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Abstract. The downward continuation of the harmonic
disturbing gravity potential, derived at flight level from
discrete observations of airborne gravity by the spherical
Hotine integral, to the geoid is discussed. The initial-
boundary-value approach, based on both the direct and
inverse solution to Dirichlet’s problem of potential
theory, is used. Evaluation of the discretized Fredholm
integral equation of the first kind and its inverse is
numerically tested using synthetic airborne gravity data.
Characteristics of the synthetic gravity data correspond to
typical airborne data used for geoid determination today
and in the foreseeable future: discrete gravity observa-
tions at a mean flight height of 2 to 6 km above mean sea
level with minimum spatial resolution of 2.5 arcmin and a
noise level of 1.5 mGal. Numerical results for both
approaches are presented and discussed. The direct
approach can successfully be used for the downward
continuation of airborne potential without any numerical
instabilities associated with the inverse approach. In
addition to these two-step approaches, a one-step proce-
dure is also discussed. This procedure is based on a direct
relationship between gravity disturbances at flight level
and the disturbing gravity potential at sea level. This
procedure provided the best results in terms of accuracy,
stability and numerical efficiency. As a general result,
numerically stable downward continuation of airborne
gravity data can be seen as another advantage of airborne
gravimetry in the field of geoid determination.
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1 Introduction

Airborne gravity data, observed by airborne gravimeters
or derived from a combined evaluation of signals
observed by INS (inertial navigation system) sensors
and GPS (global positioning system) receivers, can easily
be transformed into gravity disturbances at flight level.
A principal aim of airborne gravity field determination
is the derivation of the disturbing gravity potential or
geoidal undulations at ground or mean sea level. This
can be achieved by first calculating the disturbing
gravity potential at flight level from the observed gravity
disturbances, and then downward continuing the dis-
turbing gravity potential from flight level to sea level. In
recent years the procedure, based on inverting the
solution of Dirichlet’s problem of potential theory, has
become a standard technique applied by many authors
(e.g. Huestis and Parker 1979; Vanı́ček et al. 1996;
Martinec 1998; Sjöberg 2001).

Due to the noisy nature of airborne observations of
gravity, caused by flight dynamics, the recorded gravity
signal must be low-pass filtered, which results in recovery
of low-frequency gravity information. Since the reference
gravity, computed from available global geopotential
models (GGMs), is subtracted from observed gravity,
airborne gravimetry provides only discrete samples of
band-limited gravity. This band limitation has a positive
impact on the downward continuation in stabilizing
significantly its numerical evaluation. Two different
approaches for the harmonic downward continuation of
the band-limited disturbing gravity potential are formu-
lated in this contribution. The first approach, commonly
used also for the harmonic downward continuation of
ground gravity data to sea level, is based on the inverse of
Abel–Poisson’s integral, resulting in a Fredholm integral
equation of the first kind. In contrast, the idea behind the
second approach is to avoid numerically unstable inverse
solutions by setting up a direct relationship between
gravity potentials at flight level and sea level. While the
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former approach can be used for any vertical distribution
of data, the latter method can only be applied to data
distributed over flight level with almost constant height
above the reference ellipsoid. This restriction does not
allow for a general use of the latter model and its appli-
cability is thus limited to airborne data.

Both these approaches rely on a two-step procedure
involving two steps of integration. As an alternative, a
one-step procedure can be constructed, based on a
transformation of band-limited gravity disturbances at
flight level directly into the disturbing gravity potential
at sea level. In this approach, the transformations of
gravity disturbances into the disturbing gravity potential
(smoothing step) and the downward continuation
(roughening step) are fused. As a result, an improved
numerical behaviour and better stability of the solution
can be expected.

The three approaches are described in detail in
Sect. 2. Since airborne gravity data are available over
local regions only, spherical cap integration is applied,
calculating truncation errors approximately on the basis
of an available GGM in terms of spherical harmonics.
All three approaches are tested for accuracy, efficiency
and stability using noisy synthetic airborne gravity data
in Sect. 3. The results are discussed in Sect. 4, where
conclusions of the presented research are also drawn.

