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Abstract. A fast spherical harmonic approach enables
the computation of gravitational or magnetic potential
created by a non-uniform shell of material bounded by
uneven topographies. The resulting field can be eval-
uated outside or inside the sphere, assuming that density
of the shell varies with latitude, longitude, and radial
distance. To simplify, the density (or magnetization)
source inside the sphere is assumed to be the product of
a surface function and a power series expansion of the
radial distance. This formalism is applied to compute the
gravity signal of a steady, dry atmosphere. It provides
geoid/gravity maps at sea level as well as satellite
altitude. Results of this application agree closely with
those of earlier studies, where the atmosphere contribu-
tion to the Earth’s gravity field was determined using
more time-consuming methods.

Keywords: Geopotential modeling — Spherical
harmonics — Forward problem

1 Introduction

The deep structure of the Earth can be modeled as
concentric shells of different densities and shapes,
separated by irregular boundaries of complex morphol-
ogy such as land and sea floor topographies. In order to
compute the gravity signal from a given source geometry
and exact theory, we can sum the contributions of each
individual block of material, such as constant density
topography columns (Calmant 1994; Ramillien and
Wright 2000), but this process is time consuming,
especially when the number of observations increases.
In this paper, an alternative procedure for calculation of
observed fields is presented. Mathematical expressions
for gravitational and magnetic potentials due to the
presence of an uneven shell interface are derived using

‘external’” or ‘internal’ spherical harmonics. This
approach is similar to the one used by Parker (1972)
in Cartesian geometry where Fourier transforms were
used. Here, computation of gravity/magnetic fields is
generalized to the entire terrestrial sphere using spherical
harmonics and without assumptions on the geometry of
sources such as topography, density, or magnetization.

Sections 2 and 3 deal with the gravitational and
magnetic cases respectively. Section 3.2 presents an ap-
plication of this formalism to evaluate gravity anomaly
due to the atmosphere, taking land topography into
account and assuming that the atmosphere is steady,
free of lateral variations, and dry. For validation, these
results are compared with previous calculations made by
Anderson et al. (1975), who used a classical 5° x 5° sub-
zone model of atmosphere, and assumed that air density
decreases linearly with altitude.

2 Method: the spherical harmonic approach

From a given distribution of sources (density or
magnetization) inside a spheroid or a shell, the first task
is to derive the expression of the corresponding outer
and inner potential functions (i.e. forward problem).
The sphere volume is assumed to be bounded by uneven
surface topographies whose amplitudes # remain small
compared to the mean radius of the whole sphere Ry (i.¢.
h/Ry < 1). The situation is presented in Fig. 1 for the
cases of both a full and a hollow sphere in the geocentric
reference system, where R is the radial distance, and 0
and A stand for the co-latitude and longitude respec-
tively. The point of observation for the potential is
located at the distance R =a, far enough from the
reference level of the topography at R = Ry, so that the
condition |a — Ry| < h is always fulfilled. The gravita-
tional potential is continuous in the whole space despite
the fact that the Green function is singular (see e.g. Nagy
et al. 2000).

Distributions of the sources inside the volume are
generally continuous functions of the spatial variables R,
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Fig. 1. Example of a planet bounded by uneven topographies, whose
amplitudes are assumed to be smaller than the mean radius of the
sphere Ry. Coordinates are expressed in the geocentric reference
system: 6, A, R, for co-latitude, longitude, and radial distance
respectively. Density and magnetization distributions are p(0, 1, R)
and ¢(0,A,R). a In the case of a ‘full’ volume, these sources of
anomaly are defined from the center of the planet (R =0). b For a

0, and /, but their mathematical expressions may be so
complicated that it is difficult to integrate them to obtain
useful expressions in terms of spherical harmonics. In
order to ease this derivation of harmonic coefficients,
they are merely replaced by products of radial and sur-
face functions which can be then integrated separately.
Surface terms, like topographies, are continuous and
integrated easily in spherical harmonics analysis. Radial
terms are arbitrarily chosen as numerical approxima-
tions using power series expansions versus R to simplify:
it is more convenient and faster to deal with constant
coeflicients of a development and power functions to
integrate. Note that in practice we can also use more
suitable developments for the radial term, such as
‘negative’ power series (i.e. 1 /R, 1/R?,...) or other simple
basis functions.

