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Abstract. A new algorithm and computer program,
KODAC (Kinematic Orbit Determination And Com-
parison), was developed for precise satellite orbit deter-
mination using a kinematic approach with the
ionospheric-free triple-differenced (TD) global position-
ing system (GPS) carrier phase as the main observable.
Epoch-by-epoch satellite positions are estimated by
assuming that the GPS satellite ephemerides, ground
station positions, and the time series of wet tropospheric
zenith delay are known in advance. The technique was
demonstrated with TOPEX/POSEIDON GPS data,
which gave a final radial root-mean-square orbit accu-
racy of 8 cm with respect to a fully dynamic solution.
This new approach has the advantage of having consis-
tent orbit accuracy regardless of satellite altitude due to
its non-dynamic approach.
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1 Introduction

The mainstream approach to precise satellite orbit
determination has been a dynamic one. In this ap-
proach, observations at different times are related to the
epoch state parameters by integrating the satellite
equations of motion, a process requiring accurate
satellite force models. Thus, errors in the force models
can introduce errors in the epoch state solution. Since
the effect of force model errors tends to increase with
increasing arc length, the expected error from dynamic
mismodeling increases as an observation is further in
time from the solution epoch. This method estimates
satellite position and velocity at a single epoch from an
extended arc of data, and a least-squares (LS) estimation
procedure is used to find the epoch state for which the
resulting model trajectory best fits the tracking data.

This classic dynamic orbit determination approach has
been successful for many satellite missions (Tapley
1973).

The dynamic orbit determination approach using a
global positioning system (GPS) requires precise mea-
surement models and force models for both a low Earth
satellite and the GPS satellites. Precise orbit determi-
nation for TOPEX/POSEIDON using the dynamic
approach with GPS was performed at the Center for
Space Research (CSR), at the University of Texas at
Austin. By using batch filtering software known as
MSODP (Multi-Satellite Orbit Determination Pro-
gram), an orbit accuracy level of 4 cm root mean square
(RMS) in the radial direction was achieved. This major
improvement in the satellite orbit accuracy was obtained
largely by fine tuning the Earth’s gravitational field and
placing TOPEX/POSEIDON at a relatively high alti-
tude of 1336 km in order to reduce the satellite dynamic
model errors (Rim 1992).

The dynamic approach can provide not only the
satellite orbit but also many geophysically meaningful
parameters. However, precise modeling of forces acting
on each satellite is a very complicated process. This
approach also involves numerical integration of satellite
equations of motion, and thus can be computationally
extensive. When the satellite is in an environment where
the precise dynamics model is not available, it is very
difficult to achieve an accurate satellite orbit when a
dynamic approach is used. For example, at the lower
altitudes where atmospheric drag and Earth gravity
anomaly effects are severe, the current dynamic model
alone cannot provide an accurate satellite orbit. Even if
it is possible to develop high-precision dynamic models
for this environment, developing precise dynamic
models, especially non-conservative force models, is an
expensive and demanding task.

To improve the fit, various model parameters can be
adjusted. However, the resulting solution is still a model
trajectory, and its accuracy depends on how well the
force models, fixed or adjusted, describe the real
forces acting on the satellite. With the GPS tracking
system, the use of an LS adjustment of empirical (e.g.
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once-/twice-per-revolution) force parameters can com-
pensate for the force model error, and thus can signifi-
cantly reduce the orbit errors. However, more frequent
relaxation tends to increase orbit error significantly, and,
eventually, a purely kinematic solution would be essen-
tially singular (Melbourne et al. 1994).

The reduced dynamic orbit determination approach
has been developed by NASA’s Jet Propulsion Labo-
ratory (JPL). This approach starts with a dynamic sat-
ellite orbit determination, and then a kinematic
component is introduced by adding process noise to the
filter to account for errors in the force and measurement
models. Thus, the reduced dynamic approach combines
the satellite dynamics and the measurement geometric
information, and weighs their relative strength by solv-
ing for process noise accelerations in the user satellite
force model to absorb any dynamic model error. This
method can produce different solution characteristics,
ranging from fully dynamic to fully kinematic, by
varying the parameter defining the process noise. In
general, by carefully fine tuning those parameters, the
solution can be optimized for a particular dynamic
model accuracy. Precise orbit determination for
TOPEX/POSEIDON using the reduced dynamic
approach with GPS was performed at JPL with high-
precision software known as GIPSY-OASIS II, and an
accuracy level of 3 cm RMS in the radial direction was
achieved (Bertiger et al. 1994). This reduced dynamic
approach is a better choice when the dynamic model is
not very accurate. However, it is computationally far
more expensive than the dynamic approach, and a good
dynamic model is still needed to produce a satisfactory
initial reference orbit.

Since GPS signals provide comprehensive three-
dimensional (3-D) geometric information, a completely
new satellite orbit determination method using a kine-
matic approach was developed and implemented in a
computer program known as KODAC (Kinematic
Orbit Determination And Comparison). The algorithm
does not involve any satellite force models at all, and
epoch-by-epoch satellite positions are computed in
purely kinematic mode by processing ionospheric-free
triple-differenced (TD) GPS carrier-phase measure-
ments as the main observables. This method requires
knowledge of the GPS satellite ephemerides, ground
station positions, and the time series of the wet com-
ponent of the tropospheric zenith delay in advance. As
with most of the other precise satellite orbit determina-
tion methods, a post-processing mode is assumed. The
procedure for the kinematic satellite orbit determination
approach using differenced GPS carrier phase data is
composed of four main steps:

1. GPS data pre-processing
2. A priori position computing
3. Sequential batch filtering
4. Multi-epoch batch filtering

This new kinematic approach has the advantage of
having consistent orbit accuracy regardless of satellite
altitude, and the same algorithm can be applied to any

satellite with a GPS receiver due to its non-dynamic
approach. Thus, this new method is especially useful for
low Earth orbiters such as the TOPEX/POSEIDON,
CHAMP, ICESat (Rim et al. 2000), GRACE, and
GOCE satellites. For this study TOPEX/POSEIDON
was chosen as the test satellite due to its well-verified
precise orbits. The quality of the kinematic solution
from TDs was assessed by comparing it to the well-
verified MSODP dynamic solution.

