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Abstract. A new method for computing gravitational
potential and attraction induced by distant, global
masses on a global scale has been developed. The
method uses series expansions and the well known one-
dimensional fast Fourier transform (1-D FFT) method.
It has been proven to be significantly faster than
quadrature while being equally accurate. Various quan-
tities were studied to cover the two primary applications
of the Stokes–Helmert scheme of modeling effects. These
two applications (or paths), given the names R/r/D and
R/D/r, are briefly discussed, although the primary
objective of the paper is to provide computational
information to either path, rather than choosing one
path as preferable to the other. It is further shown that
the impact of masses outside a 4-degree cap can impact
the absolute computation of the geoid at more than
1 cm, and should therefore be included in all local geoid
computations seeking that accuracy.

1 Introduction

In many physical geodesy applications, especially the
Stokes–Helmert approach to geoid modeling (Martinec
1998; Vanı́�ccek et al. 1998; Smith and Roman 2001a), it is
necessary to compute various components of the
gravitational field due to the Earth’s masses above the
geoid (in both their true and condensed forms). There
have been various studies on this issue in the last few
years (Sjöberg and Nahavandchi 1999; Sjöberg 2000;
Smith et al. 2001). Due to the exponential nature of the
kernel function in Newtonian potential and gravitation-
al kernels, it is often advantageous to treat ‘far’ masses
in a different computational manner than ‘near’ masses.
Previous studies of ‘far’ mass effects concentrated
primarily on spherical harmonic approaches. (Nahav-
andchi and Sjöberg 1998; Sjöberg and Nahavandchi
1999; Nahavandchi 2000; Sjöberg 2000). This paper
presents a different method for computing a variety of

useful components of the gravity field induced by ‘far’
masses through the use of the well-known one-dimen-
sional fast Fourier transform (1-D FFT) approach
(Haagmans et al. 1993, Smith and Milbert 1999).

In addition to computing quantities on a coarse (e.g.
5-arcminute) global grid, a useful method of combining
such a coarse grid with local fine (e.g. 1-arcsecond) grids
is presented. In this way global ‘outer-zone’ effects can
be computed at locations on a detailed Digital Elevation
Model (DEM) grid. Furthermore, this means that a re-
computation of gravitational attraction and potential
due to an updated high-resolution local DEM can be
done quickly, without needing to re-run the FFT pro-
cedure itself.

2 ‘Helmertization’ of the topography

In the Stokes–Helmert solution to the fundamental
boundary value problem of physical geodesy, the masses
of the Earth are mathematically manipulated (using
Helmert’s 2nd method of condensation) so that no
masses lie external to the geoid. This causes a complex,
but computable, change to both the gravitational
potential and gravitational attraction fields (presuming
knowledge of the topographic density). A discussion of
some attributes of Helmert’s 2nd condensation method
can be found in Heiskanen and Moritz (1967) and
Wichiencharoen (1982). The answer to which compo-
nents of the potential and attraction fields are needed
depends on the order of events chosen when applying
the Stokes–Helmert scheme (see Appendix). In Fig. 1, a
simple schematic shows the ellipsoid, geoid and topog-
raphy before any application of Helmert’s 2nd method
of condensation, or ‘Helmertization’, of the topography
(‘Helmertization’ as used here means the 3-D masses
have been removed, and a 2-D condensed mass layer on
the geoid has been added, where the condensation
occurs along the local vertical). Gravity measurements
are taken (and anomalies can be computed) at point P
on the surface of the Earth. Figure 2 shows the final goal
needed in order to apply the Stokes–Helmert scheme,
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with the 3-D masses above the geoid replaced with a 2-D
mass layer on the geoid, and point P0 is vertically below
point P , and located on the geoid. Gravity values (and
ultimately gravity anomalies) are needed at point P0 in
this ‘Helmert space’ (Vanı́�ccek et al. 1998). There are an
infinite number of ways to mathematically manipulate
the masses so that one arrives at Fig. 2 from Fig. 1.
However, only two are frequently used in application.
These two cases will be referred to as R/r/D and R/D/r.
These acronyms will be explained in the following
paragraphs.

2.1 The R/r/D method

Vanı́�ccek et al. (1998) apply the Stokes–Helmert method
by performing the following gravity reductions, in this
order

(1) Remove the topographic masses (step ‘R’).
(2) Restore the condensed masses on the geoid (step ‘r’).
(3) Downward continue from P to P0 (step ‘D’).

This method is graphically displayed in the left column
of Fig. 3.

2.2 The R/D/r method

Another way of applying the Stokes–Helmert method is
to perform gravity reductions in the following order,
slightly different from that of the R/r/D method.

(1) Remove the topographic masses (step ‘R’).
(2) Downward continue from P to P0 (step ‘D’).
(3) Restore the condensed masses on the geoid (step ‘r’).

This method is graphically displayed in the center
column of Fig. 3.

It should be pointed out that the use of ‘(R)emove’
and ‘(r)estore’ in this paper should not be confused with
other ‘remove/restore’ methods [such as the removal and
restoration of long-wavelength information to band-
width limit data going through an FFT process].

2.3 Other methods

In addition to the R/r/D and R/D/r methods, one can
achieve gravity on the geoid in Helmert space in other
ways. One such method, D/R/r, is illustrated in the right
column of Fig. 3. While such a method will achieve the
same goal as the R/r/D and R/D/r methods, its practical
application is almost impossible to achieve due to the
difficulty in accurately computing the downward con-
tinuation of gravity through the topographic masses. As
such, it is presented only for the sake of curiosity and
will not be pursued further in this paper.

2.4 On the order of events

The two methods of acquiring gravitational attraction
(which will lead to gravity anomalies) at P0 in Helmert
space shown in Sects. 2.1 and 2.2 (R/r/D and R/D/r) are
different but achieve exactly the same goal. Milbert and
Smith (1998) have shown the equivalence of R/r/D and
R/D/r (and, in fact, D/R/r) using an analytical (spher-
ical) model of the Earth. A formal, and general, proof of
the mathematical equivalence of R/r/D and R/D/r is
given in the Appendix of the present paper. The point
here is that while the R/r/D and R/D/r methods yield the
same value of Helmert gravity (mathematically speaking
– the actual implementation of R/r/D and R/D/r may
yield numerically different results due to numerical
methods used, round-off error, etc.), the potential and
attraction components (induced by the topography)
needed for the R/r/D path are slightly different than
those for the R/D/r path. The necessary quantities are
shown in Fig. 3, but stated explicitly below.

In the R/D/r path, the following components are
needed.

(1) The gravitational attraction of 3-D topographic
masses computed at P (the surface of the Earth), T gP .

(2) The gravitational attraction of 2-D condensed to-
pographic masses computed at P0 (the geoid ), CgP0 .

In the R/r/D path, the following components are
needed.

(1) The gravitational attraction of 3-D topographic
masses computed at P (the surface of the Earth), T gP .

(2) The gravitational attraction of 2-D condensed to-
pographic masses computed at P (the surface of the
Earth ), CgP .

Fig. 1. The Earth before ‘Helmertization’ of the terrain

Fig. 2. The Earth after ‘Helmertization’ of the terrain (in ‘Helmert
space’)
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The difference, obviously, is in the 2nd component of
each path. The R/D/r path needs CgP0 while the R/r/D
path requires CgP . [Of course, for the two paths to yield
identical results, they will obviously have different
downward-continuation (DC) computations. This can
be seen mathematically in the Appendix, but the method
of computing the DC terms is not addressed in this
paper. It should be noted that numerical differences in
the DC computations might yield different values of
Helmert gravity, even though the R/r/D and R/D/r
methods are mathematically equivalent.]

In both cases, for computing the indirect effect, it is
necessary to know the change in potential at the geoid
due to the Helmertization of the topography. That is,
one needs to know the following.

(1) The gravitational potential of 3-D topographic mas-
ses computed at P0 (the geoid), T WP0 .

(2) The gravitational potential of 2-D condensed
topographic masses computed at P0 (the geoid)

CWP0 .