Detailed derivations of the general expressions for the
gravitational and magnetic potentials are presented in
Appendixes A and C respectively. Harmonic coefficients
are computed as the sums of those of the successive
powers of the topographies, and weighted by the radial
coefficients. In Appendix B, it is shown that the planar
approximation of the final general expression
[Eq. (A14a)] for outer gravitational potential coefficients
is equivalent to the one proposed earlier by Parker
(1972).

Since the general equations [Egs. (Al4a)—(Al4c),
(Al7a) and (A17b), (C5a)—-(C5c), (Cl12a)~(Cl2c), and
(C13a)~«(C13d)] are valid if the amplitude of the topo-
graphy remains smaller than the radius of the sphere, the
sum of the harmonic coefficients of ¢-powers of //Ry
converges naturally. In practice, convergence of these
iterative expressions depends strongly on the chosen

R =0 (center)

R=R, R=R:

‘hollow” sphere (i.e. a shell of material), p and o depend not on R but
on the altitude (i.e. the distance from the base of the shell located at
R =R;). Here the goal is to derive expressions for the potential
at (0,4,R) when (i) R > Ry or R > R, (i.e. external potential), and
(i) R < Ry or R < R; (i.e. internal potential), assuming the volume
distributions of source p and ¢ are known

series expansion of the radial function, and more
precisely on the absolute values of the coefficients oy
from Egs. (A7) and (Cl), and B, from Eq. (A16)
(k=0,1,2,...). This is ensured ideally when the coeffi-
cients decrease monotonically and fast enough with the
power k, or for a truncated development (for example,
when oy or f, are constant or become very small if
k > kmin and k < kmax). In that particular case, only a
few iterations (k=0,1,2,...) are needed to reach a
stable harmonic spectrum for the potential. This is
illustrated by the following numerical example of the
atmosphere density versus altitude (see the fast
convergence of the computed spectrum in Fig. 2), where
the coefficients associated with the exponential density
function are so small when k£ > 2 that the computation
can be stopped after the first three terms of the sum.
Under other conditions on the series of radial coeffi-
cients, convergence does not occur, especially if the
coefficients o or f, increase drastically with k. Never-
theless, in the case of a complicated distribution of
sources, the whole sphere volume can be divided into
several domains where the conditions of convergence
hold, and the expressions of potential can be extended
using piecewise polynomial radial functions which are
continuous inside each domain.

3 Numerical example: application to the terrestrial
atmosphere

The formalism developed above is now applied to the
real case of the atmosphere of our planet. Its mass is
only about 107% that of the entire solid Earth, so its
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Fig. 2. Results of computing gravitational potential coefficients of
atmosphere: fast convergence of the energy spectrum versus the degree
n and for the three first terms in power series for density, down to a
stable estimate

contributions to the static gravity field are much smaller
than those from the rocky part of the planet. The
reference level is the sea surface of altitude zero, or a
perfect sphere surface of constant radius R = 6371 km.

The dry atmosphere shell is assumed to consist of a
homogenous mixture of gas (nitrogen, oxygen, and rare
gases). In order to simplify, we make these following
crude assumptions: (1) the atmosphere consists only of
dry air, so it contains no water vapor; (2) the atmo-
sphere is in a steady state and there is no horizontal
movement of air (no wind); (3) its density does not
depend upon the geographical position on Earth (no
dependency on longitude and latitude); (4) we consider
only the first 40 km of the atmosphere because it con-
tains 98% of its total mass (see Anderson et al. 1975);
and (5) its density decays exponentially with altitude
h from sea level, where the mean air density is equal
to p, = 1.225kg/m* on the reference sphere:

p(h) = poe™"" (1)
where the parameter H is the scale height, and its value
is about 8 km. In Eq. (1), the exponential term offers a
very simple development into power series of the altitude
h. Thus, referring to Appendix A, it is straightforward to
determine the density coefficients o; and f, in the
previous general equations for the gravitational poten-
tial. However, the above assumptions are not necessarily
realistic for the complex moving wet atmosphere.
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3.1 Gravity effects of atmosphere layer detected
by satellite