2 Theory

Assuming that the band-limited gravity disturbances dgb,
derived from airborne gravimetry, are given at constant
flight level, the problem is to determine the band-limited
disturbing gravity potential T b, harmonic outside
the geocentric reference sphere of radius R (spherical
approximation of the geoid). Formally, this is no longer
a boundary-value problem but rather an initial-value
problem, since the data are given in the solution domain
itself and not on the boundary. Related to the Stokesian
approach for the determination of the geoid, this type of
problem has been called a pseudo-boundary-value
problem (Sansò 1995). In the spherical approximation,
the following formulation can be given to this problem:

r2T bðr;XÞ ¼ 0 for r > R

dgbðr;XÞ ¼ �oT bðr;XÞ
or

����
r

for r ¼ Rþ H

T bðr;XÞ ¼ Oðr�‘�1Þ for r ! 1

ð1Þ

O stands for the Landau symbol, ðr;XÞ for the spherical
coordinate triad, and ‘ is the minimum degree of the
band-limited gravity disturbances dgb. H is a known
constant height of the flight trajectory above mean sea
level. Although the solution to the initial-value problem
of Eqs. (1), if it exists and is unique, is unstable in
general, the property of band-limited data, given on a
smooth surface, transfers the originally improperly posed
problem to a properly posed one (e.g. Martinec 1998).

In the following, three alternatives for the solution of
the initial-value problem of Eqs. (1) are considered. The

first and the second approaches are based on a two-step
procedure, involving as a first step the transformation of
band-limited airborne gravity disturbances dgb, reduced
for effects of topographical and atmospheric masses,
into the band-limited disturbing gravity potential T b at
flight level using the spherical Hotine integral

T bðRþH ;XÞ ¼ RþH
4p

Z Z
H

dgbðRþH ;X0Þ HbðwÞdX0 ð2Þ

where H is the full spatial angle. Hb is the band-limited
spherical Hotine function (Novák et al. 2001)

HbðwÞ ¼
X‘þb

n¼‘

2nþ 1

nþ 1
PnðcoswÞ ð3Þ

Pn stands for the Legendre polynomials (Heiskanen and
Moritz 1967). The spherical distance w between geocen-
tric directions X ¼ ðu; kÞ and X0 ¼ ðu0; k0Þ can be
computed by spherical trigonometry

cosw ¼ cosu cosu0 þ sinu sinu0 cosðk � k0Þ ð4Þ

The second step then consists of the downward contin-
uation of the harmonic function T b from flight level to
sea level, which is again approximated by the reference
sphere. Two proposals for the downward continuation
of the band-limited disturbing gravity potential T b are
studied. While the first approach is based on solving an
inverse problem, a direct approach is used in the second
procedure.

In contrast, the third approach, presented in Sect. 2.3,
relies on a one-step procedure, transforming the band-
limited airborne gravity disturbances dgb at flight level
directly into the band-limited disturbing gravity potential
T b at sea level. It should benoticed that the applicability of
the three approaches is clearly limited to airborne gravity
data due to the assumption that the airborne gravity
disturbances dgb are observed at constant height H .

2.1 Two-step approach: downward continuation
as an inverse problem

The harmonic band-limited disturbing gravity potential
T b can be expanded on the surface of the reference
sphere as follows:

T bðR;XÞ ¼ GM

R

X‘þb

n¼‘

TnðXÞ ð5Þ

where Tn are the Laplace spherical harmonics and GM
denotes the geocentric gravitational constant. The
minimum frequency of the harmonic band-limited
disturbing gravity potential T b and gravity disturbances
dgb is characterized in the following by the degree ‘
and their maximum frequency by ‘þ b. Current values
for airborne data are ‘ 
 361 and approximately
‘þ b 
 2200, respectively. The upward continuation of
T b from the reference sphere of radius R into external
space can be solved using the spherical Dirichlet
problem, which reads
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r2T bðr;XÞ ¼ 0 for r > R

