
Abstract. This paper deals with continuous-time zero-sum two-person Mar-
kov games with denumerable state space, general (Borel) action spaces and
possibly unbounded transition and reward/cost rates. We analyze the bias
optimality and the weakly overtaking optimality criteria. An example shows
that, in contrast to control (or one-player) problems, these criteria are not
equivalent for games.
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1. Introduction

We are concerned with continuous-time two-person zero-sum stochastic
games with denumerable state space. Most of the papers dealing with Markov
games consider discrete-time models (e.g. [9, 10, 11]) but there are just a few
references that analyze continuous-time games; see e.g. [6, 7, 17]. In [17], a
general state space is considered but restrictive boundedness assumptions are
made. On the contrary, in the papers by Guo and Hernández-Lerma [6, 7], for
a denumerable state space, both the reward/cost rates and the transition rates
are allowed to be unbounded. In this paper, we follow this approach.
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One of the most widely used optimality criteria is average optimality but,
as it is well known, this criterion is very underselective and, thus, more
restrictive optimality criteria have been proposed in the stochastic control
literature as, for instance, bias optimality [8, 12, 14], overtaking optimality [1,
4, 8, 12, 15, 18] and sensitive discount optimality [13, 14], among others. The
bias and overtaking optimality criteria are concerned with the asymptotic
optimization of the total expected reward (or cost) on finite-horizon prob-
lems, as the time horizon goes to infinity. The bias optimality criterion, for
stochastic games, is implicitly introduced in [10, 11]. Overtaking optimality
for stochastic games is analyzed in [3, 4, 16] and also by Nowak in [10, 11].
Sensitive discount optimality for stochastic games is studied in [10].

In the previous papers dealing with stochastic games, the obtained results
were more or less direct generalizations of the corresponding results in sto-
chastic control. For instance, the existence of optimal strategies or the exis-
tence of the value of the game were obtained under quite similar assumptions;
see e.g. [7, 9]. In this paper and for the first time (as far as we know), we
exhibit an important discrepancy between control and game models. More
precisely, in stochastic control, bias and weak overtaking optimality are
essentially equivalent (see [8, Section 10.3] and [12]) whereas, under similar
hypotheses on a stochastic game model, we prove that there exist bias optimal
strategies though there might not exist weakly overtaking optimal strategies.

The rest of the paper is organized as follows. In Section 2 we define the
game model and introduce our assumptions. In Section 3 we recall some
results on the average optimality equations introduced in [7] and we make a
more detailed analysis of the solutions to those equations. We define the bias
optimality criterion in Section 4 and, by introducing the so-called bias opti-
mality equations, we prove the existence of bias optimal strategies. Section 5
is devoted to the weak overtaking optimality criterion: the relations existing
between this criterion and bias optimality are explored, and we provide a
counterexample showing that weakly overtaking equilibria might not exist.
Finally, in Section 6, we conclude with some remarks in which we point out
that the sensitive discount optimality criteria, which have been extensively
studied in control models, might be of limited interest in stochastic games.

2. Preliminaries

In this section we define the game model we will deal with and introduce our
assumptions.

The game model. The continuous-time two-person zero-sum game we are
concerned with is given by

� The state space S, assumed to be a denumerable set. We suppose without
loss of generality that S ¼ f0; 1; . . .g.

� The action sets A and B for players 1 and 2, respectively, which are sup-
posed to be Borel spaces. For each i 2 S, the (nonempty) Borel set AðiÞ � A
(resp. BðiÞ � B) stands for the set of admissible control actions for player 1
(resp. player 2) in state i. Define

K :¼ fði; a; bÞ : i 2 S; a 2 AðiÞ; b 2 BðiÞg:

438 T. Prieto-Rumeau, O. Hernández-Lerma



� The system’s transition rates qijða; bÞ, where j 2 S and ði; a; bÞ 2 K. They
verify that qijða; bÞ � 0 whenever j 6¼ i, and they are assumed to be con-
servative, i.e.
X

j2S

qijða; bÞ ¼ 0 for every ði; a; bÞ 2 K;

and stable, which means that

qðiÞ :¼ sup
ða;bÞ2AðiÞ�BðiÞ

f�qiiða; bÞg

is finite for every i 2 S. Finally, given i and j in S, we suppose that
ða; bÞ7!qijða; bÞ is measurable on AðiÞ � BðiÞ.

� The reward/cost rate function r : K ! R, assumed to be measurable on
AðiÞ � BðiÞ for each i 2 S fixed. For player 1, r represents the reward rate
whereas r is the cost rate for player 2.

The so-defined game model is written

M :¼ fS; ðAðiÞ;BðiÞ; i 2 SÞ; ðqijða; bÞÞ; ðrði; a; bÞÞg:

The game is played as follows. At each time t � 0 both players observe the
state of the system, say i 2 S, and they independently choose control actions
at 2 AðiÞ and bt 2 BðiÞ. Then their reward/cost rate at time t is rði; at; btÞ and,
also, the system moves to a state j 6¼ i with a probability rate qijðat; btÞ.

The goal of player 1 (resp. player 2) is to maximize (resp. minimize) his/her
reward (resp. cost) over the time horizon ½0;1Þ with respect to some suitably
defined optimality criterion. We shall deal with three different optimality
criteria: average optimality, bias optimality and weak overtaking optimality.

Strategies. In this paper we will restrict ourselves to stationary strategies. The
reasons for this are, first of all, that our assumptions will ensure the existence
of optimal stationary strategies for the average optimality criterion (see [7]).
Second, the bias optimality criterion is usually defined (in stochastic control
problems) only on the class of stationary strategies (see e.g. [12]) and, finally,
one cannot expect to find an overtaking optimal policy in the class of non-
stationary policies; see [2] and the comment after Theorem 5 in [11].