Using Eq. (Al7a) for the case of a dry and steady air
layer, we can compute the external potential field
observed by a satellite orbiting at an altitude of
400 km. The air layer is bounded by an uneven lower
topography which is zero over ocean areas and
corresponds to continent topography over lands, as well
as an upper topography located at 40-km altitude and
assumed to be smooth. Topography over continental
areas is obtained from the 5-minute ETOPO-5 global
grid (National Geophysical Data Center 1988). Vertical
variations of dry air density are given by Eq. (1), once
developed in powers of the altitude 4, and from 0 (sea
level) to 40-km height. As suggested by previous tests
(Fig. 2), computation could be limited to the first three
terms for density variations (k = 0, 1,2) to reach a stable
energy spectrum. More terms (k > 2) would not provide
more accuracy since they are numerically too small to be
significant. Harmonic coefficients of both topographies
were computed by SPHEREPACK 3.0 software (Adams
and Swarztrauber 1997) on a half-degree global grid.
The result of this global simulation is presented in
Fig. 3, and shows that the atmospheric effect detected
from space is in the range of a few millimeters on the
geoid. The contour interval is 0.05 mm. Negative values
are still correlated to relief; the minimum is —1.1 mm
over the Himalayas, and the maximum is + 0.5 mm over
the Central Pacific Ocean. Note that due to upward
continuation operation, this map is smoother than the
one presented in Fig. 4, which is computed at sea
surface. Continental topography has a strong effect,
especially over major relief such as the Himalayas where
the air layer is thinner. In these areas, the geoid
contribution is therefore negative.

3.2 Gravity effects of atmosphere layer observed
at sea level

From the same assumptions and methodology, but
using Eq. (A17b), the geoid contribution of atmosphere
at sea level can be derived from the simple dry air model.
The corresponding map is displayed in Fig. 4. Values at
sea and away from the coasts are around 5.6 m, and less
on continents due to the effect of the relief. These results
are based on a spherical harmonic analysis degree and
order 72. Geoid heights are expressed in meters, and the
contour interval is 0.5 cm. Low potential values
observed on high land topography are due to the lack
of air mass. Away from the coast at sea, the atmospheric
contribution to geoid is around 5.5-5.6 m. There is a
good agreement between our result and the values
proposed by Anderson et al. (1975) using another
method of computation.

A map of the vertical component of the gravity gra-
dient was also derived using Eq. (A15d) and from har-
monic coefficients of internal potential previously
computed. This is presented in Fig. 5. Computation is
based on a spherical harmonic analysis to degree and
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Geoid contribution of the steady dry atmosphere (observed by satellite)
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order 20; contour interval is 10 uGal. The anomaly is
around zero at sea level and correlated negatively on
continental areas. The minimum value is located in the
Himalayas and reaches —200 pGal. Values are compar-
able to those from Anderson et al. (1975). Gravity
anomaly is nearly zero over the ocean and negative on
continents due to the ‘lack’ of atmospheric mass. Ex-
treme values of —200pGal are achieved over high
mountains. Values from these two global maps eval-
uated are very consistent with the ones found by
Anderson et al. (1975), who computed the atmosphere
effect using a more time-consuming classical approach.
Their method consisted of summing all the gravity

0

Fig. 3. Map of geoid contribution
of a 40-km dry and steady atmo-
sphere observed at satellite altitude
of 400 km. Unit: mm

effects of individual dry-air blocks, and assuming that
air density was constant in each block of atmosphere.

