
Robust estimator for correlated observations based on bifactor
equivalent weights

Y. Yang1, L. Song2, T. Xu1

1 Xi’an Research Institute of Surveying and Mapping, No. 1 Mid-Yanta Road, Xi’an 710054, P.R. China
e-mail: yuanxi.yang@263.net; Tel.: +86-29-553-35-03; Fax: +86-29-552-53-10
2 Zhengzhou Institute of Surveying and Mapping, 66 Longhai Road, Zhengzhou 450052, P.R. China

Received: 5 March 2001 / Accepted: 17 January 2002

Abstract. A new robust parameter estimator for the
adjustment of correlated observations is developed based
on a ‘bifactor reduction’ model of weight elements. A
shrinking factor for weight elements is proposed. The new
equivalentweightmatrix composed by the bifactorweight
elements preserves the symmetry and keeps the original
correlation coefficients unchanged. The new parameter
estimator with its error influence function is derived. The
robustness and efficiency of the new robust estimator is
demonstrated with a simulated example and some
conclusions are drawn.
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1 Introduction

The approaches to controlling the outlier influence fall
into two broad categories: outlier identification and
robust parameter estimation. The approach of single or
multiple outlier identification is of interest in many
practical applications. This interest has given rise to a
rapid development of hypothesis testing and correspond-
ing parameter estimation. Most outlier identification
methods attempt to separate the data into a ‘clean’ subset
without outliers and a complementary subset that con-
tains all potential outliers. Then the remaining observa-
tions are tested relative to the clean subset. A problem
with this approach is that the ‘clean’ subset is rarely
known.Hadi and Simonoff (1993) proposed twomodified
methods to find the initial clean subset in some particular
situations. In the geodetic field, outlier identification has
also been widely researched (Teunissen 1990). Xu (1989a)
even discussed outlier identification in the case of

correlated observations. Many other practical methods
that have been developed are notmentioned here, because
most of them do not deal with correlated observations.

In robust estimation, a good deal of attention has been
focused on efficient and highly robust M estimators (see
Huber 1981; Hampel et al. 1986). In recent years, robust
estimators with high breakdown point have been devel-
oped, for example LMS (least median squares) that
minimizes the median of the squared residuals rather
than their sum and LTS (least trimmed squares) (see
Rousseeuw and Leroy 1987). In geodetic applications,
robust parameter estimation for independent observa-
tions has also received widespread attention (Caspary
and Hean 1990; Yang 1993). A number of estimation
procedures have been developed (Schaffrin 1989, 1991;
Zhou 1989; Koch 1996; Koch and Yang 1998).

Most of the available robust estimation methods
appearing in the literature are also based on the pre-
sumably independent observations. Although big strides
have been made in improving robust estimators and
algorithms and in applying them in geodesy, they make
the routine geodetic applications problematic. Experi-
ence with geodetic practices, however, has shown that
correlated observations are very often encountered, es-
pecially in preprocessed observations. The main sources
for the correlations of preprocessed observations are due
to the geometry of observations, physical background
and statistical procedures. Thus the correlations between
the observations deserve to be carefully taken into ac-
count in robust parameter estimation.

