
Abstract. This paper is concerned with the analysis and comparison of
semidefinite programming (SDP) relaxations for the satisfiability (SAT)
problem. Our presentation is focussed on the special case of 3-SAT, but the
ideas presented can in principle be extended to any instance of SAT specified
by a set of boolean variables and a propositional formula in conjunctive
normal form. We propose a new SDP relaxation for 3-SAT and prove some
of its theoretical properties. We also show that, together with two SDP
relaxations previously proposed in the literature, the new relaxation com-
pletes a trio of linearly sized relaxations with increasing rank-based guaran-
tees for proving satisfiability. A comparison of the relative practical
performances of the SDP relaxations shows that, among these three relax-
ations, the new relaxation provides the best tradeoff between theoretical
strength and practical performance within an enumerative algorithm.

Key words: Satisfiability problem, Semidefinite programming, Combinatorial
optimization, Global optimization

1. Introduction

The satisfiability (SAT) problem is a central problem in mathematical logic,
computing theory, and artificial intelligence. We consider instances of SAT
specified by a set of boolean variables and a propositional formula in con-
junctive normal form. Given such an instance, the SAT problem asks whether
there is a truth assignment to the variables such that the formula is satisfied. It
is well known that SAT is in general NP-complete, although several impor-
tant special cases can be solved in polynomial time. There has been great
interest in the design of algorithms to solve the SAT problem; see [17] for an
extensive survey.
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Semidefinite programming (SDP) refers to the class of optimization
problems where a linear function of a matrix variable X is maximized (or
minimized) subject to linear constraints on the elements of X and the addi-
tional constraint that X must be positive semidefinite. This includes linear
programming problems as a special case, namely when all the matrices in-
volved are diagonal. A variety of polynomial-time interior-point algorithms
for solving SDPs have been proposed in the literature, and several excellent
solvers for SDP are now available. We refer the reader to the SDP webpage
[19] as well as the handbook [37] for a thorough coverage of the theory and
algorithms in this area, as well as several application areas where semidefinite
programming researchers have made significant contributions.

We note that SDP has been successfully applied in the development of
approximation algorithms for hard combinatorial optimization problems.
The survey paper [28] provides an excellent overview of the results in this
area. In particular, SDP is the basis for recent approximation algorithms for a
related class of problems, the MAX-k-SAT problems. (The notation k-SAT
refers to the instances of SAT for which all the clauses have length at most k.)
Given a set of propositional clauses all of length at most k in conjunctive
normal form, the MAX-k-SAT problem consists of determining the largest
number of clauses that can be satisfied simultaneously by any given truth
assignment. The seminal paper of Goemans and Williamson [15] proposed
and analyzed an approximation algorithm using SDP for the MAX-2-SAT
problem. The approximation algorithm of Karloff and Zwick for
MAX-3-SAT [22] was shown to be optimal (unless P ¼ NP ), and further
extensions have been proposed by Zwick [38] and Halperin and Zwick [18].
These results provide the best known approximation guarantees for MAX-k-
SAT problems.

We are interested in the application of SDP to the basic SAT problem, and
in particular in how SDP can be used to prove unsatisfiability. In [12, 11], de
Klerk, van Maaren, and Warners introduced an SDP relaxation for SAT, the
so-called Gap relaxation. They show that the Gap relaxation characterizes
unsatisfiability for some interesting classes of SAT problems, such as muti-
lated chessboard and pigeonhole instances, as well as for 2-SAT. (Note that
unlike MAX-2-SAT, 2-SAT is solvable in polynomial-time [5].) However, it
cannot detect unsatisfiability when all the clauses have length three or higher.

More recently, we introduced in [2] an improved SDP relaxation which
can be used to prove that a given SAT formula is unsatisfiable, independently
of the lengths of the clauses in the instance. This relaxation is easily defined
for every instance of SAT, and it inherits all the favourable properties of the
Gap relaxation. It is constructed using ideas from a ‘‘higher liftings’’ para-
digm for constructing SDP relaxations of discrete optimization problems. The
use of liftings has been proposed in the literature within the framework of
general purpose lift-and-project methods for 0-1 optimization [6,33,30] and
the study of SDP relaxations for specific 0-1 problems dates back at least to
Lovász’s introduction of the so-called theta function as a bound for the
stability number of a graph [29]. Alternatively, if a 0-1 problem is viewed as a
feasibility problem over an algebraic set, then SDP relaxations can be ob-
tained using Hilbert’s positivstellensatz [32]. For further recent research on
liftings for discrete optimization problems, see [8,16].

The lifting paradigm we consider can be summarized as follows. Suppose
that we have a discrete optimization problem on n binary variables. The SDP
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relaxation in the space of ðnþ 1Þ � ðnþ 1Þ symmetric matrices is called a first
lifting. Note that, except for the first row, the rows and columns of the matrix
variable in this relaxation are indexed by the binary variables themselves. To
generalize this operation, we allow the rows and columns of the SDP relax-
ations to be indexed by subsets of the discrete variables in the formulation.
These larger matrices can be interpreted as higher liftings, in the spirit of the
second lifting proposed by Anjos and Wolkowicz [4], and its generalization
independently proposed by Lasserre [25, 26].

Considering these higher liftings, an interesting question is to find con-
ditions on the rank of an optimal matrix for the SDP relaxation which ensure
that the optimal value of the SDP is actually the optimal value of the
underlying discrete problem. For liftings of the Maximum-Cut (max-cut)
problem, the rank-1 case is obvious since the optimal solution of the SDP is
then a vertex of the cut polytope (see e.g. [13]). For second liftings, a rank-2
guarantee of optimality was proved by Anjos and Wolkowicz [3], and this
result was extended to the whole of the Lasserre hierarchy by Laurent[27].
From a theoretical point of view, these rank-based conditions for optimality
can be interpreted as a measure of the relative strength of the relaxations.
From a practical point of view, they are helpful because of the occurrence of
SDP solutions with high rank when there are multiple optimal solutions to
the original discrete problem. This happens because interior-point algorithms
typically converge to a matrix in the interior of the optimal face of the cone of
positive semidefinite matrices, and in the presence of multiple solutions this
face contains matrices of ranks higher than one. Therefore, the ability to
detect optimality for as high a rank value as possible will often allow an
enumerative algorithm to avoid further branching steps and potentially yield
a significant reduction in computational time.