4 Conclusion

We have derived useful and practical equations to
compute potentials from uneven shell topographies
associated with complicated distribution of density or
magnetization, and using spherical harmonics. This
‘spectral’ approach presented in this paper was success-
fully implemented to evaluate globally the gravity
contribution of a simplified dry and steady atmosphere

Geoid contribution of a 40-km atmosphere (observed at sea surface)
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Fig. 4. Global map of geoid con-
tribution of a 40-km thick dry and
steady atmosphere observed at sea
level. Unit: m
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Vertical component of gravity for a 40-km atmosphere (observed at sea surface)
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as it would be measured at sea or by a satellite. The
technique can also be applied to other geophysical
problems, where we have to calculate the gravity/
magnetic anomaly created by interface topographies
deep inside the Earth or other planets. Possible
applications could be in the mapping of the effect of
the crust/mantle interface (assuming a Pratt isostasy
model), and in prospecting methods to evaluate the
global or regional effect of buried sources of anomaly.
The anomaly generated by a complicated body may be
computed as the sum of the contributions of its simple
parts limited by different interfaces and when the source
can be approximated by piecewise continuous functions.
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Appendix A: spherical harmonic coefficients
of the gravity potential

General expressions for gravitational potential
created by topography

Let us consider topographic heights h(¢', ', R') at co-
latitude ¢, longitude ', and mean distance R’ from the
center of the planet, such that the amplitude of
h(0', 2, R") is much smaller than the radius distance R'.
The gravitational potential V' due to the topographic
mass distribution dm(¢’, 2, R') inside the sphere volume

atmosphere mass observed at sea
level. Unit: pGal

Q, observed at the position (0,4,R =a) is given by
Newton’s formula of attraction

dm(0/, 2, R)
V(0,4,a) =G -
(’ 7a> ///é(ea)taaﬂgla)“/le)
Q

where G is the gravitational constant (6.67x
10" m*kg™'s72) and ¢ the distance operator between
the locations (0,4,a) and (6',4,R’) on the terrestrial
sphere.

The mass dm(0', 2/, R") is merely the product of its
mean density p(0', 2',R’) and the small volume dv of this
mass element, i.e.

dm (0,2 . R))=p(0/, 2 R")dv=p(0', ! .R')R*sin 0'd0'd}'dR’
(A2)

(A1)

In spherical coordinates, the distance operator can be
expressed as

£0,%,a,0,1 R =+/a*> + R?* — 2aR' cos ¢ (A3)

where ¢ 1is the distance in radians between the
geographical locations (0, A) and (¢, 2'), given by the
well-known relation in the spherical triangle
cos ¢ = cos O cos O + sinOsin 0 cos( — 1) (A4)

Hence, the general expression of the Newtonian

potential from Eq. (A1) becomes

2n w

V(0, a)ZG/ /sin Q’dg’d;// p(0/, 2, R)R*dR’
: 0 0 2 V@ + R? —2aR cos ¢
(AS)

The inverse of the distance ¢ is a generating function for
the Legendre polynomials P, of degree n. Then & can be
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expanded as an n-power series of the ratio of the radii a
and R’, where P,, are the coefficients of the development.
Let us consider the following two cases: (i) when the
point of observation is above the level R’ of the
topography, in other words a > R’; and (ii) when
the point of observation is under the topography inside
the Earth, i.e. @ < R’ (Heiskanen and Moritz 1967, p 33)

1
R\?> _R

a>R’§1_a1\/l+<> —2—cos @
a a

1 o0
= < ) n COS @) (A6a)
a4
1 1 ay? a B
a<RE&E'=R" 1+<—,) —2ﬁcos<p
I N /an
= ; (E) P,(cos @) (A6b)

In order to model the density variations inside Earth, let
us assume that the density function p is the power series
of the radial distance R’ times a surface density function
u which only depends on geographical coordinates ¢/
and 2/

p(0/, X\ R) = pou(0', 7)Y o R* (A7)
k=0
where p,, is a given density constant, and oy are the real
coeflicients of the expansion.
By replacing Egs. (A6a), (A6b), and (A7) in the last
expression of 7, we obtain new equations of the po-

tential observed outside the Earth (@ > R') and for the
whole sphere

2n w

v (0,7, a) = 2P0 / / sin 0'do'dz’ Y
a
0 0 n=0
% H(Gl,;hl)zak/R/n+k+2dR/
=0

as well as the one observed inside the Earth (@ < R'), for
the spherical shell which contains the topography

a "P,(cos ¢)

(A8a)

2n =@

V(0,2,a) = G,Oo/ /sin Q’dB’di’Za"Pn(cos ®)
0 0 n=0

> M(H/,;L/) Zak /Rll+k7nde
k7

R

(ASb)

The next step is to evaluate the last integrals versus the
radial distance R. Finding a primitive function is easy for
Eq. (A8a) since n+ k+ 2, the exponent of the radial
distance R, is always a positive integer. In that case, the
integration provides another power series of R. It is the

same situation for Eq. (A8Db) if n is different of £ + 2. If
the degree n equals k+2, we have to consider the
primitive of dR/R, which simply corresponds to a
natural logarithm.

