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Abstract. Order-value optimization (OVO) is a generalization of the minimax
problem motivated by decision-making problems under uncertainty and by
robust estimation. New optimality conditions for this nonsmooth optimization
problem are derived. An equivalent mathematical programming problem with
equilibrium constraints is deduced. The relation between OVO and this non-
linear-programming reformulation is studied. Particular attention is given to
the relation between local minimizers and stationary points of both problems.
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1. Introduction

Assume that f1; . . . ; fm are real-valued functions defined on an arbitrary set X.
For each x 2 X the values f1ðxÞ; . . . ; fmðxÞ are ordered in such a way that

fi1ðxÞðxÞ � fi2ðxÞðxÞ � . . . � fimðxÞðxÞ :

For all p 2 I � f1; . . . ;mg, the p�order-value function f : X! R is defined
by

f ðxÞ ¼ fipðxÞðxÞ:
The function f is well defined, despite the fact that the set of indices
fi1ðxÞ; . . . ; imðxÞg is not univocally defined. If p ¼ 1, f ðxÞ ¼ minff1ðxÞ; . . . ;
fmðxÞg and, if p ¼ m, f ðxÞ ¼ maxff1ðxÞ; . . . ; fmðxÞg.
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The OVO problem consists in minimizing the p�order-value function. In
[2] a primal method with guaranteed convergence to points that satisfy a weak
optimality condition was introduced. One of the motivations invoked in [2]
for solving OVO was the estimation of parameters in situations where large
and systematic errors are present. See [12]. In those cases the OVO technique
seems to be useful to eliminate the influence of outliers.

When x is a vector of portfolio positions and fiðxÞ is the predicted loss of
the decision x under the scenario i, the order-value function is the discrete
Value-at-Risk (VaR) function, largely used in risk evaluations (see, for
example, [13]). The relationship between the order-value function and the
VaR function was unknown to the authors at the time they wrote [2]. Nev-
ertheless, in [2] the application of OVO to decision making was mentioned.

This paper is organized as follows. In Section 2 we prove new optimality
conditions for the OVO problem. In Section 3 we introduce the reformulation
as a nonlinear-programming problem. In Section 4 we show that local min-
imizers of the OVO problem are KKT points of the reformulation. Conclu-
sions are stated in Section 5.

Throughout this paper we assume that k � k denotes the Euclidian norm,
although in many cases it can be replaced by an arbitrary norm in the finite
dimensional space under consideration. We denote e ¼ ð1; . . . ; 1Þ and
N ¼ f0; 1; 2; . . .g. As usually, we denote#A the number of elements of the setA.

2. Optimality conditions

In this section, assuming smoothness of the functions fi, we derive optimality
conditions for the OVO problem. The conditions derived here are stronger
than the one used in [2]. First-order optimality conditions will be used in
forthcoming sections in connection to the reformulation.

Assume that fi : X! R for all i ¼ 1; . . . ;m and define, as in the intro-
duction,

f ðxÞ ¼ fipðxÞðxÞ
for all x 2 X, where

fi1ðxÞðxÞ � � � � � fimðxÞðxÞ:
The OVO problem considered here is

Minimize f ðxÞ s.t. x 2 X: ð1Þ
From now on we assume that X � Rn and all the functions fi are continuous
on X. In this case the p�order function f is continuous (see [2]).

The objective of this section is to prove optimality conditions for the OVO
problem.

For all x 2 X we define:

LðxÞ ¼ fi 2 f1; . . . ;mg j fiðxÞ < f ðxÞg; ð2Þ

EðxÞ ¼ fi 2 f1; . . . ;mg j fiðxÞ ¼ f ðxÞg; ð3Þ
and

GðxÞ ¼ fi 2 f1; . . . ;mg j fiðxÞ > f ðxÞg: ð4Þ

366 R. Andreani et al.



The sets LðxÞ;EðxÞ and GðxÞ, as well as the function f ðxÞ, depend on the
choice of p. However, we do not make this dependence explicit in order to
simplify the notation.

Clearly, for all x 2 X,

#LðxÞ < p � #½LðxÞ [ EðxÞ�:
We say that a sequence fxkg is feasible if fxkg � X. Given x 2 X, a feasible
sequence is said to be a descent sequence for the function / if

lim
k!1

xk ¼ x

and there exists k0 2 N such that

/ðxkÞ < /ðxÞ 8 k � k0:

In the following theorem we give a characterization of local minimizers
which, in turn, will be useful to prove optimality conditions.

Theorem 2.1. Assume that x 2 X. Then, x is a local minimizer of the OVO
problem (1) if, and only if, for all feasible sequences fxkg that converge to x,

#fi 2 EðxÞ j fxkg is a descent sequence for fig < p �#LðxÞ: ð5Þ

Proof. Assume that x is a local minimizer and that (5) does not hold for all
feasible sequences fxkg that converge to x. Then, there exists a feasible se-
quence fxkg that is a descent sequence for all i 2 D � EðxÞ, where

#D � p �#LðxÞ:
By continuity, there exists e > 0 such that

fiðyÞ < f ðxÞ 8 i 2 LðxÞ; ky � xk � e:

Moreover, there exists k0 2 N such that

fiðxkÞ < f ðxÞ 8 k � k0; i 2 D:

If k1 � k0 is large enough and k � k1, kxk � xk � e, therefore

fiðxkÞ < f ðxÞ 8 k � k1; i 2 D [ LðxÞ:
But #D [ LðxÞ � p, so

f ðxkÞ ¼ fipðxkÞðxkÞ < f ðxÞ 8 k � k1:

This implies that x is not a local minimizer.
Conversely, assume that x is not a local minimizer of (1). Therefore, there

exists a feasible sequence fxkg with limk!1 xk ¼ x such that

f ðxkÞ < f ðxÞ for k large enough:

So, there exists k2 2 N such that

fi1ðxkÞðxkÞ � � � � � fipðxkÞðxkÞ ¼ f ðxkÞ < f ðxÞ ð6Þ
for all k � k2.