2 GPS data pre-processing

The first step of the kinematic orbit determination
approach is the GPS data pre-processing where the raw
GPS data in RINEX format is processed in order to
facilitate the later estimation process. This step corrects
the receiver time tags, edits bad data, forms the
ionospheric-free double-differenced (DD) observable,
and sorts and merges the data sets. The DD observable
involves two GPS satellites, one ground station, and one
low-altitude user satellite. The data from the subset of
the global GPS network of the International GPS
Service for Geodynamics (IGS) were used to form the
DD observables. Approximations of the unknown DD
ambiguity terms are calculated and added to the DD
observable during the pre-processing step. Thus a large
portion of the DD ambiguity terms is corrected during
this step. The GPS data pre-processing software system
known as TEXGAP (the university of TEXas Gps
Analysis Program) was established during the develop-
ment of MSODP. It is currently implemented on a Unix
workstation platform (Byun 1998). Since the kinematic
orbit determination approach requires the TD as the
main observable, one more step to form the TD is added
to the pre-processing stage. The TD is easily generated
by differencing the DD data between epochs.

3 TOPEX/POSEIDON GPS data

High-quality GPS orbits are needed for the kinematic
precise orbit determination process. Precise GPS orbits
are routinely calculated in dynamic mode by using the
GPS observation data from a well-established network
of IGS sites. For this research, the GPS data from
TOPEX/POSEIDON and 24 IGS ground receivers on
24 April 1995 were used. Figure 1 shows the relatively
uniform global distribution of the IGS stations used.
There are nine fiducial sites which are shown as large
squares. Their positions are known accurately by using
other positioning methods, and are held fixed during
the GPS orbit determination process. There are 15
regular ground stations which are shown as circles in
Fig. 1. Their positions are not fixed during the GPS
orbit determination process, but are estimated with the
GPS orbit. These estimated regular ground-station
positions are used for the kinematic orbit determina-
tion process where ground stations are always assumed
fixed.
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3.1 Quality and quantity assessment
of differenced observables

In the case of the dynamic orbit determination ap-
proach, good-quality orbit solutions can be obtained at
epochs with bad observations (or no observations at all)
as long as the bad observations can be properly edited
out and an accurate satellite dynamics model is avail-
able. This is possible since the satellite dynamics model
can provide a continuous satellite state. Thus, the
satellite state at an epoch without enough observations
can be obtained from the observations at other epochs
by using the satellite dynamics model.

However, in the case of the kinematic orbit deter-
mination approach, where the process depends entirely
on the observation geometry, it is impossible to compute

the satellite position at epochs without enough obser-
vations since the satellite positions at each epoch are
independent parameters. Thus, the GPS data quality is
very important in the kinematic orbit determination
problem, and should be carefully checked before kine-
matic orbit determination is attempted. Figure 2 shows
the number of TD observables at each epoch for one
day, and a very similar plot can be obtained for DD
observables. In Table 1, the second and the third col-
umn show the averages and the standard deviations of
the numbers of DD/TD observables, respectively. The
fourth column of Table 1 shows the maximum number
of DD/TD observables occurring at an epoch near 16:00
hr. On average, there are about 15 DD/TD obser-
vations. However, as Fig. 2 shows, the number of the

Fig. 1. Distribution of IGS-95
GPS tracking stations used for
TOPEX/POSEIDON orbit
determination

Fig. 2. Number of TDs for TOPEX/
POSEIDON at each epoch (24 April 1995)
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observables changes considerably during the course of
one day. TOPEX/POSEIDON’s on-board GPS receiver
has six channels. If an on-board receiver was equipped
with more channels, more DD/TD observables would be
available.

For the computation of an a priori satellite position,
the DD ambiguities are assumed to be known, and a
minimum of at least three DD observations is required
at each epoch (discussed later). Otherwise, the user sat-
ellite position cannot be calculated in the kinematic
approach. In addition to the number of observations,
good geometric distribution of the GPS satellites is re-
quired to compute reasonably accurate a priori posi-
tions. This is especially true when few DD observations
are available. Table 2 shows the number of epochs with
few DD/TD observations. The second column of Ta-
ble 2 shows the number of epochs with three DD/TD
observations or less; the third column shows the number
of epochs with four observations or less, and so on. In
theory, three DD observations are the minimum re-
quirement for a priori user-satellite position computa-
tion. However, taking into consideration the geometric
GPS satellite distribution and the possibility of bad DD
observations, five DD observations are considered the
minimum number of observations for this study. When
an epoch with less than the minimum requirement of

DD observations is encountered, the epoch is simply
skipped.

When a sequential batch filter (described later) is used
to process the TD data, a minimum number of six TD
observations is required at each epoch. Considering the
geometric GPS satellite distribution and the possibility
of bad TD observations, seven TD observations are
considered the minimum number of observations for
this study. When an epoch with less than the minimum
requirement of TD observations is encountered, the
epoch is simply skipped for sequential batch filtering.
Figure 3 shows the 168 epochs with six TD observations
or less. This figure helps to identify which epochs to
avoid when a sequential batch filter is used to process
the TD data.

4 A priori orbit solutions

A large portion of the DD ambiguity values is calculated
and added to the DD observations during the pre-
processing stage. Thus, by assuming that the DD
ambiguity is zero and all measurement errors including
tropospheric delay have been corrected, the ionospheric-
free DD observable can be written in simple form as:

DDc pq
ju ðtÞ ¼ qp

j ðtjÞ � qp
uðtuÞ � qq

j ðtjÞ þ qq
uðtuÞ ð1Þ

where

q = computed range with error corrections
p; q = GPS satellite identification numbers

j = j-th ground station receiver
u = user satellite
t = nominal epoch
tj = corrected ground receiver time tag
tu = corrected satellite receiver time tag

Since the GPS satellite ephemerides and the ground
station positions are assumed to be known, the user

satellite’s position, X ðtÞ ¼ XuðtÞYuðtÞ ZuðtÞ½ �T , at the
nominal epoch t is the only unknown in the above

Table 1. Statistics for the number of DD and TD observables

Type Mean Standard deviation Max

DD 15.57 6.22 37
TD 15.15 6.20 36

Table 2. Number of epochs with few DD and TD observations

Type �3 �4 �5 �6

DD 30 56 85 138
TD 38 71 106 168

Fig. 3. Epochs with six TDs or less
(24 April 1995)
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equation. Assuming there is a sufficient number of DD
observations at epoch t, the a priori satellite position,
X ðtÞ, is estimated by processing the DD data using an
LS batch filter. Once a priori satellite positions are
obtained for every epoch, a priori satellite velocities are
computed by using a ninth-order polynomial interpola-
tion of the position solutions (Remondi 1984). As
discussed later, these a priori solutions are used during
the first forward iteration using the sequential batch
filter.

