the axis C,
following Eqs. (66) and (73), also in polar Cartesian
coordinates (Table 9). Note, that the uncertainty of xc
and yc in Table 9 for the two models JGM-3 and
EGM96 recovers the 0:0100 which were initially intro-
duced for the mean pole coordinates in Eq. (75). It has
to be pointed out, however, that the directions of the
principal axes are practically independent of the treat-

Table 7. Results of a simultaneous adjustment of the �CC2m, �SS2m
parameters (zero-frequency tide system; GM = 398 600.4415 km3/
s2; a = 6 378 136.49 m; �xxp ¼ 0:04000, �yyp ¼ 0:34000; HD ¼
0:003273763447 � 0:0000000032; epoch: 1997)

Parameter JGM-3, EGM96, GRIM5-S1,
GRIM5-S1CH1

Solved
�CC20 	 106 )484.169328 ± 0.000007
�CC21 	 106 )0.000165 ± 0.000009
�SS21 	 106 0.001379 ± 0.000008
�CC22 	 106 2.439303 ± 0.000006
�SS22 	 106 )1.400290 ± 0.000006

Derived
ðC � AÞ 	 106 1086.266648 ± 0.000018
ðC � BÞ 	 106 1079.004412 ± 0.000018
ðB � AÞ 	 106 7.262236 ± 0.000014
A 0.32961433 ± 0.00000033
B 0.32962159 ± 0.00000033
C 0.33070060 ± 0.00000033
Im 0.32997884 ± 0.00000033
a ¼ ðC � BÞ=A (3273.5361 ± 0.0032) Æ 10)6

b ¼ ðC � AÞ=B (3295.4960 ± 0.0033) Æ 10)6

c ¼ ðB� AÞ=C (21.9602 ± 0.00005) Æ 10)6

1/f 298.256498 ± 0.000008
1/fe 91 436.6 ± 0.2
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ment of the permanent tide effect in the harmonic
coefficient �CC20 (Melchior 1978).

Because all parameters from Table 7 agree with the
values in Table 5, the adjusted coefficients �CC2m and �SS2m
are used in the following to study the time-dependent
components.

8.2 Secular and long-periodic variations

Here we start from the simple linear model representing
the mean pole’s drift

�xxp

�yyp

&
¼

�xx0
p

�yy 0
p

( )
þ

_�xx�xxp
_�yy�yyp

) &
ðt � t0Þ ð93Þ

where �xx0
p; �yy

0
p are the mean pole coordinates at some

reference epoch t0; _�xx�xxp; _�yy�yyp are the secular variations in
�xx0
p; �yy

0
p valid in the vicinity of t0. According to McCarthy

and Luzum (1996) we have for t0 ¼ 1950:
�xx 0

p ¼ �0:000700, �yy 0
p ¼ 0:179400, _�xx�xxp ¼ 0:00086200/yr,

_�yy�yyp ¼ 0:00321700=yr.
Inserting Eq. (93) into Eq. (75) or Eq. (85) with

�AA21 ¼ �BB21 ¼ 0, we can split up the resulting expressions
into two parts. The first part represents the epoch values
of the harmonic coefficients in Eq. (75) with �xx0

p; �yy
0
p used

instead of �xxp; �yyp. The second part represents the tempo-

ral variations _�CC�CC21 and _�SS�SS21 in the harmonic coefficients
caused by a linear drift of the mean pole

_�CC�CC21 ¼ ð
ffiffiffi
3

p
�CC20 � �CC22Þ _�xx�xxp þ �SS22 _�yy�yyp ð94aÞ

_�SS�SS21 ¼ �ð
ffiffiffi
3

p
�CC20 þ �CC22Þ _�yy�yyp � �SS22 _�xx�xxp ð94bÞ

_�CC�CC21 

ffiffiffi
3

p
�CC20 _�xx�xxp;

_�SS�SS21 
 �
ffiffiffi
3

p
�CC20 _�yy�yyp ð95Þ

For the other second-degree coefficients we obtain from
Eq. (85) with �AA21 ¼ �BB21 ¼ 0

_�CC�CC20 ¼ _�CC�CC22 ¼ _�SS�SS22 
 0 ð96Þ

The computed values for the secular variations in the
second-degree coefficients due to the McCarthy and
Luzum (1996) drift in the mean pole, shown in Table 10,
also confirm Eq. (96).