For the external potential of Eq. (A8a), integration of
the radial term is made from the center of the Earth
R = 0 to the irregular surface R = Ry + h(0/, 1), where h
is the surface topography located at the mean radial
distance Rj. In the case of computing the internal po-
tential [Eq. (A8Db)], the integration goes from R = a (i.e.
level of observation) to R = Ry + h(6', A'). Then, dividing
these primitives by the mean reference distance Ry, they
can be expressed as functions of //Ry. Since this ratio is
previously assumed to be small (2 < Rp), we now expand
the ‘power’ and ‘log’ functions using the binomial rela-
tion and an equivalent series for logarithms, such as

h\" ] I'(n) I
1+— | =1 - UV p
( +Ro) +;ZIR6F(71+1—1)

where # i1s a real exponent and I" the gamma function,
and

APRSIC N
1 l+—) =
og( +R> Z lRf) h

=1

(A9)

(A10)

if the assumption /Ry < 1 is fulfilled. Taking these last
relations into account, we can integrate Eqs. (A8a) and
(A8Db) to obtain new expressions for the potential from
R =0 to RR=Ry+h outside, and from R =a to
R’ = Ry + h inside the sphere volume.

Now, we need to define a general surface function
f1(0/, 7)) as the product of the surface density function u
and the /-power of the topography, expanded using its
cosine and sine harmonic coefficients Y, of degree n and
order m

[, 7)) =

= Z Z < cosmi + Y sinmi

n=0 m=|

w(0', 2R, 1)
(All)
In any case, the surface potential function can also be

developed in terms of spherical harmonic coefficients in
the same way (Heiskanen and Moritz 1967, p 30)

= i W, = izn: we cosmi+ W, sinmi
n=0 n=0 m
(A12)

where the coefficient W, verifies

2n+1

W, = // V(0,2 )P, (cos )sin0'd0’'d)  (A13)

Finally, the harmonic coefficients of the observed
gravitational potential are deduced from those of the
surface function f7.



(1) outside the volume (a > Ry)

we, | 4nGpoR} (Ro W*ii %Ry [ [ Yomo
ws | 2n+1 a n+k+3

nm an

+§°C:n+k+3 F(n+k+3) Yol
—~ IR{ T(n+k+4-1

nml

(Al4a)

(2) inside the volume (a < Ry)

{ W,ﬁn} 4nGpyR} ( ) P R { [ Yncm0:|
ws, 241 \Ry k02—n—|—k Yso
2-n+k F(z_n—i_k) Yncml
+§: IR] F3—n+k—0[nm
47'[Gp0a akak YncmO
Al4b
2n+1 =2—n+k|Y;, ( )
ifn £ k+2.
Otherwise
VVrﬁn 47CGp0 e nm0 RO
|:VVnSm:| 27’l+1( ) Zak{[ an g 7

nml
These relations show that the harmonic coefficients 1,
of the gravitational potential can be computed as a series
of harmonic coefficients of the powers of the topogra-
phy. Since & < Ry, this series should converge rapidly,
and only a few iterations should be necessary to reach a
stable solution for ,,.

In these equations, the terms (Ro/a)""' and (a/Ro)"
are for the upward and downward continuations re-
spectively. They make the amplitude of the harmonic
coeflicients W, decrease or increase with the distance
between the point of observation and the reference level
for the topography, and with the degree (or the wave-
length of the topography).