4.1 Singular value decomposition method

The LS method of directly inverting a normal matrix
works fine as long as there is a sufficient number of good
DD observations. However, this normal matrix is
underdetermined at epochs with less than three DD
observations. Sometimes, even at epochs with three or
more DD observations, a poor distribution of GPS
satellites can make the normal matrix very close to
singular. Thus, directly inverting the normal matrix can
fail or cause numerical instability, especially at the
epochs with few DD observations. Therefore, instead of
directly inverting the normal matrix, Singular value
decomposition (SVD) method is employed for the
computation of the a priori user satellite position. The
SVD approach can be computationally extensive, and
thus significantly slower than directly solving the normal
equations. However, its great advantage is that SVD is
numerically very stable, and it cannot fail, at least
theoretically, even if the normal matrix is singular. SVD
always provides a solution or some other useful
information (Press et al. 1992).

In order to obtain a unique a priori solution, a
minimum of three DD observations is needed at each
epoch. Even though the SVD method can theoretically
set a solution of an underdetermined problem at epochs
with less than three DD observations, these epochs are
simply skipped since SVD produces the mathematically
smallest values (in the LS sense), which are not neces-
sarily the correct ones. The SVD produces the best LS
approximation for overdetermined epochs (Golub and
Van Loan 1996). The quality of the solution can be
checked later by examining the minimum of the singular
values and the RMS of the measurement residuals.

4.2 A priori solution from DDs

In Fig. 4, the a priori solutions from the DD observa-
tions are compared to the MSODP solutions in the
satellite-centered RTN (Radial–Transverse–Normal)
coordinate system. Even though the figure does not
show outliers, there are some epochs with orbit errors as
large as several hundred meters. These are the epochs
with few DD observations or with unfavorable GPS
satellite distribution geometry. As long as there is a
sufficient number of DD observations, a priori orbit
solutions with less than 14 m total RMS orbit error can
be obtained. Table 3 shows the means and the RMS of

the orbit differences in RTN coordinates. Due to the
ignored DD ambiguities, high values of the RMS about
the means can be seen as expected. Even though the DD
ambiguities are ignored for the computation of the a
priori orbit solution, the quality of the a priori orbit
accuracy increases with increasing number of observa-
tions. This is because when there are many DD
observations at an epoch, the effect of the ignored
ambiguities (some have positive values and some have
negative values) can be averaged out and thus they more
or less cancel with each other.

The a priori orbit is the solution of the three un-
knowns at each epoch in an LS sense. Since the SVD
method is used for the LS problem, there are three sin-
gular values corresponding to the a priori solution at
each epoch. Thus, the quality of the solution at each
epoch can be assessed by examining the corresponding
singular values, and it can be observed that the epochs
with small singular values have few observations.

Figure 5 shows the differences between the a priori
velocity computed by interpolating the a priori position
solution and the MSODP velocity solutions in the
RTN coordinate system excluding outliers. These a
priori velocity solution outliers are caused by interpo-
lating bad a priori positions. Note that even though the
velocity error is at cm/sec level, it is acceptable for the
kinematic orbit determination purpose where the ve-
locity information is used only for the relativistic
Doppler shift correction. In fact, this correction term is
very small and can easily be ignored. Table 3 also
shows the means and the RMS of the velocity
differences.

5 Kinematic solutions from TDs

Satellite orbit determination using GPS-differenced
observables in kinematic mode is quite different from
the traditional dynamic approach. If satellite dynamics
are used and the satellite initial state and the DD
ambiguities are estimated along with the other force-
and measurement-model-related parameters, the satellite
orbit determination problem using the DD date is
observable (solvable).

The problem becomes unobservable (underdeter-
mined) if we try to estimate the satellite positions at
every epoch and all of the DD ambiguities together in
kinematic mode without any constraints. To avoid the
unobservability, we can search for the unknown DD
ambiguities starting from a priori solutions from the
DDs. However, this ambiguity searching method is not
practical when the DD ambiguities are real numbers
instead of integers due to the huge ambiguity search
space associated with real numbers. Even if constraints
are provided for the DD ambiguities, there are so many
parameters to be estimated in comparison to the number
of observations that the estimation process could easily
converge to the wrong local minimum (Byun and Schutz
2001).

In order to make the problem more tractable, the TD
observable is used to improve the a priori solutions from
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the DDs. Using the TDs, there are fewer observations
than with the DDs. Furthermore, the TDs are noisier
and more correlated with each other than the DDs.
However, by processing the TD observables epoch by
epoch, the kinematic orbit determination approach be-
comes observable, and it is possible to improve the
satellite a priori position solution without using the
satellite dynamics.

The kinematic orbit determination algorithm using
the TD observables is composed of two steps: (1) se-
quential batch filtering and (2) multi-epoch batch fil-
tering. The sequential batch filter is a hybrid filter having
the properties of batch and Kalman filters. This filter is
used first to improve the a priori orbit solution by fil-
tering the TDs in both forward and backward direc-
tions. Then, the multi-epoch batch filter is used to
smooth the outlying solutions, if any, and to estimate
the position solutions at epochs skipped by the sequen-
tial batch filter.

