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Abstract. Global mean sea surface heights (SSHs) and
gravity anomalies on a 20 � 20 grid were determined
from Seasat, Geosat (Exact Repeat Mission and
Geodetic Mission), ERS-1 (1.5-year mean of 35-day,
and GM), TOPEX/POSEIDON (T/P) (5.6-year mean)
and ERS-2 (2-year mean) altimeter data over the region
0�–360� longitude and –80�–80� latitude. To reduce
ocean variabilities and data noises, SSHs from non-
repeat missions were filtered by Gaussian filters of
various wavelengths. A Levitus oceanic dynamic topog-
raphy was subtracted from the altimeter-derived SSHs,
and the resulting heights were used to compute along-
track deflection of the vertical (DOV). Geoidal heights
and gravity anomalies were then computed from DOV
using the deflection-geoid and inverse Vening Meinesz
formulae. The Levitus oceanic dynamic topography was
added back to the geoidal heights to obtain a prelimi-
nary sea surface grid. The difference between the T/P
mean sea surface and the preliminary sea surface was
computed on a grid by a minimum curvature method
and then was added to the preliminary grid. The
comparison of the NCTU01 mean sea surface height
(MSSH) with the T/P and the ERS-1 MSSH result in
overall root-mean-square (RMS) differences of 5.0 and
3.1 cm in SSH, respectively, and 7.1 and 3.2 lrad in SSH
gradient, respectively. The RMS differences between the
predicted and shipborne gravity anomalies range from
3.0 to 13.4 mGal in 12 areas of the world’s oceans.
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1 Introduction

Satellite altimetry has opened a new era in Earth
sciences research. A recent compilation of satellite

altimetry applications can be found in Fu and Cazenave
(2001). Mean sea surface height (MSSH) and marine
gravity anomaly are the most two important products of
satellite altimetry for geodetic and geophysical applica-
tions. MSSH is useful in numerous applications, such as
global tide modeling, sea-level-change study, reduction
of altimeter observations to reference tracks, and
bathymetry prediction. Applications of marine gravity
have been illustrated in e.g. Sandwell and Smith (1997).
Disregarding the sea surface topography (SST), marine
gravity anomaly is basically equivalent to MSSH, and
the two have a simple, linear relationship in the spectral
domain. Current global MSSH models have been largely
constructed by direct gridding of altimeter observed sea
surface heights (SSHs), e.g. theMSSHmodels of Kort-og
Matrikelstyrelsen (KMS) (Andersen and Knudsen
1998), the National Aeronautics and Space Administra-
tion (NASA)/Goddard Space Flight Center (GSFC)
(Wang 2000), and Collecte Localisation Satellites (CLS)
(Hernandez and Schaeffer 2000). A somewhat uncon-
ventional approach was employed by Yi (1995), who
used a combined SSH and geoid gradient from multi-
satellite missions to construct the OSU95 MSSH model
see also Rapp and Yi (1997). When using the direct
gridding method, SSHs must be carefully crossover
adjusted to remove inconsistency of SSHs at crossover
points. Insufficient or improper crossover points will
easily lead to artifacts in the resulting field, such as track
pattern and extremely large signature. With MSSH
computed, marine gravity anomaly can be obtained by a
simple conversion in the spectral domain, see e.g.
Schwarz et al. (1990) for a complete derivation of the
spectral conversion between MSSH and gravity anom-
aly (assuming that SST is removed).
A completely different approach to gravity anomaly

recovery from satellite altimetry data uses deflections of
the vertical (DOV) as the data type. The major argument
of using DOV is that DOV are less contaminated by
long-wavelength errors than SSH, and using DOV re-
quires no crossover adjustment; see e.g. Sandwell and
Smith (1997), Hwang et al. (1998), and Andersen andCorrespondence to: C. Hwang
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Knudsen (1998). With DOV from altimetry, it is possi-
ble to compute MSSH using the deflection-geoid for-
mula derived by Hwang (1998). Taking the advantage of
DOV, in this paper we will compute simultaneously a
global MSSH grid and a global gravity anomaly grid
using the deflection geoid and the inverse Vening Me-
inesz formulae from multi-satellite altimetry data.
Running in parallel to this study is a complete update of
the altimeter database in our research institute, incor-
porating the most recent geophysical data records
(GDRs), and the latest models of ocean tide and other
geophysical corrections. Many tests for optimal pa-
rameters of computations will be performed in the South
China Sea (SCS), which covers coastal areas, continental
shelf, and areas of median and great depth. The location
of the SCS and its gravity signature can be found in
Hwang (1998).