T bðr;XÞ ¼ f ðr;XÞ for r ¼ R ð6Þ
T bðr;XÞ ¼ Oðr�‘�1Þ for r ! 1

It is assumed that the function f , i.e. the band-limited
disturbing gravity potential, is known on the reference
sphere as a result of the first step. The solution to the
problem of Eqs. (6) for T b at flight level Rþ H in terms
of the Green function is represented by the Abel–
Poisson integral (Kellogg 1929)

T bðRþ H ;XÞ ¼ 1

4p

ZZ
H

T bðR;X0Þ PbðR;w;Rþ HÞdX0

for H � 0 ð7Þ

The band-limited spherical Abel–Poisson function is of
the form

PbðR;w;Rþ HÞ ¼
X‘þb

n¼‘

ð2nþ 1Þ R
Rþ H

� �nþ1

PnðcoswÞ

ð8Þ

The solution for T b at sea level (approximated in the
solution by the reference sphere of radius R) can be
found using the inversion of Eq. (7) for known values of
T b at flight level Rþ H . Equation (7) thus turns into a
Fredholm integral equation of the first kind. The global
integration over the full spatial angle H in Eq. (7)
cannot, however, be carried out in the global sense due
to the lack of observed data. For practical computa-
tions, Eq. (7) can only be approximated, applying
integration over a spherical cap around the computation
point and calculating the truncation errors by the aid of
the GGM. For example, a simple numerical integration
yields for the computation point Xi

T bðRþ H ;XiÞ �
GM
2R

XL
n¼‘

DnðH ;woÞTnðXiÞ

¼ 1

4p

XN
j¼1

T bðR;XjÞPbðR;wij;Rþ HÞDXj;

L 
 ‘þ b ð9Þ

Here, DXj is the area of the trapezoidal cell centered at
the jth geographical node Xj, N is the number of data
within the spherical cap of radius wo, and Tn are the
Laplace harmonics of the disturbing gravity potential
derived, for example, from the EGM96 (Lemoine et al.
1998) of maximum degree L. The truncation coefficients
Dn of the band-limited Abel–Poisson function are
(Molodenskij et al. 1960)

DnðH ;woÞ ¼
X‘þb

m¼‘

ð2mþ 1Þ R
Rþ H

� �mþ1

Rn;mðwoÞ;

‘ 
 n 
 L ð10Þ

Numerical values of the truncation coefficients Dn for
H ¼ 4 km and wo ¼ 1� are plotted in Fig. 1. Coefficients
Rn;m

Rn;mðwoÞ ¼
Zp

w¼wo

PnðcoswÞPmðcoswÞ sinw dw ð11Þ

can conveniently be computed by an iterative expression
[Paul 1973, Eq. (5)].

The matrix form of Eq. (9) reads

TbðRþHÞ ¼ 1

4p
ATbðRÞ ð12Þ

where the known vector TbðRþHÞ is reduced by the
effect of the data outside the spherical cap given by the
spherical harmonic series on the left-hand side of
Eq. (9). The off-diagonal entries of the matrix A are
given as follows (Martinec 1998):

Aij ¼
PbðR;wij;Rþ HÞDXj for wij 
 wo
0 for wij > wo

�
ð13Þ

The diagonal entries in the matrix A are given for N
gravity data within the spherical cap of radius wo as
follows:

Aii ¼ 2p
Zwo

w¼0

PbðR;w;Rþ HÞ sinw dw

�
XN

j¼1; j 6¼i

PbðR;wij;Rþ HÞDXj ð14Þ

The integral of the modified band-limited Poisson
function can be evaluated as follows:

Zwo

w¼0

PbðR;w;Rþ HÞ sinw dw

¼ �
X‘þb

n¼‘

ð2nþ 1Þ R
Rþ H

� �nþ1

RnðwoÞ ð15Þ

Fig. 1. Truncation coefficients Dn, Qn and Vn for wo ¼ 1� and H ¼
4 km
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where Rn represents the analytical solution to the
integral of the Legendre function (Paul 1973)