It should be noted that the TD observable has rel-
atively weak information since it is generated by dif-
ferencing three times. In fact, it only contains
information on position change since it is differenced
between epochs. If we skip the sequential batch filtering
and go straight to the multi-epoch batch filtering using
the a priori solutions from DDs, the solutions may
converge to local minimums instead of near true so-
lutions due to the weak information content of TDs.
Therefore, the sequential batch filtering is necessary
and important.

Fig. 4. Differences between the a priori
and the MSODP orbit solutions

Table 3. Statistics of differences between the a priori and the
MSDOP orbit

Statistic DR (m) DT (m) DN (m) D _RR (m/s) D _TT (m/s) D _NN (m/s)

Mean )3.3892 )0.1224 )0.9445 )0.0003 )0.0001 0.0032
RMS 13.0746 5.2717 4.0477 0.1789 0.4149 0.1348
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The TDs are correlated observables and taking into
account the correlation will enhance the accuracy of
an estimated orbit solution. However, the general
decorrelation process requires the inverse of the mea-
surement noise matrix whose size is the same as the
number of observations at an epoch. Thus, consider-
ing the decorrelation process requires more computa-
tion time. Since two of the advantages of the
kinematic approach are its simplicity and speed, two
different cases are tested and compared: considering
the TD data correlation, and not considering the
correlation. In the case of the TOPEX/POSEIDON
satellite, there is an unexplained radial direction an-
tenna offset (6 cm) which can be empirically estimated
when the dynamic approach is used (Bertiger et al.
1994). For the kinematic orbit determination ap-
proach, in order to investigate the effect of the
antenna offset on the orbit solution, two more cases
are tested: one without considering the antenna offset

effect, and one with the antenna offset effect initially
corrected.

By considering the decorrelation process and the
antenna offset, the four test cases shown in Table 4 can
be formed. The four cases are labeled sol0, sol1, sol2,
and sol3, and will be used consistently in this article.
Note that the sol0 case is expected to have the worst
precision. The accuracy is expected to increase with in-
creasing case number; the best solution is expected to be
the sol3 case.

Fig. 5. Differences between the a priori
and the MSODP velocity solutions

Table 4. The four test cases of kinematic orbit determination

Case Decorrelation Antenna offset

sol0 no no
sol1 no yes
sol2 yes no
sol3 yes yes
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5.1 Sequential batch LS method

After all measurement corrections including tropospheric
delay have been applied, the ionospheric-free TD
observable can be written as

TDc pq
ju ðtkÞ ¼ qp

j ðtjÞ � qp
uðtuÞ � qq

j ðtjÞ þ qq
uðtuÞ

h i
tk

� qp
j ðtjÞ � qp

uðtuÞ � qq
j ðtjÞ þ qq

uðtuÞ
h i

tk�1

ð2Þ

where q is the computed range with error corrections,
and all superscripts and subscripts are the same as for
Eq. (1).

The TD observable has the user satellite’s position
information at the current epoch, tk, and that at the
previous epoch, tk�1. However, this is the difference of
DD observables at two epochs, and thus it has the in-
formation on the user satellite’s position change between
two epochs rather than the user satellite’s absolute po-
sition information at two consecutive epochs. When a
satellite dynamics model is used with the TD observable,
the dynamic model can provide approximate informa-
tion on the satellite’s absolute position while the TD
observable provides the satellite’s position changes over
time. As long as the dynamic model is accurate and
enough TDs are available, an accurate satellite orbit can
be obtained (Goad et al. 1996).

On the contrary, when a kinematic approach is used
for a short-arc orbit determination and the positions at
all epochs are solved simultaneously, a limited number
of the TD observables alone cannot provide enough
information to estimate the satellite’s absolute position
due to the relative nature of the TDs. The estimated
solution can easily converge to any local minimum in-
stead of the best orbit solution. If a long arc covering
more than one orbit revolution is considered, the TD
observable alone may provide enough information for
satellite orbit determination. Unlike in the dynamic
approach, the position at each epoch is treated as an
unknown independent parameter in the kinematic ap-
proach. Thus considering a very long arc is not practical
due to the excessively large number of parameters to be
estimated.

Nevertheless, it is possible to obtain a much im-
proved orbit from the TDs with the kinematic approach
by using an a priori orbit solution from the DDs and
providing a proper a priori constraint. To implement
this, a sequential batch LS filter was developed to pro-
cess the TDs sequentially one epoch at a time in a batch
mode.

5.1.1 Formulation
Since the TD observable has the user-satellite position
information at two epochs, two proper time tags should
be specified to distinguish the current epoch from the
previous epoch in the formulation. By assuming that the
GPS satellite orbit and ground station positions are
known and all measurement corrections are properly
applied, the user satellite’s positions at the two epochs
tk�1 and tk

X ðtkÞ ¼ Xuðtk�1ÞYuðtk�1ÞZuðtk�1Þ½ XuðtkÞ YuðtkÞ ZuðtkÞ�T

ð3Þ

are the only unknowns in Eq. (2). Assuming there are l
TD observations available at epoch tk, the ith measure-
ment equation can be written as

YiðtkÞ ¼ Gi X 	; tkð Þ þ ei; i ¼ 1; 2; . . . ; l ð4Þ

where

GiðX 	; tkÞ ¼ TDc pq
ju ðtkÞ ð5Þ

X 	 is the nominal value of X in Eq. (3), and ei includes
measurement noise and all errors in parameters used to
compute q. The linearized ith TD observation equation
can be written as

yiðtkÞ ¼ ~HHixðtkÞ þ ei ð6Þ

where the observation state mapping matrix is

~HHi ¼
oGiðX 	; tkÞ

oX
ð7Þ

and the error ei includes the linearization contribution.
When the dynamic orbit determination approach is
used, the mapping matrix ~HHi is usually propagated to the
reference epoch t0 by using a state transition matrix
Uðt0; tkÞ as