2 Multi-satellite altimeter data and processing

2.1 Description of altimeter data sets

Table 1 lists the altimeter data used in computing the
global MSSH and gravity anomaly grids. The data are
from five satellite missions and span more than 20
years. The Seasat data are from the Ohio State
University and are edited by Liang (1983), who have
also crossover-adjusted the Seasat orbits. The Geosat
data are from the National Oceanic and Atmospheric
Administration (NOAA) and contain the latest JGM3
orbits and geophysical correction models (NOAA
1997). In the Geosat/GM JGM3 GDRs, the wet and
dry troposphere corrections are based on the models of
the National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research
(NCAR) (Kalnay et al. 1996) and the NASA Water
Vapor Project (NVAP) (Randel et al. 1996), and the
ionosphere correction is adopted from the IRI95 model
(Bilitza 1997). The sea-state bias, which introduces an
error to the measured range, is also recomputed and is
more accurate than the previous version of GDRs. The
ERS-1 and ERS-2 data are from the Centre ERS
d’Archivage et de Traitement (CERSAT) France, and
their orbits have been adjusted to the TOPEX/POSEI-
DON (T/P) orbits by Le Traon and Ogor (1998).
Finally, the T/P data are provided by Archiving,
Validation, and Interpretation of Satellite Oceano-
graphic Data (AVISO) (1996), and should have the

best point data quality among all altimeter data, due to
low altimeter noise and state-of-the-art orbit and
geophysical correction models.
The Geosat/GM and ERM GDRs from the NOAA

contain both raw measurements at 10 samples per sec-
ond (10 Hz) and the 1-s averaged SSH. To increase
spatial resolution, we re-processed the raw data to ob-
tain SSHs at two samples per second. When re-sam-
pling, the 10-Hz SSHs were first approximated by a
second-degree polynomial and the desired two-per-
second (2-Hz) SSHs were then computed from the solve-
for polynomial coefficients. Pope’s (1976) tau-test
procedure was used to screen any erroneous raw data.
Among these data sets, Geosat/GM and ERS-1/GM
have very high 2-D spatial density and will contribute
most to the high-frequency parts of MSSH and gravity
fields. In one test over the SCS we used separately the
new JGM3 and the old T2 versions of Geosat/GM al-
timeter data to predict gravity anomalies and it was
found that the RMS differences between the predicted
and shipborne gravity anomalies were 10.65 and 9.77
mGal, respectively. Thus the JGM3 version indeed out-
performs the T2 version.

2.2 Averaging SSH: variability and noise of SSH

The altimeter data from the repeat missions (Geosat/
ERM, ERS-1/35d, ERS-2/35d, and T/P) were averaged
to reduce time variability and data noise. When
averaging, Pope’s tau-test procedure was also employed
to eliminate erroneous observations (Pope 1976). How-
ever, it turns out that the Geosat observed SSHs behave
erratically (for example, large jumps of SSHs an along-
track observations) and Pope’s method failed to detect
outlier SSHs on several occasions. Thus for Geosat/
ERM a modified averaging/outlier rejection procedure
was used. In this new procedure, at any locations, SSHs
from repeat cycles are first sorted to find the median
value. Then, the difference between individual SSHs and
the median is computed. Any SSH with difference larger
than 0.45 m is flagged as an outlier and removed (0.45 m
is based on three times the point standard deviation of
Geosat/ERM; see below). The desired MSSH is finally
computed from the cleaned SSH by simple averaging.
Table 2 lists the statistics associated with the averaged
and non-averaged SSHs. For the repeat missions in
Table 2, we computed the point standard deviation (SD)
of SSH as

Table 1. Satellite altimeter
missions and data used for
the global computation

Mission Repeat
period (days)

Data
duration

Orbit
height (km)

Inclination
angle (�)

Mean track separation
at the equator (km)

Seasat no 78/08–78/11 780 108 165
Geosat/GM no 85/03–86/09 788 108 4
Geosat/ERM 17 86/11–90/01 788 108 165
ERS1-/35d 35 92/04–93/12 781 98.5 80

95/03–96/06
ERS-1/GM no 94/04–95/03 781 98.5 8
ERS-2/35d 35 95/04–98/10 785 98.5 80
T/P 10 92/12–00/06 1336 66 280
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rhði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

ðhði; j; kÞ � �hhði; jÞÞ2

n� 1

vuuut
ð1Þ

where hði; jÞ is the observed SSH at point i along pass j,
�hhði; jÞ is the averaged SSH and n is the number of points.
According to statistical theory, the SD of averaged
height �hhði; jÞ is

r�hhði; jÞ ¼
rhði; jÞffiffiffi

n
p ð2Þ

Thus the accuracy increases with number of repeat
cycles. A point SD can be expressed as

rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ r2o þ r2g þ r2s

q
ð3Þ

where
ri = instrument error (random part + time-dependent

part)
ro = orbit error (random part + non-geographical

correlated error)
rg = errors in geophysical correction models (random

+ systematic errors)
rs = sea surface variability (excluding tidal variation)
In Eq. (3) it is assumed that the various factors are
uncorrelated. Thus, a point SD contains both random
noises and variabilities arising from a variety of sources.
Figure 1 shows the point SDs derived by averaging
Geosat/ERM, ERS-1/35d, and T/P (ERS-2/35d SD is
close to ERS-1/35d SD, so it is not shown here). Clearly
the SDs from the three repeat missions have the same
patterns of distribution. Over oceanic areas of high
variability, such as the Kuroshio Extension, the Gulf
Stream, the Brazil Current, the Agullas Current, and the
Antarctic Circumpolar Currents, sea surface variability
contributes most to SD. SD is also relatively high in the
tropics and the western Pacific areas, where meso-scale
eddies are very active. Clearly, the pattern of sea surface
variability has been very stable over the past two
decades, as the Geosat/ERM-derived SDs in the 1980s
and the ERS-1 and T/P-derived SDs in the 1990s show
very consistent signature. In the polar regions (above

67�), SD will be less reliable because of ice contam-
ination and sparse data samples. Over shallow waters,
tide model error becomes dominant in SD and is
particularly pronounced in the continental shelves of

the western Pacific, northern Europe, and eastern
Australia. In the immediate vicinity of coasts, the
interference of altimeter waveforms by landmass further
increases SD. Over the deep, quiet oceans, SD is in
general very small and here along-track MSSH will be
best determined. Note that in Table 2 the SD of Geosat/
GM is simply the SD of the 2-Hz SSHs as derived from
the fitting of the 10-Hz SSHs, so it does not represent the
noise level of 2-Hz SSHs.