For each state i 2 S, let PðAðiÞÞ be the space of probability measures on
AðiÞ endowed with the topology of weak convergence. The space PðBðiÞÞ is
defined similarly. We will also use the notation AðiÞ :¼ PðAðiÞÞ and
BðiÞ :¼ PðBðiÞÞ for i 2 S.

A randomized stationary strategy p1 for player 1 is a family of probability
measures p1ð�jiÞ in PðAðiÞÞ for each i 2 S. The set of stationary strategies for
player 1 is denoted P1. When using policy p1 2 P1, player 1 randomly
chooses a control action which depends on the state of the system but not on
the time t. We define similarly the stationary strategies for player 2, writ-
ten p2 2 P2.

For a general definition of admissible nonstationary strategies the inter-
ested reader is referred to [7].

When the players use strategies ðp1; p2Þ 2 P1 �P2 the (stationary) tran-
sition rates of the system are
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qijðp1; p2Þ :¼
Z

BðiÞ

Z

AðiÞ

qijða; bÞp1ðdajiÞp2ðdbjiÞ for i; j 2 S;

and the reward/cost rate is

rði; p1; p2Þ :¼
Z

BðiÞ

Z

AðiÞ

rði; a; bÞp1ðdajiÞp2ðdbjiÞ for i 2 S:

We also introduce the notation

qijð/;wÞ :¼
Z

BðiÞ

Z

AðiÞ

qijða; bÞ/ðdaÞwðdbÞ ð2:1Þ

and

rði;/;wÞ :¼
Z

BðiÞ

Z

AðiÞ

rði; a; bÞ/ðdaÞwðdbÞ ð2:2Þ

for i; j 2 S, / 2 AðiÞ and w 2 BðiÞ. Our assumptions below ensure that the
above integrals are well defined.

Assumptions. Now we state the assumptions we make on the game model M.
They are supposed to hold throughout the following.

Assumption A. There exist a sequence fSmgm�1 of subsets of S, a nonde-
creasing function w : S ! ½1;1Þ and constants c > 0, d � 0 and M > 0 such
that

(i) Sm " S and supi2Sm
qðiÞ <1;

(ii) limm!1 infj=2Sm
fwðjÞg ¼ þ1;

(iii) for every ði; a; bÞ 2 K,
P

j2S qijða; bÞwðjÞ � �cwðiÞ þ d1fi¼0g,
where 1 denotes the indicator function;

(iv) jrði; a; bÞj � MwðiÞ for every ði; a; bÞ 2 K.

Assumption A(i) and A(ii) are not necessary when the transition rates are
bounded, that is, when supi2S qðiÞ is finite. Assumption A guarantees, for each
ðp1; p2Þ 2 P1 �P2, the existence of a regular Q-process with conservative
transition rate matrix

Qðp1; p2Þ :¼ fqijðp1; p2Þgi;j2S :

We denote by fxðt; p1; p2Þgt�0 the homogeneous Markov process defined by
Qðp1; p2Þ and, for each initial state i 2 S, let Ep1;p2

i be the corresponding
expectation operator. For a detailed construction of the Markov process
fxðt; p1; p2Þgt�0 we refer to [7].

Next we state the usual compactness-continuity conditions.

Assumption B.

(i) For each i 2 S, the action sets AðiÞ and BðiÞ are compact.
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(ii) Given i; j 2 S, the functions

ða; bÞ7!qijða; bÞ; ða; bÞ7!
X

j2S

qijða; bÞwðjÞ and ða; bÞ7!rði; a; bÞ

are continuous on AðiÞ � BðiÞ.
(iii) There exist w0 : S ! ½0;1Þ and constants c0 > 0, d 0 � 0 and M 0 > 0 for

which

qðiÞwðiÞ � M 0w0ðiÞ and
X

j2S

qijða; bÞw0ðjÞ � c0w0ðiÞ þ d 0

for all ði; a; bÞ 2 K.

Finally, we must impose a condition ensuring that the Markov processes
fxðt; p1; p2Þgt�0, for ðp1; p2Þ 2 P1 �P2, are irreducible and that they verify
the uniform exponential ergodic property. To this end, we propose the fol-
lowing sufficient monotonicity condition that was introduced in [5].

Assumption C.

(i) For each ðai; biÞ 2 AðiÞ � BðiÞ and ðaiþ1; biþ1Þ 2 Aðiþ 1Þ � Bðiþ 1Þ,
X

j�k

qijðai; biÞ �
X

j�k

qiþ1;jðaiþ1; biþ1Þ

for every i; k 2 S, provided that k 6¼ iþ 1.
(ii) Given two states i 6¼ j, either qijða; bÞ > 0 for every ða; bÞ 2 AðiÞ � BðiÞ,

or there exist l states i1; i2; . . . ; il, with i 6¼ i1 and im 6¼ imþ1, for
m ¼ 1; . . . ; l� 1, such that

qii1ða; bÞqi1i2ðai1 ; bi1Þ � � � qiljðail ; bilÞ > 0

for every ða; bÞ 2 AðiÞ � BðiÞ and ðaim ; bimÞ 2 AðimÞ � BðimÞ, for
m ¼ 1; . . . ; l.

(iii) For j > i > 0, either qijða; bÞ > 0 for all ða; bÞ 2 AðiÞ � BðiÞ or there exist
n states j1; . . . ; jn such that, defining j0 :¼ i, we have jm�1 6¼ jm and
jm 6¼ 0 for m ¼ 1; . . . ; n, and jn � j. Moreover, for any
ða; bÞ 2 AðiÞ � BðiÞ and ðajm ; bjmÞ 2 AðjmÞ � BðjmÞ, for m ¼ 1; . . . ; n� 1,

qij1ða; bÞqj1j2ðaj1 ; bj1Þ � � � qjn�1jnðajn�1 ; bjn�1Þ > 0:

This assumption ensures that, given ðp1;p2Þ 2 P1 �P2, the Markov
process fxðt; p1; p2Þgt�0 is irreducible and thus its unique invariant probability
measure, denoted lp1;p2 , verifies

lp1;p2fig > 0 for every i 2 S. ð2:3Þ
Assumption C also implies the uniform exponential ergodic property (4.1)
below; see [5].