By using Cholesky factorization (see Koch 1988, pp.
183–184), we can convert correlated observations into
uncorrelated ones using least-square (LS) estimation.
This kind of conversion, however, may lead to a transfer
of abnormal errors and finally result in a failure in outlier
diagnosis and robust estimation. A direct robust
approach to deal with the dependent data has received less
attention. Gastwirth and Rubin (1975) investigated the
effect of serial dependence in the data on the efficiency of
some robust location estimators. Portnoy (1977) studied
approximately optimal estimators, in the asymptot-
ic minimax sense of Huber (1964, 1981), in dependentCorrespondence to: Y. Yang
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situations. Genton (1998) discussed the asymptotic
behavior of M estimators for dependent Gaussian ran-
dom variables. None of the available robust estimators
for correlated data developed in statistical mathematics is
applicable in geodetic adjustment. Two algorithms of
robust estimation for correlated observations in geodesy
have been proposed by means of a nonlinear iterative w
function (Xu 1989b) and a so-called IGGIII (Institute of
Geodesy andGeophysics) scheme (Yang 1994), which are
established based on anM estimation and the principle of
equivalent weight (see also Yang 1993, p.104; Zhou et al.
1997, p. 118). The robust estimator based on the IGGIII
scheme has the same formation as that based on LS
principle. Its calculation and analysis of error influence
are simple and quality control is effective. What has been
emphasized by the equivalent weight matrix of the IG-
GIII scheme is that the parameter estimates should be
robust. The symmetry of the equivalent weight matrix,
however, is ignored. Although this asymmetry does not
affect the parameter estimates so much, for only a few
outliers are presumed to exist in the observations, it
makes the corresponding normal matrix and posterior
variance–covariance matrix slightly asymmetric. Thus we
cannot make full use of the property of a symmetric ma-
trix to reduce calculation or computer storage when cal-
culating or storing the normal matrix.

In fact, in order to control the influence of abnormal
observations, we can introduce a suitable contaminated
distribution fromwhich a related estimator can be derived
based on some score functions, or inflate the covariance
elements of the abnormal observations to reduce the
effects of the outlying errors on the parameter estimates.
In robust statistics, the contaminated error model is
usually expressed as (Huber 1981; Hampel et al. 1986)

FeðDÞ ¼ ð1� eÞF þ edL ð1Þ

where D denotes the observational errors; Fe is a
contaminated distributional function and F denotes
the empirical distribution of D; e is a small fraction,
0 < e < 1; dL is the point mass at L. Guttman and Lin
(1995) proposed a mixed distribution, ie. the error Di of
the observation Li is as follows:

Di � ai1Nð0; r2
i1Þ þ ai2Nð0; r2

i2Þ; ai1 þ ai2 ¼ 1 ð2Þ

where ai1 and ai2 are probabilities corresponding to the
two normal distributions Nð0; r2

i1Þ and Nð0; r2
i2Þ respec-

tively; r2
i1 and r2

i2 are two variances.
The contaminated distributions above are not suit-

able to be applied in correlated geodetic data processing.
In contaminated distributions, the distributions dL and
Nð0; r2

i2Þ, the probabilities ai1 and ai2, as well as e, are
unknown; the correlations have not been considered in
the contaminated model.

2 Bifactor reduction model of weight elements

It should be noted that the variance–covariance matrix
and weight matrix as criteria of precision should reliably
reflect the accuracy of observations. If an observation is
contaminated by an outlier, then its variance ought to be

inflated and its weight ought to be reduced. Thus an
alternative approach for controlling the influences of the
outlying correlated observations is to reduce the weight
elements of the outlying observations.

As emphasized above, the correlations usually reflect
the intrinsic relations of the observations. Thus the re-
duction of the weight elements for the outlying obser-
vations should keep the intrinsic correlation of the
observations unchanged.

Assume that L is an n� 1 observation vector, D is an
n� 1 error vector, V is an n� 1 residual vector, R is a
covariance matrix of L, and P ¼ R�1 is the corre-
sponding weight matrix; X is an m� 1 unknown pa-
rameter vector, its estimate is X̂X ;A is an n� m design
matrix. The observation equation reads

L ¼ AX þ D ð3Þ

and the corresponding error equation is

V ¼ AX̂X � L ð4Þ

with the ith error equation of the observations

vi ¼ aiX̂X � Li ð5Þ

where vi and Li are the ith elements of V and L
respectively; ai is the ith row vector of the design matrix.

Considering the prior weight elements of the obser-
vation vector and the robust M estimation principle, we
define an M estimator of the unknown parameters under
the following condition:

X ¼ V T �PPV ¼ min ð6Þ

where �PP is called an equivalent weight matrix, which
adjusts the correlated weight elements to fit the actual
accuracy of the corresponding observations.