RnðwoÞ ¼ �
Zwo

w¼0

PnðcoswÞ sinw dw

¼ Pnþ1ðcoswoÞ � Pn�1ðcoswoÞ
2nþ 1

ð16Þ

The truncation errors for wo ¼ 1� induced by neglecting
the outer zone of integration (see Fig. 2) refer to the
numerical example treated in Sect. 3. The system of
linear equations, Eq. (12), for the column vector TbðRÞ is
uniquely solvable only if A is a square matrix, i.e. if the
dimension of TbðRÞ and TbðRþHÞ is identical. The
solution of Eq. (12) can be complicated by a possibly ill-
conditioned matrix operator A. Moreover, small varia-
tions in TbðRþHÞ (such as observation errors) can cause
large and unrealistic variations in calculated TbðRÞ. In
other words, the solution can be numerically unstable
and regularization of the model (smoothing) may be the
only alternative to arrive at some reasonable solution.

2.2 Two-step approach: direct approach
to downward continuation

Airborne gravimetry provides gravity data collected at
flight level of almost constant height which can easily
be approximated by a geocentric sphere of radius
Rþ H . A spherical initial-value problem can alterna-
tively be formulated for the flight level as the
boundary, after having transformed the gravity distur-
bances dgbðRþ H ;XÞ into the disturbing gravity
potential T bðRþ H ;XÞ in the first step [see Eq. (2)].
The spherical approximation can be used in this case
due to relatively small vertical deviations of observa-
tion points from mean height H (deviations at the level
of few metres are observed for actual airborne data).
This initial-value problem can be written as follows:

r2T bðr;XÞ ¼ 0 for r > R

T bðr;XÞ ¼ f ðr;XÞ for r ¼ Rþ H

T bðr;XÞ ¼ Oðr�‘�1Þ for r ! 1
ð17Þ

Values of the function f can be derived from airborne
gravity disturbances at flight level Rþ H using the
spherical Hotine integral [see Eq. (2)]. The solution to
the initial-value problem of Eqs. (17) can be written as
follows:

T bðR;XÞ ¼ 1

4p

ZZ
H

T bðRþ H ;X0ÞKbðR;w;Rþ HÞdX0

for H � 0 ð18Þ

The band-limited integration kernel Kb is of the form

KbðR;w;Rþ HÞ ¼
X‘þb

n¼‘

ð2nþ 1Þ Rþ H
R

� �nþ1

PnðcoswÞ

ð19Þ

The solution of Eq. (18) can obviously be used for
certain fixed values of parameters b and H only. In the
case of actual airborne data, approximate maximum
values of 6 km for H and 4000 for ‘þ b can be expected
(for minimum data resolution of 4–5 km full wavelength
expected for future gravity data). Both values would
guarantee stable numerical evaluation of the integral of
Eq. (18). The function Kb for ‘ ¼ 121 and ‘þ b ¼ 4320
(resolution of 2.5 arcmin) is plotted in Fig. 3. The upper
graph (the function Kb by degree n at w ¼ 1�) shows
clearly the divergent nature of the function for
‘þ b ! 1. The divergence rate is higher with increasing
elevation H . The lower graph of the same figure shows
the kernel Kb as a function of the spherical distance w
for ‘ ¼ 121 and ‘þ b ¼ 4320.