To conclude this section we introduce some more notation. Let w be as in
Assumption A and denote by BwðSÞ the Banach space of real-valued func-
tions u on S with finite w-norm defined as

jjujjw :¼ sup
i2S
fjuðiÞj=wðiÞg:
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Our assumptions guarantee that, for every pair of strategies
ðp1; p2Þ 2 P1 �P2,

P
j2S wðjÞlp1;p2fjg <1 and thus, for u 2 BwðSÞ,

lp1;p2ðuÞ :¼
Z

S

u dlp1;p2

is finite.

3. Average optimality criterion

Given T > 0 and a pair of stationary strategies ðp1; p2Þ 2 P1 �P2 define the
total expected payoff of ðp1; p2Þ over the time interval ½0; T � when the initial
state is i 2 S as

JT ði; p1; p2Þ :¼ Ep1;p2

i ½
ZT

0

rðxðt; p1; p2Þ; p1; p2Þdt�: ð3:1Þ

By Lemma 7.1(a) in [7], the expectation and the integral in (3.1) are inter-
changeable. The average payoff of the pair ðp1; p2Þ is then defined as

Jði; p1; p2Þ :¼ lim sup
T!1

JT ði; p1; p2Þ
T

for i 2 S: ð3:2Þ

By standard arguments it follows that Jði; p1; p2Þ ¼ lp1;p2ðrð�; p1; p2ÞÞ, that
does not depend on the initial state i. Therefore, we will simply write (3.2) as
Jðp1; p2Þ.

Observe that, when dealing with the average payoff criterion, the situation
is greatly simplified by just considering the family of stationary policies and,
as shown in [7], we can indeed restrict our attention to stationary strategies
without loss of generality.

We define the value of the game (for the average reward/cost criterion) as

V 	 :¼ sup
p12P1

inf
p22P2

Jðp1; p2Þ ¼ inf
p22P2

sup
p12P1

Jðp1; p2Þ;

which is well defined; see [7, Theorem 5.1(c)].

Definition 3.1. Consider the stochastic game M. We say that a pair of sta-
tionary strategies ðp	1; p	2Þ 2 P1 �P2 is average optimal if

Jðp1;p	2Þ � Jðp	1;p	2Þ � Jðp	1;p2Þ for every ðp1;p2Þ 2P1�P2: ð3:3Þ
The set of average optimal strategies is denoted P	1 �P	2.

It is worth noting that if ðp	1; p	2Þ is average optimal then
Jðp	1; p	2Þ ¼ V 	, though the converse is not necessarily true. Observe also
that the notation P	1 �P	2 suggests that the set of average optimal strategies
is a rectangle in P1 �P2. In fact, this property turns out to be true as a
consequence of Theorem 3.3(ii) below. (See Lemma 4.6 and the paragraph
after it.)

Now we introduce the so-called average optimality equations. For ease of
notation we shall write, for i; j 2 S, ð/;wÞ 2 AðiÞ � BðiÞ and
ðp1; p2Þ 2 P1 �P2,
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qijð/; p2Þ :¼ qijð/; p2ð�jiÞÞ and qijðp1;wÞ :¼ qijðp1ð�jiÞ;wÞ;
and also

rði;/; p2Þ :¼ rði;/; p2ð�jiÞÞ and rði; p1;wÞ :¼ rði; p1ð�jiÞ;wÞ:

Definition 3.2. We say that a constant g 2 R, a function h0 2 BwðSÞ and a pair
of strategies ðp1; p2Þ 2 P1 �P2 verify the average optimality equations if

g ¼ rði; p1; p2Þ þ
X

j2S

qijðp1; p2Þh0ðjÞ ð3:4Þ

¼ sup
/2AðiÞ

frði;/; p2Þ þ
X

j2S

qijð/; p2Þh0ðjÞg ð3:5Þ

¼ inf
w2BðiÞ

frði; p1;wÞ þ
X

j2S

qijðp1;wÞh0ðjÞg; ð3:6Þ

for every i 2 S.

Our next theorem summarizes some useful results about the average
optimality equations.

Theorem 3.3. Suppose that the game model M verifies Assumptions A, B
and C. Then:

(i) There exist solutions to the average optimality equations (3.4)–(3.6).
Moreover, the constant g ¼ V 	 (the value of the game) and the function h0

is unique up to additive constants.
(ii) A pair of strategies is average optimal if and only if it satisfies the average

optimality equations.

Proof. (i). The first statement in (i) as well as the fact that g ¼ V 	 is proved in
[7, Theorem 5.1]. Let us show that h0 is unique up to an additive constant.
Suppose that ðV 	; h	Þ and ðp	1; p	2Þ, and also ðV 	; hÞ and ðp1; p2Þ, satisfy
(3.4)–(3.6). Then we have

V 	 ¼ sup
p12P1

Jðp1; p	2Þ and V 	 ¼ inf
p22P2

Jðp1; p2Þ;

and thus

V 	 ¼ Jðp1; p	2Þ: ð3:7Þ
On the other hand, we know that

V 	 ¼ sup
/2AðiÞ

frði;/; p	2Þ þ
X

j2S

qijð/; p	2Þh	ðjÞg for i 2 S

and, in particular,

V 	 � rði; p1; p	2Þ þ
X

j2S

qijðp1; p	2Þh	ðjÞ for i 2 S:

If the strict inequality holds in any of the above inequalities then, multiplying
by lp1;p	2fig, which is positive (recall (2.3)), and summing over i 2 S yields

V 	 > Jðp1; p	2Þ, contradicting (3.7). Therefore,
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V 	 ¼ rði; p1; p	2Þ þ
X

j2S

qijðp1; p	2Þh	ðjÞ for each i 2 S:

Mutatis mutandis we obtain

V 	 ¼ rði; p1; p	2Þ þ
X

j2S

qijðp1; p	2ÞhðjÞ for each i 2 S:

Hence, the functions h	 and h verify

X

j2S

qijðp1; p	2Þðh	ðjÞ � hðjÞÞ ¼ 0 for every i 2 S;

that is, h	 � h is harmonic and, as in the proof of [12, Theorem 3.3], this
implies that h	 and h differ by a constant.