Simple cases of the general equations (Al4a), (Al4b),
and (Al4c)

(1) External potential of a smooth sphere of constant
density

_ Al5

3 a a ( 2)
where M is the mass of the sphere of constant density p,.
(2) Internal potential of a smooth shell of constant density

Wy = 2nGpy (RS — a®) (A15b)

This relation is the same one found by McMillan
(1930), Ramsey (1940), and Sigl (1985) in the case of
internal potential due to a spherical shell of constant
density.
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(3) Geoid contribution of the topography. Given the
mean gravity y (around 9.78-9.81 m s~ for the Earth),
the corresponding harmonic coefficients N, of the geoid
height can be easily deduced from those of the
gravitational potential #,, with the Bruns formula
(Heiskanen and Moritz 1967, p 50)

[Na]_l{w;}
Nam| v [ Wa

(4) Corresponding gravity anomaly. This anomaly is
computed by taking the radial derivative of the potential
observed at the distance R = a from the center of the
terrestrial sphere (Heiskanen and Moritz 1967; Blakely

1995). The harmonic coefficients D,, for vertical
component of gravity anomaly are

DZm —_ n+1 nm
5]+ ]

nm

(Al5c)

Case of varying density only defined in a shell

A variable density in a full sphere was previously
considered. It was defined from the center of the
Earth (R=0). Let us now evaluate the gravity
potential from the density distribution within a shell,
the boundary topographies still being non-uniform.
For this purpose, the model density p is again a
function of ¢, A, but of the altitude ¢ from the lower
boundary limit of the shell, where f5, are the new
coefficients of the expansion of the radial component
of the density

p(0, 7 &) = pou(0', 1) > Bt (A16)
k=0

The lower and upper boundary limits are located at
R =Ry and R = R, respectively (see Fig. 1), from the
center of the sphere (R, > R;). Here, we can consider the
mean shell thickness as H = R, — R;. The surface
topographies of the lower and upper boundary limits
are hy(0',2') and hy (0, 7', respectively. Considering the
new distance R’ = R, + ¢ from the base of the shell and
the approximation ¢ < R;, we will use the binomial
relation from Eq. (A9) again to integrate versus R’ to
obtain the harmonic coefficients of the potential.

(1) For an external point of observation
Wc 477:Gp R1 R1 n+l oo
] SO (RS,
we. 2n+1 \ a —
y { 1 { Von(frknt) = ncm(fi,k+1):|
k+1 nm(fz k+1)

fm(fl,kJrl)
- n+2 I'n+2)
+,; k+1+ 1R T(n+3—1)
- e
% { (fZ k+l+1) Sm( 1,k+l+1)] } (A17a)
mn(fz k+1+1) m(AflA,k-‘rl-&-l)
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(2) For an internal point of observation

W 4nGpR, " &
|:VVnsm:| B 2n+1 Rl ;'Bk
« 1 |:Yncm(f2,k+l)_ ncm(flk-t-l)]
k+ 1LY, (faxer) = Yo (f1441)
[ —n [(l—n)
+Z (k+1+1)IRIT2—n—1)

" [ Ve (foksir1) —
Yo (fosrist) —

where the corresponding surface functions to deal with
are

VS (figrisn)

Yncm(fl_k+l+l):| } (A17b)

Firll, 2y = (0, )Rk, 7)) (Al8a)
and
Forl0, ) = (0, 2V H + ho(0, 7)) (A18b)

Appendix B: Parker’s formula — the flat-earth
approximation of Eq. (A14a)

Suppose now that the thickness d of the shell we
consider is small compared to the radial distances Ry and
a. In that case, the ratio Ry/a can be expanded using the
classical binomial relation (d < a)

(- (-0 9rrte

Note that the first terms of this development are the
same as the exponential ones

~l—nd—k (B2)

So, the following ‘local’ approximation on the down-
ward continuation term can be made

Ro\" ¢
V) e B
(a) ¢ (B3)

Moreover, the planar wavelength A relates to the degree
of harmonics

2na
A= Vo (B4)

For high-degree harmonic coefficients, the amplitude x
of the corresponding wave number is then

o 2r 1
A a
If the density p, of the topography is assumed to be
constant, as well as the associated surface density
(u=1), then Eq. (Al4a) becomes

nn+1) zg (BS)