Fig. 2. Truncation errors in the inverse two-step approach (m2 s�2)

Fig. 3. Band-limited integration kernel Kb for 121 
 n 
 4320.
Upper graph: kernel by degree n at w ¼ 1�; lower graph: kernel as a
function of w
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Applying the simple integration, the integral of
Eq. (18) is of the form

T bðR;XiÞ �
GM
2R

XL
n¼‘

R
Rþ H

� �nþ1

QnðH ;woÞ TnðXiÞ

¼ 1

4p

XN
j¼1

T bðRþ H ;XjÞKbðR;wij;Rþ HÞDXj;

L 
 ‘þ b ð20Þ

Truncation coefficients Qn of the function Kb are

QnðH ;woÞ ¼
X‘þb

m¼‘

ð2mþ 1Þ Rþ H
R

� �mþ1

Rn;mðwoÞ;

‘ 
 n 
 L ð21Þ

Numerical values of the truncation coefficients Qn for
H ¼ 4 km and wo ¼ 1� are also plotted in Fig. 1. The
truncation coefficients Dn and Qn can be compared in
this figure. The larger numerical values of the coefficients
Qn would mean larger truncation errors. Since the
coefficients Qn are multiplied by the attenuation factor
to the power of nþ 1, the truncation errors have
comparable magnitude in both the inverse and direct
approaches (see Figs. 2 and 4). The truncation errors can
be decreased further by suitable modification of the
integration kernel.

The matrix form of Eq. (20) can be written concisely
as

TbðRÞ ¼ 1

4p
BTbðRþHÞ ð22Þ

where the unknown vector TbðRÞ is reduced by the
contribution of the corresponding remote-zone data (see
Fig. 4) given by the spherical harmonic series on the left-
hand side of Eq. (20). These values also refer to the
numerical example in Sect. 3. The off-diagonal entries of
the matrix B are given as follows:

Bij ¼
KbðR;wij;Rþ HÞ DXj for wij 
 wo
0 for wij > wo

�
ð23Þ

The diagonal entries in the matrix B are given for N
gravity data within the spherical cap of radius wo as
follows:

Bii ¼ 2p
Zwo

w¼0

KbðR;w;Rþ HÞ sinw dw

�
XN

j¼1; j 6¼i

KbðR;wij;Rþ HÞDXj ð24Þ

The integral of the modified band-limited function Kb

can be evaluated as follows:

Zwo

w¼0

KbðR;w;Rþ HÞ sinw dw

¼ �
X‘þb

n¼‘

ð2nþ 1Þ Rþ H
R

� �nþ1

RnðwoÞ ð25Þ

with the function Rn already defined in Eq. (16). Since
no inverse is involved in Eq. (22), no instabilities are
expected in the numerical evaluation of this system of
linear equations. In contrast to the approach described
in Sect. 2.1, the number of unknowns and data points
may be different.

2.3 One-step approach: transformation of the gravity
disturbances at flight level to the disturbing gravity
potential at sea level

Instead of the two-step procedure, presented above in
Sects. 2.1 and 2.2, a direct solution of the pseudo-
boundary-value problem of Eqs. (1) for the band-
limited disturbing gravity potential T b can be derived.
This procedure results in the following solution formula
for the band-limited gravity disturbances dgb at flight
level, derived from airborne gravimetry:

T bðR;XÞ ¼Rþ H
4p

ZZ
H

dgbðRþ H ;X0Þ

�JbðR;w;Rþ HÞdX0 for H � 0 ð26Þ

The band-limited integration kernel Jb reads

JbðR;w;Rþ HÞ ¼
X‘þb

n¼‘

2nþ 1

nþ 1

Rþ H
R

� �nþ1

PnðcoswÞ ð27Þ

The kernel function Jb for ‘ ¼ 121 and ‘þ b ¼ 4320,
and five different flight heights H is plotted in Fig. 5. A
comparison with Fig. 3 proves that – due to the smaller
absolute variations – the kernel Jb related to the one-
step procedure is numerically much more stable than the
kernel Kb related to the direct two-step procedure even
for higher flight levels.Fig. 4. Truncation errors in the direct two-step approach (m2 s�2)
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Applying the simple integration and considering the
truncation error resulting from spherical cap integra-
tion, the discretized integral of Eq. (26) takes the form