Since there exist a finite number of sets of the form fi1ðxkÞ; . . . ; ipðxkÞg, at
least one of them is repeated infinitely many times in (6). This set will be called
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fi1; . . . ; ipg. Thus, taking an appropriate subsequence (which is also a feasible
sequence), we have:

fi1ðxkÞ � . . . � fipðxkÞ ¼ f ðxkÞ < f ðxÞ
for all k � k2.

Since fiðxÞ > f ðxÞ for all i 2 GðxÞ, the continuity of the functions implies
that the set fi1; . . . ; ipg does not contain elements of GðxÞ. So,
fi1; . . . ; ipg � LðxÞ [ EðxÞ:

Therefore, for at least p �#LðxÞ elements of EðxÞ we have that

fiðxkÞ < f ðxÞ
if k is large enough. Thus, the sequence xk is a descent sequence for at least
p �#LðxÞ functions from the set EðxÞ. This completes the proof. h

We say that d 2 Rn is an unitary tangent direction to the set X at the point
x 2 X if there exists a feasible sequence fxkg such that

lim
k!1

xk ¼ x

and

d ¼ lim
k!1

xk � x
kxk � xk :

The following theorems state optimality conditions related to tangent direc-
tions. We are going to assume that the functions fi have continuous first
derivatives. Under this assumption, although not necessarily differentiable,
the function f is locally Lipschitzian.

Theorem 2.2. Assume that x is a local minimizer of (1) and fi has continuous
first derivatives in a neighborhood of x for all i 2 EðxÞ. Then, for all unitary
tangent directions d,

#fi 2 EðxÞ j hd;rfiðxÞi < 0g < p �#LðxÞ:

Proof. Assume that the thesis is not true. Then, there exists an unitary
tangent direction d and a set D1 � EðxÞ, such that #D1 � p �#LðxÞ and

hd;rfiðxÞi < 0

for all i 2 D1. Let fxkg be a feasible sequence that converges to x and such that

d ¼ lim
k!1

xk � x
kxk � xk :

By the differentiability of fi, for all i 2 D1 we have that:

fiðxkÞ ¼ fiðxÞ þ hrfiðxÞ; xk � xi þ oðkxk � xkÞ:
Therefore,

fiðxkÞ � fiðxÞ
kxk � xk ¼

�
rfiðxÞ;

xk � x
kxk � xk

�
þ oðkxk � xkÞ
kxk � xk :
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Taking limits on the right-hand side, we have that for k large enough,

fiðxkÞ � fiðxÞ
kxk � xk � hrfiðxÞ; di

2
< 0:

Therefore, for k large enough and for all i 2 D1,

fiðxkÞ < fiðxÞ:
This contradicts Theorem 2.1. h

Theorem 2.2 justifies the following definition of first-order stationary
points.

First-order stationary points

Assume that all the functions fi that define the OVO problem have continuous
first derivatives in an open set that contains X.We say that x 2 X is a first-order
stationary point for (1) if, for all unitary tangent directions d,

#fi 2 EðxÞ j hd;rfiðxÞi < 0g < p �#LðxÞ:
For the sake of completeness, in the next theorems we state second-order
necessary conditions and a sufficient condition for local minimizers. Although
these results may be useful for future developments they will not be used in
connection with the reformulation of OVO.

Theorem 2.3. Assume that x is a local minimizer of (1) and fi has continuous
first and second derivatives in a neighborhood of x for all i 2 EðxÞ. For all
unitary tangent directions d, define

D0ðdÞ ¼ fi 2 EðxÞ j hd;rfiðxÞi < 0g
and

D00ðdÞ ¼ fi 2 EðxÞ jrfiðxÞ ¼ 0 anddTr2fiðxÞd < 0g:
Then, for all unitary tangent direction d,

#ðD0ðdÞ [ D00ðdÞÞ < p �#LðxÞ:

Theorem 2.4. Assume that x 2 X and fi has continuous second derivatives for
all i 2 EðxÞ: For all unitary tangent direction d define SðdÞ ¼ S1ðdÞ [ S2ðdÞ �
EðxÞ by

S1ðdÞ ¼ fi 2 EðxÞ j hd;rfiðxÞi > 0g;
and

S2ðdÞ ¼ fi 2 EðxÞ jrfiðxÞ ¼ 0 and dTr2fiðxÞd > 0g:
Assume that, for all unitary tangent direction d,

#SðdÞ > #LðxÞ þ#EðxÞ � p;

Then, x is a local minimizer.
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3. Nonlinear-programming reformulation

The optimization problem (1) is a nonsmooth nonconvex minimization
problem. In this section we transform it into a smooth nonlinear-program-
ming problem. The constraints of this particular nonlinear programming
problem are equilibrium constraints. See [16]. The use of nonlinear pro-
gramming algorithms for solving mathematical programming problems with
equilibrium constraints has been justified in recent papers [3, 7, 9, 10]

The following lemma prepares the theorem that justifies the equivalence
result.