This paper is concerned with the practical application of the higher liftings
to discrete optimization problems, with a particular focus on SAT. Practical
computation with these liftings has proved difficult. The computational re-
sults reported in [1], where second liftings for max-cut problems with only up
to 27 binary variables were successfully solved, motivated us to consider
‘‘partial’’ liftings which are more amenable to practical computation than the
complete higher liftings, while preserving as far as possible the desirable
properties of the complete liftings. One positive step in this direction was
taken in [2], where the dimensions of the proposed SDP relaxation for SAT
depend linearly on the number of clauses in the SAT instance, yet the
relaxation has a rank-3 guarantee for proving satisfiability. This means that if
the rank of the optimal solution of the SDP is 1, 2, or 3, then we can extract a
satisfying truth assignment from that optimal solution, and hence obtain a
certificate of satisfiability. The higher rank value guaranteeing a proof of
satisfiability thus reflects a greater ability to prove satisfiability, although it
also implies that a greater computational effort is required to solve the SDP.
The computational results reported in [2] show that the SDP relaxation used
in conjunction with an enumerative search procedure is still impractical for
solving SAT problems with more than, say, 100 clauses, unless the solution is
obtained without resorting to branching. Branching is not always necessary,
and in particular this relaxation successfully proved the unsatisfiability of
some hard instances that remained unsolved in the SAT 2003 competition,
showing that the SDP approach has the potential to complement existing
SAT algorithms.
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The results in this paper improve the applicability of SDP to SAT. We
shall focus on 3-SAT, although the ideas we present can in principle be
extended to any instance of satisfiability. The main contribution of this paper
is a new SDP relaxation for 3-SAT which is more compact than that proposed
in [2], but which is nonetheless able to detect both satisfiability and unsatis-
fiability of 3-SAT instances. Indeed, it is straightforward to prove that if the
SDP relaxation is infeasible, then the given 3-SAT instance is unsatisfiable.
Furthermore, if a feasible matrix Y is found, and its rank equals 1 or 2, then it
yields a truth assignment that satisfies the SAT instance, thus proving satis-
fiability of the instance. In this sense, we say that this new relaxation is
endowed with a rank-2 guarantee for proving satisfiability. Therefore, to-
gether with the aforementioned relaxations, it completes a trio of linearly
sized relaxations of increasing dimension and with correspondingly increasing
rank-based guarantees for proving satisfiability. We present computational
results showing that a basic enumerative algorithm using this relaxation is
able to routinely prove either satisfiability or unsatisfiability of Uniform
Random-3-SAT instances with more than 300 clauses from the DIMACS set
of benchmark problems. The computational results also suggest that the new
relaxation is more effective than previous relaxations in the literature when
using an SDP-based enumerative approach for solving instances of SAT in
conjunctive normal form. Therefore, this new relaxation is another step to-
wards a practical SDP-based algorithm for satisfiability.

This paper is structured as follows. In the next section we introduce some
notation, give a formal definition of the SAT and 3-SAT problems, and
present some previous work in the literature. In Section 3 we present the
construction of the new SDP relaxation, and in Section 4 we state and prove
some theoretical properties of this relaxation. In Section 5, we show how this
new relaxation completes a trio of linearly sized SDP relaxations for SAT.
Section 6 contains a brief explanation of the algorithm we implemented to
compare the practical performance of the three relaxations. Finally, Section 7
summarizes some directions for future research.

2. Formulation and previous SDP relaxations for SAT

We consider the SAT problem for instances in conjunctive normal form
(CNF). Such instances are specified by a set of variables x1; . . . ; xn and a

propositional formula U ¼
Vm

j¼1
Cj, with each clause Cj having the form

Cj ¼
W

k2Ij

xk _
W

k2�Ij

�xk where Ij; �Ij � f1; . . . ; ng, Ij \ �Ij ¼ ;, and �xi denotes the

negation of xi. (We assume without loss of generality that jIj [ �Ijj � 2 for
every clause Cj.) The SAT problem is: Given a satisfiability instance, is U
satisfiable, that is, is there a truth assignment to the variables x1; . . . ; xn such
that U evaluates to TRUE?

We shall henceforth let TRUE be denoted by 1 and FALSE be denoted by
�1. For clause j and k 2 Ij [ �Ij, define

sj;k :¼ 1; if k 2 Ij

�1; if k 2 �Ij

�

ð1Þ

The SAT problem is now equivalent to the integer programming feasibility
problem
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find x 2 f�1gn

s.t.
P

k2Ij[�Ij

sj;kxk � 2� lðCjÞ; j ¼ 1; . . . ;m

where lðCjÞ ¼ jIj [ �Ijj denotes the number of literals in clause Cj. Clearly this
problem is equivalent to the original SAT problem, and hence is in general
NP-complete. Some special cases of SAT can be solved in polynomial time
using linear programming, see [10]. Special instances of SAT with certain
constraints on the length of the clauses are often of particular interest, both
theoretically and in practice; we refer the reader to the survey [17]. In this
paper, we focus on 3-SAT, which refers to those instances of SAT for which
each clause Cj satisfies jIj [ �Ijj � 3. Nonetheless, the ideas in this paper extend
in a straightforward manner to any instance of satisfiability.