The estimator follows as

AT �PPV ¼ 0 ð7Þ

In order to guarantee the equivalent weight matrix of the
observations to be symmetric and the intrinsic correla-
tion of the observations not to be changed, we construct
new equivalent weight elements that differ from those of
the IGGIII scheme as follows:

�ppij ¼ cijpij ð8Þ

with

cij ¼
ffiffiffiffiffiffiffiffiffiffi
ciicjj

p ð9Þ

where cii and cjj are two reduction factors of the weight
elements (from which we suggest using the word
‘bifactor’).

From, the experience of many terrestrial geodetic
applications, the reduction factor of the weight elements
cii could be chosen as

cii ¼
1 j~vvij 	 k0
k0
j~vvij

k1�j~vvij
k1�k0

� �
k0 < j~vvij 	 k1

0 j~vvij > k1

8><
>: ð10Þ
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where ~vvi is a standardized residual; k0 and k1 are two
constants, usually chosen as 2.0–3.0 and 4.5–8.5 respec-
tively. In theory or in practice, the constants k0 and k1
can be determined on the basis of the objective
requirements of the problem. There exist many empirical
rules to choose the constants, however the first theoret-
ical method was proposed by Xu (1993). He proposed to
determine the constants based on the confidence inter-
vals of the parameter estimates.

The curve of cii expressed in Eq. (10) is shown in
Fig. 1.

Of course, other reduction factors can be chosen, for
instance Huber’s w function (Huber 1964) or Hampel’s
w function (see Hampel et al. 1986, p. 150 ). A reduction
function similar to Huber’s w function can be chosen as

cii ¼
1 j~vvij 	 c
c
j~vvij j~vvij > c

	
ð11Þ

where c is a constant which is chosen to be 1.0–1.5.
By using the two reduction factors for all the ele-

ments of the weight matrix of the observations, we ob-
tain the equivalent weight matrix as

�PP ¼

c11p11 c12p12 . . . c1np1n
c21p21 c22p22 . . . c2np2n
. . . . . . . . . . . .

cn1pn1 cn2pn2 . . . cnnpnn

2
664

3
775 ð12Þ

Considering Eqs. (7), (10), and (12), as well as the error
equation [Eq. (4)], we obtain the new robust estimator
as

X̂X ¼ AT �PPA
� ��1

AT �PPL ð13Þ

The posterior covariance matrix reads (Yang 1997;
Wisniewski 1999)

RX̂X ¼ AT �PPA
� ��1

r̂r2
0 ð14Þ

with

r̂r2
0 ¼

V T �PPV
n� m

ð15Þ

The robust estimation for correlated observations, based
on the bifactor reduction model of the weight elements,
is simply called the RECO scheme.

The empirical influence function of the RECO
scheme is

IF Dj; X̂X
� �

¼ AT �PPA
� ��1

Xn
i¼1

aTi pijcijDj ð16Þ

where ai is the ith row vector of the error equation; Di is
the error of Li. The influence function Eq. (16), shows
that the impacts of the outlying observations on the
parameter estimates, X̂X , depend on the bifactor cij.
Because cij depends on

ffiffiffiffiffi
cii

p
and

ffiffiffiffifficjj
p

, both of which are
descending functions, the impacts of outlying observa-
tions on robust parameter estimates are weakened by
the reduction factors. It is the bifactor that makes the
new robust estimator for correlated observations differ
from that of the IGGIII scheme or that of the LS
method.

3 Characteristics of the new robust estimator

The characteristics of the robust estimator based on the
bifactor reduction model of the weight elements are
presented as follows.

1. cii and cjj expressed in Eqs. (10) and (11) are contin-
uous descending factors, which descend when the
absolute values of the observational errors increase,
and lead to the decrease of the absolute values of �ppij
and �ppji as well as the values of �ppii and �ppjj . Thus the
errors of Li and Lj are controlled by the equivalent
weight elements.

2. cii in Eq. (10) is a three-part function. When Li is
normal, cii =1; when Li is outlying, cii =0, i.e. Li is
eliminated; when Li falls in the interval between k0
and k1, cii decreases continuously. cjj is similar to cii .
Thus both cii and cjj play a role of adjusting the ob-
servation weights continuously and reasonably.