T bðR;XiÞ�
GM

2ðRþHÞ
XL
n¼‘

ðnþ1Þ R
RþH

� �nþ1

�VnðH ;woÞTnðXiÞ

¼RþH
4p

XN
j¼1

dgbðRþH ;XjÞJbðR;wij;RþHÞDXj; L
‘þb

ð28Þ

The truncation coefficients Vn of the function Jb are

VnðH ;woÞ ¼
X‘þb

m¼‘

2mþ 1

mþ 1

Rþ H
R

� �mþ1

Rn;mðwoÞ;

‘ 
 n 
 L ð29Þ

Numerical values of the truncation coefficients Vn for
H ¼ 4 km and wo ¼ 1� are plotted in Fig. 1. A
comparison in Fig. 1 shows that the coefficients Vn are
several orders of magnitude smaller than the truncation
coefficients Dn and Qn. The numerical values of the
coefficients Vn also change only slightly within the range
of flight heights used. The truncation errors presented in
Fig. 6 also refer to the example in Sect. 3. They could be
decreased by modification of the integration kernel.

The matrix form of Eq. (28) can be written concisely
as

TbðRÞ ¼ Rþ H
4p

CdgbðRþHÞ ð30Þ

where the unknown vector TbðRÞ is reduced by the
contribution of the corresponding remote-zone data
given by the spherical harmonic series on the left-hand

side of Eq. (28). The off-diagonal entries of the matrix C
are given as follows:

Cij ¼
JbðR;wij;Rþ HÞ DXj for wij 
 wo
0 for wij > wo

�
ð31Þ

The diagonal entries in the matrix C read for N gravity
data within the spherical cap of radius wo

Cii ¼ 2p
Zwo

w¼0

JbðR;w;Rþ HÞ sinw dw

�
XN

j¼1;j 6¼i

JbðR;wij;Rþ HÞDXj ð32Þ

The integral of the modified band-limited function Jb

can be evaluated as follows:

Zwo

w¼0

JbðR;w;Rþ HÞ sinw dw

¼ �
X‘þb

n¼‘

2nþ 1

nþ 1

Rþ H
R

� �nþ1

RnðwoÞ ð33Þ

with the function Rn already defined in Eq. (16). Again
no inverse is involved in Eq. (30), so no instabilities are
expected in the numerical evaluation of these relation-
ships. Also in this approach – in contrast to the
approach in Sect. 2.1 – the number of unknowns and
data points may be different.

3 Numerical tests

In order to test numerical accuracy, efficiency and
stability of all three approaches that were described in
the previous section, a synthetic GGM (SGM) was used

Fig. 5. Band-limited integration kernel Jb for 121 
 n 
 4320:
Upper graph: kernel by degree n at w ¼ 1�; lower graph: kernel as a
function of w

Fig. 6. Truncation errors in the one-step approach (m2 s�2)
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for computation of the band-limited gravity distur-
bances at flight level Rþ H

dgbðRþ H ;XÞ ¼ GM
R2

X‘þb

n¼‘

ðnþ 1Þ R
Rþ H

� �nþ2

TnðXÞ

ð34Þ

Values of ‘ ¼ 121 and ‘þ b ¼ 2160 were used with
respect to spectral content of current airborne gravity
data. Higher-degree coefficients Tn of the SGM were
adjusted (Novák et al. 2001) in order to fit the GPM98
degree variances (Wenzel 1998) (see Fig. 7) derived
from actual gravity data. Five different flight levels,
with heights H of 2, 3, 4, 5 and 6 km, were used as
typical values expected for actual airborne data. The
test area was limited by two parallels of 49� and 52�

northern latitude, and by two meridians of 238� and
243� eastern longitude. This area corresponds to 8640
data points spaced by 2:5 arcmin in latitude and
longitude. Due to the integration radius wo ¼ 1� used
in the Abel–Poisson integration, the computation area
was bounded by latitude of 50� and 51� and by
longitude of 240� and 241� in order to avoid any edge
effects in the results. This corresponds to 576 compu-
tation points spaced by 2:5 arcmin in latitude and
longitude.