Wc B kl 2
[WS } = 2nGpye kdz i [Y’Z’”l] (B6)

nml

which is the formula proposed by Parker (1972), if W,
and Y,,, are now the Fourier coefficients of the
gravitational potential and the Ith-order component of
the topography, respectively. In other words,
Eq. (Al4a) is equivalent to Parker’s formula for high-
degree harmonic coefficients which correspond to short
wavelengths, and low topographic amplitude compared
to the radius of the Earth. Equations (Al4a), (A14b)
and (Al4c) are for the spherical case and for a non-
constant density. The first term of Parker’s formula
(Parker 1972) [i.e. Eq. (B6)] is largely used in marine
geophysics to define the theoretical ‘admittance’ (or
linear filter) between the observed field at the sea surface
and the sea floor topography, in the case of regional
studies.

Appendix C: spherical harmonic coefficients
of the magnetic potential

General expressions for magnetic potential created
by a magnetized shell

Let us consider a spatial distribution of magnetization o,
where each spherical component of this vector (i.e. gy,
g,, og) 1s defined, as before, to be a power series
expansion of the radial distance R/

o000, 2, R) = 0§, gvosr(0, 7)o" R* (Cl)
k=0

where 00 rand rxk R are given coefficients of a function

development Here, vy ;.z(0, /') is the surface magnetiza-

tion. The correspondmg magnetic potential observed at

location (0, 4, a) is (see Blakely 1995, p 97)

2n w

X0 /
= R 2
e SR (C2)

sin 0/'d0'd)’ / R’Zoo,;.,wl
R

where y, is the magnetic permedblhty of free space,
%o/4m ~ 107"Hm™', and V is the gradient operator in
the spherical coordlnates The scalar product of the two
three- component vectors o and V corresponds to
ao(VE ) + 0,(VE ))v + or(VE™ ) For this reason,
Eq. (C2) can be expressed as a sum of three separate
terms for co-latitude, longitude, and radial distance

U(0,7,a) = Uy(0, 7, a) + Uy(0, 7, a) + Ur(0, 2,a)  (C3)

This represents a major advantage because each of these
terms can be integrated versus R separately.

Expression of the radial term Uy

We have to differentiate the inverse of the spherical
distance ¢ versus the radius of the sphere.



(1) Outside the volume: a > R’

a 1 1 o0 R/ n
@5 = 72_; n|— P,(cos o) (Cda)
(2) Inside the volume: a < R’
_ | a\”
ﬁg — = 0n<ﬁ) P.(cos o) (C4b)

For the external potential, we then integrate from the
center of the sphere, R =0 to R = Ry + h(0, )

Zc R n+1 oo RRk Y¢
|: " :| _ Xol GgR() <_0> Z |: an:|
Zinle 2n+1 a n+k+2

nm an

+in+k+2 C(n+k+2) [Ynml]}

—~ IR{ T(n+k—1+3)|Ys,

(C5a)
where Y,,,; are the harmonic coefficients of the surface
function f;(0, 1) = vg(0', )R (0", ).

For the internal potential, the integration from R = a
to R =Ry + h(0, 1) leads to

Zw] _ na R, (2 "N ofRE
zole 204 17R0\R)) LT -0tk

nm
YncmO - l—n+k
X{[Yb :|+Z l!Rl

nm0 =1

F(l —n—+ k) Yncml
_ C5b
Xr(z—n+k—z)[ygm, (C3b)
ifn#tk+1
Z;m nyo a & Yncm() RO
= — —_— 1 —_—
{sz]R 2n+1 (Ro) ,;“"{ {Yo %
= (=D [ Yo
C5
+l§:; ZRO erml ( C)
otherwise.

Expression of the co-latitude and longitude terms Uy and U,

Let us now differentiate ¢! with respect to @ and 2’ to
express the other two spherical surface components, Uy
and U;.