Now another representation for the mean pole mo-
tion (and by this for the motion of the figure axis �CC ) is
introduced by adopting the following model:

�xxp

�yyp

)
¼

�xx0
p

�yy 0
p

( )
þ

_�xx�xxp

_�yy�yyp

( )
ðt � t0Þ

þ
Ax

Ay

( )
cos

2p
P

ðt � t0Þ �
/x

/y

( ) !
ð97Þ

where the components of an oscillation with a P ¼ 30:6-
yr period, detected by McCarthy and Luzum (1996), are
added to the linear model of Eq. (93). To determine the
parameters in the function, the xp; yp pole coordinates of
the series EOP(IERS)93C01 at 0.05-yr intervals from
1962 to 2000 are then fitted to Eq. (97) by an LS
adjustment with the two additional conditions that the
mean pole coordinates at the epochs 1986 (�xxp ¼ 0:04600,
�yyp ¼ 0:29400) and 1997 (�xxp ¼ 0:04000, �yyp ¼ 0:34000) coin-

cide with the IERS values. The conditions allow us to
connect the resulting model to the two different
reference epochs used in the four gravity field models
under consideration. The numerical values for the

Table 9. Polar Cartesian coordinates of the principal axis �CC and
their uncertainties (epoch: 1997)

Gravity field model xC (0.00100) yC (0.00100)

JGM-3 45.4 ± 10.0 294.8 ± 10.0
EGM96 53.9 ± 10.0 338.7 ± 10.0
GRIM5-S1 39.4 ± 7.6 326.8 ± 6.4
GRIM5-S1CH1 40.0 ± 1.3 336.2 ± 1.2
Adjusted �CC2m, �SS2m
(Table 7)

40.0 ± 2.3 340.0 ± 2.1

Table 10. Secular variations per annum in the harmonic coefficients caused by the mean pole drift

Adopted linear model
of the mean pole drift

_�CC�CC20 	 1016 _�CC�CC21 	 1011 _�SS�SS21 	 1011 _�CC�CC22 	 1016 _�SS�SS22 	 1016

McCarthy and Luzum
(1996); epoch: 1950

0.449 )0.354 1.305 0.284 0.103

This study; epoch: 1997 0.728 )0.646 1.831 0.482 0.243

Fig. 1. Secular (straight line) and secular plus long-periodic (solid line)
motion of the mean pole �CC vs IERS annual mean pole positions
(dash–dotted line)
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parameters in Eq. (97) are obtained as follows (with
t0 ¼ 1997):

�xx0
p ¼ 0:05075500; �yy 0

p ¼ 0:34232400;

_�xx�xxp ¼ 0:00157700=yr; _�yy�yyp ¼ 0:00451500=yr

Ax ¼ 0:01309100; Ay ¼ 0:00233100;

/x ¼ 214:7568o; /y ¼ 175:5864o

The secular variations of the second-degree coefficients
following from these adjusted values _�xx�xxp, _�yy�yyp are given in
the second row of Table 10.

The resulting path of the mean pole axis defined by
the model of Eq. (97) with the values obtained from the
adjustment is compared in Fig. 1 with the annual values
of the IERS mean pole coordinates (within the time
interval from 1962.5 to 1997.5). The estimated root
mean squares of differences of the smooth sinusoidal
curve with respect to the annual IERS values are
�0:00600 and �0:01200, respectively, which correspond to
the IERS estimated level of accuracy of �0:0100 for the
annual values (IERS 2001). Figure 1 also shows the
EGM96 adopted model in the mean pole evolution
(straight line).