The initial study of the application of SDP to SAT was done by de Klerk,
van Maaren, and Warners who introduced the Gap relaxation for SAT [12,
11]. The Gap relaxation for 3-SAT may be expressed as follows:

find X 2 Snþ1

s.t.
sj;i1sj;i2Xi1;i2 � sj;i1X0;i1 � sj;i2X0;i2 þ 1 ¼ 0;

where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2
ðR1Þ sj;i1sj;i2Xi1;i2 þ sj;i1sj;i3Xi1;i3 þ sj;i2sj;i3Xi2;i3 � sj;i1X0;i1

�sj;i2X0;i2 � sj;i3X0;i3 � 0;
where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3

diagðX Þ ¼ e
X � 0

where Sn denotes the space of n� n square symmetric matrices, diagðX Þ
represents a vector containing the diagonal elements of the matrix X , e de-
notes the vector of all ones, and X � 0 denotes that X is positive semidefinite.
This SDP relaxation is based on the elliptic approximations of clauses
introduced in [35] and it characterizes unsatisfiability for 2-SAT problems. (It
is well known that 2-SAT is solvable in polynomial time [5].) For later ref-
erence, we state this result as a theorem:

Theorem 1. [12, Theorem 5.1]For every instance of 2-SAT, the corresponding
Gap relaxation is feasible if and only if the instance is satisfiable. h

More interestingly, the Gap relaxation also characterizes satisfiability for
certain classes of SAT problems, such as mutilated chessboard and pigeon-
hole instances. Rounding schemes and approximation guarantees for the Gap
relaxation, as well as its behaviour on so-called ð2þ pÞ-SAT problems, are
studied in [11]. Finally, we note that the Gap relaxation is always feasible
when the instance has no clauses of length less than three, and hence is unable
to detect unsatisfiability for such instances.

More recently, the author proposed an improved SDP relaxation which is
able to detect unsatisfiability independently of the length of the clauses, and
inherits all the properties of the Gap relaxation. The general construction and
analysis of this relaxation are presented in [2]. We outline here the derivation
of that relaxation for the specific case of 3-SAT, which is the focus of this
paper. In doing so, we set the stage for the introduction of the new SDP
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relaxation in Section 3. With the parameters sj;k as defined above, Proposition
1 in [2] implies that:

– If lðCjÞ ¼ 2 and fi1; i2g ¼ Ij [ �Ij, then Cj is satisfied by xi1 ; xi2 2 f�1g if and
only if

sj;1xi1 þ sj;2xi2 � sj;1sj;2xi1xi2 ¼ 1:

– If lðCjÞ ¼ 3 and fi1; i2; i3g ¼ Ij [ �Ij, then Cj is satisfied by xi1 ; xi2 ; xi3 2 f�1g
if and only if
sj;1xi1 þ sj;2xi2 þ sj;3xi3 � sj;1sj;2xi1xi2 � sj;1sj;3xi1xi3 � sj;2sj;3xi2xi3

þsj;1sj;2sj;3xi1xi2xi3 ¼ 1:

Therefore, we can formulate the 3-SAT problem as follows:

find x1 . . . ;xn

s.t.
sj;1xi1 þ sj;2xi2 � sj;1sj;2xi1xi2 ¼ 1; where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2
sj;1xi1 þ sj;2xi2 þ sj;3xi3 � sj;1sj;2xi1xi2 � sj;1sj;3xi1xi3 � sj;2sj;3xi2xi3
þsj;1sj;2sj;3xi1xi2xi3 ¼ 1; where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3

x2i ¼ 1; i¼ 1; . . . ;n

The next step consists of formulating the problem in symmetric matrix
space. Let P denote the set of all nonempty sets I � f1; . . . ; ng such that the
term

Q

i2I
xi appears in the above formulation. Also introduce new variables:

xI :¼
Y

i2I

xi

for each I 2 P, define the vector

v :¼ ð1; xI1 ; . . . ; xIjPj Þ
T ;

and define the square symmetric positive semidefinite rank-one matrix

Y :¼ vvT

whose rows and columns are indexed by ; [ P. By construction of the matrix
variable Y , we have that Y;;I ¼ xI for all I 2 P. Using these new variables, we
can formulate 3-SAT as:

find Y 2 SjPjþ1
s.t.

sj;1Y;;fi1g þ sj;2Y;;fi2g � sj;1sj;2xi1xi2Y;;fi1;i2g ¼ 1;
where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2
sj;1Y;;fi1g þ sj;2Y;;fi2g þ sj;3Y;;fi3g � sj;1sj;2Y;;fi1;i2g � sj;1sj;3Y;;fi1;i3g
�sj;2sj;3Y;;fi2;i3g þ sj;1sj;2sj;3Y;;fi1;i2;i3g ¼ 1;

where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3
diagðY Þ ¼ e
rankðY Þ ¼ 1
Y � 0

This formulation has the form of an SDP, except for the requirement that
rankðY Þ ¼ 1. In order to improve the SDP relaxation obtained by removing
the rank constraint, we now observe that rankðY Þ ¼ 1 implies that for every
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triple I1; I2; I3 of subsets of indices in P such that the symmetric difference of
any two equals the third, the following three equations hold:

Y;;I1 ¼ YI2;I3 ; Y;;I2 ¼ YI1;I3 ; and Y;;I3 ¼ YI1;I2 : ð2Þ
Therefore we can add some or all of these constraints to the formulation
above without invalidating it. We add to it the equations of the form (2) for
all the triples fI1; I2; I3g � P such that ðI1 [ I2 [ I3Þ � ðIj [ �IjÞ for some clause
j and satisfying the symmetric difference condition. Although these con-
straints are redundant when the rank constraint is enforced, they will make a
difference in the SDP obtained when the rank restriction is removed. Indeed,
in general we can require that

YI1;I2 ¼ YI3;I4 whenever I1DI2 ¼ I3DI4 ð3Þ
where IiDIj denotes the symmetric difference of Ii and Ij. The tradeoff in-
volved in the choice of additional constraints is that as the number of con-
straints increases, the semidefinite relaxations become computationally more
expensive to solve. The motivation for the particular choice of redundant
constraints in (2) is that they suffice to prove Theorem 2 below, a corollary of
the main result in [2]. Thus we obtain the SDP relaxation for 3-SAT:

ðR3Þ

find Y 2 SjPjþ1
s.t.