(ii). The if part is established in [7, Theorem 5.1(d)]. To prove the only if
statement proceed by contradiction. Suppose that ðp	1; p	2Þ is a pair of
average optimal strategies that does not verify the average optimality equa-
tions. Then, either (3.5) or (3.6) do not hold. Suppose for instance that (3.5) is
not satisfied. We have, by Theorem 5.1(c) and Lemma 7.2 in [7], that there
exists p1 2 P1 such that

V 	 � rði; p1; p	2Þ þ
X

j2S

qijðp1; p	2Þh0ðjÞ for every i 2 S

with strict inequality for some i 2 S. Multiplying by the invariant probability
measure lp1;p	2 and summing over i 2 S yields V 	 < Jðp1; p	2Þ, and then, by
Definition 3.1, we obtain V 	 < Jðp1; p	2Þ � Jðp	1; p	2Þ ¼ V 	, which is not
possible. This completes the proof. h

In stochastic control theory, strategies that satisfy (3.4)–(3.6) are called
canonical. Hence Theorem 3.3 proves the equivalence between average opti-
mal strategies and canonical strategies. It is a well known fact that, in general,
there might exist optimal strategies that are not canonical. In our case, the
irreducibility of the state Markov processes (recall Assumption C) implies
that both classes coincide.

4. Bias optimality

In this section we are going to define the bias of a pair of stationary policies.
We will give an interpretation of the bias in terms of the total expected
reward/cost over finite time intervals as the time horizon goes to 1 and we
will introduce the bias optimality criterion.

The extended game model. For technical reasons it is useful to consider the
stochastic game model M in which the admissible control actions correspond
to the randomized actions in model M. More precisely, let

M :¼ fS; ðAðiÞ;BðiÞ; i 2 SÞ; ðqijð/;wÞÞ; ðrði;/;wÞÞg:

Proposition 4.1. If the game model M verifies Assumptions A, B and C, then so
does M.

444 T. Prieto-Rumeau, O. Hernández-Lerma



Proof. First of all observe that the transition rates of the system, i.e. the
qijð/;wÞ, are measurable on AðiÞ � BðiÞ and that they are conservative and
stable. The reward/cost rate function is also measurable.

Assumption A for M, with the same constants as for M, is easily derived
from (2.1) and (2.2).

Since AðiÞ and BðiÞ, for i 2 S, are compact Borel spaces then AðiÞ and BðiÞ
(endowed with the weak convergence topology) are also compact Borel spaces
for each i 2 S. Hence, Assumption B(i) is satisfied. Assumption B(ii) is a
consequence of [7, Lemma 7.2]. Assumption B(iii) is easily verified for
model M.

Finally, it is trivial to check that Assumption C also holds for M. This
completes the proof. h

Proposition 4.1 implies that the randomized stationary policies (and not
just the deterministic stationary policies) verify the w-uniform exponential
ergodic property, that is, there exists a constant R > 0 such that

sup
ðp1;p2Þ2P1�P2

jEp1;p2

i uðxðt;p1; p2ÞÞ � lp1;p2ðuÞj � Re�ctjjujjwwðiÞ ð4:1Þ

for each i 2 S, t � 0 and u 2 BwðSÞ, where the constant c > 0 is as in
Assumption A.

The bias and the Poisson equations.We define the bias of ðp1; p2Þ 2 P1 �P2 as
the function fh0ði; p1; p2Þgi2S 2 BwðSÞ given by

h0ði;p1;p2Þ :¼ Ep1;p2

i

Z1

0

½rðxðt;p1;p2Þ;p1;p2Þ � Jðp1;p2Þ�dt for i 2 S: ð4:2Þ

Observe that (4.1) ensures that h0ð�; p1; p2Þ is indeed in BwðSÞ.
The bias of a stationary policy can be computed via the Poisson equations

defined next.
Given a pair of stationary strategies ðp1; p2Þ we say that g 2 R and

h0; h1 2 BwðSÞ are a solution of the Poisson equations for ðp1; p2Þ if
g ¼ rði; p1; p2Þ þ

X

j2S

qijðp1; p2Þh0ðjÞ for every i 2 S ð4:3Þ

and

h0ðiÞ ¼
X

j2S

qijðp1; p2Þh1ðjÞ for every i 2 S: ð4:4Þ

The average payoff Jðp1; p2Þ and the bias of ðp1; p2Þ are characterized by the
Poisson equations in the following sense.

Proposition 4.2. Let ðp1; p2Þ 2 P1 �P2 be given.

(i) The solution ðg; h0Þ 2 R� BwðSÞ of the Poisson equation (4.3) exists. Also,
g ¼ Jðp1; p2Þ and, moreover, h0ð�Þ coincides with the bias h0ð�; p1; p2Þ ex-
cept for an additive constant, that is, there exists z 2 R such that

h0ðiÞ þ z ¼ h0ði; p1; p2Þ for every i 2 S:

If in addition lp1;p2ðh0Þ ¼ 0, then h0ð�Þ ¼ h0ð�; p1; p2Þ.
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(ii) The solution ðg; h0; h1Þ 2 R� BwðSÞ � BwðSÞ of the Poisson equations
(4.3)–(4.4) exists and it verifies

g ¼ Jðp1; p2Þ and h0ð�Þ ¼ h0ð�; p1; p2Þ:

Proof. The proof goes along the same lines as that of [12, Proposition 3.4].
See also the proof of [13, Theorem 4.1]. h

Bias optimal policies. From (4.1) and the definition (4.2) of the bias we obtain
that

JT ði; p1; p2Þ ¼ Jðp1; p2ÞT þ h0ði; p1; p2Þ þOðe�cT Þ ð4:5Þ

as T !1 for every i 2 S and ðp1; p2Þ 2 P1 �P2.
Therefore, to asymptotically maximize the total expected reward over fi-

nite time intervals, player 1 should attempt to maximize the average reward
Jðp1; p2Þ, for fixed p2 2 P2, and then maximize the bias h0ð�; p1; p2Þ within the
class of average optimal policies. Player 2 defines similarly his/her bias cri-
terion. Now we give the precise definition of bias optimality.