3. The equivalent weight matrix determined by Eq. (12)
is symmetric and keeps the original correlation coef-
ficients of the observations unchanged. It makes not
only the calculation of the robust estimator easy, but
also the expression of the posterior covariance matrix
relatively simple.

4 Computation and comparison

A practical global positioning system (GPS) baseline
network, which is composed of eight stations with point
1 fixed as reference and 27 baseline observations divided
into six sessions (see Fig. 2), is used as a reference for the
subsequent computations. The baselines are correlated
since they are derived from the site coordinates.

In the first step, we take advantage of the site posi-
tions from GAMIT software to calculate the baseline
vector and its covariance matrix R, but only the co-
variance matrix is used as reference; an observational
vector L calculated from the estimated coordinates is
used as true observational vector. A random error vec-
tor D which follows standard normal distribution is
simulated in the second step by Monte Carlo method. In
order to make the simulated errors correlated in accor-
dance with the original covariance matrix, we decom-
pose R into FF T by using Cholesky decomposition (seeFig. 1. Curve of the reduction factor of weight elements
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Koch 1988, p. 36) and transform D into D0 ¼ FD in the
third step. Then D0, as the true error vector shown in
columns 4, 5, and 6 in Table 1, is added to the baseline
vector L to obtain the new observation vector
L0 ¼ Lþ D0 with its covariance matrix R. Seven simu-
lated outliers are added to L0ðY1;X8;X12; Z15;X16;
X19; Z26Þ, which are also shown in columns 4, 5, and 6 of
Table 1, as bold values.

The true errors and the covariance matrix of the
simulated correlated baselines described above are
known, so that the results calculated from the observa-
tions can easily be analyzed and compared for all the

computation schemes. Three schemes of adjustment for
the GPS network are performed.

Scheme 1: LS adjustment based on the simulated ob-
servation vector L0 without any additional
outliers;

Scheme 2: LS adjustment with seven additional outliers;
Scheme 3: RECO with seven additional outliers.

The shrink function of Eq. (11) is applied as an
example. The residuals are shown in columns 7, 8, and 9
(LS), and columns 10, 11, and 12 (RECO) in Table 1. The
estimated coordinate differences are shown in Table 2.
From the calculation results, we find the following.

1. Some of the outliers have not been reflected in the
corresponding residuals in the LS adjustment, in
particular the absolute of the residual of the outlying
observation Y1 is masked. There are 19 outlying
residuals which correspond to good observations (see
columns 7, 8, and 9 with italic values in Table 1). The
residuals resulting from the RECO have successfully
shown the simulated outliers (see the last three col-
umns in Table 1 with bold values). Similar facts were
indicated by Xu (1989b).

2. The sums of the squares of the differences between the
residuals and the true errors,

P
ðDi � ViÞ2, are shown

in the last row in Table 1, illustrating that the resid-
uals of the RECO method fit the true errors much
better than those of the LS method.

Fig. 2. GPS network

Table 1. Residual of compar-
ison between LS and RECO Observation

no.
Site no. Simulated errors Residuals by LS Residuals by RECO

X Y Z X Y Z X Y Z

1 2 1 )0.026 )0.958 )0.005 )0.072 )0.063 0.502 )0.009 )0.978 )0.014
2 3 2 0.001 )0.004 0.007 )0.123 )0.380 )0.345 0.012 )0.028 )0.033
3 4 3 )0.002 0.021 0.009 0.135 0.045 0.041 0.013 0.032 )0.024
4 5 4 0.001 0.008 )0.002 )0.015 )0.360 )0.222 )0.007 0.043 0.017

5 3 6 0.017 0.053 )0.006 0.053 )0.255 )0.534 )0.019 0.045 0.070
6 4 3 )0.012 )0.052 )0.002 0.124 )0.029 0.030 0.002 )0.042 )0.035
7 5 4 )0.000 0.016 )0.001 )0.016 )0.353 )0.221 )0.008 0.050 0.018
8 7 5 )3.011 0.038 0.004 )2.151 0.278 )0.020 )3.012 0.025 0.010