Lemma 3.1. Assume that z1; . . . ; zm are real numbers such that

z1 � z2 � � � � � zm:

Then, for all p 2 f1; . . . ;mg, there exist r0; u0;w0 2 Rm such that ðr0; u0;w0; zpÞ
is a solution of the following problem:

Minimize z

s:t:

Pm
i¼1 riwi ¼ 0Pm
i¼1ð1� riÞui ¼ 0Pm
i¼1 ri ¼ p

ui � zþ zi � wi ¼ 0; i ¼ 1; . . . ;m

u � 0; 0 � r � e;w � 0:

8>>>>>><
>>>>>>:

ð7Þ

Proof. Define u0, r0 e w0 by

r0i ¼ 1; i ¼ 1; . . . ; p;
r0i ¼ 0; i ¼ p þ 1; . . . ;m;
u0i ¼ zp � zi; i ¼ 1; . . . ; p;
u0i ¼ 0; i ¼ p þ 1; . . . ;m;
w0i ¼ 0; i ¼ 1; . . . ; p and
w0i ¼ zi � zp; i ¼ p þ 1; . . . ;m

Clearly, ðr0; u0;w0; zpÞ is a feasible point of (7) for which the objective function
value is zp. Now, assume that ðr; u;w; zÞ is a feasible point such that z < zp.
But, by feasibility,

wi ¼ ui þ zi � z 8 i ¼ 1; . . . ;m:

Since z < zp � zpþ1 � � � � � zm we have that

zi � z > 0 8 i ¼ p; . . . ;m:

Therefore, since ui � 0,

wi ¼ ui þ zi � z > 0 8 i ¼ p; . . . ;m:

Thus, since riwi ¼ 0 for all i ¼ 1; . . . ;m,

ri ¼ 0; 8 i ¼ p; . . . ;m:

So, since r � e and p ¼
Pm

i¼1 ri,
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p ¼
Xm

i¼1
ri ¼

Xp�1
i¼1

ri � p � 1:

This is a contradiction. Therefore, ðr; u;w; zÞ cannot be feasible.
This means that, for all feasible ðr; u;w; zÞ, we have that z � zp. Since

ðr0; u0;w0; zpÞ is feasible, the proof is complete. h
Now we are able to prove an equivalence result. In the next theorem we

show that solving (1) is equivalent to solve a nonlinear-programming prob-
lem.

Theorem 3.1. The point x 2 X is a solution of the OVO problem (1) if, and only
if, there exist r0; u0;w0 2 Rm and z0 2 R such that ðx; r0; u0;w0; z0Þ is a solution of

Minimize z

s:t:

Pm
i¼1 riwi ¼ 0Pm
i¼1ð1� riÞui ¼ 0Pm
i¼1 ri ¼ p

ui � zþ fiðxÞ � wi ¼ 0 i ¼ 1; . . . ;m
u � 0; 0 � r � e; w � 0; x 2 X:

8>>>><
>>>>:

ð8Þ

In that case, z0 ¼ f ðxÞ.

Proof. By Lemma 3.1, given x 2 X, f ðxÞ is the value of z that solves

Minimize z

s.t.

Pm
i¼1 riwi ¼ 0Pm
i¼1ð1� riÞui ¼ 0Pm
i¼1 ri ¼ p

ui � zþ fiðxÞ � wi ¼ 0 i ¼ 1; . . . ;m
u � 0; 0 � r � e; w � 0:

8>>>><
>>>>:

The desired result follows trivially from this fact. h

It is easy to see that in the case p ¼ m, which corresponds to the minimax
problem, the reformulation (8) reduces to the classical nonlinear program-
ming reformulation of minimax problems:

Minimize z s. t. z � fiðxÞ i ¼ 1; . . . ;m; x 2 X:

So far, the global solutions of the OVO problem have been identified with the
global solutions of the nonlinear-programming problem (8). Now we prove
that such identification also exists between the local minimizers of both
problems.

In a preparatory lemma we will prove that feasible points of (8) necessarily
satisfy a set of simple relations. Before proving this lemma, and remembering
the definition (3), we give three additional definitions.

If ðx; r; u;w; zÞ is a feasible point of (8), we define

E1ðx; r; u;w; zÞ ¼ fi 2 EðxÞ j ri ¼ 1g; ð9Þ

E0ðx; r; u;w; zÞ ¼ fi 2 EðxÞ j ri ¼ 0g; ð10Þ
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and

Eþðx; r; u;w; zÞ ¼ fi 2 EðxÞ j 0 < ri < 1g: ð11Þ
In order to simplify the notation, we will write

E1ðxÞ ¼ E1ðx; r; u;w; zÞ;

E0ðxÞ ¼ E0ðx; r; u;w; zÞ;

EþðxÞ ¼ Eþðx; r; u;w; zÞ;