3 Requirements of the 1-D FFT approach

In order to facilitate the use of the spherical 1-D FFT
method, all integrals for potential or gravitational
attraction, whether induced from 3-D masses or 2-D
(condensed masses) and whether computed at the
Earth’s surface or at the geoid, will be manipulated so
that they are either one double integral (in f and l) or a
sum of double integrals, but where each double integral
must be a convolution in longitude. Each such a
convolution integral in longitude will follow the follow-
ing general formula:

Fig. 3. The R/r/D, R/D/r and D/R/r
methods of Helmertization
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f1 /P ; kP ; rPð Þ

¼ k
Zp=2

/¼�p=2

Z2p

k¼0

f2ð/; kÞf3 /;/P ; k� kPð Þ cos/ dk d/

ð1Þ

where
/; k ¼ latitude and longitude of roving integral point
/P ; kP ¼ latitude and longitude of station
k ¼ any constants with no dependence on /; k;/P , nor
kP .

Because the integrals in Eq. (1) are convolutions in
longitude (between f2 cos / and f3) they may be solved
efficiently and accurately using well-known 1-D FFT
techniques (Haagmans et al. 1993)

F1;ui
ðkiÞ ¼k=�1

X/n

/j¼/1

=ðf3;/j
ðDki;jÞÞ=ðf2;/j

ðkjÞcos/jÞ

2
4

3
5

ð2Þ

The manipulation of gravitational potential and gravi-
tational attraction integrals into convolutions is pre-
sented in the next section.

4 Gravitational integrals for 2-D and 3-D
topographic masses

As mentioned previously, this paper discusses five
different components of the potential and attraction
fields induced by the topography in the Stokes–Helmert
scheme (various ones of which are used depending on
what ‘path’ one takes to ‘Helmertize’ the topography).
Each of these components is expounded in a separate
section below.

4.1 Gravitational attraction of 3-D masses computed
at the Earth’s surface ðT gP Þ

Begin with the gravitational potential (W ) at a point P
on the Earth’s surface ðrP ;/P ; kP Þ generated by the 3-D
topography (T ). This is written as (Heiskanen and
Moritz 1967, p. 3)

T WP ¼ T W ðrP ;/P ; kP Þ ¼
Z
V

G
l

q dV ð3Þ

where G is the Universal gravitational constant, V is the
volume of the 3-D topography, q dV is a differential
mass element (density times differential volume ele-
ment), and l is the distance between P and qdV . This
equation can be expanded more formally as

T WP ¼
Z
u

Z
k

Z
r

Gq
l
dV ¼

Z
u

Z
k

Z
r

Gq
l

r2 cosu dr dk du

ð4Þ

where dV is a differential volume element, q is the
density at dV and the distance l can be written as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2P � 2rrP cosw

q
ð5Þ

where r and rp are the geocentric distances to dV and P
respectively. The angle w is the angle formed by
connecting the Earth’s geocenter with dV and P .
Combining this information, one has

T WP ¼
Z
u

Z
k

Z
r

Gqr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2P � 2rrP cosw

p cosu dr dk du

ð6Þ

If one is interested in the gravitational attraction of the
topographic masses at P ðT gP Þ, then the radial derivative
of potential must be taken

T gP ¼ T gðrP ;uP ; kP Þ ¼ �
oT WP

orP
ð7Þ

Combining the above two equations yields

T gP ¼
Z
u

Z
k

Z
r

Gqr2ðr cosw� rP Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2P � 2rrP cosw

ph i3 cosu dr dk du

ð8Þ

The integral with respect to r can be solved analytically
[see also Martinec 1998, Eq. (3.54)], leaving a double
integral in / and k

T gP ¼
Z
u

Z
k

Gq

�
6rrP cos

2 w� rrP � cosw r2 þ 3r2P
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2P � 2rrP cosw

p

þ rP � 3rP cos
2 w

 �

� ln r� rP coswþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2P � 2rrP cosw

q� ��r¼r2ðu;kÞ

r¼r1ðu;kÞ

� cosudkdu ð9Þ

If we assume for now that the geoid is a sphere of
constant radius ‘R’, then we may state the following:

r1 ¼ R

r2 ¼ Rþ Hðu; kÞ
rP ¼ Rþ HP

ð10Þ

The spherical assumption ðr1 ¼ RÞ is important for the
simplicity of the remaining equations of this paper.
More rigorous assumptions should eventually be tried
(geoid = ellipsoid or even geoid = ‘high-resolution
global geoid model’) to obtain more accurate values of
distant topographic effects, and reduce any long-wave-
length errors due to the differences between a sphere,
ellipsoid and geoid.

The equation for w shows the dependence on /;/P
and k� kP

cosw ¼ sinu sinuP þ cosu cosuP cosðk� kP Þ ð11Þ
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For the purposes of discussion, Eq. (9) can be written
compactly as

T gP ¼
Z
u

Z
k

Gqff ½R;HP ;Hðu; kÞ;wðu;uP ; k� kP Þ
g

� cosu dk du ð12Þ

It stands to reason, therefore, that if the variables HP ;H
and w could be separated from one another in function f
so that HP could be brought outside the integral, and
only products of H and w remained, one would have a
convolution in longitude in the manner of Eq. (1).
However, this is not possible as Eq. (12) stands. It is
possible, though, to expand f into an infinite power
series in H and HP . Such a series is written

f R;HP ;H ;wð Þ ¼
X1
j¼0

X1
i¼0

Hj
PHiwi;j

¼
X1
j¼0

X1
i¼0

Hj
PHiðu; kÞwi;jðR;wÞ

¼
X1
j¼0

Hj
P

X1
i¼0

Hiðu; kÞwi;jðR;wÞ ð13Þ

Combining Eqs. (12) and (13) one arrives at

T gP ¼
Z
u

Z
k

Gq
X1
j¼0

Hj
P

X1
i¼0

Hiwi;j cosu dk du ð14Þ

Then, pulling the constants out of the integral, and
rearranging summations and integrations, yields

T gP ¼ Gq
X1
j¼0

Hj
P

X1
i¼0

Z
u

Z
k

Hiwi;j cosu dk du ð15Þ

Note that density (q) has been assumed constant in these
equations. Any variation in q (based on /; k or H ) would
require re-formulating Eq. (15). Now each integral in
Eq. (15) is a convolution in longitude, and subject to
solution through the use of 1-D FFT methods. The
various wi;j kernel functions (to i ¼ j ¼ 4) are as follows:

wi;j ¼ 0 8 i ¼ 0

w1;0 ¼ 1

2
ffiffi
2
p
ð1�cÞ1=2

w3;0 ¼ �7þ3c
48R2

ffiffi
2
p
ð1�cÞ3=2

w1;1 ¼ � 1�3c
4R

ffiffi
2
p
ð1�cÞ3=2

w3;1 ¼ 7�34c�9c2
96R3

ffiffi
2
p
ð1�cÞ5=2

w1;2 ¼ �3�15c
16R2

ffiffi
2
p
ð1�cÞ3=2

w3;2 ¼ 47þ94cþ15c2
128R4

ffiffi
2
p
ð1�cÞ5=2

w1;3 ¼ 13þ10c�35c2
32R3

ffiffi
2
p
ð1�cÞ5=2

w3;3 ¼ �451þ131cþ815c
2þ105c3

768R5
ffiffi
2
p
ð1�cÞ7=2

w1;4 ¼ �85þ70cþ315c2
256R4

ffiffi
2
p
ð1�cÞ5=2

w3;4 ¼ 1315�8075c�9695c2�945c3
6144R6

ffiffi
2
p
ð1�cÞ7=2

w2;0 ¼ 1�3c
8R

ffiffi
2
p
ð1�cÞ3=2

w4;0 ¼ 7þ6c�c2

256R3
ffiffi
2
p
ð1�cÞ5=2

w2;1 ¼ 5þ9c
16R2

ffiffi
2
p
ð1�cÞ3=2

w4;1 ¼ �61�26cþ3c2
256R4

ffiffi
2
p
ð1�cÞ5=2

w2;2 ¼ �27þ18cþ45c2
64R3

ffiffi
2
p
ð1�cÞ5=2

w4;2 ¼ 75�507c�183c2þ15c3
1024R5

ffiffi
2
p
ð1�cÞ7=2

w2;3 ¼ 7�130c�105c2
128R4

ffiffi
2
p
ð1�cÞ5=2

w4;3 ¼ 1065þ2255cþ515c2�35c3
2048R6

ffiffi
2
p
ð1�cÞ7=2

w2;4 ¼ 395þ965c�1015c2�945c3
1024R5

ffiffi
2
p
ð1�cÞ7=2

w4;4 ¼ �14595þ1500cþ27270c
2þ5740c3�315c4

16384R7
ffiffi
2
p
ð1�cÞ9=2

ð16Þ

where c ¼ cosw.