Definition 4.3. Consider the stochastic game M. We say that a pair of average
optimal stationary strategies ðp	1; p	2Þ 2 P	1 �P	2 is bias optimal if

h0ði; p1; p	2Þ � h0ði; p	1; p	2Þ � h0ði; p	1; p2Þ ð4:6Þ
for every i 2 S and every pair of average optimal strategies ðp1; p2Þ 2
P	1 �P	2.

Before proceeding to prove the existence of bias optimal policies we need
two more preliminary results. The following result is perhaps well known but
we could not find a reference. Hence we will provide a proof.

Lemma 4.4. Let f : X � Y ! R be a continuous function, where X and Y are
compact Borel spaces. Then g : Y ! R given by gðyÞ :¼ maxx2X f ðx; yÞ is
continuous.

Proof. To prove the continuity of g we will proceed by contradiction. Sup-
pose that there exists y 2 Y and a sequence fyng in Y verifying yn ! y when
n!1 and gðynÞ 6! gðyÞ. Also, let x 2 X and xn 2 X be such that
gðyÞ ¼ f ðx; yÞ and gðynÞ ¼ f ðxn; ynÞ. There exist e > 0 and subsequences of
fxng and fyng (not explicit in the notation) for which

jgðynÞ � gðyÞj � e and xn ! x	; for some x	 2 X :

Hence, one of the following two conditions is satisfied: (i) gðynÞ � gðyÞ þ e for
infinitely many n; or (ii) gðyÞ � gðynÞ þ e for infinitely many n.

Suppose that (i) holds. Then gðynÞ ¼ f ðxn; ynÞ converges to f ðx	; yÞ, and
thus f ðx	; yÞ � gðyÞ þ e, which is a contradiction. Else if (ii) holds, and since
f ðx; ynÞ ! gðyÞ, observe that

f ðx; ynÞ � gðynÞ þ e=2 ¼ f ðxn; ynÞ þ e=2

infinitely often, which contradicts the definition of xn. This establishes the
stated result. h

Definition 4.5. Consider the game model M and let ðV 	; h0Þ 2 R� BwðSÞ be a
solution of the average optimality equations (3.4)–(3.6). Fix i 2 S and let A0ðiÞ
be the set of / 2 AðiÞ such that
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V 	 ¼ inf
w2BðiÞ

frði;/;wÞ þ
X

j2S

qijð/;wÞh0ðjÞg:

Define also B0ðiÞ as the set of w 2 BðiÞ for which
V 	 ¼ sup

/2AðiÞ
frði;/;wÞ þ

X

j2S

qijð/;wÞh0ðjÞg:

Lemma 4.6. The sets A0ðiÞ and B0ðiÞ in Definition 4.5 are convex compact
Borel spaces for every i 2 S and, further, they do not depend on h0.

Proof. First of all, let us prove that A0ðiÞ and B0ðiÞ are compact Borel spaces.
By Assumption B(i), the sets AðiÞ and BðiÞ are compact Borel spaces.
Therefore, AðiÞ and BðiÞ are also compact Borel spaces. Thus, to prove our
statement, it suffices to show that A0ðiÞ and B0ðiÞ are closed sets, which is true
as a consequence of Lemma 4.4 and Lemma 7.2 in [7].

Let us now show that A0ðiÞ is a convex set. To this end observe that, for
each w 2 BðiÞ, the function /7!rði;/;wÞ is linear in the following sense:

rði; k/1 þ ð1� kÞ/2;wÞ ¼ krði;/1;wÞ þ ð1� kÞrði;/2;wÞ
for /1;/2 2 AðiÞ and k 2 ½0; 1�, and where k/1 þ ð1� kÞ/2 is a convex linear
combination of probability measures on AðiÞ, which is itself a probability
measure in AðiÞ. Similarly we have that for a given w 2 BðiÞ,
/7!

P
j2S qijð/;wÞh0ðjÞ is linear. Therefore,

/7! inf
w2BðiÞ

frði;/;wÞ þ
X

j2S

qijð/;wÞh0ðjÞg;

which is the infimum of linear functions, is concave. On the other hand,

V 	 ¼ sup
/2AðiÞ

inf
w2BðiÞ

frði;/;wÞ þ
X

j2S

qijð/;wÞh0ðjÞg;

and thus A0ðiÞ is the set of maxima of a concave function and so A0ðiÞ is
convex.

Using the same arguments one can show that

w7! sup
/2AðiÞ

frði;/;wÞ þ
X

j2S

qijð/;wÞh0ðjÞg

is convex and thus B0ðiÞ is convex.
To conclude the proof, observe that the solution h0 of the average opti-

mality equations (3.4)–(3.6) is unique up to additive constants (by Theo-
rem 3.3(i)) and since the transition rates of M are conservative (recall the
proof of Proposition 4.1) then A0ðiÞ and B0ðiÞ do not depend on h0. h

By Theorem 3.3(ii), ðp1; p2Þ is in P	1 �P	2 if and only if p1ð�jiÞ 2 A0ðiÞ
and p2ð�jiÞ 2 B0ðiÞ for each i 2 S, and this justifies the use of the rectangle
notation P	1 �P	2.