(1) Outside the volume: a > R’

1
0/6 ! —f [~ sin 0’ cos 0 4 cos 0’ sin 0 cos(% — 1')]

R/

(C6a)
1 1 _ 3o
Rond 6//5 f sinOsin(2" — 1) (C6Db)
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(2) Inside the volume: a < R’

R’ 0, &= % E3—sin 0 cos 0 + cos 0 sin O cos(2 — /)]
(C7a)

1 1 3. o

R snd 37 “,é R’3 sin 0sin(2" — 1) (C7b)

These latter equations for the gradient in spherical
coordinates cannot be integrated, as previously, to
express the corresponding spherical harmonic coeffi-
cients as desired, since they also depend on the location
of observation point (0, A). One solution is to consider a
simple case, such as observation points at poles (i.e. 0=
0 or 0= =), where the longitude term given by
Egs. (C6b) and (C7b) vanishes. Nevertheless, we may
still want to evaluate the co-latitude and longitude
contributions to the magnetic potential just at a given
single location (0p, 4g), where the gradient only depend
upon (¢, 2), as a sum of spherical harmonics. In that
case, the new surface co-latitude functions to integrate
are as follows.

(1) For the co-latitude component

Foa(0, 7)) = vo(0/, 1), (0, ') [~ sin &/ cos O

+ cos 0 sin 0y cos(dg — )] (C8a)
(2) For the longitude component
S0, 2y = v,(0, z’)h'(e’, ') sin O sin(4' — Ao) (C8Db)

In order to find a development for ¢, we say that it is
the generating function for the first derivative P, of
Legendre polynomials.

(1) Outside the volume

73 1 /R n—1 )
= P ; <a> P (cos®). (C9a)
(2) Inside the volume

oL ey
T 7 ; (R’) P! (cos @) (C9b)

From the general recurrent expression for degree n
greater than 1 (McMillan 1930)

P, —P_ =@2n+1)P,

(C10)

Simple relations for P, can be derived as a sum of
Legendre polynomials

n/2
2(4] —1)Py if n is even

P =

n

A\..
:

L (C11)
z (4j —1)Py ifnis odd
j=1

After integration versus the radial distance R, we obtain
the harmonic coefficients Z,, for co-latitude and
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longitude components of the magnetic potential as
follows.

(1) Outside the volume

VAd ]
" (6o, Ao)
|:Z 0,2

n+1\a =7 jk:oj+k+2 Yfé’”o 0.
Z/+k+2 T(+k+2) Yﬁnz]
IR! —
MRy, T(+k—-1+3) 0
(Cl2a)

(2) Inside the volume

Zl o 70 oA (A Yio
ZS (0; v0) ys
0.7 = k Jmo {5
k—j T(k—)) Yﬁn;
+Z,,Rl
0,

Ik—j+1-1)
; o 0.4
_Xng,A JMQ'Z o lYJCmO]
J . s
2n+lj:J k:(]k—j Y 0

jml

jm0
(C12b)
In the case that j = k, we have
S 05 240
Z 0,2
nJ;
700—9/L < > max
QJ
2 +1 ;
Ye (R > 0 Y ]
JmO 0 ]ml
X s (0] +
[%n10‘|0 lzzl: l /ml 0.2
(C12¢)

where Y,,,; are the harmonic coeflicients of the surface
functions fp; and f;; from Egs. (C8a) and (C8b)
respectively, and for a given reference location 0y and
. When the degree n is even Q;,=4j—1;J =1
and Jmax =n/2. Otherwise, Q;=4j+1; J=0 and
Jmax = (n — 1)/2. As for gravitational potential, it could
be interesting to see what the latter general equations
would become when magnetization is only defined inside
the shell. In that particular case, we have for each
component R, 0, and A the following.

(1) Outside the volume
Zum | Yo R
zs 1. 2n+1 & a

+
S {kﬂ

Yo, (fors1) = Y, (fieet)
vy, (farsr) = Yo (fiasn)

- n+2 I'(n+2)
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Z (k414 DR T(n+3—1)

X lYnm(fz,kJrlH) - nm(f“"‘”“)] } (C13a)
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(2) Inside the volume

|:ng:| nyo O(Cl)n
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C13
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— Yo, (frasisn)

Zinl _ to o (& "Xffgiﬁ
Lo a,ziszrlGO’z R = szo ¢
1 [ Y5 (faxer) = Y5, (fiaen)
+ S S g
k+ 1175 (1) = V3, (fias)
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(C13d)
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