The scheme of the numerical tests is shown in
Fig. 8. The random noise egðRþ HÞ of 1.5 mGal was
added first to the values of gravity disturbances dgb at
flight level generated from the SGM by Eq. (34). The
gravity noise eg is shown in Fig. 9. In the two-step
approaches, the band-limited disturbing gravity po-
tential T b at flight level was first derived from noisy
gravity disturbances using the spherical Hotine for-
mula (HTN) [see Eq. (2)]. The random noise egðRþ HÞ
of 1.5 mGal added to the gravity disturbances propa-
gated via the Hotine integral formula into the noise
eT ðRþ HÞ of approximately 0.05 m2 s�2. These values
were obtained by comparing the results of the Hotine
integration with the reference values generated directly
from the SGM

T bðRþ H ;XÞ ¼ GM
R

X‘þb

n¼‘

R
Rþ H

� �nþ1

TnðXÞ ð35Þ

The Hotine integral, being a low-pass filter, effectively
reduced high-frequency noise in the gravity data, which
had positive consequences for the downward continu-
ation step (DWC) following next in the two-step
approaches. The noisy band-limited disturbing gravity
potential T b was downward continued from flight level
Rþ H to sea level (approximated again by the refer-
ence sphere of radius R) using either the inverse or the
direct approach. In the one-step approach (OSA), the
noisy gravity disturbances dgb at flight level were

Fig. 7. GPM98b versus SGM degree variances of degree 400–1800
(mGal2)

Fig. 8. Scheme for testing the solution alternatives

Fig. 9. Gravity noise eg added to the synthetic airborne data (mGal)
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transformed directly into the noisy band-limited dis-
turbing gravity potential T b at sea level. Results of the
three approaches were compared against reference
values computed directly from the SGM by the series
expansion

T bðR;XÞ ¼ GM
R

X‘þb

n¼‘

TnðXÞ ð36Þ

The differences, used for evaluation of the noise
propagation, were converted into the effect on the geoid
using the Bruns formula in spherical approximation
(Heiskanen and Moritz 1967)

eN ¼ eT ðRÞ
c

ð37Þ

with normal gravity c. Results for the two-step approach
with the inverse downward continuation are tabulated in
Table 1, for the two-step approach with the direct
downward continuation in Table 2, and for the one-step
approach in Table 3, for different flight levels.

The results for the two-step approach with the inverse
downward continuation (see Table 1) show all the well-
known signs of numerical instability. Clearly, the noise
magnification for flying altitudes above 4 km makes the
results unusable for accurate geoid determination. In the
worst case, the initial random noise in gravity distur-
bances of 1.5 mGal propagates via the Hotine and in-
verse Abel–Poisson integral into geoid noise of 25 cm.
The bias stays negligibly small for all solutions. The
noise eN in the geoidal undulations obtained using this

approach for the airborne data at a flight height of 4 km
is shown in Fig. 10.

The results for the two-step approach with the direct
downward continuation (see Table 2) have quite differ-
ent characteristics. The noise magnification associated
with the inverse approach cannot be observed in the
results obtained by this approach. The noise level in-
creases very slightly with increasing flight height H . The
noise magnification is one order of magnitude smaller
for the maximum flight height of 6 km when the results
of the inverse and direct approaches are compared.
There is a bias present in all solutions from the direct
approach which can reach values of 1 cm. The noise eN

in the geoidal undulations obtained using this approach
for the airborne data at a flight height of 4 km is shown
in Fig. 11.

The results for the one-step approach (see Table 3),
are even more accurate than those for the previous
approach. However, this approach also has some ad-
ditional advantages. It is numerically much more effi-
cient, requiring only one integration step for the
computation of the solution. The ratio of flight height
to resolution, so critical for the inverse downward
continuation, can be avoided. Moreover, the data area
usually required for a solution unaffected by the edge
effects can be smaller in this case. This solution rep-
resents an elegant solution to the problem of the geoid
determination from airborne gravity and gives the
airborne gravimetry a significant advantage compared

Table 1. Geoid noise eN for the inverse two-step approach (m)

Height
(km)