Lemma 3.2. Let ðx; r; u;w; zÞ be a feasible point of (8). Then,

z > f ðxÞ ) #½LðxÞ [ EðxÞ� ¼ p; ð12Þ

f ðxÞ � z � min
i2GðxÞ

fiðxÞ; ð13Þ

ui > 0 8 i 2 LðxÞ; ð14Þ

ri ¼ 1 8 i 2 LðxÞ; ð15Þ

wi ¼ 0 8 i 2 LðxÞ: ð16Þ
Moreover, if z ¼ f ðxÞ, we have:

wi > 0 8 i 2 GðxÞ; ð17Þ

ri ¼ 0 8 i 2 GðxÞ; ð18Þ

ui ¼ 0 8 i 2 GðxÞ; ð19Þ

ui ¼ wi ¼ 0 8 i 2 EðxÞ; ð20Þ
X

i2EðxÞ
ri ¼ p �#LðxÞ; ð21Þ

and

#½E1ðxÞ [ EþðxÞ� � p �#LðxÞ: ð22Þ

Proof. Suppose that z > f ðxÞ and #LðxÞ þ#EðxÞ > p. Then, by feasibility,

ui ¼ z� fiðxÞ þ wi > 0 8 i 2 EðxÞ [ LðxÞ: ð23Þ
Since uið1� riÞ ¼ 0, (23) implies that

ri ¼ 1 8 i 2 EðxÞ [ LðxÞ:
This contradicts the fact that

Pm
i¼1 ri ¼ p. Therefore, (12) is proved.

The fact that f ðxÞ � z is a direct consequence of Lemma 3.1.
Assume that z > mini2GðxÞ fiðxÞ. Then, z > f ðxÞ. So, by (12),

#½LðxÞ [#EðxÞ� ¼ p:

372 R. Andreani et al.



Then,

ui ¼ z� fiðxÞ þ wi > 0 ð24Þ
for all i 2 EðxÞ [ LðxÞ and for at least an additional index belonging to GðxÞ.
Therefore, the inequality (24) holds for at least p þ 1 indices. As in the proof
of (12), this contradicts the fact that

Pm
i¼1 ri ¼ p. Therefore, (13) is proved.

If i 2 LðxÞ we have that fiðxÞ < f ðxÞ � z. So, since wi � 0,

ui ¼ wi þ z� fiðxÞ > 0:

Thus, (14) is proved. Therefore, since uið1� riÞ ¼ 0, we deduce (15) and, since
riwi ¼ 0, we obtain (16).

If i 2 GðxÞ and z ¼ f ðxÞ, we have that fiðxÞ > f ðxÞ ¼ z. So, since ui � 0, we
obtain (17) and, since riwi ¼ 0, (18) is deduced. Then, since ð1� riÞui ¼ 0, we
get (19).

If i 2 EðxÞ, we have that fiðxÞ ¼ f ðxÞ ¼ z, therefore, since
ui ¼ wi þ z� fiðxÞ, we get

ui ¼ wi 8 i 2 EðxÞ; ð25Þ
But

0 ¼ wiri ¼ ð1� riÞui;

then, by (25),

0 ¼ wiri ¼ wið1� riÞ 8 i 2 EðxÞ:
This implies (20).

By (15) and (18), since
Pm

i¼1 ri ¼ p, we obtain (21). So, (22) also holds. h
In Lemma 3.2 we proved that, if ðx; r; u;w; zÞ is a feasible point of the

nonlinear-programming reformulation then z � f ðxÞ. The possibility z > f ðxÞ
is not excluded at feasible points of (8). However, in the following lemma we
prove that, at local minimizers of (8), the identity z ¼ f ðxÞ necessarily holds.

Lemma 3.3. Assume that ðx�; r�; u�;w�; z�Þ is a local minimizer of (8). Then,
z� ¼ f ðx�Þ.

Proof. By (13), since ðx�; r�; u�;w�; z�Þ is feasible, we have that

f ðx�Þ � z� � min
i2Gðx�Þ

fiðx�Þ:

Suppose that z� > f ðx�Þ. By (12), #½Eðx�Þ [ Lðx�Þ� ¼ p. Then, by the feasi-
bility of ðx�; r�; u�;w�; z�Þ, we have that:

½r��i ¼
1 i 2 Eðx�Þ [ Lðx�Þ
0 i 2 Gðx�Þ;

�

½u��i ¼
z� � fiðx�Þ i 2 Eðx�Þ [ Lðx�Þ

0 i 2 Gðx�Þ

�

and

½w��i ¼
0 i 2 Eðx�Þ [ Lðx�Þ

fiðx�Þ � z� i 2 Gðx�Þ:

�
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Define d ¼ z� � f ðx�Þ > 0 and, for all k 2 N,

zk ¼ z� �
d

2ðk þ 1Þ < z�;

½uk�i ¼
½u��i � ðz� � zkÞ i 2 Eðx�Þ [ Lðx�Þ

0 i 2 Gðx�Þ;

�

rk ¼ r�

and

½wk�i ¼
½w��i þ ðz� � zkÞ i 2 Gðx�Þ

0 i 2 Eðx�Þ [ Lðx�Þ:

�

Let us show that fðx�; rk; uk;wk; zkÞgk2N is feasible. Clearly,

Xm

i¼1
½rk�i½wk�i ¼ 0;

Xm

i¼1
ð1� ½rk�iÞ½uk�i ¼ 0;

Xm

i¼1
½rk�i ¼ p; 0 � ½rk�i � e:

Moreover:

(i) If i 2 Lðx�Þ [ Eðx�Þ,
½uk�i ¼ ½u��i � ðz� � zkÞ ¼ ½u��i �

d
2ðk þ 1Þ � d� d

2ðk þ 1Þ > 0

and

½uk�i � zk þ fiðx�Þ � ½wk�i ¼ ½u��i � ðz� � zkÞ � zk þ fiðx�Þ ¼

¼ ½u��i � z� þ fiðx�Þ ¼ 0:

(ii) If i 2 Gðx�Þ,
½wk�i ¼ ½w��i þ ðz� � zkÞ > 0

and

½uk�i � zk þ fiðx�Þ � ½wk�i ¼ �zk þ fiðx�Þ � ð½w��i þ ðz� � zkÞÞ ¼

¼ �z� þ fiðx�Þ � ½w��i ¼ 0:

Then, the sequence fðx�; rk; uk;wk; zkÞgk2N is feasible and converges to
ðx�; r�; u�;w�; z�Þ. However, zk < z� for all k, then ðx�; r�; u�;w�; z�Þ is not a
local minimizer. h

The following theorem states the relations between local minimizers of the
OVO problem and its reformulation. Essentially, a local minimizer of (1)
induces a natural local minimizer of (8). The reciprocal property needs and
additional hypothesis which, in turn, will be shown to be unavoidable.

Theorem 3.2. Assume that x 2 X is a local minimizer of (1) and that (x, r, u, w,
f(x)) is a feasible point of (8). Then, (x, r, u, w, f(x)) is a local minimizer of
(8). Reciprocally, if, for some z 2 R, we have that (x, r, u, w, z) is a local
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minimizer of (8) whenever (x, r, u, w, z) is feasible, then z = f(x) and x is a
local minimizer of (1).

Proof. Assume that x 2 X is a local minimizer of (1) and that ðx; r; u;w; f ðxÞÞ
is a feasible point of (8). Suppose, by contradiction, that ðx; r; u;w; f ðxÞÞ is not
a local minimizer of (8). Therefore, there exists a sequence of feasible points
fðxk; rk; uk;wk; zkÞg such that

lim
k!1
ðxk; rk; uk;wk; zkÞ ¼ ðx; r; u;w; f ðxÞÞ

and

zk < f ðxÞ 8 k 2 N: ð26Þ
But, by Lemma 3.1, f ðxkÞ is a minimum value of z among the points ðr; u;w; zÞ
that satisfyPm

i¼1 riwi ¼ 0Pm
i¼1ð1� riÞui ¼ 0Pm
i¼1 ri ¼ p

ui � zþ fiðxkÞ � wi ¼ 0; i ¼ 1; . . . ;m
u � 0; 0 � r � e;w � 0:

8>>>><
>>>>:

Moreover, by the feasibility of ðxk; rk; uk;wk; zkÞ,Pm
i¼1 rk

i wk
i ¼ 0Pm

i¼1ð1� rk
i Þuk

i ¼ 0Pm
i¼1 rk

i ¼ p
uk

i � zk þ fiðxkÞ � wk
i ¼ 0; i ¼ 1; . . . ;m

uk � 0; 0 � rk � e;wk � 0:

8>>>><
>>>>:

Therefore f ðxkÞ � zk. So, by (26),

f ðxkÞ < f ðxÞ 8 k 2 N:

This implies that x is not a local minimizer of (1).
Conversely, let us assume that for some z 2 R, ðx; r; u;w; zÞ is a local

minimizer of (8) whenever ðx; r; u;w; zÞ is feasible. By Lemma 3.3, this implies
that z ¼ f ðxÞ. Assume, by contradiction, that x is not a local minimizer of (1).
Then, there exists a sequence fxkg � X such that

lim
k!1

xk ¼ x

and

f ðxkÞ < f ðxÞ: ð27Þ
For all k 2 N let us define rk; uk;wk 2 Rm, zk 2 R by:

zk ¼ f ðxkÞ;

rk
ijðxkÞ ¼ 1; j ¼ 1; . . . ; p;

rk
ijðxkÞ ¼ 0; j ¼ p þ 1; . . . ;m;
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uk
ijðxkÞ ¼ f ðxkÞ � fijðxkÞðxkÞ; j ¼ 1; . . . ; p;

uk
ijðxkÞ ¼ 0; j ¼ p þ 1; . . . ;m;

wk
ijðxkÞ ¼ 0; j ¼ 1; . . . ; p;

wk
ijðxkÞ ¼ fijðxkÞðxkÞ � f ðxkÞ; j ¼ p þ 1; . . . ;m:

Clearly, ðxk; rk; uk;wk; zkÞ is a feasible point of (8). Moreover, zk < f ðxÞ for all
k,

lim
k!1

xk ¼ x and lim
k!1

zk ¼ f ðxÞ: ð28Þ

Since the set of permutations of f1; . . . ;mg is finite, there exists one of them
(say ði1; . . . ; imÞ) such that

i1 ¼ i1ðxkÞ; . . . ; im ¼ imðxkÞ
infinitely many times. Taking the corresponding subsequence of the original
fxkg, we have that:

zk ¼ f ðxkÞ;

rk
ij ¼ 1; j ¼ 1; . . . ; p;

rk
ij ¼ 0; j ¼ p þ 1; . . . ;m;

uk
ij ¼ f ðxkÞ � fijðxkÞ; j ¼ 1; . . . ; p;

uk
ij ¼ 0; j ¼ p þ 1; . . . ;m;