Martinec et al. (1996) have already proven that a
series expansion of gravitational potential or attraction
is divergent if the integration [such as in Eq. (15)] is
entirely global. However, if one restricts the integration
to an ‘outer zone’ outside a cap of radius w ¼ wc, then
this series will be seen to be convergent. To whit, the wi;j
kernels must be set to zero inside a cap radius, wc

wi;j ¼
wi;j w > wc
0 w � wc

�
ð17Þ

The convergence of this series will be shown empirically
in a later section.

4.2 Gravitational attraction of 2-D masses
on the geoid computed at the Earth’s surface ðCgP Þ

In the R/r/D path of the Stokes–Helmert scheme, the
attraction due to the condensed topography must be
known at the Earth’s surface (point P ). As before, begin
with gravitational potential, but induced by a 2-D
condensed topographic mass layer (C) on the geoid
(spherical surface r ¼ R)

CWP ¼ CW ðrP ;/P ; kP Þ ¼
Z
A

G
l
jdA ð18Þ

where integration is nowover an area ‘A’ andnot a volume
‘V ’, and jdA is the differential mass element (surficial
density times differential area element). Expanding

CWP ¼
Z
u

Z
k

Gj
l
dA ¼

Z
u

Z
k

Gj
l

R2 cosu dk du ð19Þ

Note that the surficial density layer has the following
exact (in spherical coordinates, using a purely vertical,
non-lateral, condensation method) density formula
(Smith et al. 2001):

jðu; kÞ ¼ qH�ðu; kÞ ¼ q H þ H2

R
þ H3

3R2

� �
ð20Þ

and that the distance function is now [compare to
Eq. (5)]

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2P � 2RrP cosw

q
ð21Þ

To obtain the gravitational attraction, the radial deriv-
ative is taken as per Eq. (7), yielding

CgP ¼
Z
u

Z
k

GqH�R2ðR cosw� rP Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2P � 2RrP cosw

ph i3 cosu dk du

ð22Þ

with rP ¼ Rþ HP , and H� from Eq. (20). Similarly to
Eq. (9), it is necessary to separate the H�;HP and w
variables in Eq. (22). However, since H� and w are
separated from one another already, a series expansion
in HP is all that is necessary. Performing that expansion
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and applying it to Eq. (22) yields the following sum of
integrals:

CgP ¼ Gq
X1
j¼0

Hj
P

Z
u

Z
k

H�vj cosu dk du ð23Þ

where the vj kernels (to j ¼ 4) are as follows:

v0 ¼
1

2
ffiffiffi
2
p
ð1� cÞ1=2

v1 ¼ �
1� 3c

4R
ffiffiffi
2
p
ð1� cÞ3=2

v2 ¼
�3� 15c

16R2
ffiffiffi
2
p
ð1� cÞ3=2

v3 ¼
13þ 10c� 35c2

32R3
ffiffiffi
2
p
ð1� cÞ5=2

v4 ¼
�85þ 70cþ 315c2

256R4
ffiffiffi
2
p
ð1� cÞ5=2

ð24Þ

where, again, c ¼ cosw. It is interesting to note the close
similarity between the vj kernels and the w1;j kernels of
Sect. 4.1, even though the variable used here is H� while
that in 4.1 was H . In order to enforce a convergence of
the series, it is necessary to force the vj kernels to follow
this rule

vj ¼
vj w > wc
0 w � wc

�
ð25Þ

4.3 Gravitational attraction of 2-D masses
on the geoid computed at the geoid ðCgP0

Þ

If one pursues the R/D/r path of the Stokes–Helmert
scheme, then the computational point for the 2-D mass
attraction is at the geoid ðrP ¼ R). As shown in Smith
et al. (2000), the gravitational attraction of interest is
not actually on the geoid itself but is the limiting value of
attraction as rP approaches R from outside the geoid. In
more well known calculus usage, ðrP � RÞ approaches 0
from the positive side.

CgP0 ¼ lim
ðrP�RÞ!0þ

CgP ð26Þ

Applying this limit to Eq. (23) yields

CgP0 ¼ Gq
Z
u

Z
k

H� cosuð Þ 1

2
ffiffiffi
2
p
ð1� cÞ1=2

dk du ð27Þ

where, again, c is cos w. Note that this equation has been
arranged to emphasize the fact that a convolution exists
without the need for expansion into a series. This is one
definite advantage to the R/D/r approach. The kernel, u,
in Eq. (27) above is

u ¼ 1

2
ffiffiffi
2
p
ð1� cÞ1=2

ð28Þ

and using it to compute outer-zone effects, it follows
that

u ¼ u w > wc
0 w � wc

�
ð29Þ

4.4 Gravitational potential of 3-D masses computed
at the geoid ðT WP0

Þ

Without regard for the path chosen in the Stokes–Helmert
approach, the indirect effect on geoid undulations is
computed the same way – through determination of
potential change on the geoid due toHelmertization of the
topography (Heiskanen and Moritz 1967; Wichencha-
roen 1982; Sjöberg and Nahavandchi 1999). This poten-
tial change is computed in two parts: the removal of 3-D
masses causes one shift in the potential field, and then the
restoration of the 2-Dmasses causes the second shift. The
combined displacement of the geoid due to these two
shifts is the indirect effect. This section discusses the shift
in potential at the geoid due to the removal of topography.
Section 4.5 will discuss the potential shift at the geoid due
to restoring the condensed topography.

The gravitational potential at the geoid ðrP ¼ RÞ
induced by the 3-D topography is

T WP0 ¼ T W ðR;/P ; kP Þ ¼
Z
V

G
l

q dV ð30Þ

where G is the Universal gravitational constant, V is the
volume of the 3-D topography, qdV is a differential
mass element (density times differential volume ele-
ment), and l is the distance between P0 and qdV . Note
that /P ¼ /P0 and kP ¼ kP0 due to the vertical alignment
of points P and P0. This equation can be expanded more
formally as

T WP0 ¼
Z
u

Z
k

Z
r

Gq
l

dV ¼
Z
u

Z
k

Z
r

Gq
l

r2 cosu dr dk du

ð31Þ

where the distance l can now be written as [contrast with
Eqs. (5) and (21)]

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 � 2rR cosw

p
ð32Þ

The integral in r may be removed analytically from
Eq. (31), leaving

T WP0 ¼
Z
u

Z
k

Gq

�
1

2
ðr� 3R coswÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 � 2rR cosw

p

� 1

2
R2 � 3R2 cos2 w
 �

� ln r� R coswþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 � 2rR cosw

p� ��r¼r2ðu;kÞ

r¼r1ðu;kÞ

� cosudkdu ð33Þ
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where r2 ¼ Rþ H and r1 ¼ R. Once again it is desirable
to separate H from w (there is no HP dependence since
the computation point is on the geoid where rP ¼ R, or
HP ¼ 0) in Eq. (33). This is done through a series in H .
Performing the expansion and substituting it into
Eq. (33) yields