Hi ¼ ~HHiUðt0; tkÞ ð8Þ

In the case of the kinematic orbit determination
approach, the U matrix becomes an identity matrix
since there are no satellite dynamics involved. Thus, the
mapping matrix Hi is the same as ~HHi. By using the
mapping matrix Hi and by adopting vector and matrix
notations, Eq. (6) can be written as

yðtkÞ ¼ HxðtkÞ þ e ð9Þ

Here, the dimension of y is l
 1; the dimension of H is
l
 6; the dimension of x is 6
 1; and the dimension of
e is l
 1. Assuming there are at least six or more TD
observations at epoch tk, the deviation vector, x, can be
estimated by the LS method with a priori information
as

x̂x ¼ ðHTR�1H þ �PP�1Þ�1ðHTR�1y þ �PP�1�xxÞ ð10Þ

where R is a measurement noise matrix, �PP is the a
priori covariance of the user satellite position, and �xx is
the a priori value of x as given below (Tapely 1973).
When the TD data correlation is not considered, R is a
simple diagonal matrix. However, this matrix becomes
non-diagonal when the TD data correlation is consid-
ered. Since only two consecutive epochs are considered
at a time in the sequential batch filter, the correlation
matrix has only the correlation component due to the
double-differencing process and not the correlation
component due to the differencing in time. In other
words, the correlation matrix for the sequential batch
filter is a block diagonal matrix rather than a banded
matrix.
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The a priori covariance matrix, �PP , can be written as

�PP ðtkÞ ¼
�PP11ðtkÞ �PP12ðtkÞ
�PP21ðtkÞ �PP22ðtkÞ

� �
ð11Þ

where the subscript 1 denotes the satellite position at
the previous epoch, tk�1, and the subscript 2 denotes
the satellite position at the current epoch, tk. By
processing the TD observables, the satellite positions at
two consecutive epochs are estimated simultaneously.
In order to overcome the weak information content of
the TD data, the a priori position solution for the
previous epoch is properly constrained by uncertainties
of the a priori solution while the a priori solution of
the current position is barely constrained. The a priori
covariance matrix at the current epoch, tk, is assigned
as

�PP11ðtkÞ(¼P22ðtk�1Þ
�PP12ðtkÞ(¼0

�PP21ðtkÞ(¼0

�PP22ðtkÞ(¼r2I

ð12Þ

P22 is the a posteriori position covariance matrix
solution at the previous epoch. In other words, the
covariance matrix of the user satellite position at epoch
tk�1 computed from the TD data at the epoch tk�1 is used
as the a priori covariance matrix of the satellite position
at the same epoch, tk�1, when the TD data at epoch tk
are processed. At the initial epoch, the diagonal elements
of submatrix �PP11 are assigned the values of the assumed
error of the a priori satellite position from the DD
observables. All elements of submatrices �PP12 and �PP21 are
always set to zero. For the diagonal elements of
submatrix �PP22, a very high value (no constraint), r2, is
assigned; all other elements of �PP22 are set to zero.

The a priori position deviation, �xx, at epoch tk can be
written as

�xxðtkÞ ¼
�xx1ðtkÞ
�xx2ðtkÞ

� �
ð13Þ

where the subscript 1 denotes the satellite position at the
previous epoch, tk�1, and the subscript 2 denotes the
satellite position at the current epoch, tk. The value of �xx
at epoch tk is assigned as

�xx1ðtkÞ(¼x̂x2ðtk�1Þ
�xx2ðtkÞ(¼0

ð14Þ

where x̂x2 is the a posteriori position deviation estimation
at the previous epoch. At the initial epoch, �xx1 is set to
zero. �xx2 is always set to zero. Thus, the updated satellite
position at the previous epoch and the position at the
current epoch, tk, can be computed as

X ðtkÞ ¼ X 	ðtkÞ þ x̂xðtkÞ ð15Þ

These updated satellite positions at two consecutive
epochs are the re-adjusted position of the previous
epoch and the newly updated position of the current
epoch.

So far only the TD data from one epoch have been
processed and only the satellite positions at two epochs
have been updated. Due to the limited information of
the TD observable, the estimated position solution at the
current epoch may not be very accurate. However, the
updated position is slightly better than its a priori po-
sition solution due to the added information from the
TDs at the epoch tk. The filter then propagates the so-
lution to the next epoch, tkþ1, by using Eqs. (12) and
(14). Then, the TD data at the epoch tkþ1 are processed.
This same process is repeated at each successive epoch
until the final epoch is reached. As long as the TD data
quality is consistently good, the satellite position solu-
tions at the later epochs are more accurate as additional
TDs are processed during the first forward filtering; thus
the best estimated position may be obtained at the final
epoch. While the estimated position at the final epoch is
probably the best one, the estimated position at the
initial epoch is probably the worst one.

Because the filter is running in post-processing mode,
it is possible to process the TD data in reverse. A
backward filter was developed to propagate the better
solution at the final epoch to the proceeding epochs and
thus to improve the quality of the solution throughout
the whole data span. While the forward filter uses the
TD observable

TDðtkÞ ¼ DDðtkÞ � DDðtk�1Þ ð16Þ

the backward filter uses the negative of the TD
observable,

�TDðtkÞ ¼ DDðtk�1Þ � DDðtkÞ: ð17Þ

When the filter runs in the backward direction, the
position solutions from the previous forward filtering
are used as the new a priori position information and the
TD data are processed until the initial epoch is reached.
Then the forward filter is applied again using the
improved position solution from backward filtering as
the new a priori value, and so on. This forward and
backward filter combination (smoother) is used itera-
tively until the best solution from the TD data is
obtained at all epochs.

When the user-satellite velocity information is
needed, the a priori satellite velocities from the DD
data are used during the first forward filtering. After
processing with the forward filter, the satellite velocity
is updated by polynomial interpolation of the updated
satellite position. This velocity is used during the first
backward filtering. Once the initial epoch is reached,
the satellite velocity is updated by interpolating the
updated satellite position solution from the backward
filter. In the next forward iteration, the velocity solu-
tion from the last backward filtering is used, and so
on.