wk
ij ¼ 0; j ¼ 1; . . . ; p;

wk
ij ¼ fijðxkÞ � f ðxkÞ; j ¼ p þ 1; . . . ;m:

for all the indices of the new sequence. By the continuity of the functions fi,
we can take limits in the above equations, and we get that

lim
k!1
ðxk; rk; uk;wk; zkÞ ¼ ðx; r; u;w; zÞ;

where

z ¼ f ðxÞ;

rij ¼ 1; j ¼ 1; . . . ; p;

rij ¼ 0; j ¼ p þ 1; . . . ;m;

uij ¼ f ðxÞ � fijðxÞ; j ¼ 1; . . . ; p;

uij ¼ 0; j ¼ p þ 1; . . . ;m;
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wij ¼ 0; j ¼ 1; . . . ; p;

wij ¼ fijðxÞ � f ðxÞ; j ¼ p þ 1; . . . ;m:

By continuity, ðx; r; u;w; zÞ is a feasible point of (8) and, by (27) and (28) it is
not a local minimizer of (8). This completes the proof. h

Remark. In the previous theorem we proved the identity between local
minimizers of (1) and (8) in the following sense. On one hand, if x is a local
minimizer of (1) then ðx; r; u;w; f ðxÞÞ is a local minimizer of (8) for all feasible
choices of r; u;w. On the other hand, if ðx; r; u;w; f ðxÞÞ is a local minimizer of
(8) for all feasible choices of r; u;w, then x is a local minimizer of the OVO
problem. A natural question remains: if x is not a local minimizer of (1), is it
possible that, for a particular choice of r; u;w, the point ðx; r; u;w; f ðxÞÞ is a
local minimizer of (8)? The following example shows that, in fact, this pos-
sibility exists. So, the ‘‘for all’’ assumption in the converse proof of Theorem
3.2 cannot be eliminated.

Let us consider the OVO problem defined by n ¼ 1, p ¼ 2 and

f1ðxÞ ¼ x; f2ðxÞ ¼ 2x; f3ðxÞ ¼ 3x 8 x 2 R:

In this case, the reformulation (8) is:

Minimize z

s:t:

ðaÞ r1w1 þ r2w2 þ r3w3 ¼ 0
ðbÞ ð1� r1Þu1 þ ð1� r2Þu2 þ ð1� r3Þu3 ¼ 0
ðcÞ r1 þ r2 þ r3 ¼ 2
ðdÞ u1 � zþ x� w1 ¼ 0
ðeÞ u2 � zþ 2x� w2 ¼ 0
ðf Þ u3 � zþ 3x� w3 ¼ 0
ðgÞ ui � 0; 0 � ri � e wi � 0; i ¼ 1; 2; 3

ð29Þ

Clearly, �x ¼ 0 is not a local minimizer of the OVO problem. Moreover, it is
not a first-order stationary point.

However, defining

�y ¼ ð�x; �r; �u; �w;�zÞ ¼ ð0; ð1; 0; 1Þ; ð0; 0; 0Þ; ð0; 0; 0Þ; 0Þ;
it is easy to verify that �y is a local minimizer of (29).

4. KKT points of the reformulation

In this section we assume that X ¼ Rn. The reformulation (8) is a smooth
minimization problem with nonlinear (equilibrium-like) constraints. It in-
cludes the complementarity constraints

riwi ¼ 0; ri � 0;wi � 0

and

ð1� riÞui ¼ 0; ri � 1; ui � 0:
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Complementarity constraints are responsible for the fact that no feasible
point satisfies the Mangasarian-Fromovitz constraint qualification [17]. See
[4, 22]. Mathematical programming problems with equilibrium constraints
share this difficulty. See [3, 9, 16]. Therefore, minimizers of the problem might
not satisfy the KKT optimality conditions of nonlinear programming and this
might represent a difficulty for nonlinear programming algorithms. The main
result of this section is that, at least when X ¼ Rn, this possible drawback
does not exist. We will prove that local minimizers of (1) generate KKT
points of (8) regardless of the lack of regularity of the points.

Observe that, given x 2 X, it is easy to define r; u;w such that
ðx�; r; u;w; f ðx�ÞÞ is a feasible point of (8). In fact, we may set

ri ¼
1 i 2 LðxÞ

p�#LðxÞ
#EðxÞ i 2 EðxÞ
0 i 2 GðxÞ;

8<
:

ui ¼
f ðxÞ � fiðxÞ i 2 LðxÞ

0 i 2 EðxÞ [ GðxÞ;

�

wi ¼
fiðxÞ � f ðxÞ i 2 GðxÞ

0 i 2 LðxÞ [ EðxÞ:

�

Therefore, the only essential assumption of Theorem 5.1 below is that x� is a
first-order stationary point of OVO.

Theorem 4.1. Assume that X ¼ Rn and let x� 2 X be a first-order stationary
point of the OVO problem. Let r; u;w 2 Rm such that ðx�; r; u;w; z�Þ is a feasible
point of (8) with z� ¼ f ðx�Þ. Then, ðx�; r; u;w; z�Þ is a KKT point of (8).