T WP0 ¼ Gq
X1
i¼0

Z
u

Z
k

Hixi cosu dk du ð34Þ

with the kernels xi taking the following values (up to
i ¼ 4):

x0 ¼ 0

x1 ¼
Rffiffiffi

2
p
ð1� cÞ1=2

x2 ¼
3

4
ffiffiffi
2
p
ð1� cÞ1=2

x3 ¼
1� 3c

24
ffiffiffi
2
p

Rð1� cÞ3=2

x4 ¼
3� 4cþ c2

64
ffiffiffi
2
p

R2ð1� cÞ3=2

ð35Þ

where c ¼ cosw. Once again, to allow a convergence in
the series, the kernels are modified to work in the outer
zone only.

xi ¼
xi w > wc
0 w � wc

�
ð36Þ

4.5 Gravitational potential of 2-D masses
on the geoid computed at the geoid ðCWP0

Þ

In a similar manner as Sect. 4.3, limits are used to
determine the gravitational potential induced by con-
densed masses on the geoid for a point ‘on’ the geoid

CWP0 ¼ lim
ðrP�RÞ!0þ

CWP ð37Þ

where CWP is found in Eq. (19). Applying this limit
yields

CWP0 ¼ Gq
Z
u

Z
k

H� cosuð Þ Rffiffiffi
2
p
ð1� cÞ1=2

dk du ð38Þ

where c ¼ cosw. Eq. (38) was arranged to emphasize the
fact that a convolution exists without the need for a
series expansion. The kernel, y, in Eq. (38) is therefore

y ¼ Rffiffiffi
2
p
ð1� cÞ1=2

ð39Þ

and like all other kernels thus far, it is used only in the
outer zone

y ¼ y w > wc
0 w � wc

�
ð40Þ

5 Numerical tests

5.1 Shell tests

Before proceeding with real DEM data, the new
formulae were tested in a simple shell test. A global,
spherical shell 1000 m high was built on a 1� 1 degree
grid, referenced to the centers of the 1� 1 degree cells,
surrounding a reference sphere of radius 6 371 000 m.
Because such a ‘shell’ has known analytical properties, it
was possible to compare the results from the 1-D FFT
formulae to true values. Using Eq. (2) applied to each
integral of Eq. (15), a 1-D FFT solution to this shell was
computed (to i; j ¼ 4) for an outer zone defined by a cap
of radius wc ¼ 4 degrees. A cut-off radius of 4 degrees
was chosen primarily to be consistent with the results
found in Smith et al. (2001). Other radii can be chosen,
but if wc is too small, then Gibbs’ phenomena associated
with the discontinuous kernels at wc near the station of
interest may cause errors. If wc is too large, then the
computational burden on the inner zone becomes
excessively large.

In analytical form the gravitational attraction com-
puted at the surface of the Earth for a shell H m thick,
outside a cap of radius wc, is (derived through Math-
ematica 4.0 software)

T gP ðH ¼ const;w � wcÞ

¼ 2pGq
3

1
d2 d3 � R3 þ l l2 þ 3c2d2 � 3d2 � cdR

 � �� �
þ ð1� c� 3c2Þd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2c
p

þ ð3c3d � 3cdÞ
�
ln R� cd þ l½ 
 � ln d � cd þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2c
p� � ��

8><
>:

9>=
>;

ð41Þ

where

d ¼ Rþ H

c ¼ coswc

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2cdRþ R2

p
For this test, the thickness of the shell is 1000 m, the cap
wc is 4 degrees, and the following constants are used

G ¼ 6672:6� 10�14 m3 s�2 kg�1

q ¼ 2:67� 103 kgm�3

R ¼ 6 371 000m

With these values, the attraction T gP for the shell is
108.142 mGal, everywhere. Using a 1� 1 degree DEM
and Eq. (15), the output values differed slightly from
this value. They are listed in Table 1. While Table 1
indicates a near match to the analytical solution, it was
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at first discouraging to see that any disagreement
existed. In order to get a graphical idea of where the
deviations are arising, a south pole to north pole slice of
the FFT solution is provided in Fig. 4. This figure shows
two primary deviations from the (expected) flat line at
108.142 mGal. The first is a generally parabolic devia-
tion, being worst at the equator. The second deviation is
high-frequency deviations along that parabolic mis-
match.

A reason for the 2nd (high-frequency) issue was hy-
pothesized: the kernels were being computed from one
grid point to another, with strict adherence to Eqs. (16)
and (17). However, if one interprets a grid point as the
center of a cell, then this means a ‘cell’ might lie partially
outside the cap while the center of the cell lies inside the
cap, or vice versa. A ‘cell’ which lies partly inside and
partly outside the cap, but which was either being given
full weight ðw > wcÞ or no weight ðw < wcÞ was not
being properly accounted for. To test this hypothesis, an
examination of the method of computing kernels, wij,
was made and is described below.

5.1.1 Test of weighting for near-cap-radius kernels
In the first FFT run, the distance, w, was computed
between point P and the center of a cell, and the rule in
Eq. (17) rigorously applied. That is, the kernel followed
the following rule:

wi;j ¼
wi;j w0 > wc
0 w0 � wc

�
ð42Þ

where w0 is the spherical distance from one grid node to
another (or from the center of one cell to another). The
problem turns out that some cells might just barely have
their centers outside the cap, and thus be fully weighted,
while neighboring cells might have their centers just
barely inside the cap and given zero weight. See Fig. 5
for elucidation of this issue. This is very similar to the
‘line mass vs prism mass’ issue discussed in Li and
Sideris (1994). This issue also neatly exemplifies the
problem of using a circular cap with a regular DEM
grid. In an attempt to correct this issue, a scaling rule for
the kernel functions was investigated. That is, a
variation on Eq. (42) was proposed

wi;j ¼
wi;jðw0Þ w>wc8w ðin a cellÞ
s �wi;jðw0Þ w>wc for some, not all; w ðin a cellÞ
0 w�wc8w ðin a cellÞ

8<
:

ð43Þ

where w is now computed from P to all points over a cell,
not just the center point, but the final kernel is still based
on w ¼ w0, where w0 is the distance from P to the center
of a cell. The rule for determining s in Eq. (43) is not
easy to deduce. It is dependent on the size of the cell, the
size of wc, the latitude of P , the azimuth from P to the
cell, the height of P , the height of the cell and the percent
of the cell that lies outside the cap! However, some
simple empirical tests indicate that the following rule is
generally adhered to, in spite of all these variables (for
our case of wc ¼ 4 degrees), when the heights are in the
range of real heights on Earth:

s ¼ k � Ao ð44Þ

where Ao represents the fraction of the cell that lies
outside the cap (and is therefore a number between 0
and 1) relative to point P , and k takes on values ranging
from 1.0 to 1.17. Figure 6 shows a few examples of Ao
values near the cap edge. As a first attempt to remove
the ‘high-frequency’ problem in the spherical shell test,
Eq. (44) was applied to Eq. (43) and fixing k ¼ 1:0. The

Table 1. Statistics of TgP for initial 1000-m shell test (mGal)

Analytical 1-D FFT with 1 · 1
arcdegree DEM

Difference

Average 108.142 108.680 )0.538
Standard deviation ±0.000 ±0.232 0.232
RMS 108.142 108.680 )0.538
Minimum 108.142 108.167 )0.025
Maximum 108.142 108.995 )0.853

Fig. 4. First spherical shell test results on a 1-degree shell DEM,
showing pole-to-pole values at every 1 degree Fig. 5. Initial weighting scheme for cells near the cap edge
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statistics of that run are found in Table 2. While those
values still show a large deviation from the constant
108.142 mGal, the real story is in the cross section of
this test, shown in Fig. 7. Here it is clearly seen that the
scaling of weight functions for cells ‘on the edge’ of the
cap radius was clearly the solution to the high-frequency

deviations seen previously. Thus the hypothesis regard-
ing high-frequency deviations was proved true.