sj;1Y;;fi1g þ sj;2Y;;fi2g � sj;1sj;2xi1xi2Y;;fi1;i2g ¼ 1;
where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2

sj;1Y;;fi1g þ sj;2Y;;fi2g þ sj;3Y;;fi3g � sj;1sj;2Y;;fi1;i2g � sj;1sj;3Y;;fi1;i3g
�sj;2sj;3Y;;fi2;i3g þ sj;1sj;2sj;3Y;;fi1;i2;i3g ¼ 1;
where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3

Y;;I1 ¼ YI2;I3 ; Y;;I2 ¼ YI1;I3 ; and Y;;I3 ¼ YI1;I2 ; 8fI1; I2; I3g � P
such that I1DI2 ¼ I3 and ðI1 [ I2 [ I3Þ � ðIj [ �IjÞ for some j

diagðY Þ ¼ e
Y � 0

We refer to this relaxation as R3, and it has the following properties:

Theorem 2. [2, Theorem 2] Given a 3-SAT propositional formula in CNF, the
following statements hold for the semidefinite relaxation R3:

– If R3 is infeasible, then the formula is unsatisfiable.
– If R3 is feasible, and Y is a feasible matrix such that rank Y � 3, then a

truth assignment satisfying the formula can be obtained from Y . Hence the
formula is satisfiable.

The computational properties of this relaxation were also studied in [2], where
it was successfully used to prove satisfiability and unsatisfiability of 3-SAT
instances with 50 variables and up to 100 clauses.

The results in this paper improve the practical applicability of SDP to
solve general 3-SAT instances. In Section 3, we propose a compact semi-
definite relaxation R2 that is linearly sized with respect to the number of
clauses, improves on R1 (the Gap relaxation), and is computationally superior
to R3 thanks to significant reductions in the dimension of the matrix variable
and in the number of linear constraints. The matrix variable of the compact
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SDP relaxation can be viewed as a principal submatrix of the matrix variable
in R3. We show that, compared with R3, the proposed semidefinite relaxation
R2 retains the ability to prove unsatisfiability, and that although it does not
retain the rank-3 guarantee, it has a rank-2 guarantee. Hence, it is a com-
promise relaxation between the Gap and R3, and it completes a trio of linearly
sized semidefinite relaxations with correspondingly stronger rank guarantees.
Although we focus on 3-SAT, we note that the idea behind the construction
in Section 3 extends in a straightforward manner to general instances of SAT.

3. Construction of the compact SDP relaxation

We begin with the formulation for 3-SAT:

find x1 : . . . ; xn

s:t:
sj;1xi1 þ sj;2xi2 � sj;1sj;2xi1xi2 ¼ 1; where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2

sj;1xi1 þ sj;2xi2 þ sj;3xi3 � sj;1sj;2xi1xi2 � sj;1sj;3xi1xi3 � sj;2sj;3xi2xi3
þsj;1sj;2sj;3xi1xi2xi3 ¼ 1; where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3

x2i ¼ 1; i¼ 1; . . . ;n:

We then construct a different formulation in matrix space by choosing a
different collection of column indices. In [2], the set P of column indices
contained all the nonempty sets I � ðIj [ �IjÞ corresponding to products of xi
variables appearing in the above formulation. To obtain a more compact
SDP relaxation, we choose a smaller set of column indices, namely

O :¼ fI j I � ðIj [ �IjÞ for some j; jI j mod 2 ¼ 1g:
The set O is a strict subset of the set P, consisting of the sets of odd cardi-
nality in P. It is clear that the sets in P of even cardinality corresponding to
terms appearing in the above formulation are all generated as symmetric
differences of the sets in O.

Having chosen our set of column indices, we introduce new variables

xI :¼
Y

i2I

xi;

for each I 2 O, define the vector

v :¼ ð1; xI1 ; . . . ; xIjOj Þ
T ;

and the rank-one matrix

Y :¼ vvT ;

whose rows and columns are indexed by ; [ O. By construction of Y , we have
Y;;I ¼ xI for all I 2 O and YfminðIÞg;IDfminðIÞg ¼ xI for all I 2 PnO. (Note that
TDfminðT Þg is an element of PnO when jT j is even.)

This means that the new variables corresponding to subsets of logical
variables of odd cardinality appear exactly once in the first row of Y , and the
new variables corresponding to subsets of even cardinality have the ‘‘repre-
sentative’’ matrix entries YfminðT Þg;T DfminðT Þg. Therefore, we can formulate the
SAT problem as:
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find Y 2 SjOjþ1
s:t:

sj;i1Y ðfi1gÞþ sj;i2Y ðfi2gÞ� sj;i1sj;i2Y ðfi1; i2gÞ ¼ 1;
where fi1; i2g ¼ Ij [ �Ij; if lðCjÞ ¼ 2

sj;i1Y ðfi1gÞþ sj;i2Y ðfi2gÞþ sj;i3Y ðfi3gÞ� sj;i1sj;i2Y ðfi1; i2gÞ
�sj;i1sj;i3Y ðfi1; i3gÞ� sj;i2sj;i3Y ðfi2; i3gÞþ sj;i1sj;i2sj;i3Y ðfi1; i2; i3gÞ ¼ 1;

where fi1; i2; i3g ¼ Ij [ �Ij; if lðCjÞ ¼ 3
diagðY Þ ¼ e
rankðY Þ ¼ 1

Y � 0

where

Y ðT Þ ¼ Y;;T ; jTj odd;
YfminðT Þg;TDfminðT Þg; jTj even.

�

Now we want to improve the semidefinite relaxations that we will obtain
by adding some constraints of the type in (3). We choose to add, for each
clause Cj such that lðCjÞ ¼ 3 with fi1; i2; i3g ¼ Ij [ �Ij, the constraints

Yfi1g;fi2g ¼ Yfi3g;fi1;i2;i3g; Yfi1g;fi3g ¼ Yfi2g;fi1;i2;i3g; Yfi2g;fi3g ¼ Yfi1g;fi1;i2;i3g: ð4Þ
The motivation for the particular choice of constraints in (4) is that they
suffice to prove Theorem 3 below.