Fig. 1. Estimated standard deviations of point SSHs of Geosat/ERM
(top), ERS-1 (center) and TOPEX/POSEIDON (bottom)

Table 2. Statistics of SSHs
from seven satellite altimeter
missions

Mission No. repeat
cycles

No. passes No. points No. points in
deep oceana

Averaged SD
of SSHb (m)

Seasat no 3314 1 269 169 6419 –
Geosat/GM no 15 708 25 530 238 151 044 0.141
Geosat/ERM 68 488 1 991 672 4798 0.026
ERS1-/35d 26 1002 1 677 190 4805 0.023
ERS-1/GM no 9532 14 702 377 44 928 –
ERS-2/35d 37 1002 1 141 786 4815 0.022
T/P 239 254 553 525 1387 0.009

aOver the area 25�S–15�S and 235�E–245�E where there is no land
bThe SD of Geosat/GM is the SD of 2-Hz SSHs from fitting the 10-Hz SSHs
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The SD of SSH will be used in deriving the SD of
along-track DOV, which in turn will be used in gridding
DOV components by least-squares collocation (LSC)
(see below). Due to the complex factors listed in Eq. (3),
it will be difficult to estimate the SD of SSH for the non-
repeat missions. For the purpose of computing MSSH
and gravity grids, we could model the covariance func-
tion of ocean variability as in Andersen and Knudsen
(1998), or reduce the ocean variability by filtering as in
Hwang et al. (1998). A detailed analysis of the effect of
ocean variability on MSSH and gravity recovery from
altimetry can be found in Rapp and Yi (1997).

2.3 Choice of ocean tide model

The ocean tide creates a deviation of the instantaneous
sea surface from the mean sea surface. There are now
more than 10 global ocean tide models available for
correcting tidal effect in altimetry (Shum et al. 1997).
Table 3, partly from Matsumoto et al. (2000), shows the
RMS collinear differences of T/P and the errors in
along-track DOV using NAO99b (Matsumoto et al.
2000), CSR4.0 (Eanes 1999), and GOT99.2b (Matsum-
oto et al. 2001) tide models. Both NAO99b and
GOT99.2b are based on hydrodynamic solutions and a
further enhancement by assimilating T/P altimetry data
into the solutions. The CSR tide models (3.0 and 4.0
versions) use the orthotide approach to model the
residual tides of some preliminary hydrodynamic ocean-
tide models using T/P altimeter data. From Table 3, it
seems that NAO99b is the best model among the three.
Using T/P SSHs, Chen (2001) found that the NAO99b
tide model yields the smallest RMS crossover differences
of SSH compared to the CSR4.0 and GOT99.2b tide
models. Over shallow waters, all the collinear differences
exceed 10 cm, translating to a 48-lrad (10�6-radian)
error in DOV of Geosat/GM. Even in the deep oceans,
the collinear difference-implied DOV errors are still very
large. Using available resources, we conducted a test
over the SCS to compare the accuracies of predicted

gravity anomalies using the CSR3.0, CSR4.0, and
GOT99.2b tide models. As shown in Table 4, the
NAO99b tide model produces the best accuracy in
gravity anomaly. However, as can be seen from Table 4,
the differences in accuracy are very close. This is partly
due to the fact that DOV is insensitive to long-
wavelength tide-model error. For Geosat/ERM, ERS-
1/35d, ERS-2/35d, and T/P, the use of CSR3.0, CRS4.0,
and NAO99b will probably not make too much
difference because of the reduction of tide-model error
by averaging data from repeat cycles.

3 Forming north and east components of DOV

3.1 Computing along-track DOV

The methods for computing MSSH and gravity anomaly
in this paper will use DOV as the data type. By
definition, an along-track DOV is the gradient of the
geoid (with an opposite sign)

g ¼ � oN
os

ð4Þ

where N is the geoid, which is a surface function, and s is
the along-track distance. By this definition we would
first need to construct a surface of the geoid and then
perform a directional derivative along s to obtain DOV.
Following this concept, we first fit a cubic spline (De
Boor 1978) to the along-track geoidal heights from
altimetry. Then the along-track derivative is obtained by
differentiating the spline. The actual numerical compu-
tations were performed by the International Mathemat-
ical and Statistical Library (IMSL) routines. It turns out
that such a procedure results in very noisy DOV, which
is due to the interpolation error in fitting the spline. The
interpolation error is particularly large when point
spacings along a track segment are not uniform.
Although this approach seems rigorous, it does not
produce good results. A better result is obtained by
simply approximating DOV by the slope of two
successive geoidal heights

g _¼¼� ðN2 � N1Þ
d

ð5Þ

where d is the point spacing. The geographic location of
g is the mean location of the two geoidal heights. The
estimated standard deviation of g is simply