Proof. We must prove that there exist multipliers c; b; q 2 R, k; h; p;
l1; l2 2 Rm such that

Xm

i¼1
ki ¼ 1; ð30Þ

and, for all i ¼ 1; . . . ;m,

Xm

i¼1
kirfiðx�Þ ¼ 0; ð31Þ

wic� uibþ q� ½l1�i þ ½l2�i ¼ 0; ð32Þ

ð1� riÞbþ ki � hi ¼ 0; ð33Þ

ric� ki � pi ¼ 0; ð34Þ

uihi ¼ wipi ¼ ri½l1�i ¼ ð1� riÞ½l2�i ¼ 0; ð35Þ
with

h � 0; p � 0; l1 � 0; l2 � 0: ð36Þ
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Let us define Lðx�Þ;Gðx�Þ;Eðx�Þ;E1ðx�Þ;Eþðx�Þ;E0ðx�Þ by (2)–(3) and (9)–(11).
By Lemma 3.2, the feasibility of ðx�; r; u;w; z�Þ and the fact that z� ¼ f ðx�Þ,

the possible values of ri; ui;wi for indices i in the disjoint sets Lðx�Þ, E1ðx�Þ,
E0ðx�Þ, Eþðx�Þ are the ones given in Table 1.

Since x� is a first-order stationary point and, by (22),
#½E1ðx�Þ [ Eþðx�Þ� � p �#Lðx�Þ, it turns out that the set of d 2 Rn such that

hrfiðx�Þ; di < 0 8i 2 E1ðx�Þ [ Eþðx�Þ
is empty. Therefore, d ¼ 0 is a solution of the linear-programming problem

Minimize y

s. t. hrfiðx�Þ; di � y 8 i 2 E1ðx�Þ [ Eþðx�Þ:
Writing the KKT conditions for this problem, we obtain that, for all
i 2 E1ðx�Þ [ Eþðx�Þ there exists

k�i � 0 ð37Þ
such thatX

i2Eþðx�Þ[E1ðx�Þ
k�i ¼ 1;

X
i2Eþðx�Þ[E1ðx�Þ

k�irfiðx�Þ ¼ 0 ð38Þ

Let us define the multipliers

ki ¼
0 if i 2 Lðx�Þ [ Gðx�Þ [ E0ðx�Þ
k�i if i 2 Eþðx�Þ [ E1ðx�Þ;

�
ð39Þ

c ¼ max
i2Eþðx�Þ[E1ðx�Þ

ki

ri
; ð40Þ

b ¼ 0; ð41Þ

q ¼ 0: ð42Þ
Let us define ½l1�i; ½l2�i; hi and pi by Table 2.

Observe that, by (37) and (39) we have that p � 0 and h � 0. By (40) we
have that l1 � 0, then (36) is satisfied.

Now, we show that with these definitions of the multipliers, the equations
(30)–(35) are satisfied. Clearly, (30) and (31) follow from (37), (38) and (39).

By Tables 1 and 2 it is straightforward to verify that the complementarity
conditions (35) and are verified.

Let us analyze the remaining equations.

(a) Equation (32):
	 i 2 Lðx�Þ

Table 1. Possible values of ri, ui ,wi

L (x*) E1 (x
*) E+ (x*) E0 (x

*) G (x*)

ri 1 1 2 (0,1) 0 0
ui >0 0 0 0 0
wi 0 0 0 0 >0
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wic� uibþ q� ½l1�i þ ½l2�i ¼ 0c� uið0Þ þ 0� 0þ 0 ¼ 0

	 i 2 Eðx�Þ
wic� uibþ q� ½l1�i þ ½l2�i ¼ ð0Þc� 0þ 0� 0þ 0 ¼ 0

	 i 2 Gðx�Þ
wic� uibþ q� ½l1�i þ ½l2�i ¼ wic� 0þ 0� wicþ 0 ¼ 0

(b) Equation (33):

	 i 2 Lðx�Þ
ð1� riÞbþ ki � hi ¼ ð0Þð0Þ þ ð0Þ � ð0Þ ¼ 0

	 i 2 Eþðx�Þ [ E1ðx�Þ
ð1� riÞbþ ki � hi ¼ ð1� riÞð0Þ þ ki � ki ¼ 0

	 i 2 E0ðx�Þ
ð1� riÞbþ ki � hi ¼ ð1� 0Þð0Þ þ 0� 0 ¼ 0

	 i 2 Gðx�Þ
ð1� riÞbþ ki � hi ¼ ð1� 0Þð0Þ þ 0� 0 ¼ 0

(c) Equation (34):

	 i 2 Lðx�Þ
ric� ki � pi ¼ c� 0� c ¼ 0

	 i 2 Eþðx�Þ [ E1ðx�Þ
ric� ki � pi ¼ ric� ki � ðric� kiÞ ¼ 0

	 i 2 E0ðx�Þ [ Gðx�Þ
ric� ki � pi ¼ ð0Þc� 0� 0 ¼ 0

Therefore, the theorem is proved. h

From the statement of Theorem 4.1, a natural question arises about the
existence of KKT points of (8) (with X ¼ Rn) such that z� > f ðx�Þ. In the
following, we prove that those points do not exist. So, all the KKT points of
(8) satisfy z� ¼ f ðx�Þ.

Theorem 4.2. Assume that X ¼ Rn and ðx�; r; u;w; z�Þ is a KKT point of (8).
Then z� ¼ f ðx�Þ.