Finally, omitting the rank constraint gives us the R2 relaxation:

ðR2Þ

find Y 2SjOjþ1
s:t:

sj;i1Y ðfi1gÞþsj;i2Y ðfi2gÞ�sj;i1sj;i2Y ðfi1;i2gÞ¼1;
wherefi1;i2g¼ Ij[�Ij; if lðCjÞ¼2

sj;i1Y ðfi1gÞþsj;i2Y ðfi2gÞþsj;i3Y ðfi3gÞ�sj;i1sj;i2Y ðfi1; i2gÞ
�sj;i1sj;i3Y ðfi1;i3gÞ�sj;i2sj;i3Y ðfi2;i3gÞ

þsj;i1sj;i2sj;i3Y ðfi1;i2; i3gÞ¼1; where fi1;i2;i3g¼ Ij[�Ij; if lðCjÞ¼3
Yfi1g;fi2g ¼Yfi3g;fi1;i2;i3g; Yfi1g;fi3g ¼Yfi2g;fi1;i2;i3g;

and Yfi2g;fi3g ¼Yfi1g;fi1;i2;i3g where fi1;i2;i3g¼ Ij[�Ij; if lðCjÞ¼3
diagðY Þ¼ e

Y �0

Note that for 2-SAT this relaxation is precisely the R1 relaxation.
We illustrate this construction with an example.

Example 1. Suppose we are given the CNF formula

ðx1 _ x2Þ ^ ðx2 _ �x3 _ x4Þ ^ ðx3 _ �x4 _ �x5Þ ^ ð�x1 _ �x2 _ �x6Þ
Then

O ¼ ff1g; f2g; f3g; f4g; f5g; f6g; f234g; f345g; f126gg;
and the matrix variable Y , if it is rank-one, has the form
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1 x1 x2 x3 x4 x5 x6 x2x3x4 x3x4x5 x1x2x6
x1 1 x1x2 x1x3 x1x4 x1x5 x1x6 x1x2x3x4 x1x3x4x5 x2x6
x2 x1x2 1 x2x3 x2x4 x2x5 x2x6 x3x4 x2x3x4x5 x1x6
x3 x1x3 x2x3 1 x3x4 x3x5 x3x6 x2x4 x4x5 x1x2x3x6
x4 x1x4 x2x4 x3x4 1 x4x5 x4x6 x2x3 x3x5 x1x2x4x6
x5 x1x5 x2x5 x3x5 x4x5 1 x5x6 x2x3x4x5 x3x4 x1x2x5x6
x6 x1x6 x2x6 x3x6 x4x6 x5x6 1 x2x3x4x6 x3x4x5x6 x1x2

x2x3x4 x1x2x3x4 x3x4 x2x4 x2x3 x2x3x4x5 x2x3x4x6 1 x2x5 x1x3x4x6
x3x4x5 x1x3x4x5 x2x3x4x5 x4x5 x3x5 x3x4 x3x4x5x6 x2x5 1 x1x2x3x4x5x6
x1x2x6 x2x6 x1x6 x1x2x3x6 x1x2x4x6 x1x2x5x6 x1x2 x1x3x4x6 x1x2x3x4x5x6 1

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

Using the construction presented, we have the matrix variable Y partially
patterned on the structure of the rank-one matrix as follows:

Y ¼

1 Y;;f1g Y;;f2g Y;;f3g Y;;f4g Y;;f5g Y;;f6g Y;;f2;3;4g Y;;f3;4;5g Y;;f1;2;6g
1 Yf1g;f2g � � � Yf1g;f6g � � Yf2g;f6g

1 Yf2g;f3g Yf2g;f4g � Yf2g;f6g Yf3g;f4g � Yf1g;f6g
1 Yf3g;f4g Yf3g;f5g � Yf2g;f4g Yf4g;f5g �

1 Yf4g;f5g � Yf2g;f3g Yf3g;f5g �
1 � � Yf3g;f4g �

1 � � Yf1g;f2g
1 � �

1 �
1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where the lower triangle of Y is fixed by symmetry. The elements of Y denoted
by asterisks are not involved in any of the linear equality constraints, al-
though they are of course constrained by the positive semidefiniteness con-
straint.

We then express the conditions for satisfiability using the entries in Y . For
each clause in the formula, we need one equality constraint:

ðx1 _ x2Þ ) Y;;f1g þ Y;;f2g � Yf1g;f2g ¼ 1;

ðx2 _ �x3 _ x4Þ )Y;;f2g � Y;;f3g þ Y;;f4g þ Yf2g;f3g � Yf2g;f4g þ Yf3g;f4g � Y;;f2;3;4g ¼ 1;

ðx3 _ �x4 _ �x5Þ )Y;;f3g � Y;;f4g � Y;;f5g þ Yf3g;f4g þ Yf3g;f5g � Yf4g;f5g þ Y;;f3;4;5g ¼ 1;

ð�x1 _ �x2 _ �x6Þ ) � Y;;f1g � Y;;f2g � Y;;f6g � Yf1g;f2g � Yf1g;f6g � Yf2g;f6g � Y;;f1;2;6g ¼ 1;

and thus the R2 relaxation is

find Y 2 S10
s:t:

Y;;f1g þ Y;;f2g � Yf1g;f2g ¼ 1
Y;;f2g � Y;;f3g þ Y;;f4g þ Yf2g;f3g � Yf2g;f4g þ Yf3g;f4g � Y;;f2;3;4g ¼ 1
Y;;f3g � Y;;f4g � Y;;f5g þ Yf3g;f4g þ Yf3g;f5g � Yf4g;f5g þ Y;;f3;4;5g ¼ 1
�Y;;f1g � Y;;f2g � Y;;f6g � Yf1g;f2g � Yf1g;f6g � Yf2g;f6g � Y;;f1;2;6g ¼ 1