5.1.2 Parabolic deviation
The cause for the parabolic bias in Fig. 4 was investi-
gated next. Bugs in the code were ruled out first,
meaning some theoretical issue had been left unsolved. It
was believed that a secondary effect of the ‘line mass vs.
prism mass’ (Li and Sideris 1994) argument was being
seen. Specifically, the difference between the kernel
computed for w0 of any given cell and the average
kernel over that cell was suspected. That is, a link was
hypothesized between the latitude dependence of Fig. 4
and the following difference:

Dwi;j ¼ wi;j w0ð Þ � wi;j ð45Þ

where

wi;jðw0Þ ¼ wi;j w /0;/P ; k0 � kP½ 
ð Þ ð46Þ

and

wi;j ¼
Z/2

/¼/1

Zk2

k¼k1

wi;j w /;/P ; k� kP½ 
ð Þdk d/ ð47Þ

and

/0 ¼
/1 þ /2

2

k0 ¼
k1 þ k2

2

ð48Þ

Unfortunately, Eq. (45) has no known analytical solu-
tion, making a link between Dwi;j and the parabola in
Fig. 4 possible only through an empirical study. While
such a study is possible, it has been postponed for a
future paper, in favor of a faster solution: smaller DEM
spacing. According to Li and Sideris (1994), a smaller
grid spacing can reduce the line mass vs point mass
issue. As such, a new ‘shell’ test was performed, this time
using a 5-arcminute grid, rather than a 1-degree grid,
and using the weighting scheme ðs ¼ k � A0, with k ¼ 1:0)
described above for the reduction of high-frequency
errors. The statistical results of those results are
presented in Table 3 and a ‘slice’ of the output from
south pole to north pole, at any given longitude, is
presented in Fig. 8. Comparing Fig. 7 to Fig. 8, one can

Table 2. Statistics of TgP for 2nd 1000-m shell test (mGal)

Analytical 1-D FFT with 1 · 1
degree DEM and
�partial cell� weighting
near w=wc

Difference

Average 108.142 108.563 )0.421
Standard
deviation

±0.000 ±0.200 0.016

RMS 108.142 108.563 )0.421
Minimum 108.142 108.149 0.007
Maximum 108.142 108.802 )0.660

Table 3. Statistics of TgP for 3rd 1000-m shell test (mGal)

Analytical 1-D FFT with 5 · 5
arcminute DEM and
�partial cell� weighting
near w = wc

Difference

Average 108.142 108.176 )0.034
Standard
deviation

±0.000 ±0.016 0.016

RMS 108.142 108.176 )0.034
Minimum 108.142 108.142 0.000
Maximum 108.142 108.196 )0.054

Fig. 6. Value of A0 near the cap edge (also the same as the values of
the scale factor s for the kernel if the weight k ¼ 1:0)

Fig. 7. Second spherical shell test results scaling by s ¼ k A0 with a
weight k ¼ 1:0 for each kernel and a 1-degree shell DEM, showing
pole-to-pole values at every 1 degree
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see that the pole-to-equator parabolic deviation has
been reduced from 0.653 to 0.054 mGal. At this time,
0.054 mGal is considered within an acceptable error
budget, even though such an effect can impact the geoid
at the 2–3-cm level. This is because the nature of this test
is a global shell, which is different than the true Earth

topography (predominantly zero elevation), and as such
we expect an even smaller impact when the final
computations are made using true Earth topography
models. (The reason differences exist at all seems to stem
from the prism mass vs line mass issue. In the future, a
more rigorous ‘prism mass’ formulation of this problem
should yield closer agreement with the numerical
integration results.) As such, a scale factor of k ¼ 1:0
in accordance with Eq. (44), and a 5-arcminute grid,
were assumed acceptable criteria for applying this 1-D
FFT method. As an actual data test, the next section
discusses the use of a real DEM.

5.2 DEM tests

The 1-D FFT approach was applied to the T gP in
Eq. (15), using the scaling mentioned in Sect. 5.1.1, and
a 5-arcminute grid (called GLOBE_5min), averaged
from the 30-arcsecond GLOBE 1.0 grid (Hastings and
Dunbar 1999), which will be called GLOBE_30sec. The
statistics of T gP for all 5-arcminute grid points globally is
stated in Table 4, and shown in shaded contour in
Fig. 9.

In order to test the success of the 1-D FFT method, it
was tested at a few locations using a quadrature method.
Due to the length of time needed for quadrature, it was
impossible to test all points against the 1-D FFT
method, so a few smaller tests were devised. As a first
test, at a series of points running from south pole to
north pole T gP was computed using quadrature. These
points ranged from �89�300 to +89�300, at every 1 de-
gree (180 points). The statistical differences between the
quadrature-based T gP at these points and that from the
1-D FFT method are listed in Table 5. A graph of these
differences is plotted in Fig. 10. Statistically, the devia-
tions between quadrature and FFT along this meridian
are small, relative to errors in data collection, theory,
and knowledge of rock density, and are therefore con-

Table 4. Statistics of TgP for global 1-D FFT using GLOBE_5min
(mGal)

Average 26.649
Standard deviation ±6.231
RMS 27.368
Minimum 17.441
Maximum 50.056

Fig. 8. Third spherical shell test results scaling by s ¼ k A0 with a
weight k ¼ 1:0 for each kernel and a 5-arcminute shell DEM, showing
pole-to-pole values at every 1 degree

Fig. 9. Gravitational attraction, com-
puted at the Earth’s surface, of 3-D
topographic masses, outside a 4-degree
cap, using 1-D FFT, GLOBE_5min
DEM and k ¼ 1:0 weighting
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sidered acceptable. It is interesting to note, however,
that the largest deviations from zero are correlated with
shorelines (the largest spike in Fig. 10 of 0.11 mGal
occurs at the shoreline of Antarctica). It may be that the
sharp breaks between topographic elevations and oce-
anic zero elevations that occur at shorelines are difficult
to model with a Fourier series and therefore cause the
largest errors in this method. Nonetheless, even the
largest errors are small and localized and for current
purposes are considered acceptable.

A second test was merely to take 10 points around
the globe, all in highly mountainous topography, and
test quadrature versus 1-D FFT at those points. Their

locations are given in Table 6, as well as the statistical
differences of quadrature versus 1-D FFT at those
points. With the largest error being only �0.041 mGal
at Mt. Everest, no significant error is expected due to
extraordinarily high topography. These two tests show
that some small, but acceptable, numerical errors can
exist in the 1-D FFT method (using the ‘line mass’
method), making it a useful alternative to quadrature.

6 Global computations

Having been satisfied that the global T gP computations
are working properly, a global set of CgP , CgP0 , T WP0 and

CWP0 were performed using Eqs. (23), (27), (34), and
(38), using the kernel weighting scheme s ¼ k � A0, with
k ¼ 1:0. The results, and computation times, are shown
in Table 7, and plotted in Figs. 11–14. Additionally,
statistics of each component of the series expansions
used (for T gP , CgP , and T WP0 ) are given in Tables 8, 9 and
10, and in each of these tables one can clearly see that
the expansion to degree 4 was sufficient in all cases. Few
details are obvious in these global plots. One thing that
is obvious is the close relation between CgP and CgP0
(Figs. 11 and 12), indicating that one must be careful
which value is used. The plots look similar, but are, in
fact, slightly different in systematic ways that will impact
the final geoid computation if the wrong gravity
reduction is used. Also, because T gP and CgP (Figs. 9
and 11) are each dependent on powers of HP , there is
significant detail due to the high correlation between
those two quantities and the topography itself. This
issue is covered extensively in Sect. 7.