5.1.2 Results from the sequential-batch filter
Since the TD observable has only the information on the
satellite position change between two epochs, the final
estimated position solution accuracy depends on how
many epochs of TD data are processed (the time interval
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between two consecutive epochs of the TD data is 30 sec
in this study). Therefore, the sequential batch filter
solution accuracy with respect to the amount of the TD
data processed is investigated. The accuracy comparison
of the solutions from 20, 30, 60, 90, 120, and 150 epochs
of TD data is shown in Fig. 6 for the sol1 case. Figure 6
shows the orbit differences between the kinematic
solution from the final forward filtering of the sequential
batch filter and the MSODP orbit solution. In Fig. 6,
the length of the plotted line indicates the amount of
data processed. When the data length is short (20 or 30
epochs), the solution has a large radial orbit error of
about 1 m. When a small amount of TD data is
processed, the measurement residuals are fairly small
but the orbit errors are large. This indicates that the
solution has converged to the local minimum rather
than the best orbit solution.

As the number of data epochs increases to 60, the
estimated solution improves considerably. As the num-

ber of epochs increases further, the solution accuracy
improves; however, considering more than 90 epochs of
TD data fails to show any noticeable improvement. For
this research, in order to make the book-keeping easy,
120 epochs of the TD data, which are equivalent to 1 hr,
are considered at a time.

Table 5 summarizes Fig. 6 by showing the orbit dif-
ferences in RMS for sol1 case, and Table 6 summarizes
similar information for the backward filtering. For this
particular time period, the backward filter solution is
slightly less accurate than the forward filter when more
than 90 epochs of the TD data are considered. However,
the sequential batch filter alone cannot determine
whether the forward solution or the backward solution is
better. In general, the backward filter shows smaller
values for the measurement residuals. However, a smaller
residual does not necessarily mean a better orbit solution.

Figure 7 shows the convergence trends of the se-
quential batch filter during the iterations in the forward

Fig. 6. Effect of the amount of TDs on the
orbit accuracy from the sequential batch
filter (sol1, forward)
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and backward directions. This figure shows the differ-
ences between the sequential batch filter solutions and
the MSODP solution for the sol1 case. For these plots,
120 epochs of the TD data are used. At the initial epoch,
the position uncertainty is given as 6 m, and a very large
value is given for the position uncertainty at the current
epoch. By using the kth-epoch TD observations, the filter
can estimate the positions at the (k � 1)th epoch and at
the current kth-epoch together. The kth-epoch position
is estimated again when the (k þ 1)th-epoch TDs are
processed. Thus, there are always dual-position solu-
tions at each epoch except at the initial and final epochs.
This dual-position solution character can be seen as
vertical lines in all three plots of Fig. 7. A very similar
statement can be made for the filtering in the backward
direction. Thus, there exist four different position solu-
tions when the sequential batch filter is used with the TD
data in the forward and backward directions. As shown
in Fig. 7, the first iteration in the forward direction
contributes the most to the solution convergence, while
the following filtering in the backward direction does
most of the solution smoothing. After four more itera-
tions in the forward and backward directions, the solu-
tion converges.

Figure 8 is basically the same as Fig. 7, except that
the first iteration in the forward direction is omitted. In
Fig. 8, the light lines denote the filtering in the forward
direction, and the dark lines denote the filtering in the
backward direction. The solutions from filtering in the
forward and backward directions get closer as the iter-
ation number increases. However, after a certain point,
they do not get any closer. The sequential batch filter
finds the position solutions of two epochs at a time using
the covariance information from the previous epoch
solution. Unfortunately, the TD observations do not
necessarily have the same quality throughout the entire

data span. A different data quality at one epoch can
result in a different covariance value, which then affects
the solution quality of the next epoch. In other words,
the quality of the TD data can push the position solu-
tion in a certain direction that is dependent on the se-
quence of the TD data. Therefore, the position solution
from filtering in the forward direction is not necessarily
the same as the solution from filtering in the backward
direction. These four position solutions are passed to the
next stage: the multi-epoch batch filter.

So far the results are for the case considering the
antenna offset correction but not the TD observation
correlation (sol1). Other cases were tested and Table 7
shows the orbit differences in RMS with respect to the
MSODP dynamic solution for all four cases in Table 4.
All cases used 120 epochs of the TD data. It is well
known that the dynamic orbit solution is the most ac-
curate in the radial direction. Thus, when assessing the
accuracy of the kinematic orbit solutions with respect to
the dynamic solution, more emphasis should be given to
the radial component. As expected, the worst solution is
for the sol0 case, and solutions improve as the sol1 and
sol2 cases are processed. Finally, the best kinematic
solution is obtained for the sol3 case. It should be noted
that consideration of the observation decorrelation
process is more important than consideration of the
antenna offset in achieving more accuracy.

5.2. Multi-epoch batch LS method

At each epoch there are four separate position solutions
from the sequential batch filter: two from the forward
filtering and two from the backward filtering. Instead of
selecting one of the solutions, a new batch filter, the
multi-epoch batch filter, was developed to estimate
the position at every epoch simultaneously by processing
the TD data. The sequential batch filter solutions are
used as the a priori information.

When the quality of the solution from the sequential
batch filter is good, the multi-epoch batch filter only
marginally improves the sequential batch filter solution.
However, when there are outliers in the solution from
the previous step, the multi-epoch batch filter can
smooth out the bad position solution by considering the
whole data set simultaneously.

There is another useful application of the multi-epoch
batch filter. In the case of the sequential batch filter, two
position solutions are estimated at each epoch. Thus, a
minimum of six TD observations is required at every
epoch. However, as shown in Fig. 3, there are many
epochs with less than six TD observations, and the se-
quential batch filter cannot continuously process the
data from these epochs. In the case of the multi-epoch
batch filter, which estimates only one position solution
at each epoch, a minimum of three TD observations is
required at every epoch. Thus, when an epoch has less
than six but more than three TD observations, the epoch
can be processed by the multi-epoch batch filter. For
example, assume that there are more than six TD ob-
servations at all epochs except at epoch tk, where the

Table 5. Effect of the amount of TDs on the orbit solution accu-
racy RMS from the sequential batch filter (sol1, forward)

No.
epochs

DR (m) DT (m) DN (m) Total (m)