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
d

ð6Þ

where r1 and r2 are the standard deviations of N1 and
N2, respectively. In order to obtain geoidal height from
SSH, both the time-dependent and quasi-time-indepen-
dent SST values should be removed. In this paper, the
time-dependent SST is reduced by filtering (see the
discussion below), and for the quasi-time-independent
SST we adopt the model of Levitus et al. (1997), which is
available at NOAA’s Ocean Climate Laboratory (see

Table 3. RMS collinear differences (in cm) of T/P (Matsumoto
et al. 2000) and corresponding error (in lrad) in along-track DOV
of Geosat/GM using different tide models

Tide model 0<Ha<0.2 0.2<H<1 1<H

Difference Error Difference Error Difference Error

NAO.99b 11.20 45 6.98 28 8.56 35
CSR4.0 15.77 64 7.37 30 8.55 35
GOT99.2b 13.99 57 7.37 30 8.65 35

aH = ocean depth in km

Table 4. RMS differences (in mGal) between shipborne and alti-
meter-derived gravity anomalies with different tide models

Tide model ERS-1/GM Geosat/GM (JGM3)

NAO99b 11.90 9.77
CSR3.0 11.93 not available
CSR4.0 not available 9.78
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http://www.nodc.noaa.gov/OC5/dyn.html). The Levitus
SST values from NOAA are given as monthly averages
on a 1� � 1� grid for 12 months. We averaged the
monthly values to obtain the required quasi-time-
independent SST. Figure 2 shows the averaged Levitus
SST, which looks very similar to the 1982 version of
Levitus SST (cf. Hwang 1997, Fig. 3). The divided
difference method (Gerald and Wheatley 1994) is then
used to interpolate the required SST value from this SST
grid at any altimeter data point.

3.2 Removing outliers and gridding DOV

Because of the use of a 1-D FFT algorithm in the
computations of MSSH and gravity anomaly (see
below), the north and east components of DOV need
to be formed on regular grids with constant spacings in
latitude and longitude. Before forming the regular grids,
erroneous along-track DOV must be removed. Again we
adopt Pope’s tau-test method to remove possible
outliers. Within a 40 � 40 cell, any along-track DOV, ei,
can form an observation equation as (cf. Heiskanen and
Moritz 1985, p. 187)

ei þ vi ¼ n cos ai þ g sin ai; i ¼ 1; . . . ; n ð7Þ

where vi is the residual, ai is the azimuth of ei, n is the
number of points, and n and g are the north and east
components. After LS estimating of n and g, all residuals
in the 40 � 40 cell can be determined using Eq. (7). A
DOV is flagged as an outlier and is removed if its
residual satisfies the condition

vij j
rvi

> scðmÞ ð8Þ

where rvi is the estimated standard deviation of vi and
scðmÞ is the critical tau value at degree of freedom of m;
see Koch (1987, p. 336) and Pope (1976) for the methods
of computing rvi and scðmÞ. Table 5 shows the ratios
between removed and raw DOV in 12 selected areas.
The removed DOV are largely from the non-repeat

missions. In general, the removal ratios are relatively
high in shallow waters and in higher latitudes, e.g. the
Ross Sea, and low in the open ocean, e.g. the Reykjanes
Ridge and the East Pacific Rise. One problem with the
above procedure of outlier removal is that in areas with
sparse data, such as coastal regions and polar regions,
there are not enough data points to produce a large
degree of freedom to make the result of the tau-test
reliable, leading to undetected/improperly detected out-
liers.
After removing outliers the north and east compo-

nents are then computed on a regular grid by the
method of LSC (Moritz 1980)

s ¼ n
g

� �
¼ CslðCll þ CnÞ

�1
l ð9Þ

where vector l contains along-track DOV, vector s
contains north (n) and east (g) components, Csl, Cll and
Cn are the covariance matrices for s and l, l and l, and
the noise of l, respectively. In Eq. (9), Cn is a diagonal
matrix that in theory contains the variances of along-
track DOV. When a reference gravity model is used, the
error of the gravity model must be taken into account in
constructing the covariance functions; see Hwang and
Parsons (1995) and Hwang et al. (1998) for the methods
of constructing the covariance functions when gridding
DOV by LSC.

3.3 Selection of parameters

It turns out that many factors will affect the accuracies
of altimeter-derived MSSH and gravity anomalies.
Several parameters were tested in order to optimize
the result. These parameters include a filter parameter
and variances of SSHs from the non-repeat missions,
and the searching radius (centered at a grid point)
when gridding north and east components. For the
non-repeat missions, filtering the raw, along-track
SSHs can reduce the effect of sea surface variability
and data noise. In the filtering, we choose to use the

Fig. 2. Quasi-time-independent sea surface
topography from Levitus et al. (1997);
contour interval is 10 cm
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Gaussian filter. The filter wavelength is the size of a
window within which the raw SSHs are convolved with
the Gaussian response function. The Gaussian response
function has the form

rðxÞ ¼ expð� x2

s2
Þ ð10Þ

where x is the distance between two data points and s is
defined to be the filter parameter. The degree of
smoothness increases with s. When filtering, all SSHs

within a distance of 2s are used to convolve with the
response function in Eq. (10) to obtain a filtered value.
The filtered SSHs are then used to compute DOV in Eq.
(5). Since filtering will lower the spatial resolution, we
should compromise between noise/variability and
smoothness. There is no need to filter the averaged
SSHs from the repeat missions because the noise and sea
surface variability have been reduced due to time
averaging. As an example, Table 6 shows RMS differ-
ences between the predicted and shipborne gravity