Table 7. Statistics for CgP, CgP0 , T WP0 and CWP0 for global 1-D FFT
using GLOBE_5min (mGal for g values and m2 s)2 for W values)

CgP CgP0 T WP0 CWP0

Average 26.750 26.636 3393.648 3393.916
Standard deviation ±6.382 ±6.132 ±781.277 ±781.362
RMS 27.501 27.332 3482.418 3482.699
Minimum 17.445 17.445 2222.61 2222.78
Maximum 51.172 48.468 6175.17 6175.84
Computation time (h) �45 �9 �36 �9

Table 6. TgP test, quadrature
versus 1-D FFT, at 10 moun-
tainous points across the globe

Location information Results (mGal)

Latitude Longitude Height Description Quadrature 1-D FFT Difference

45.5 245.5 2144 Rocky Mts 28.948 28.956 )0.008
58.5 235.5 1604 Rocky Mts 26.965 26.977 )0.012
53.5 240.5 2226 Rocky Mts 27.614 27.623 )0.009
58.5 234.5 2129 Rocky Mts 26.845 26.857 )0.012
62.5 232.5 1473 Rocky Mts 26.547 26.555 )0.008
35.5 77.5 5502 Everest 45.532 45.573 )0.041
)0.5 36.5 2510 Kilimanjaro 32.223 32.232 )0.009
)89.5 20.5 2794 Antarctica 41.258 41.258 0.000
)18.5 293.5 3821 Andes 26.135 26.141 )0.006
70.5 320.5 3056 Greenland 27.376 27.373 +0.003

Table 5. Statistics of TgP for initial pole-to-pole (l = 20.5�,
)89.5� £ f £ +89.5�) test using GLOBE_5min (mGal)

Quadrature 1-D FFT Difference

Average 30.284 30.288 )0.005
Standard deviation ±4.266 ±4.268 ±0.020
RMS 30.581 30.586 0.020
Minimum 25.073 25.074 )0.030
Maximum 43.065 43.071 0.111

Fig. 10. Pole-to-pole test (1 ¼ 20:5 degrees) of quadrature versus 1-D
FFT at 1-degree increments
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7 Practical application for high-resolution DEMs

The previous sections dealt with globally computing
gravity field components on grid points, where the grid
points are identical to the DEM grid points themselves
(i.e. a 5-arcminute gridded global DEM yielded gravi-
tational values on a 5-arcminute output grid). However,
it is often necessary in geoid modeling to have topo-
graphic effects computed on a much finer grid than 5-
arcminutes. On the other hand, a global 1-arcsecond
DEM is not available, and even if it were the compu-
tational time to work with this method would be
months, at best. There is a solution, however. Note that
Eq. (15) can be written as the (scaled) sum of products

of two values, Hj
P and wQj, which exist at any given point

P .

T gP ¼ Gq
X1
j¼0

Hj
P

X1
i¼0

Z
u

Z
k

Hiwi;j cosu dk du

¼ Gq
X1
j¼0

Hj
P ð/P ; kP ÞwQjð/P ; kP Þ ð49Þ

where the wQj term is obvious by implication. Thank-
fully, the wQj term is computed as a next-to-final step in
computing T gP in the software, so capturing it as a
separate by-product grid causes no additional compu-
tational burden. In a straightforward application of

Fig. 11. Gravitational attraction,
computed at the Earth’s surface, of
2-D topographic masses, outside a
4-degree cap, using 1-D FFT,
GLOBE_5min DEM and k ¼ 1:0
weighting

Fig. 12. Gravitational attraction,
computed at the geoid, of 2-D
topographic masses, outside a
4-degree cap, using 1-D FFT,
GLOBE_5min DEM and k ¼ 1:0
weighting
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Eq. (15), the DEM grid spacing is equivalent to the wQj
and Hj

P , and thus the T gP spacing. However, wQj is a
very long wavelength signal, while Hj

P is a localized
short-wavelength signal (and convolving wQj with Hj

P
therefore yields a T gP grid that has both long and short
wavelength features). As such, one can compute wQj at 5
arcminutes, for example, but accurately interpolate
between those grid nodes to a finer grid, say 1 arcsecond,
with confidence. As such, a fine grid (1 arcsecond) of
heights (HP ), consistent with the 5-arcminute DEM, can
be used with a ‘densified’ wQj grid (computed at 5
arcminutes, interpolated down to 1 arcsecond), and
Eq. (49) applied. In this way, the high-frequency HP
information is successfully, and accurately, merged with
the long-wavelength wQj information, yielding the
correct values for T gP on a grid of 1 arcsecond, without

needing a global 1-arcsecond DEM. Of course, this
method can also be applied to CgP as well, but with
Eq. (23) being modified

CgP ¼ Gq
X1
j¼0

Hj
P

Z
u

Z
k

H�vj cosu dkdu

¼ Gq
X1
j¼0

Hj
P ð/P ; kP ÞvQjð/P ; kP Þ ð50Þ

It should be further noted that this ability to break
the computations down into a long-wavelength ‘Q’
component, easily convolved with a high-resolution
DEM unique to this (FFT) approach, and is not found
in papers where global effects are computed using
spherical harmonics (Nahavandchi 2000; Sjöberg 2000).

Fig. 13. Gravitational potential, com-
puted at the geoid, of 3-D topographic
masses, outside a 4-degree cap, using
1-D FFT, GLOBE_5min DEM and
k ¼ 1:0 weighting

Fig. 14. Gravitational potential, com-
puted at the geoid, of 2-D topographic
masses, outside a 4-degree cap, using
1-D FFT, GLOBE_5min DEM and
k ¼ 1:0 weighting
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This method of breaking the computation into long-

wavelength (vQj or wQj) and short-wavelength (Hj
P )

components is unnecessary for the values CgP0 , T WP0 , and

CWP0 , as they all have no dependence on an HP term.
This method for computing both T gP and CgP was

applied in a mountainous 1� 1 degree region
(39� � f � 40�, 254� � l � 255�) of the western United
States using the 1-arcsecond DEM NGSDEM99 (Smith
and Roman 2001b). The rugged topography of that re-
gion is shown in Fig. 15. The vQj and wQj components
were first computed separately from the global 5-arc-
minute DEM, and then interpolated to 1 arcsecond us-
ing bicubic splines. They were then convolved with the
1-arcsecond Hj

P grids based on NGSDEM99. Some in-
teresting results were found and are discussed below.

7.1 High-resolution results

The statistics for the final computations of T gP and CgP
at 1 arcsecond are found in Table 11 and the corres-
ponding results based solely on the 5-arcminute DEM
(interpolated down to 1 arcsecond) are also in that table.
A plot of the true 1-arcsecond T gP values is shown in

Fig. 16 while its counterpart (5-arcminute interpolated
down to 1 arcsecond) is plotted in Fig. 17. Note the
significant gain in detailed gravity field knowledge for
Fig. 16 over Fig. 17. Similar (so similar that showing
them is unnecessary) plots can be made of CgP .

What impact these high-resolution values of T gP and

CgP have on the geoid can only be answered by knowing
which path one is taking toward Helmert space – R/r/D
or R/D/r. This is discussed in Sect. 7.2.

7.2 High-resolution results and the path
toward Helmert space

Are high-resolution values of T gP and CgP needed for
computing an accurate model of the geoid? The answer is:
It depends on your path toward Helmert space. Remem-
ber that in the R/r/D path, a topographic reduction of
‘�T gP þ CgP ’ is made to surface gravity. And while,
individually, the 1-arcsecond versions of T gP and CgP
differ from their 5-arcminute counterparts, there is no
significant difference between a 1-arcsecond version of
�T gP þ CgP and a 5-arcminute version! This is because the
high-frequency differences of between the 1 and 5