20 1.2951 0.5984 1.6845 2.2075
30 0.6163 0.2604 0.3710 0.7651
60 0.1277 0.2884 0.7233 0.7891
90 0.1162 0.0892 0.2084 0.2547
120 0.1294 0.0776 0.1422 0.2087
150 0.2042 0.1463 0.0680 0.2603

Table 6. Effect of the amount of TDs on the orbit solution accu-
racy from the sequential batch filter (sol1, backward)

No.
epochs

DR (m) DT (m) DN (m) Total (m)

20 1.2742 0.5822 1.7009 2.2035
30 0.5931 0.2586 0.3559 0.7385
60 0.1254 0.2732 0.7327 0.7919
90 0.1501 0.1507 0.1679 0.2709
120 0.1515 0.1383 0.1146 0.2350
150 0.2788 0.2545 0.0328 0.3789
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number of TD observation is less than six but more than
three. Skipping epoch tk, the TD data can be divided
into two parts: one part starting from epoch t0 and
ending at epoch tk�1, and the other part from epoch tkþ1

to final epoch tf . These two data sets can be processed
separately by the sequential batch filter. Then, the entire
TD data including epoch tk can be processed using the
multi-epoch batch filter. The solution from the sequen-
tial batch filter is used as the a priori position at all
epochs except epoch tk, where the previous a priori po-
sition solution and covariance from the DD data pro-
cessing are used instead.

5.2.1 Formulation
The formulation for the multi-epoch batch filter is
similar to that for the sequential batch filter. The only
difference is that while only two positions are estimated
at a time by the sequential batch filter, all positions are

estimated simultaneously by the multi-epoch batch filter.
The position vector of Eq. (3) now becomes,

X ¼ X0 Y0 Z0 X1 Y1 Z1 � � � Xn Yn Zn½ �T ð18Þ

where the subscripts 0 and n denote the initial and
final epochs, respectively. When n epochs of TD data
are considered, the vector size becomes ðnþ 1Þ 
 3,
since each position is independent with respect to any
other position and must be estimated as a separate
parameter. As the amount of data increases, the size of
the position vector increases. For this reason, the TD
data size to be processed at any one time should be
limited. For the multi-epoch batch filter, the same 1-hr
TD data processed by the sequential batch filter are
used.

Assuming there are l TD observations throughout n
epochs, the ith measurement equation can be written as

Fig. 7. Convergence character of the
sequential batch filter (sol1)
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YiðtÞ ¼ Gi X 	; tð Þ þ ei; i ¼ 1; 2; . . . ; l ð19Þ

where

GiðX 	; tÞ ¼ TDc pq
ju ðtÞ ð20Þ

X 	 is the nominal value of X from the sequential batch
filter, and ei includes measurement noise and all errors in
parameters used to compute q. The ith computed
observation Gi is only a function of the satellite
positions at the previous and current epochs within the
position vector, X. By following a similar derivation to
that of the sequential batch filter case, the linearized ith
TD observation equation can be written as

yi ¼ ~HHixþ ei ð21Þ

where the observation state mapping matrix is

~HHi ¼
oGiðX 	; tÞ

oX
ð22Þ

and the error ei includes the linearization contribution.
Since Gi is a function of the position vector, X, Eq. (22)
can be rewritten as

oGi

oX
¼ oGi

oX0

oGi

oY0

oGi

oZ0

oGi

oX1

oGi

oY1

oGi

oZ1
� � � oGi

oXn

oGi

oYn

oGi

oZn

� �

ð23Þ

Only six elements in this vector, which correspond to the
positions at the current and previous epochs, are non-
zero; all other elements are zero. Since there are no
satellite dynamics, the mapping matrix, ~HHi, is the same
as Hi as in the formulation of sequential batch filter. In
matrix notation, the linearized observation equations
can be written as

y ¼ Hxþ e ð24Þ

where the dimension of the y vector is l
 1; the
dimension of the H matrix is l
 3ðnþ 1Þ; the dimension

Fig. 8. Convergence character of the se-
quential batch filter after the first itera-
tion (sol1). Dark color denotes forward
iteration and light color denotes backward
iteration
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of the x vector is 3ðnþ 1Þ 
 1; and the dimension of the
e vector is l
 1. Assuming there are at least three
observations at every epoch, the deviation vector, x, of
dimension 3ðnþ 1Þ 
 1 can be estimated by

x̂x ¼ ðHTR�1H þ �PP�1Þ�1ðHTR�1y þ �PP�1�xxÞ ð25Þ

where R is a measurement noise matrix, �PP is an a priori
position covariance of the user satellite, and �xx is an
a priori value of x (Tapley 1973). All a priori values are
from the sequential batch filter solution, except the
values at the epochs with less than six TD observations.
The previous a priori solutions from the DD processing
are used instead at these epochs.

The application of Eq. (25) to a real-world problem,
however, requires some other considerations. When the
TD data from many epochs are processed simulta-
neously, the row dimension of the H matrix, and the
row and column dimension of the R matrix, are the
same as the total number of TD observations. This
number can easily reach several thousand with only
half an hour of actual TD data. Thus, the straight-
forward formulation of Eq. (25) involving the inverse
R matrix is not practical for computer programming,
especially when the TD observation decorrelation
process is considered.

5.2.2 Correlated differenced observation data
The undifferenced and single-differenced GPS phase
measurements are assumed not to be correlated. Thus
the associate R matrices are simple diagonal matrices,
and their inverses are obtained simply by replacing each
element with its reciprocal. However, DD phase mea-
surements are correlated by sharing common GPS
satellites and receiving antennas (Hofmann-Wellenhof
et al. 2001). When n epochs of DD data are processed
simultaneously, the double-differencing coefficient
matrix can be written as

D ¼

D1

D2

. .
.

Dn

2
6664

3
7775 ð26Þ

where each Dk is the double-differencing coefficient
matrix for the kth epoch. The DD cofactor matrix
is formed by multiplying the double-differencing

coefficient matrix with its transpose. Then the measure-
ment noise matrix is formed by

R ¼ DDTr ð27Þ

where r is the measurement noise of the GPS carrier
phase (Leick 1995). This correlated measurement noise
matrix, R, is a block diagonal matrix as follows

R ¼

R1

R2

. .
.