Fig. 3. Flowchart for computing
global MSSH and gravity
anomaly grids
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anomalies over the SCS using different choices of filter
parameters. The comparisons were made in the deep-
ocean part of the SCS and the whole of the SCS, the
latter including the continental shelf. Indeed the result is
improved with proper filtering, but will be degraded if
SSHs are over-filtered. Based on the result in Table 6,
we decided to use 7, 7, and 5 km as the filter parameters
for Seasat, ERS-1/GM, and Geosat/GM, respectively.
Another issue is the variance of SSH and in turn the

variance of DOV [see Eq. (6)] used in LSC. Based on
the concept of collocation in the spectral domain and
the concept of Wiener filtering, the degree of smooth-
ness will increase with data variances (noises). For the
repeat missions, the variances of the mean SSHs can be
determined during averaging of the repeated measure-
ments (see Table 2), which are automatically used in Cn
of Eq. (9). For the non-repeat missions, we first tried to
use the squared point SDs (see Fig. 1) as variances.
Specifically, the variances of SSHs of Seasat and
Geosat/GM are interpolated from the point variances
that are derived from Geosat/ERM-derived point
variances, and the variances of SSHs of ERS-1/GM are
from ERS-1/35d-derived point variances. As seen in

Fig. 1, these point variances are relatively large com-
pared to the predicted instrument noises of altimeters
(cf. Seeber 1993). Using the point SDs in Fig. 1, the
predicted gravity anomalies are very smooth and have
very poor fit to the shipborne gravity anomalies. Be-
cause of this poor fit, we decided to use empirical SDs
for the non-repeat missions. Table 7 shows the RMS
differences between the predicted and shipborne gravity
anomalies over the SCS based on different empirical
SDs. For the three missions, the use of SD of 3–5 cm
yields a better result compared to the case of using the
SDs from the repeat mission. Based on the result in
Table 7, we decided to use 5, 5, and 3.5 cm as the
empirical SDs for Seasat, ERS-1/GM, and Geosat/
GM, respectively.
The searching radius during gridding of DOV com-

ponents will affect the accuracy of MSSH and gravity
anomaly, as well as computational time. As an example,
Table 8 shows the result of using different search radii in
the SCS. The accuracy of predicted gravity anomaly
increases with searching radius, but becomes stable
after a certain radius. However, the computational
time increases dramatically as the searching radius in-

Table 5. Test areas and ratios
of removed outliers Area Geographic boundaries

(latitude, longitude)
Total no.
points

Deleted no.
points

Ratio of
outliers (%)

Alaska Abyssal 44� )61�, 99� )221� 696 082 27 224 3.9
East Pacific Rise )26�–)9�, 229� )251� 809 120 27 474 3.4
Caribbean Sea 9� )31�, 269� )291� 609 605 29 404 4.8
Reykjanes Ridge 49� )66�, 319� )341� 800 624 29 949 3.7
Mediterranean Sea )11� )11�, 339� )361� 855 408 28 254 3.3
Carlsberg Ridge 29� )46�, 0� )31� 202 545 17 506 8.6
Sierra Leone Basin )1� )21�, 49� )71� 564 600 25 819 4.5
Kerguelen Plateau )66�–)44�, 59� )81� 611 084 41 032 6.7
South China Sea 4� )26�, 104� )126� 495 338 27 478 5.5
Mariana Trench 4� )26�, 139� )161� 1 001 211 33 606 3.3
Fiji Plateau )31� )9�, 159� )181� 982 678 33 875 3.4
Ross Sea )71�–)59�, 199� )181� 458 505 38 042 8.2

Table 6. RMS differences between predicted and shipborne gravity anomalies using different filter parameters over the South China Sea

Filter parameter (km) RMS difference (mGal)

Seasat ERS-1/GM Geosat/GM 10�–20�N, 110�–120�E
(deep ocean)

5�–25�N, 105�–125�E
(deep, shallow oceans)

0 0 0 7.282 8.206
14 14 14 7.642 8.372
7 7 5 7.230 8.015
5 5 3.5 7.235 8.043

Table 7. RMS differences between predicted and shipborne gravity anomalies using different point SDs of SSH over the South China Sea

Standard deviation RMS difference (mGal)

Seasat ERS-1/GM Geosat/GM 10�–20�N, 110�–120�E
(deep ocean)

5�–25�N, 105�–125�E
(deep, shallow oceans)

Ia I I 8.345 9.142
5 5 3.5 7.230 8.015
5 3.5 3.5 7.461 8.075
5 5 2.5 7.323 8.037

a Interpolated from the point SDs of repeat missions
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creases. Based on the result in Table 8, a radius of 140

seems to be the best compromise between accuracy and
computational time, thus this is our choice for com-
puting the global grids.