Table 10. Statistics for in-
dividual series components of

T WP0 for global 1-D FFT using
GLOBE_5min (m2 s)2)

i = 0 i = 1 i = 2 i = 3 i = 4

N/Aa RMS = 3481.581 RMS = 0.845 RMS = 2.1 · 10)3 RMS = 1.2 · 10)8

Min = 2222.09 Min = 0.513 Min = )1.9 · 10)2 Min = 8.8 · 10)9

Max = 6173.22 Max = 1.967 Max = 1.5 · 10)5 Max = 3.6 · 10)8

aN/A: not applicable

Table 9. Statistics for individual series components of CgP for global 1-D FFT using GLOBE_5min (mGal)

j = 0 j = 1 j = 2 j = 3 j = 4

RMS = 27.332 RMS = 0.370 RMS = 4.5 · 10)4 RMS = 1.8 · 10)5 RMS = 3.8 · 10)8

Min = 17.445 Min = )0.006 Min = )7.6 · 10)3 Min = )5.2 · 10)4 Min = )8.9 · 10)16

Max = 48.468 Max = 3.570 Max = 0.000 Max = 1.7 · 10)8 Max = 1.7 · 10)6

Table 8. Statistics for individual series components of TgP for global 1-D FFT using GLOBE_5min (mGal)

j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 N/Aa N/A N/A N/A N/A

i = 1 RMS = 27.324 RMS = 0.371 RMS = 4.5 · 10)4 RMS = 1.8 · 10)5 RMS = 3.8 · 10)8

Min = 17.439 Min = )0.187 Min = )0.8 · 10)4 Min = )5.2 · 10)5 Min = )9.5 · 10)16

Max = 48.448 Max = 3.568 Max = 0.000 Max = 1.5 · 10)7 Max = 1.7 · 10)6

i = 2 RMS = 0.193 RMS = 3.2 · 10)4 RMS = 2.4 · 10)5 RMS = 5.0 · 10)8 RMS = 3.1 · 10)9

Min = )1.255 Min = )1.5 · 10)4 Min = )4.1 · 10)10 Min = )1.7 · 10)6 Min = )1.5 · 10)7

Max = 1.4 · 10)3 Max = 4.0 · 10)3 Max = 5.5 · 10)4 Max = 3.7 · 10)10 Max = 1.1 · 10)14

i = 3 RMS = 8.5 · 10)5 RMS = 1.6 · 10)5 RMS = 3.3 · 10)8 RMS = 4.0 · 10)9 RMS = 1.1 · 10)11

Min = )7.6 · 10)4 Min = )3.0 · 10)4 Min = )1.9 · 10)13 Min = )2.9 · 10)11 Min = 5.7 · 10)10

Max = )6.5 · 10)7 Max = 7.9 · 10)6 Max = 9.0 · 10)7 Max = 1.5 · 10)7 Max = 3.6 · 10)17

i = 4 RMS = 4.5 · 10)6 RMS = 8.8 · 10)9 RMS = 2.9 · 10)9 RMS = 6.9 · 10)12 RMS = 1.0 · 10)12

Min = )2.6 · 10)9 Min = )2.0 · 10)7 Min = )9.6 · 10)8 Min = )4.5 · 10)14 Min = )1.5 · 10)17

Max = 6.7 · 10)5 Max = 4.4 · 10)9 Max = 1.2 · 10)13 Max = 2.8 · 10)10 Max = 5.4 · 10)11

aN/A: not applicable
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arcsecond versions of T gP are almost exactly identical to
those same differences in the CgP field, causing a
cancellation. These statistics are summed up in Table 12.
A plot of the ‘�T gP þ CgP ’ field (at 1-arcsecond spacing) is
shown in Fig. 18. This figure is identical to a 5-arcminute
version of the same field. Note that the field is very
smooth; very long wavelength. While the ease of comput-
ing the combined ‘�T gP þ CgP ’ field at a coarse grid
spacing represents an advantage, the smoothness of that
combined field is a slight disadvantage. The reason is that
very little high-frequency information is removed from
the local gravity field, at least based on the outer zone
masses. As such, very little is done to ‘smooth’ the local
gravity field due to outer-zone masses, leaving high-
frequency information in the local gravity field. This is a
disadvantage, as the next step in the R/r/D path is to
downward continue. If high-frequency information is left
in any field to be downward continued, that signal may
become amplified, yielding an extremely noisy field.

The story is a little different in the R/D/r path. In that
case, the topographic reduction of �T gP is made to
surface gravity, and then downward continuation oc-

curs, with þCgP0 occurring after downward continua-
tion. Notice in Fig. 16 that the T gP field is very high
frequency, and since this is removed from the local
surface gravity field it means a great deal of smoothing
occurs to the local gravity field (and this is based on
outer zone masses only!). So while the additional com-
putational burden of computing T gP at 1 arcsecond is a
disadvantage, the smoothing of the local gravity field
before downward continuation is an advantage.

The intent of this comparison is to show that neither
path is ‘better’ than the other. Each has its advantages
and disadvantages. However, topographic effects are a
direct problem, computable to any accuracy desired
within the limitation of DEM spacing and not knowing
true rock density. Downward continuation is an inverse
problem where small noise can be amplified out of
control, therefore requiring various filtering algorithms.
Seen in that light, a path which seeks to smooth as much
signal as possible out of the field before downward
continuation would seem advantageous. That would put
the R/D/r path at a slight advantage to the R/r/D path.

Table 11. Statistics of TgP and

CgP computed at 1-arcsecond
and 5-arcminute grid intervals
in the Rocky Mountain test
area

TgP (mGal) CgP (mGal)

1 arcsecond 5 arcminutes 1 arcsecond 5 arcminutes

Average 28.805 28.806 28.981 28.982
Standard deviation ±0.127 ±0.121 ±0.129 ±0.123
RMS 28.806 28.806 28.981 28.982
Minimum 28.564 28.572 28.737 28.744
Maximum 29.187 29.049 29.365 29.226
Number of points 12 967 201 12 967 201 12 967 201 12 967 201

Fig. 15. One-arcsecond topography in a 1� 1 degree test area of the
Rocky Mountains

Fig. 16. Gravitational attraction computed at the Earth’s surface of
3-D topographic masses outside a 4-degree cap on a 1-arcsecond grid
using NGSDEM99 and the wQj procedure
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7.3 Related computations

Once the T gP , CgP , CgP0 , T WP0 and CWP0 values are
computed they may be used to compute other useful
quantities based on outer-zone masses. Two of these,
terrain corrections and indirect effect, are discussed
below.

7.3.1 Terrain corrections from outer-zone masses
The traditional terrain correction (TC) approximates the
combined effect of�T gP þ CgP0 . In fact, in planar form the
TC is exactly equal to that combined effect (Smith et al.
2001). However, in many local geoid computations the
TC is computed only in a local area. Therefore if one
examines the outer-zone versions of�T gP þ CgP0 , an idea
of the ‘truncation error’ of local TC computations
becomes obvious (see also Nahavandchi 2000; Sjöberg
2000). Because �T gP has a high-frequency signal while
þCgP0 does not (see Sect. 7.1), there is no cancellation of
high-frequency terms as was seen with the T gP þ CgP
signal in Sect. 7.1. That is, truncation error of ‘classical’
TCs is high frequency. A plot of these truncation errors in
the Rocky Mountain test area is shown in Fig. 19. While

the effect in this area does not exceed 1 mGal, its
systematically negative nature can lead to geoid signals
that are greater than 1 cm and should therefore be
considered in future geoid computations.

7.3.2 Indirect effect
When the topography is ‘Helmertized’ the equipotential
surface W ¼ W0 moves (generally upward). The distance
it moves is the indirect effect. The component of the
indirect effect which is caused by the Helmertization of
the outer-zone masses may be deduced by applying
Bruns’ formula (Heiskanen and Moritz 1967), arriving
at

dNI ¼
�T WP0 þ CWP0

cP0

ð51Þ

The combined outer-zone grid of �T WP0 þ CWP0 was
divided by normal gravity, g, globally, and the statistics
for the global outer-zone indirect effect are shown in
Table 13. With an RMS of 2.9 cm and a minimum effect
of 1.7 cm, it seems obvious that, for a ‘1-cm geoid’, the
effect of outer-zone masses must be included in the
indirect effect computation.

Table 12. Statistics of
)TgP+CgP for 1-arcsecond and
5-arcminute grids and differ-
ences (mGal)

1 arcsecond 5 arcminute ! 1 arcsecond Difference

Average 0.1757 0.1757 6.5 · 10)8

Standard deviation ±0.0020 ±0.0020 ±7.7 · 10)6

RMS 0.1757 0.1757 7.7 · 10)6

Minimum 0.1713 0.1713 )4.4 · 10)5

Maximum 0.1791 0.1791 3.6 · 10)5

Number of points 12 967 201 12 967 201 12 967 201

Fig. 17. Gravitational attraction computed at the Earth’s surface of
3-D topographic masses outside a 4-degree cap on a 1-arcsecond grid
based solely on the GLOBE_5min DEM

Fig. 18. Combined effect of �T gP þ CgP for topographic masses
outside a cap of 4 degrees on a 1-arcsecond grid

165



8 Conclusions

Formulas for computing a global grid of five separate
‘outer-zone’ topographic effects have been presented,
using a 1-D FFT formulation. Various combinations of
these topographic effects are needed for different
applications of the Stokes–Helmert method of comput-
ing geoid undulations. No attempt is made in this paper
to compute the inner-zone values, but the implication is
that these outer-zone values can be combined (after
future research) with inner-zone computations for full
topographic effects.