Rn

2
6664

3
7775 ð28Þ

and there is no correlation between epochs. The inverse
of the R matrix can be computed by inverting each
individual diagonal submatrix independently as (Brogen
1991)

R�1 ¼

R�1
1

R�1
2

. .
.

R�1
n

2
6664

3
7775 ð29Þ

The TD observations are correlated not only by sharing
the common GPS satellites and a ground station, but
also by sharing the same epoch, because of the
between-epoch differencing. The TD cofactor matrix
is formed by multiplying the triple-differencing coeffi-
cient matrix with its transpose. This matrix is a banded
matrix with a profile that depends on the way the triple
differences are built. Figure 9 shows the banded TD
cofactor matrix formed from the initial four epochs
of the TOPEX/POSEIDON TD data on 24 April 1995.
In Fig. 9, the horizontal axis denotes the column index
of the matrix; the vertical axis denotes the row index
of the matrix; each dot denotes any non-zero element
in the matrix. The inverse of this banded cofactor
matrix may be a full matrix. Golub and Van
Loan (1996) described a detailed mathematical treat-
ment of a banded matrix.

Since numerous observations are involved in the
satellite orbit determination problem, the size of the TD
cofactor matrix can be very large. Due to the size and
the banded shape of this matrix, it is very difficult or
even impossible to handle the matrix by using the
standard matrix inversion procedure. Thus, a different
decorrelation scheme employing the right-looking
Cholesky factorization of the TD cofactor matrix is
applied. This method eliminates the need for the inverse
of the TD cofactor matrix by using a forward substitu-
tion scheme for the normal equation. Also, by using the
property of a banded matrix, the computation is sub-
stantially more efficient. Since R is a matrix resulting
from the correlation of two consecutive epochs, only
two epochs of the TD data need to be considered
simultaneously. The description of the recursive Chole-
sky decomposition, and the decorrelation scheme
operating on the lower triangular part of the original TD
cofactor matrix, R, can be found in the paper by Goad
et al. (1996).

Table 7. RMS of differences between the sequential batch filter
and the MSODP orbit solutions: final iterations

Case Direction DR (m) DT (m) DN (m) Total (m)

sol0 fwd 0.1387 0.0766 0.1442 0.2146
bwd 0.1626 0.1383 0.1146 0.2422

sol1 fwd 0.1294 0.0776 0.1442 0.2087
bwd 0.1515 0.1383 0.1146 0.2350

sol2 fwd 0.1157 0.0832 0.2551 0.2922
bwd 0.0968 0.0436 0.2312 0.2545

sol3 fwd 0.0828 0.0832 0.2551 0.2809
bwd 0.0482 0.0437 0.2312 0.2402
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5.2.3 Results from the multi-epoch batch filter
Figure 10 shows the differences between the multi-epoch
batch filter solution and the MSODP solution for the
sol0 case. Figure 10 also shows the differences between
the sequential batch filter solution and the MSODP
solution for the same case. When the TD data are
processed in the sequential batch filter, four separate
position solutions, two from the forward filtering and
the two from the backward filtering, are obtained. The
crosses indicate the results from filtering in the forward
direction, and the circles indicate the results from
filtering in the backward direction. The light solid lines
denote the results from the multi-epoch batch filter using
the forward a priori value from the sequential batch
filter, while the dark solid lines denote the results from
the multi-epoch batch filter using the backward a priori
values.

Table 8 shows the orbit differences in RMS between
the multi-epoch batch filter and the MSODP solution
for all four cases. By comparing Table 8 with Table 7, it
can be seen that the orbit improvement achieved by the
multi-epoch batch filter is marginal for all four cases.
Using the multi-epoch batch filter cannot greatly
improve the orbit over that with the sequential batch
filter when the same TD data are processed. The multi-
epoch batch filter uses the position solution from the
sequential filter as a priori information. By using this a
priori value, the measurement residuals are already
small and do not contain much information for position

solution improvement. However, the multi-epoch batch
filter can smooth out outliers, and is also important
when there are epochs with less than six TD observa-
tions but more than three. In this case the multi-epoch
batch filter allows continuous filtering of the data
through epochs with few observations.

After the multi-epoch batch filtering, we end up with
two position solutions: forward solution and backward
solution. Even though more study is required to deter-
mine which one is better in general, it is believed that the
difference between the forward and backward solutions
is probably the accuracy limit of the position solutions
from the kinematic approach using TDs (Byun and
Schutz 2001).

6 Conclusion

A new and completely different algorithm and com-
puter program, KODAC, was developed for precise
satellite orbit determination using the ionospheric-free
TD GPS carrier phase as the main observable. Unlike
the traditional satellite orbit determination methods
which rely on precise satellite dynamics models, this
new method uses a purely kinematic approach. Since
the GPS signals have enough spatial geometric infor-
mation, it is possible to determine the satellite orbit in
a purely kinematic mode. The algorithm assumes that
the GPS satellite ephemerides, ground station

Fig. 9. Shape of the banded TD cofactor
matrix from four consecutive epochs. There
are 2020 non-zero elements

583



positions, and the time series of the wet component of
the tropospheric zenith delay are known in advance.
The GPS carrier-phase data from the TOPEX/POSEI-
DON GPS receiver and the IGS ground stations were
used for this study. A final RMS of the radial orbit
differences of 8 cm was achieved when compared to the
MSODP orbit, a solution based on dynamic orbit
determination.

This new kinematic approach has the advantage of
providing consistent orbit accuracy regardless of satellite
altitude. The same data processing algorithm can be
applied to any satellite with an on-board GPS receiver
due to the algorithm’s non-dynamic approach. When
the satellite orbit accuracy requirement is not less than
10 cm in the radial direction, the combination of the
sequential batch filter and the multi-epoch batch filter
can be a sufficient tool for satellite orbit determination
in the kinematic mode. The KODAC program can also
be used as an alternative verification tool for other orbit
determination programs due to its unique algorithm,

which is quite different from the traditional dynamics-
based approach.
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