4 Conversions from DOV to MSSH and gravity anomaly

We use the deflection-geoid and inverse Vening Meinesz
formulae as the basic tool for computing MSSH and
gravity anomaly. The deflection-geoid formula trans-
forms DOV into geoidal height, which then yields
MSSH by adding the quasi-time-independent SST.
Detailed derivations of these two formulae are given in
Hwang (1998). These two formulae read

Np

Dgp

	 

¼ 1

4p
R
c

	 
Z Z
r
ðnq cosaqp þ gq sinaqpÞ

C0

H 0

	 

drq

ð11Þ

where
Np = geoidal height at p (free index)
Dgp = gravity anomaly at p
R = mean Earth radius; 6 371 000 m is used
c = normal gravity, based on GRS80 (Torge 1989)
C0, H 0 = Kernel functions
nq; gq = north and east components of DOV at q

(dummy index)
aqp = azimuth from q to p
r = unit sphere
drq = surface element = cos/q d/q dk;/q; kq are

latitude and longitude
The kernel functions C0 and H 0 are functions of spherical
distance only and are defined in Hwang (1998). The 1-D
FFT algorithm is used to rigorously implement Eq. (1).
In the case of using a 360� reference field (see below), an
optimal effective radius of integration in Eq. (11) is
about 110 km (about 1� at the equator). In the 1-D FFT
algorithm, all geoidal heights or gravity anomalies at a
fixed latitude (or parallel) are computed simultaneously
(Hwang 1998), and this is why the 1-D FFT algorithm is
faster than the straight sum algorithm.
Because of the singularity of the kernel function C0

and H 0 at zero spherical distance, the innermost zone
effects on geoidal height and gravity anomaly must be
taken into account and are computed by

Ni

Dgi

	 

¼ 1

4
ðny þ gxÞ

s20
2s0c

	 

ð12Þ

where ny ¼ on=oy; gx ¼ og=ox (x is positive to the east
and y is positive to the north), s0 is the size of the
innermost zone, which can be estimated from the grid
intervals as

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p

r
ð13Þ

Formulae such as those in Eq. (11) are based on
spherical approximation. Errors arising from spherical
approximation are investigated in detail by Moritz
(1980). When using the remove–restore procedure (see
below), the error in using spherical approximations
should be very small compared to data noise. Consider
the formula of error-free LSC in the case of using
ellipsoidal correction (Moritz 1980, p. 328)

s ¼ CslC
�1
ll ðl� e2l1Þ þ e2s1 ð14Þ

where s; l;Csl and C
�1
ll are defined in Eq. (9) and e2 is the

squared eccentricity of a reference ellipsoid, which is
about 0.006694 for the GRS80 ellipsoid. The procedure
in Eq. (14) is first to remove the ellipsoidal effect of the
data, e2l1, then perform LSC computation, and finally
add back the ellipsoidal effect of the signal e2s1. In the
case of using the remove–restore procedure where a
reference field is removed from the data and the residual
signal is to be recovered, both l1 and s1 will be very small
compared to their full signals [see Moritz (1980, p. 327),
where the low-degree part will vanish due to the use of a
reference field]. For example, if the largest element
(DOV) in l1 is 100 lrad, then the largest element in e2l1

will be 0.66 lrad. This value is far smaller than the noise
of DOV from the multi-satellite altimetry. Furthermore,
if the largest element in s1 is 100 mGal, then the largest
ellipsoidal effect on gravity anomaly is 0.66 mGal, which
is much smaller than the error of the recovered gravity
anomaly (see Tables 6–9). Of course, whether the
reference field used in the remove–restore procedure
will introduce additional error is another issue.

5 Global computation of mean sea surface and gravity
anomaly grids

After the tests performed in the previous sections and
the selection of a set of optimal parameters, MSSH and
gravity anomalies on a 20 � 20 grid were computed over
the area 80�S� 80�N and 0� � 360�E. The computations
were divided into 36 areas, each covering a 40� � 40�

Table 8. Result of using different searching radii over the South
China Sea

Radius Difference between predicted
and shipborne gravity
anomalies (mGal)

CPU timea (s)

12¢ 7.230 1561
14¢ 7.098 5877
18¢ 7.026 16 699

aCPU time on a Pentium III 600 MHz running the SOLARIS OS

Table 9. RMS differences between predicted and shipborne gravity
anomalies over the South China Sea with and without adding the
innermost zone effect

Case RMS difference (mGal)

10�–20�N, 110�–120�E 5�–25�N, 105�–125�E

With innermost
zone

7.230 8.015

Without innermost
zone

7.566 8.220
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area. A batch job was created for each of the 36 areas
and this batch job creates maps of altimeter data
distribution, predicted MSSH and gravity anomaly,
and many statistics for detailed examinations. The final
global MSSH and gravity anomaly grids are a combi-
nation of the results from the 36 areas. Figure 3 shows
the flowchart of computation in a 40� � 40� area. The
most time-consuming part in the procedure is the
gridding of DOV. Only a few minutes of CPU time is
needed for the 1-D FFT computation of geoid or gravity
anomaly in a 40� � 40� area on a Pentium III 600
machine. This computational procedure uses the
EGM96 gravity model (Lemoine et al. 1998) to har-
monic degree 360 as the reference field. In summary,
reference DOV implied by EGM96 were removed from
the raw DOV to yield residual DOV, which were used to
compute residual geoidal heights and gravity anomalies
using Eq. (11). The final geoidal heights and gravity
anomalies are obtained by adding back the EGM96-
implied values.
As seen in Fig. 3, the procedure for obtaining the