The 1-D FFT method is computationally faster than
the numerical quadrature method, while being proven to
have similar accuracies. However, a blind application of
the derived formulae resulted in numerical errors that
needed to be overcome with a special weighting scheme
for the kernel function at the cap radius (which, as a
matter of course, is necessary in numerical quadrature as
well, due to the interaction with a /=k grid and a cir-
cular cap radius). In addition a 5-arcminute grid is rec-
ommended to reduce north–south tilts that were evident
in 1-degree grid computations.

Two of the five primary functions which were in-
vestigated, specifically the gravitational attraction of
topography at the surface (T gP ) and the gravitational
attraction of condensed topography at the surface
(CgP ), were seen to have local, high-frequency compo-
nents due to the dependence on Hj

p terms in their
computation. A method for using both a global and
local DEM to capture the full signal was proposed with
no loss of accuracy and only a quick follow-up com-
putation over and above the global computation. The
high-frequency signals of T gP and CgP canceled each

other in the R/r/D path of the Helmert–Stokes scheme,
which was an advantage computationally for the to-
pographic signals but meant that high-frequency signal
was not removed from the gravity field before down-
ward continuation. Since the R/D/r path depends on

T gP (and CgP0 , rather than CgP , and only after down-
ward continuation), the high-frequency signal is not
cancelled, which means it is removed from the gravity
field, thus smoothing the field for downward continu-
ation. This is seen as a slight advantage since down-
ward continuation, being an inverse problem, should
be done in a field with as much signal (especially high
frequency) removed as possible.

Lastly, a few examples of magnitude of classical TC
and indirect effect signals implied by outer-zone masses
were computed. It was seen that the signals, while small,
were significant at the few-centimeter level, making them
important if an absolute geoid is to be computed to
centimeter accuracy.

Appendix

Of academic interest mostly is the question of whether
different paths (R/r/D vs R/D/r) from ‘Real space’ to
‘Helmert space’ are identical. Intuitively they should
seem so (at least mathematically, to the author), but a
formal proof of mathematical equivalence is provided
here (only an equivalence of R/r/D to R/D/r is provided,
but similar elementary proofs of their mathematical
equivalence with other paths, such as D/R/r, follow the
same structure). Note that a numerical proof and
analytical proof is provided for the spherical Earth case
by Milbert and Smith (1998), but the following is a
proof for the general case.

Also note that a mathematical equivalence does not
mean that the practical implementation of R/r/D and R/
D/r will yield identical results. Numerical differences,
most notably in the computation of the downward
continuation, can (if not treated with extreme caution
and rigor) yield final values of Helmert gravity that are
different through different paths.

First assume the real Earth is divided into two masses
I and T , which represent ‘masses inside the geoid’ and
‘topography’ respectively. Also, there will eventually be
a need to describe a condensed mass layer on the geoid,
designated C.

Second, assume there are three ‘spaces’ (being various
configurations of the mass distribution of the Earth) to be
considered. The first is the real Earth, designatedR. In this
case, the Earth consists of the masses I and T . Another

Fig. 19. Combined effect of �T gP þ CgP0 for topographic masses
outside a cap of 4 degrees on a 1-arcsecond grid

Table 13. Global statistics for indirect effects based on topo-
graphic masses outside a 4-degree cap (cm)

Average 2.7
Standard deviation ±0.9
RMS 2.9
Minimum 1.7 @ (/, k) = ()5.208�, 206.5417�),

Pacific Ocean
Maximum 6.9 @ (/, k) = (38.5417�, 83.7083�),

Himalayas
Number of points 9 331 200
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configuration is the ‘Helmert space’, designated H , where
the masses T are missing and have been replaced by the
mass layer C. Thus H space consists of masses I and C.
Lastly, a midway space, designated M , will be conceived
where the only masses in place are the I masses.

Third, define two points P on the surface of the Earth,
and P0, located vertically (along the plumb-line) below P
on the geoid. Let h be the distance from P down to P0.

Lastly, before beginning the proof, a nomenclature
needs to be established. The general rule is as follows:

hSPACEi
hMASSESi hvariableihLOCATIONi

Where hSPACEi is one of the three spaces, R, M , or H ,
and is mutually exclusive with hMASSESi; hMASSESi is
any combination of the three masses I , T , and C, and is
mutually exclusive with hSPACEi; hLOCATIONi is one
of two points P or P0; and hvariablei is either g or its
derivatives g0, g00, etc. Some examples follow.

The gravitational attraction at point P in space H is

HgP

but since H space consists of two masses (I and C), this
can be split into the components induced by these two
masses

HgP ¼ IgP þ CgP

The 2nd derivative of gravitational attraction at point
‘P ’ in space ‘R’ is

Rg00P

but since ‘R’ space consists of two masses (‘I ’ and ‘T ’),
this can be split into the components induced by these
two masses:

Rg00P ¼ Ig00P þ T g00P

The proof of interest is to show that, beginning with
gravitational attraction at P in ‘R’ space ðRgP Þ, the paths
R/r/D and R/D/r lead to identical solutions of gravita-
tional attraction at P0 in ‘H ’ space ðHgP0Þ.

The R/D/r path to HgP0 can be written mathemati-
cally as

HgP0 ¼  target:gravitational attraction
at P0 inHelmert space

RgP  begin withattraction at
P in Real space

�T gP  remove topography
ðcompute at P Þ

þ
P1
i¼0

MgðiÞP � 1i! � ð�hÞi  downward continue ðP to P0Þ

in mid space
þCgP0  restore condensed topography

(compute at P0Þ
(A4)

where the series expansion indicates that downward
continuation is done with an infinite Taylor series

expansion. However, the R/r/D path to HgP0 can be
written mathematically as

HgP0 ¼  target:gravitational attraction

at P0 in Helmertspace
RgP  begin with attractionat

P in Real space

�T gP  remove topography

(computeat P Þ
þCgP  restore condensedtopography

(compute at P Þ
þ
P1
i¼0

HgðiÞP � 1i! � ð�hÞi  downward continue ðP to P0Þ
in Helmert space

(A5)

Taking Eq. (A4) and formally showing that ‘M ’ space
consists only of ‘I ’ masses in the downward-continua-
tion term, while also expanding the value CgP0 into a
Taylor series relative to CgP , gives

HgP0 ¼
RgP

� T gP

þ
X1
i¼0

Ig
ðiÞ
P �

1

i!
� ð�hÞi

þ CgP þ
X1
i¼0

CgðiÞP �
1

i!
� ð�hÞi

(A6)

Re-arranging Eq. (A6)

HgP0 ¼
RgP

� T gP

þ CgP

þ
X1
i¼0

Ig
ðiÞ
P þ CgðiÞP

� �
� 1
i!
� ð�hÞi

(A7)

Then, recognizing that ‘H ’ space consists of effects of ‘I ’
and ‘C’ masses, the final term in Eq. (A7) may be
simplified, giving

HgP0 ¼
RgP

� T gP

þ CgP

þ
X1
i¼0

HgðiÞP �
1

i!
� ð�hÞi

(A8)

Thus Eq. (A8), which is only a re-arranging of the R/D/r
path of Eq. (A4), is seen to be identical to Eq. (A5),
which was the R/r/D path. The paths yield identical
values of HgP0 . Similar equations can be used to show
that other paths are identical, or that equality of target
values exists also in potential and gravity gradient space.
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Such cases are as intuitive as the preceding proof, and
are not presented.
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