Table 2. Definition of multipliers

i 2L (x*) i 2E1 (x
*) I 2E+ (x*) i 2E0 (x

*) i 2G (x*)

[l1�i ¼ 0 0 0 0 wi�
[l2�i ¼ 0 0 0 0 0
hi ¼ 0 �i �i 0 0
pi ¼ � ri� � �i � � �i 0 0
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Proof. We have already proved that the feasibility of ðx�; r; u;w; z�Þ implies
that

f ðx�Þ � z� � min
i2Gðx�Þ

fiðx�Þ:

Assume that z� > f ðx�Þ. Then
z� � fiðx�Þ > 0 8 i 2 Lðx�Þ [ Eðx�Þ:

But, by feasibility,

z� � fiðx�Þ ¼ ui � wi;

then

ui > wi � 0 8 i 2 Lðx�Þ [ Eðx�Þ: ð43Þ
So, by the complementarity condition ð1� riÞui ¼ 0,

ri ¼ 1 8 i 2 Lðx�Þ [ Eðx�Þ ð44Þ
and, by the complementarity condition riwi ¼ 0,

wi ¼ 0 8 i 2 Lðx�Þ [ Eðx�Þ:
Then, by (33),

ki ¼ hi 8 i 2 Lðx�Þ [ Eðx�Þ:
But, by (35) and (43),

hi ¼ 0 8 i 2 Lðx�Þ [ Eðx�Þ;
therefore,

ki ¼ 0 8 i 2 Lðx�Þ [ Eðx�Þ: ð45Þ
Now, since #½Lðx�Þ [ Eðx�Þ� � p, by (44) and

Pm
i¼1 ri ¼ p, we have that

ri ¼ 0 8 i 2 Gðx�Þ:
Then, by (34),

ki ¼ �pi � 0 8 i 2 Gðx�Þ: ð46Þ
So, by (45) and (46),

Xm

i¼1
ki � 0:

This contradicts (30). Therefore, ðx�; r; u;w; z�Þ is not a KKT point. h

Remark. The inspection of the proof of Theorem 5.1 shows that we have
proved something stronger than the KKT thesis. In fact, we proved that,
when x� is a first-order stationary point of the OVO problem and
ðx�; r; u;w; f ðx�ÞÞ is feasible for (8), there exist multipliers c 2 R, k; p 2 Rm

such that

Xm

i¼1
ki ¼ 1; ð47Þ
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kþ p ¼ cr; ð48Þ

Xm

i¼1
kirfiðx�Þ ¼ 0 ð49Þ

and, for all i ¼ 1; . . . ;m,

uiki ¼ wipi ¼ 0; ð50Þ
with

k � 0; p � 0; c � 0: ð51Þ
It is easy to verify, using Tables 1 and 2, that the conditions (47)–(51), to-
gether with the feasibility conditions, imply the KKT conditions (30)–(36).

Final remarks

The reliability and efficiency of many nonlinear-programming algorithms is
closely related to the fulfillment of KKT conditions at the solution.
Sequential quadratic programming methods, for example, can be thought as
modifications of the Newton method applied to the KKT nonlinear system.
See [6, 8, 11]. In feasible and semifeasible nonlinear-programming methods [1,
15, 19, 18, 20, 23] efficiency is linked to the possibility of decreasing a good
approximation of the Lagrangian function on a linear approximation of the
feasible region. Of course, a good approximation of the Lagrangian is only
possible if Lagrange multipliers at the solution exist. Primal-dual interior
point methods (see, for example, [5]) are also based on simultaneous
approximation of the primal and the dual (Lagrangian) solution of the
problem. (It is worthwhile to mention that the application of nonlinear-
programming algorithms to problems whose feasible points do not satisfy
regularity conditions has been considered in recent papers [3, 7, 9, 10].)

Therefore, the fact that minimizers are KKT points may be invoked as a
strong argument to try ordinary optimization methods for solving the OVO
problem. Our preliminary experience (with an augmented Lagrangian method
[14]) has been encouraging in the sense that we realised that the main diffi-
culty is associated to the existence of many local minimizers of the problem.
No visible stability problems appeared in spite of the lack of fulfillment of the
Mangasarian-Fromovitz [17] constraint qualification.

In [2] we introduced a primal method, without additional variables, that
deal directly with the nonsmoothness of (1). Primal methods have the
advantage of dealing with a smaller number of variables, but their conver-
gence is guaranteed to points that satisfy a weaker optimality condition than
the one considered in this paper. On the other hand, primal methods as the
one introduced in [2] are complementary to methods based in the approach of
the present paper in the following sense: If a weak stationary point found by
the primal method is not a KKT point of the nonlinear programming
problem, a suitable nonlinear programming algorithm can be applied starting
from this point until a feasible point with a smaller objective function value is
found. Since the functional values obtained by the primal method are strictly
decreasing, this guarantees that the spurious weak stationary point will not be
found again.
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The development of specific algorithms for (1) and (8) is a matter of future
research. The relationship between the general OVO problem and the mini-
max problem must be exploited. As mentioned before, the minimax problem
corresponds to OVO with p ¼ m. Since many effective algorithms for mini-
max exist (see, for example, [21]) suitable generalizations of these algorithms
are likely to be effective for solving the OVO problem.

The applicability of the OVO problem to important practical problems is,
of course, linked to the effectiveness of general or specific methods for its
solution. The difficulties of minimizing the Value-at-Risk (one of the most
stimulating practical problems related with OVO) are mentioned in many
papers that can be found in the web site www.gloriamundi.org.
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