Suppose that ðV 	; h0Þ 2 R� BwðSÞ is a solution of the average optimality
equations. To analyze the bias optimality criterion consider now the sto-
chastic game M0 with state space S, admissible actions A0ðiÞ and B0ðiÞ, for
i 2 S, and the same transition rates as M. To determine the reward/cost rate
in M0 observe that by Proposition 4.2(i)
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h0ð�; p1; p2Þ ¼ h0ð�Þ þ z for some z 2 R ð4:7Þ
and, therefore,

z ¼ lp1;p2ð�h0Þ; ð4:8Þ
where ðp1; p2Þ is in P	1 �P	2. Consequently, to find bias optimal policies it
suffices to consider the stochastic game M0 with reward/cost rate �h0 under
the expected average reward/cost criterion. Summarizing, M0 is defined as

M0 :¼ fS; ðA0ðiÞ;B0ðiÞ; i 2 SÞ; ðqijð/;wÞÞ; ð�h0ðiÞÞg;
and observe that M0 satisfies Assumptions A, B and C. In particular, the
average value V 0	 of M0 exists and then, by (4.7) and (4.8),

H 	ðiÞ :¼ inf
p22P	2

sup
p12P	1

h0ði;p1;p2Þ¼ sup
p12P	1

inf
p22P	2

h0ði;p1;p2Þ¼h0ðiÞþV 0	 ð4:9Þ

for every i 2 S. Note that V 0	 
 V 0	ðh0Þ depends on the particular solution h0

of the average optimality equations, though h0 þ V 0	ðh0Þ does not depend
on h0.

The bias optimality equations. We give a characterization of bias optimal
policies via the bias optimality equations defined below.

Definition 4.7. We say that g 2 R, h0; h1 2 BwðSÞ and ðp1; p2Þ 2 P1 �P2

verify the bias optimality equations if

g ¼ rði; p1; p2Þ þ
X

j2S

qijðp1; p2Þh0ðjÞ ð4:10Þ

¼ sup
/2AðiÞ

frði;/; p2Þ þ
X

j2S

qijð/; p2Þh0ðjÞg ð4:11Þ

¼ inf
w2BðiÞ

frði; p1;wÞ þ
X

j2S

qijðp1;wÞh0ðjÞg; ð4:12Þ

for every i 2 S and, moreover,

0 ¼� h0ðiÞ þ
X

j2S

qijðp1; p2Þh1ðjÞ ð4:13Þ

¼ sup
/2A0ðiÞ

f�h0ðiÞ þ
X

j2S

qijð/; p2Þh1ðjÞg ð4:14Þ

¼ inf
w2B0ðiÞ

f�h0ðiÞ þ
X

j2S

qijðp1;wÞh1ðjÞg; ð4:15Þ

for every i 2 S.

Theorem 4.8. Suppose that the game model M verifies Assumptions A, B
and C. Then the following holds.

(i) The solutions of the bias optimality equations exist and, further,

g ¼ V 	 and h0ðiÞ ¼ H 	ðiÞ for every i 2 S:

(ii) The stationary strategies ðp1; p2Þ 2 P1 �P2 are bias optimal if and only if
they verify the bias optimality equations.
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Proof. (i). The equations (4.10)–(4.12) are the average optimality equations.
By Theorem 3.3, they have a solution and we know that g ¼ V 	.

Concerning equations (4.13)–(4.15), observe that the stochastic game M0

verifies the hypotheses of [7, Theorem 5.1], though average optimal strategies
forM0 are randomized actions, that is, they are probability measures on A0ðiÞ
and B0ðiÞ or, in other words, they belong to PðPðAðiÞÞÞ and PðPðBðiÞÞÞ,
respectively. Nevertheless, the convexity property proved in Lemma 4.6 al-
lows us to ‘‘stay’’ in PðAðiÞÞ and PðBðiÞÞ.

Indeed, for a given i 2 S, define the following projection operator
p : PðA0ðiÞÞ ! A0ðiÞ where, for / 2 PðA0ðiÞÞ, p/ is a probability measure on
AðiÞ defined by

ðp/ÞðF Þ :¼
Z

A0ðiÞ

/ðF Þ/ðd/Þ for each measurable set F � AðiÞ:

Note that p/ 2 A0ðiÞ because A0ðiÞ is a convex set of probability measures; see
Lemma 4.6. Similarly, we may define p : PðB0ðiÞÞ ! B0ðiÞ where, for sim-
plicity, we will use the same notation.

Observe also that the transition rates of ð/;wÞ 2 PðA0ðiÞÞ �PðB0ðiÞÞ, i.e.

qijð/;wÞ :¼
Z

B0ðiÞ

Z

A0ðiÞ

qijð/;wÞ /ðd/Þ wðdwÞ

verify

qijð/;wÞ ¼ qijðp/; pwÞ for j 2 S:

A similar result is true for the reward/cost rate rði;/;wÞ. Identifying / 2 A0ðiÞ
with the Dirac measure concentrated at /, we have A0ðiÞ � PðA0ðiÞÞ, and also
B0ðiÞ � PðB0ðiÞÞ.

Therefore, there exists a correspondence from PðA0ðiÞÞ (resp. PðB0ðiÞÞ)
onto A0ðiÞ (resp. B0ðiÞ) with invariant transition and reward/cost rates, and
thus invariant expected rewards/costs. As a consequence, the average opti-
mality equations of M0 may be written as

V 0	 ¼ � h0ðiÞ þ
X

j2S

qijðp1; p2Þh1ðjÞ

¼ sup
/2A0ðiÞ

f�h0ðiÞ þ
X

j2S

qijð/; p2Þh1ðjÞg

¼ inf
w2B0ðiÞ

f�h0ðiÞ þ
X

j2S

qijðp1;wÞh1ðjÞg;

for i 2 S and some ðp1; p2Þ 2 P	1 �P	2. Hence, from (4.9) we deduce that H 	

verifies equations (4.13)–(4.15). To prove the uniqueness property observe
that h0 in (4.10)–(4.12) is unique up to additive constants (recall Theorem
3.3(i)) and, therefore, the solution h0 of (4.13)–(4.15) is necessarily unique and
coincides with H 	.