Yf2g;f6g ¼ Yf1g;f1;2;6g
Yf3g;f4g ¼ Yf2g;f2;3;4g
Yf1g;f6g ¼ Yf2g;f1;2;6g
Yf2g;f4g ¼ Yf3g;f2;3;4g
Yf4g;f5g ¼ Yf3g;f3;4;5g
Yf2g;f3g ¼ Yf4g;f2;3;4g
Yf3g;f5g ¼ Yf4g;f3;4;5g
Yf3g;f4g ¼ Yf5g;f3;4;5g
Yf1g;f2g ¼ Yf6g;f1;2;6g

diagðY Þ ¼ e
Y � 0
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4. Theoretical properties of the R2 relaxation

If the given instance of 3-SAT is satisfiable, then it is straightforward to
construct a rank-one matrix Y feasible for the R2 relaxation using any sa-
tisfying truth assignment. The contrapositive of this statement gives a suffi-
cient condition for proving unsatisfiability using the R2 relaxation.

Lemma 1. Given any instance of 3-SAT, consider the corresponding semi-
definite relaxation R2. If the relaxation R2 is infeasible, then the 3-SAT instance
is unsatisfiable.

The rest of this section is concerned with conditions for using R2 to prove
satisfiability. More precisely, we prove that for the SDP relaxation R2, if the
SDP solver returns a feasible matrix of rank at most two, then the 3-SAT
instance is satisfiable. Furthermore, the proof shows how to obtain a sa-
tisfying truth assignment from such a feasible matrix. We will make use of the
following Lemmas.

Lemma 2. [3, Lemma 3.9] Suppose

1 a b
a 1 c
b c 1

0

@

1

A � 0:

Then

1. If a2 ¼ 1 then b ¼ ac;
2. If b2 ¼ 1 then a ¼ bc;
3. If c2 ¼ 1 then a ¼ cb:

Lemma 3. [3, Lemma 3.11] Suppose that the matrix

1 a b c

a 1 c b

b c 1 a

c b a 1

0

B
B
B
B
@

1

C
C
C
C
A

is positive semidefinite and has rank at most two. Then at least one of a,b,c
equals �1.

For every clause Cj with lðCjÞ ¼ 3, let YCj denote the 5� 5 principal
submatrix of the matrix variable Y corresponding to the rows and columns of
Y indexed by f;; fi1g; fi2g; fi3g; fi1; i2; i3gg, where fi1; i2; i3g ¼ Ij [ �Ij.

Lemma 4. If Y is feasible for the SDP relaxation and rank Y � 2, then for
each clause Cj with lðCjÞ ¼ 3, the corresponding principal submatrix YCj has at
least one of the entries corresponding to a pair of variables equal to �1.
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Proof. Let i1, i2, and i3 denote the three variables in Cj, and suppose without
loss of generality that i1 < i2 < i3. The principal submatrix YCj has the form

1 Y;;fi1g Y;;fi2g Y;;fi3g Y;;fi1;i2;i3g
Y;;fi1g 1 Yfi1g;fi2g Yfi1g;fi3g Yfi2g;fi3g
Y;;fi2g Yfi1g;fi2g 1 Yfi2g;fi3g Yfi1g;fi3g
Y;;fi3g Yfi1g;fi3g Yfi2g;fi3g 1 Yfi1g;fi2g

Y;;fi1;i2;i3g Yfi2g;fi3g Yfi1g;fi3g Yfi1g;fi2g 1

0

B
B
B
@

1

C
C
C
A

and since rank Y � 2) rankYCj � 2, it follows by Lemma 3 that at least one
of Yfi1g;fi2g; Yfi1g;fi3g, and Yfi2g;fi3g equals �1. h

By Lemma 4, suppose (without loss of generality) that Yfi1g;fi2g ¼ d, where
d2 ¼ 1. Then for every row index I 0 in O the principal submatrix indexed by
fI 0; fi3g; fi1; i2; i3gg has the form

1 YI 0;fi3g YI 0;fi1;i2;i3g
YI 0;fi3g 1 d

YI 0;fi1;i2;i3g d 1

0

@

1

A

and by Lemma 2, it follows that YI 0;fi3g ¼ dYI 0;fi1;i2;i3g. Hence, the entire column
fi1; i2; i3g equals d times the column fi3g. Similarly, the column fi2g equals d
times the column fi1g.

Now let us turn our attention to the constraints enforcing satisfiability.
Firstly, observe that Y ðfi2gÞ ¼ dY ðfi1gÞ implies that for all the constraints
involving terms Y ðIÞ such that i2 2 I , we can replace Y ðIÞ by
dY ððInfi2gÞ [ fi1gÞ (since column fi2g equals d times column fi1g). Secondly,
consider the clauses Cj of length 3. For each such clause Cj, we have the
constraint

1� sj;i1Y ðfi1gÞ � sj;i2Y ðfi2gÞ � sj;i3Y ðfi3gÞ þ sj;i1sj;i2Y ðfi1; i2gÞ

þsj;i1sj;i3Y ðfi1; i3gÞ þ sj;i2sj;i3Y ðfi2; i3gÞ � sj;i1sj;i2sj;i3Y ðfi1; i2; i3gÞ ¼ 0
ð5Þ

(which we have rewritten for convenience). By the previous observations, we
have that Y ðfi1; i2gÞ ¼ d implies

Y ðfi1; i2; i3gÞ ¼ dY ðfi3gÞ
Y ðfi2; i3gÞ ¼ dY ðfi1; i3gÞ

Y ðfi2gÞ ¼ dY ðfi1gÞ
Substituting for Y ðfi1; i2; i3gÞ, Y ðfi2; i3gÞ, and Y ðfi2gÞ in equation (5) yields

½1þ dsj;i1sj;i2 	 � ½sj;i1 þ dsj;i2 	Y ðfi1gÞ � ½sj;i3 þ dsj;i1sj;i2sj;i3 	Y ðfi3gÞ
þ½sj;i1sj;i3 þ dsj;i2sj;i3 	Y ðfi1; i3gÞ ¼ 0

which is equivalent to

1þ dsj;i1sj;i2

� �
1� sj;i1Y ðfi1gÞ � sj;i3Y ðfi3gÞ þ sj;i1sj;i3Y ðfi1; i3gÞ½ 	 ¼ 0: ð6Þ

Since dsj;i1sj;i2 ¼ �1, we have two cases:

Case 1.: dsj;i1sj;i2 ¼ �1. Then 1þ dsj;i1sj;i2 ¼ 0 and therefore the constraint
will hold regardless of the values assigned to Y ðfi1gÞ, Y ðfi3gÞ, and
Y ðfi1; i3gÞ. This case occurs when any truth assignment to xi1 and xi2
such that xi1xi2 ¼ d ensures that the clause evaluates to TRUE,
regardless of the value of xi3 .