global MSSH grid is more involved than that for the
gravity anomaly grid. A preliminary MSSH grid was
first obtained by adding the 1994 Levitus SST to the
geoid grid. Because of the use of DOV as the data type,
it is possible that the long-wavelength part of MSSH is
lost in using the deflection-geoid formula. To mitigate
such a loss, we first computed the differences between
the along-track T/P, ERS-1 MSSH and the preliminary
MSSH. Each difference is associated with a weight,
which is the inverse of noise variance. Then smoothing
and de-aliasing of the differences were carried out by
computing the weighted median values within 150 � 150
cells. The weighted median values were then interpolated
on a 150 � 150 grid using the minimum curvature method
(Smith and Wessel 1990). The final MSSH grid is ob-
tained by summing the difference grid (which is now re-
sampled into a 20 � 20 grid) and the preliminary grid.
The resulting grids are now designated the NCTU01
MSSH grid and the NCTU01 gravity grid.
Because of the final adjustment using T/P MSSH,

The SSH from the global MSSH grid is the height above
a geocentric ellipsoid with a semi-major axis equal to
6 378 136.3 m and flattening equal to 1/298.257222101.
The geodetic coordinates of both global grids are geo-
detic latitudes and longitudes defined by the T/P coor-
dinate frame. In addition, the normal gravity for the
global gravity anomaly grid is GRS80 because we have
removed the zonal spherical harmonic coefficients
C20;C40;C60, and C80 of the GRS80 reference ellipsoid

(cf. Torge 1989) when computing the reference gravity
anomalies from EGM96.

6 Model evaluations

6.1 The global MSSH grid

A standard method for evaluating an MSSH grid is to
compare modeled MSSH and MSSH-derived gradients
with averaged SSH and gradients from repeat missions.
The first comparison is between the MSSH values from
our model and those from repeat missions. Table 10
shows the result of the comparison of MSSH values
using the averaged along-track SSH from T/P and ERS-
1 (see Tables 1 and 2). Also included in Table 10 are the
comparisons for the NASA/GSFC model (Wang 2000)
and the CLS model (Hernandez and Schaeffer 2000).
Compared to the NASA/GSFC and CLS models, the
NCTU01 model agrees best with the T/P and the ERS-1
MSSH. The GSFC MSSH is slightly worse than the
NCTU01 MSSH. On the continental shelves (depths
below 200 m), all MSSH models contain large errors,
which in the case of CLS have exceeded 20 cm. Even at
median depths, the accuracy of MSSH is not very
promising and is generally worse than 10 cm. All MSSH
models have a best accuracy of a few centimeters in the
deep oceans. The differences in the case of ERS-1 are
smaller than in the case of T/P. This is to be explained
by the fact that ERS-1 has a higher data density than T/
P, so the former will dominate the resulting MSSH
model. As such, the MSSH model will have a better
match with ERS-1 SSH than T/P SSH. Furthermore,
Fig. 4 shows the differences between the NCTU01 and
T/P MSSH. Again the differences in Fig. 4 are large over
shallow waters and small in the deep oceans. It is noted
that the pattern of differences is very similar to the
pattern of ocean variability in Fig. 1. This shows that
the MSSH is less reliably determined in areas of high
ocean variability than in other areas. Such a result
agrees with the expected outcome of LS collocation [see
Eq. (9)]: data with greater noise (variability) yield less
reliable results.
Table 11 shows the RMS differences in gradients

between the NCTU01, GSFC, and CLS modeled gra-
dients and the averaged along-track gradients from T/P
and ERS-1 missions. The NCTU01 and GSFC models
have almost the same level of accuracy, while the CLS
model has a slightly poorer accuracy than the other two.
For all models the distribution of error is the same as

Table 10. RMS differences (in cm) between global sea surface models and T/P and ERS-1 MSSH

T/P ERS-1

0–0.2a 0.2–1 1–10 0–10 0–0.2 0.2–1 1–10 0–10

NCTU01 16.5 10.6 1.9 5.0 6.8 4.2 2.7 3.1
CLS 24.7 26.1 3.9 9.0 12.2 8.8 4.7 5.4
GSFC00 19.4 13.5 2.0 6.0 10.7 7.6 3.6 4.3
No. points 34 824 23 015 485 762 543 601 63 828 48 296 1 517 901 1 630 025

aDepths from 0 to 0.2 km
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that of MSSH error, namely, bad accuracy over shallow
waters and good accuracy in the deep oceans. Again, for
the reason of data dominance, the error in the ERS-1
case is smaller than the error in the T/P case. In the T/P
case the RMS difference of 7–9 lrad has far exceeded the
standard deviation of T/P gradient, which is 1.9 lrad
based on Eq. (6) (with an averaged point spacing of
6.6 km, see Table 2). On the other hand, in the ERS-1
case the RMS difference of 3.2 lrad agrees well with the
expected standard deviation of 4.7 lrad of ERS-1 gra-
dient (see Table 2).