(ii). This part follows from the equivalence between optimal and canonical
policies of M0 that was established in Theorem 3.3(ii). h

Expression (4.5) shows that bias optimality is related to the asymptotic
maximization/minimization of the total expected reward/cost JT ði; p1; p2Þ.
This relation is further explored in the next section.
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5. Weak overtaking optimality

We introduce the weak overtaking optimality criterion for continuous-time
stochastic games, which is the extension to continuous-time games of the
discrete-time definition given in [10, Definition 3].

Roughly speaking, we say that a pair of strategies is weakly overtaking
optimal if, in the limit as T !1, it is a saddle point of the finite-horizon total
expected payoff JT ði; p1; p2Þ. This is formalized below.

Definition 5.1. A pair of strategies ðp	1; p	2Þ 2 C1 � C2 � P1 �P2 is weakly
overtaking optimal in the class C1 � C2 if for each ðp1; p2Þ 2 C1 � C2 and i 2 S
we have

lim inf
T!1

½JT ði; p	1; p	2Þ � JT ði; p1; p	2Þ� � 0 ð5:1Þ

and

lim sup
T!1

½JT ði; p	1; p	2Þ � JT ði; p	1; p2Þ� � 0:

Our next two results explore the relations existing between bias optimality
and weak overtaking optimality. We then present an example showing that
these relations are not as ‘‘strong’’ as for control (or single-player) problems.
In fact, for continuous-time controlled Markov chains and under assumptions
similar to ours, bias optimality and weak overtaking optimality are equiva-
lent; see [12, Theorem 3.8].

Theorem 5.2. Suppose that the stochastic game M verifies Assumptions A, B
and C. If a pair of strategies ðp	1; p	2Þ 2 P1 �P2 is bias optimal then it is
weakly overtaking optimal in the class of average optimal strategies P	1 �P	2.

Proof. Let ðp1; p2Þ 2 P	1 �P	2 be a pair of average optimal strategies.
Recalling (4.5) we have

JT ði; p1; p2Þ ¼ V 	T þ h0ði;p1; p2Þ þOðe�cT Þ for all i 2 S;

and thus Definition 4.3 yields

lim
T!1
½JT ði; p	1; p	2Þ � JT ði; p1; p	2Þ� ¼ h0ði; p	1; p	2Þ � h0ði; p1; p	2Þ � 0

and also

lim
T!1
½JT ði; p	1; p	2Þ � JT ði; p	1; p2Þ� ¼ h0ði; p	1; p	2Þ � h0ði; p	1; p2Þ � 0

for every i 2 S. This proves that bias optimal strategies are weakly overtaking
optimal in P	1 �P	2. h

Theorem 5.3 Suppose that the stochastic game M verifies Assumptions A, B
and C. If a pair of strategies ðp	1; p	2Þ 2 P1 �P2 is weakly overtaking optimal
in P1 �P2 then it is bias optimal.

Proof. Using (4.5) and recalling Definition 5.1 it follows that

lim
T!1
½ðJðp	1; p	2Þ � Jðp1; p	2ÞÞT þ h0ði; p	1; p	2Þ � h0ði; p1; p	2Þ� � 0 ð5:2Þ
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and

lim
T!1
½ðJðp	1; p	2Þ � Jðp	1; p2ÞÞT þ h0ði; p	1; p	2Þ � h0ði; p	1; p2Þ� � 0 ð5:3Þ

for every ðp1; p2Þ 2 P1 �P2 and i 2 S.
Dividing by T and letting T !1 in (5.2) and (5.3) yields precisely con-

dition (3.3) in Definition 3.1, that is, ðp	1; p	2Þ is average optimal. Suppose
now that ðp1; p2Þ 2 P	1 �P	2. Then (5.2) and (5.3) become (4.6) in Definition
4.3, completing the proof. h

An example. The result of Theorem 5.2 cannot be extended to weak over-
taking optimality in the class of all stationary policies or, in other words, the
converse of Theorem 5.3 needs not to be true. Indeed, as shown by the
example below, there might not exist weakly overtaking optimal policies in
the class of stationary policies.

Consider the following zero-sum stochastic game. The state space is

S ¼ f0; 1g
and the admissible control actions are

Að0Þ ¼ f0g; Að1Þ ¼ f0; 1g; Bð0Þ ¼ f0g; Bð1Þ ¼ f0; 1g:
The reward/cost rates and the transition rates are given by

rð0; 0; 0Þ ¼ 4; rð1; 0; 0Þ ¼ 1; rð1; 0; 1Þ ¼ �2; rð1; 1; 0Þ ¼ 0; rð1; 1; 1Þ ¼ 2

and

q00ð0; 0Þ ¼ �2; q11ð0; 0Þ ¼ �1; q11ð0; 1Þ ¼ q11ð1; 0Þ ¼ q11ð1; 1Þ ¼ �2;
respectively.