360 M. F. Anjos



Case 2.: dsj;i1sj;i2 ¼ 1. In this case, we must ensure that the values assigned to
Y ðfi1gÞ, Y ðfi3gÞ, and Y ðfi1; i3gÞ satisfy the constraint

1� sj;i1Y ðfi1gÞ � sj;i3Y ðfi3gÞ þ sj;i1sj;i3Y ðfi1; i3gÞ ¼ 0:

Finally, we define a reduced SDP as follows: take every constraint arising
from Case 2 above, and let the matrix ~Y be indexed by the set of singletons
fikg such that Y ðfikgÞ appears in at least one of these constraints. The SDP
defined by the matrix ~Y and the constraints arising from Case 2 above, plus
the constraint ~Y � 0, is precisely of the form of the Gap relaxation for an
instance of 2-SAT. This means that the presence of a �1 in each principal
submatrix corresponding to a clause of length 3 allows us to reduce the
problem to an instance of 2-SAT.

Now recall that we have a matrix Y feasible for the original R2 relaxation,
and observe that its principal submatrix indexed by the set of singletons used
to define ~Y is feasible for this reduced SDP. By Theorem 1, this implies that
the instance of 2-SAT is satisfiable. Consider a truth assignment that satisfies
the 2-SAT instance. For any of the variables in the original instance of 3-SAT
that are not present in this truth assignment, either they are to be set equal to
� one of the variables in this assignment, or they are ‘‘free’’, and can be
assigned the value þ1, say. Finally, construct the rank-one matrix Y corre-
sponding to this truth assignment. Then Y is feasible for the original SDP
relaxation, and hence we conclude that the instance of 3-SAT is satisfiable.

Thus, we have proved:

Theorem 3. Given any instance of 3-SAT in CNF, consider the corresponding
semidefinite relaxation R2:

– If R2 is infeasible, then the instance is unsatisfiable.
– If Y is feasible for R2 and rank Y � 2, then the 3-SAT instance is satisfiable.

5. A trio of linearly sized semidefinite relaxations

For any instance of 3-SAT with n variables and m clauses, the SDP relaxation
R2 can be viewed as an intermediate relaxation between R1 and R3, and thus it
completes a trio of linearly sized SDP relaxations with correspondingly
stronger rank guarantees. The characteristics of the relaxations are summa-
rized in Table 1.

The names of the relaxations reflect their increasing strength in the fol-
lowing sense: For k ¼ 1; 2; 3, any feasible solution to the relaxation Rk with
rank at most k proves satisfiability of the corresponding 3-SAT instance.
Furthermore, the increasing values of k also reflect an improving ability to
detect unsatisfiability, and an increasing computational time for solving the
relaxation. Nonetheless, the dimensions of the relaxations grow only linearly
with n and m.

On semidefinite programming relaxations for the satisfiability problem 361



6. Computational comparison of the SDP relaxations

We tested the effectiveness of the three relaxations by applying each of them
within an enumerative search procedure to prove satisfiability or unsatisfi-
ability of 3-SAT instances. The SDP relaxations were solved using the solver
SDPT3 (version 3.0) [34]. Although the SDPs in this paper have all been
stated as feasibility problems, in practice we must choose an objective func-
tion to be optimized. We used the function

Pn
i¼1 xi as objective function for

all our tests. We did not exploit any bounding information within the enu-
merative search since we stopped as soon as we found either a feasible
solution of sufficiently low rank (and hence a valid truth assignment), or a
certificate of infeasibility.

6.1. Criteria for Detecting Satisfiability

In implementing our algorithm, it is important to use the rank conditions to
detect that a feasible matrix actually yields a satisfying truth assignment. The
rank-one matrices can be detected by applying the following result from [1,
Theorem 2.1.1]:

Theorem 4. For any symmetric n� n positive semidefinite matrix Y ,

Yi;j ¼ �1 for all i; j ¼ 1; . . . ; n if and only if rankðY Þ ¼ 1:

Hence, if the optimal matrix Y � returned by the solver has all of its entries
equal to �1, then Y � directly yields a truth assignment showing that the
formula is satisfiable. In our algorithm, the tolerance for determining that an
entry of Y would be considered equal to �1 was chosen to be 0:999. Thus, if
jYi;jj � 0:999 then we set Yi;j ¼ signðYi;jÞ.

Failing that, we can check for R2 and R3 whether the rank of Y � is suffi-
ciently small by calculating the eigenvalues of Y � and checking them against a
given tolerance to determine whether they are deemed to be nonzero. (This
tolerance was set to 10�8 in our algorithm.) If the appropriate rank condition
holds, then we use the construction in Section 4 to reduce the problem to an
instance of 2-SAT. A satisfying truth assignment for this instance of 2-SAT
can be obtained from the appropriate principal submatrix of Y � as described
in Section 5 of [12]. Once we have this truth assignment, it is straightforward
to extend it to a satisfying truth assignment for the original 3-SAT instance.