9 2 6 )0.005 0.012 0.003 0.156 0.079 )0.173 )0.051 0.027 0.119
10 3 2 0.008 0.036 )0.003 )0.117 )0.340 )0.355 0.018 0.012 )0.044
11 4 3 )0.016 )0.053 )0.000 0.120 )0.030 0.031 )0.001 )0.043 )0.033
12 5 4 )0.991 0.007 0.000 )1.006 )0.361 )0.220 )0.998 0.042 0.019
13 7 5 )0.109 0.038 0.020 0.751 0.278 )0.004 )0.110 0.025 0.025
14 8 7 0.003 0.008 )0.001 )1.129 )0.055 0.785 0.083 )0.005 )0.016
15 6 2 0.010 0.085 1.512 )0.151 0.017 1.688 0.056 0.069 1.395

16 6 4 0.879 )0.016 0.010 0.707 0.268 0.506 0.900 )0.018 )0.034
17 6 5 0.007 0.058 0.005 )0.150 0.711 0.720 0.035 0.022 )0.058
18 6 7 )0.011 0.028 0.003 )1.028 0.441 0.743 0.019 0.005 )0.065
19 6 8 )0.997 0.007 )0.002 )0.882 0.482 )0.049 )1.047 )0.003 )0.055
20 2 6 0.064 0.052 )0.093 0.225 0.120 )0.269 0.018 0.068 0.024
21 5 2 )0.025 )0.110 )0.002 )0.029 )0.831 )0.542 )0.007 )0.090 )0.056
22 7 5 )0.004 0.012 0.002 0.856 0.252 )0.022 )0.006 )0.002 0.007
23 8 7 )0.014 0.034 0.005 )1.147 )0.028 0.791 0.066 0.021 )0.010
24 1 2 )0.106 0.000 0.023 )0.061 )0.895 )0.484 )0.124 0.020 0.032
25 1 3 )0.109 0.031 0.010 0.061 )0.488 )0.146 )0.137 0.074 0.059
26 1 4 )0.125 )0.034 )2.103 )0.091 )0.577 )2.290 )0.167 )0.001 )2.021
27 1 5 )0.022 0.077 0.010 0.028 )0.098 0.043 )0.057 0.075 0.073

P18
i¼1 Di � Við Þ2 0 14.870 0.127
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3. In the adjustments, the true coordinates of the net-
work sites are chosen as the approximations of the
unknown parameters, thus the corrections of the
coordinates after the adjustments reflect the true
errors of the coordinates (see Table 2). The results
also illustrate that the corrections of the coordinates
obtained from the RECO method are more rea-
sonable and reliable than those from LS method,
especially when some additional outliers are added
to the observations (compare the coordinate
corrections of scheme 2 and scheme 3 shown in
Table 2). The sums of the error squares confirm the
above conclusion.

5 Concluding remarks

The occurrence of violations of the famous ‘IID’
(independently identical distributed) assumption in
geodetic observations is acknowledged by most geode-
sists. The error effects of correlated observations in
robust estimation and in error diagnosis are quite
different from those of LS estimation. We cannot
equivalently transform the dependent observations into
independent ones in robust estimation, for the error
value may be converted and masked, as indicated also
by Xu (1989b). It is necessary to take the correlation
of the observations into account in robust estimation.
So far, we have developed robust estimators for
correlated observations by means of the equivalent
weight matrix of the IGGIII scheme and the bifactor
reduction model of the weight elements of the obser-
vations respectively. We strongly propose that the
robust estimator based on the bifactor reduction model
of the weight elements be applied in correlated
geodetic data processing. This kind of robust estimator
takes the calculation procedures of the common LS
estimation and keeps the equivalent weight matrix
symmetrical and the original correlation coefficients
of the observations unchanged. Its robustness and
efficiency are guaranteed by the reduction factor of the
weight elements. A lot of actual and Monte Carlo
calculations have shown its effectiveness.

It should be mentioned that the results of the robust
estimation for the correlated observations are very pre-
liminary; further theoretical and practical studies are
needed – in particular the criteria of the reduction factor

of the weight elements should be determined reasonably
and theoretically.
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