Randomized stationary policies for player 1, denoted p1
x , are parametrized

by x 2 ½0; 1�, where p1
xð�j1Þ takes values 0 and 1 with probabilities x and 1� x,

respectively. We will denote by p2
y , with 0 � y � 1, a randomized stationary

strategy for player 2, where p2
yð�j1Þ takes values 0 and 1 with probabilities y

and 1� y, respectively.
It is easily verified that the so-defined game model satisfies Assumptions

A, B and C in Section 2.
Let us compute the average reward/cost of the stationary policies ðp1

x ; p
2
yÞ,

for x and y in ½0; 1�. Direct calculations show that the expected reward/cost
rates for stationary policies are

rð0; p1
x ; p

2
yÞ ¼ 4 and rð1; p1

x ; p
2
yÞ ¼ 5xy � 4x� 2y þ 2

whereas the transition rates matrices are

Qðp1
x ; p

2
yÞ ¼

�2 2
2� xy xy � 2

� �
:

Hence the invariant probability measures are given by

lp1
x ;p

2
y
f0g ¼ 2� xy

4� xy
and lp1

x ;p
2
y
f1g ¼ 2

4� xy
for 0 � x; y � 1;

and thus the expected reward/cost of the stationary strategy ðp1
x ; p

2
yÞ is
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Jðx; yÞ :¼ Jðp1
x ; p

2
yÞ ¼

6xy � 8x� 4y þ 12

4� xy
:

Now we determine the set of average optimal policies. For a fixed x 2 ½0; 1�
we have

inf
0�y�1

Jðx; yÞ ¼
Jðx; 1Þ ¼ 2; for 0 � x < 1=2,
Jðx; yÞ ¼ 2; for x ¼ 1=2 and 0 � y � 1,
Jðx; 0Þ ¼ 3� 2x; for 1=2 < x � 1,

8
<

:

and given y 2 ½0; 1�

sup
0�x�1

Jðx; yÞ ¼ Jð0; yÞ ¼ 3� y; for 0 � y < 1,
Jðx; yÞ ¼ 2; for y ¼ 1 and 0 � x � 1.

�

As a consequence, the value of the game is V 	 ¼ 2. It also follows that the
family of optimal stationary strategies, which is given by the ðx	; y	Þ such that

Jðx	; y	Þ ¼ inf
0�y�1

Jðx	; yÞ ¼ sup
0�x�1

Jðx; y	Þ ¼ V 	 ¼ 2;

is ðp1
x	 ; p

2
1Þ for 0 � x	 � 1=2.

Consider now the stationary policy ðp1
x ; p

2
1Þ for some 0 � x � 1. Observe

that the average reward/cost and the bias of this policy are

Jðx; 1Þ ¼ 2 and hð�; x; 1Þ :¼ hð�; p1
x ; p

2
1Þ ¼

2
4�x
x�2
4�x

 !
; ð5:4Þ

respectively. The unique bias optimal stationary policy is ðp1
1=2;p

2
1Þ. Its gain

and bias are

Jð1=2; 1Þ ¼ 2 and hð�; 1=2; 1Þ ¼ 4=7
�3=7

� �
: ð5:5Þ

It is worth noting that since player 2 has a unique average optimal strategy
then the problem of finding bias optimal policies is reduced to a control (with
one player) problem.

Suppose now that there exists a weakly overtaking optimal policy in the
class of all stationary strategies for the above game model. By Theorem 5.3,
such a policy is necessarily bias optimal and, therefore, ðp1

1=2; p
2
1Þ would be

weakly overtaking optimal. However, recalling (5.4), it follows that the gain
and bias of ðp1

1; p
2
1Þ are

Jð1; 1Þ ¼ 2 and hð�; 1; 1Þ ¼ 2=3
�1=3

� �
; ð5:6Þ

and thus, by (5.5) and (5.6),

lim inf
T!1

½JT ði; p1
1=2; p

2
1Þ � JT ði; p1

1; p
2
1Þ� ¼ �2=21 < 0 for i 2 S;

which contradicts (5.1).
As a conclusion, there does not exist any weakly overtaking optimal

policy. The reason is that finding bias optimal policies for a game model
cannot be reduced to finding bias optimal policies for a control problem.
Indeed, when we look for bias optimal policies in the game model we restrict
ourselves to the set of game average optimal policies, that is,
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ðp1
x ; p

2
1Þ for 0 � x � 1=2: ð5:7Þ

However, even if the average optimal policy for player 2 is fixed, the game
bias optimization problem is not equivalent to the control bias optimization
problem when p2

1 is fixed, for in this case the control average optimal policies
are (recall (5.4))

ðp1
x ; p

2
1Þ for every x 2 ½0; 1�;

cf. (5.7). This is precisely the (erroneous) argument invoked in the proof of
Theorem 3 in [10] and Theorem 5 in [11] for discrete-time stochastic games.
Note that a similar argument is used in the proof [10, Theorem 2] when
dealing with strong 1-equilibria which, in the notation of Section 6 below,
would be referred to as 0-strong equilibria.

6. Concluding remarks

In stochastic control, it is usual to consider the so-called sensitive discount
optimality criteria as, for instance, n-discount optimality, for n ¼ �1; 0; 1; . . .,
and Blackwell optimality (e.g. [13]). Roughly speaking, �1-discount opti-
mality and 0-discount optimality are equivalent to average and bias opti-
mality, respectively. The standard methodology to deal with these sensitive
discount optimality criteria is the following.

(i) Solve the average optimality equations to determine �1-discount optimal
strategies.

(ii) Find 0-discount optimal strategies in the class of �1-discount optimal
policies and prove that they are 0-discount optimal in the class of all
stationary strategies.

(iii) Find 1-discount optimal strategies in the class of 0-discount optimal
policies and prove that they are 1-discount optimal in the class of all
stationary policies, etc.

We thus obtain a sequence of ‘‘nested’’ control problems which in the limit,
under suitable hypotheses, leads to the existence of Blackwell optimal poli-
cies.

The fact that the converse of Theorem 5.3 is not verified shows that the
above methodology is not applicable to stochastic games. Indeed, Theorem
5.2 gives the existence of 0-discount optimal policies in the class of �1-dis-
count optimal strategies, but not in the class of all stationary strategies.

Iteratively, we can find n-discount optimal policies in the class of ðn� 1Þ-
discount optimal policies, but it seems that not in a larger class. As a con-
clusion, the analysis of sensitive discount optimality criteria appears to be of
limited interest in stochastic games.
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