Minimum Maximum Mean Sigma RMS

2 )0.026 +0.034 +0.001 ±0.010 ±0.010
3 )0.053 +0.060 +0.001 ±0.019 ±0.019
4 )0.120 +0.121 +0.002 ±0.045 ±0.045
5 )0.323 +0.315 +0.002 ±0.112 ±0.112
6 )0.748 +0.709 +0.002 ±0.252 ±0.252

Table 2. Geoid noise eN for the direct two-step approach (m)

Height
(km)

Minimum Maximum Mean Sigma RMS

2 )0.014 +0.027 +0.005 ±0.009 ±0.010
3 )0.019 +0.033 +0.006 ±0.010 ±0.012
4 )0.024 +0.041 +0.008 ±0.013 ±0.015
5 )0.031 +0.052 +0.010 ±0.017 ±0.019
6 )0.041 +0.066 +0.013 ±0.021 ±0.025

Table 3. Geoid noise eN for the one-step approach (m)

Height
(km)

Minimum Maximum Mean Sigma RMS

2 )0.017 +0.022 +0.005 ±0.008 ±0.010
3 )0.017 +0.023 +0.006 ±0.008 ±0.010
4 )0.020 +0.025 +0.006 ±0.009 ±0.010
5 )0.024 +0.027 +0.006 ±0.010 ±0.011
6 )0.029 +0.031 +0.006 ±0.011 ±0.013

Fig. 10. Geoid noise eN from the inverse two-step approach (m)
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to ground gravity data. The noise eN in the geoidal
undulations obtained using the one-step approach for
the airborne data at flight height of 4 km is shown in
Fig. 12. All three approaches can finally be compared
in terms of the noise propagation (standard deviation)
that is plotted in Fig. 13.

4 Conclusions

The determination of the disturbing gravity potential
and geoidal heights at mean sea level from band-limited
airborne gravity data at flight level has been discussed.
Simulated gravity data, generated from the high-fre-
quency SGM and distorted by the random noise
expected for actual airborne data, were used for
numerical testing of the three solution alternatives.
Although they should provide the same results from the
analytical point of view, there are significant differences
in the results due to the propagation of observation
errors and truncation errors.

The first and the second approaches are based on a
two-step procedure, the first step consisting of the de-
termination of the disturbing gravity potential from
gravity disturbances at flight level, while in the second
step the downward continuation to mean sea level is
considered. The first approach, based on the inverse of
the Abel–Poisson integral, provided numerically un-
stable results with unreasonably large noise magnifi-
cation. These results could be expected. Additional

modifications of the procedure, e.g. by the Tikhonov
regularization, would have to be applied in order to
arrive at more reasonable results. The second ap-
proach, using a direct solution of the respective initial-
value problem for band-limited data, can provide
stable solutions without any further regularization. The
results obtained for high-frequency synthetic data did
not show any of the numerical instabilities present in

Fig. 11. Geoid noise eN from the direct two-step approach (m) Fig. 12. Geoid noise eN from the one-step approach (m)

Fig. 13. Geoid noise eN from the three approaches as a function of
flight height (m)
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the inverse solutions. The bias of the results in the
direct model was somewhat larger compared to that
of the inverse model. However, it stayed within the
noise level of the results and its impact on the geoid
reached about 1 cm. Although the direct approach
does not solve the problem of downward continuation
of gravity data distributed at different heights, it can be
used successfully for band-limited airborne data,
avoiding in this way numerically unstable inverse
solutions.

The third solution approach is based on a one-step
procedure, making use of the direct relationship be-
tween gravity disturbances at flight level and the dis-
turbing gravity potential at sea level. This procedure
produced the best results in terms of accuracy, sta-
bility and numerical efficiency. The noise level in the
geoidal heights was about the same as for the second
approach for low flight heights but was less by a
factor of two for larger flight levels; the bias
was nearly independent of flight heights between 2 and
6 km. Further improvements of the presented
approaches may be achieved by modification of the
integration kernels, which is beyond the scope of this
contribution.
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