Fig. 3. Temporal changes in the harmonic coefficient �SS21ðtÞFig. 2. Temporal changes in the harmonic coefficient �CC21ðtÞ

Table 11. Consistent system of
fundamental geodetic and
astronomic parameters and
their temporal differences over
38 years versus uncertainty
(zero-frequency tide system;
GM = 398 600.4415 km3/s2;
a = 6 378 136.49 m;
�CC22ðtÞ ¼ const, �SS22ðtÞ ¼ const)

Parameter

P(t1) Epoch:
t1 = 1962

P(t2) Epoch:
t2 = 2000

Difference:
P(t2) )P(t1)

Standard deviation
r for P at epoch

Satellite geodesy only
�CC20 Æ 106 )484.169736 )484.169293 +4.43 Æ 10)10 0.7 Æ 10)11

�CC21 Æ 106 0.000020 )0.000175 )1.95 Æ 10)10 0.9 Æ 10)11

�SS21 Æ 106 0.000741 0.001436 +6.95 Æ 10)10 0.8 Æ 10)11

(C)A) Æ 106 1086.267560 1086.266570 )0.990 Æ 10)9 1.8 Æ 10)11

(C)B) Æ 106 1079.005324 1079.004334 )0.990 Æ 10)9 1.8 Æ 10)11

(B)A) Æ 106 7.262236 7.262236 )1.6 Æ 10)15 1.4 Æ 10)11

1/f 298.256377 298.256508 +1.31 Æ 10)4 0.8 Æ 10)5

1/fe 91 436.6 91 436.6 +1.8 Æ 10)5 0.2

Astronomy + geodesy
HD 0.0032737662 0.0032737632 )3.0 Æ 10)9 3.2 Æ 10)9

A 0.32961433107 0.32961433140 +3.3 Æ 10)10 3.3 Æ 10)7

B 0.32962159330 0.32962159364 +3.3 Æ 10)10 3.3 Æ 10)7

C 0.33070059863 0.33070059797 )6.6 Æ 10)10 3.3 Æ 10)7

Im 0.32997884100 0.32997884100 +0.1 Æ 10)12 3.3 Æ 10)7

(C)B)/A 3273.5389 Æ 10)6 3273.5359 Æ 10)6 )3.0 Æ 10)9 3.2 Æ 10)9

(C)A)/B 3295.4988 Æ 10)6 3295.4958 Æ 10)6 )3.0 Æ 10)9 3.3 Æ 10)9

(B)A)/C 21.96015 Æ 10)6 21.96015 Æ 10)6 +4.0 Æ 10)14 0.5 Æ 10)10
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Thus, Eq. (75) together with Eq. (97) can be consid-
ered as an analytical representation of the time-depen-
dent harmonic coefficients �CC21ðtÞ and �SS21ðtÞ with
appropriate consideration of the secular and low-fre-
quency changes in the mean pole motion and an exact
agreement with the IERS mean pole coordinates for the
two chosen epochs, 1986 and 1997.

Figures 2 and 3 show the secular [in the case of the
McCarthy and Luzum (1996) and the EGM96 model]
and the secular plus long-periodic (this study) changes in
�CC21ðtÞ and �SS21ðtÞ deduced from the adopted model of
mean pole motion. It can be seen that Eq. (97) gives a
better long-term representation of the mean pole motion
(Fig. 1) and therefore also an improved approximation
of the �CC21; �SS21 temporal variations compared to linear
drift models. This especially holds for the �CC21 compo-
nent (Fig. 2).

9 Conclusions

In conclusion, Table 11 summarizes the geodetic and
astronomic fundamental Earth parameters given at two
different epochs in order to demonstrate their temporal
changes caused by �xxpðtÞ, �yyðtÞ, and the secular variation
_�CC�CC20, taken from the GRIM5-S1CH1 model. The condi-
tion dA ¼ dB ¼ �dC=2 to conserve the trace of the
inertial tensor when changing �CC20 was applied.

All these values represent one consistent system of
parameters, which were found by a simultaneous ad-
justment of the most recent geodetic and astronomic
observations. Nevertheless, the comparison of their time
evolution with the standard deviations r gives significant
results only for the first set of parameters coming purely
from satellite geodesy. Due to the uncertainty in the
astronomic dynamic ellipticity HD, the second parameter
subset reveals only insignificant temporal changes over
the given time interval of 38 years.

It has to be noted that the geodetic observations,
represented by the four global gravity field models, are
not completely independent due to overlaps in the un-
derlying satellite tracking data.
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