6.2 The global gravity anomaly grid

In order to evaluate the accuracy of the NCTU01
gravity grid, we made a comparison between the
predicted and shipborne gravity anomalies in 12 areas
in the world’s oceans (see Table 5 for the boundaries).
These shipborne gravity data are from the National
Geophysical Data Center. The corresponding ship
tracks are shown in Fig. 5. The 12 areas are so selected
that deep and shallow waters, and low and high
latitudes are covered in the comparison. The compar-
ison procedure and the adjustment of shipborne gravity
data were detailed in Hwang et al. (1998). Briefly, long-
wavelength biases in the shipborne gravity anomalies
were first adjusted using altimetry-derived gravity

anomalies. A pointwise comparison was then made for
the adjusted shipborne gravity anomalies. Table 12
shows the result of the comparison. In Table 12, the
gravity grid from Hwang et al. (1998) is also compared.
It has been shown that the gravity grid of Hwang et al.
(1998) has a better accuracy than that of Sandwell and
Smith (1997). As shown in Table 12, the accuracy of
the current gravity grid has indeed improved over that
of the gravity grid of Hwang et al. (1998). The
improvement is most dramatic in the deep oceans such
as the East Pacific Rise. In the Caribbean Sea, the
improvement is also significant. Other areas with
significant improvements are the Ross Sea and Ker-
guelen Plateau, which are situated in Antarctica. In
general, the large difference between predicted and
shipborne gravity anomalies may be due to either or
both of the following reasons: (1) bad altimeter data
quality, including data scarcity, and (2) large gravity
signatures, for example in areas with trenches and
seamounts. The largest differences, in the Fiji Plateau
and then the Mediterranean Sea, can be attributed to
the first reason. Due to possibly bad tide correction
and contamination of altimeter waveforms by land
mass and reefs, the predicted gravity anomalies in the
Fiji Plateau are not expected to be of a good quality. A
recent detailed analysis of errors in altimeter-derived
gravity anomalies is given by Trimmer et al. (2001). In
order to obtain a dramatic improvement of gravity

Fig. 4. Difference between
NCTU01 and T/P mean SSHs

Table 11. RMS differences in along-track SSH gradients (in lrad) derived from global sea surface models and from T/P and ERS-1 MSSH

T/P ERS-1

0–0.2a 0.2–1 1–10 0–10 0–0.2 0.2–1 1–10 0–10

NCTU01 23.3 16.7 2.4 7.1 7.1 5.0 2.8 3.2
CLS 26.4 19.9 2.9 9.0 8.7 5.3 2.8 3.3
GSFC00 22.9 16.9 2.3 7.0 7.3 4.3 2.8 3.2
No. points 33 687 22 814 485 561 542 062 61 374 47 071 1 510 808 1 619 253

aDepths from 0 to 0.2 km
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accuracy in such an area, a better tide model and
improved determination of SSH by retracking altimeter
waveforms will be needed. Improved SSHs by wave
re-tracking have been reported in e.g. Anzenhofer and
Shum (2001), Deng et al. (submitted), and Fairhead
and Green (2001).

7 Conclusions

This paper describes the work of an improved compu-
tation of global MSSH and gravity anomaly grids
using improved multi-satellite altimeter data sets and
procedure. Various tests have been made in order to
find an optimal set of parameters for the computation.
The procedure is based on the deflection-geoid and
inverse Vening Meinesz formulas, as well as the
remove–restore concept. The crossover adjustment of
SSHs is not used because of the use of DOV as the

altimeter data type in the computation. Using DOV is
particularly advantageous over areas with sparse
altimeter data and in the case of long-wavelength error
contained in altimeter data. The comparisons of the
NCTU01 MSSH with the T/P and the ERS-1 MSSH
result in overall RMS differences of 5.0 and 3.1 cm in
SSH, respectively, and 7.1 and 3.2 lrad in SSH
gradient, respectively. The agreements between the
predicted and shipborne gravity anomalies range from
3.0 to 13.4 mGal, depending on the gravity signatures
and the altimeter data noise, the latter being affected
by instrument noise, sea state and accuracies of
geophysical corrections. The NCTU01 MSSH model
outperforms the NASA/GSFC model (Wang 2001) and
the CLS model, and the NCTU01 gravity anomaly
model has a better accuracy than those of the models
of Sandwell and Smith (1997) and Hwang et al. (1998).
The global MSSH and gravity grids will be posted in a
public place for users to access.

Fig. 5. Distributions of ship-
borne gravity anomalies in the
12 areas where the NCTU01
gravity anomaly grid is evaluated

Table 12. RMS differences (in
mGal) between predicted and
shipborne gravity anomalies
in 12 areas

Comparison area Present paper Hwang et al. (1998) Improvement

Alaska Abyssal 4.887 5.168 0.281
East Pacific Rise 3.057 6.786 3.729
Caribbean Sea 9.840 11.399 1.559
Reykjanes Ridge 5.122 5.202 0.080
Carlsberg Ridge 3.678 3.688 0.010
Mediterranean Sea 13.026 13.480 0.454
Sierra Leone Basin 7.347 7.397 0.023
Kerguelen Plateau 6.017 6.931 0.914
South China Sea 8.004 8.229 0.225
Mariana Trench 11.561 11.814 0.253
Fiji Plateau 13.365 14.148 0.783
Ross Sea 7.634 8.477 0.843
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