Table 1. A Trio of Linearly Sized SDP Relaxations for 3-SAT

Relaxation Dimension of the
matrix variable Y

Number of linear
constraints

Sufficient condition on
rankðY Þ to deduce SAT

R1 nþ 1 nþ mþ 1 rankðY Þ ¼ 1
R2 � nþ mþ 1 � nþ 5mþ 1 rankðY Þ � 2
R3 � nþ 4mþ 1 � nþ 26mþ 1 rankðY Þ � 3

362 M. F. Anjos



6.2. Reducing the Dimension of the SDPs

Once one or more variables have been fixed, the SDP relaxation for the
resulting instance can be reduced in size by dropping all the clauses which
become satisfied by that assignment to the variables. This has a positive
impact both on the dimension of the matrix variable and the number of
constraints in the SDP. As a consequence, the SDP relaxation quickly be-
comes more effective as we fix one or more variables during the enumeration
process. Obviously, if the current set of fixed variables renders all clauses
satisfied or makes any clause unsatisfiable, then no SDP needs to be solved.

6.3. Search Strategy

Our search strategy was depth-first search, and we used the following strategy
for choosing the branching variable:

1. For the current instance, count the number of occurrences of each variable
(or its negation);

2. Consider the variables that attain the highest count, and choose the vari-
able which has smallest absolute value in the solution to the current SDP
relaxation;

3. Branch on this variable, and search first the assignment to this variable
which immediately satisfies the larger number of clauses.

Any ties in steps 2 and 3 are broken arbitrarily.

The motivation for step 1 is to choose a variable for which the fixing will
impact a large number of clauses. Then, in step 2, we choose from among
these variables the one with smallest absolute value. The idea behind this
heuristic is that for the rank-one matrices corresponding to truth assignments,
all the entries equal �1; hence entries with small magnitude are less desirable.
Finally, step 3 is a greedy choice that uses the fixing of the variable to satisfy
as many clauses as possible immediately.

6.4. Summary of Computational Results

The algorithm was implemented in Matlab on a 2.4 GHz Pentium IV with
1.5Gb. We solved both satisfiable and unsatisfiable instances of 3-SAT from
the Uniform Random-3-SAT benchmarks available at [21]. We considered
two sets of problems having n ¼ 50 and n ¼ 75 variables and m ¼ 218 and
m ¼ 325 clauses respectively. We ran a total of 40 instances of 3-SAT from
each set, half of them satisfiable and the other half unsatisfiable. For all the
relaxations, the algorithm was stopped after 2 hours on the instances with 50
variables, and after 3 hours on the instances with 75 variables. The compu-
tational results averaged over the 20 instances of each type are reported in
Tables 2 and 3. These results are for small problems, but they clearly illustrate
the tradeoffs involved in the choice of SDP relaxation as well as the advantage
of the R2 relaxation over the other two relaxations when applied within an
enumerative algorithm. We make the following observations:

– The Gap relaxation is solved most quickly of all three, but we see that the
enumerative algorithm using it has to reach a large depth in the search tree
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before it stops. As a result, its total time is higher than that of the algo-
rithm using R2.

– The opposite happens with the algorithm using R3: each SDP takes much
longer to solve, but the depth reached in the search tree is lower than for
the other two relaxations.

We conclude that, in comparison with the other two relaxations, the R2

relaxation is the most effective, and it can be routinely used to prove both
satisfiability and unsatisfiability for instances with a few hundred clauses.
However, we must mention that the computational time for the algorithm
using R2 still increases quite rapidly. To illustrate this, we applied this algo-
rithm to 40 instances of 3-SAT with n ¼ 100 and m ¼ 430 from the same set
of benchmarks, evenly divided between satisfiable and unsatisfiable instances.
The algorithm was allowed to run to completion on all instances. The com-
putational results averaged over each set of 20 instances are reported in Table
4. Notice that proofs of satisfiability require over one hour on average, and
proofs of unsatisfiability over six hours. Indeed, the computational time for
any SDP-based algorithm is dominated by the effort required to solve the
SDPs. It is important to note that we used a general-purpose solver which
does not take advantage of the structure of the SDPs. Although important
advances have been made in the development of algorithms for solving SDPs
by taking advantage of structure [7,14,31,20,23,24,9,36], none of the tech-
niques proposed so far is of help in solving the SAT relaxations. Current

Table 2. Computational results for satisfiable 3-SAT instances

Instances with n ¼ 50 variables and m ¼ 218 clauses

SDP
used

Statistics of initial SDP
averaged over 20 instances

# of
instances

Performance statistics averaged
over the solved instances

# linear
constraints

Dimension
of Y

CPU
seconds
to solve

solved
(2-hour
timeout)

# calls
to SDP
solver

Deepest
node
reached

Depth
of valid
truth
assignment
found

CPU
seconds
for proof
of SAT

Gap 269 51 2 20 664 42 41 603
R2 486 268 28 20 28 12 12 199
R3 5104 775 1205 11 11 8 8 5165

Instances with n ¼ 75 variables and m ¼ 325 clauses

SDP
used

Statistics of initial SDP
averaged over 20 instances

# of
instances

Performance statistics averaged
over the solved instances

# linear
constraints

Dimension
of Y

CPU
seconds
to solve

solved
(3-hour
timeout)

# calls
to SDP
solver

Deepest
node
reached

Depth
of valid
truth
assignment
found

CPU
seconds
for proof
of SAT

Gap 401 76 3 11 2498 62 59 4083
R2 725 400 29 20 91 18 17 1259
R3 7883 1220 4604 0 – – – –
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research is considering how the structure of the R2 and R3 relaxations could be
specifically exploited within an SDP solver.

7. Future research directions

In this paper, we have proposed a new SDP relaxation for SAT and presented
computational results showing that it is more effective than previous relax-
ations in the literature when considering an SDP-based enumerative ap-
proach for solving instances of SAT in conjunctive normal form. Based on the
computational results in [2], it is likely that an SDP-based approach has the
potential to complement existing SAT algorithms, and this new relaxation is
another step in our ongoing research towards a practical SDP-based algo-
rithm for SAT.

From this perspective, we have two particularly important directions for
future research. Firstly, the enumerative algorithm could be significantly
improved by the application of more sophisticated techniques known in the
SAT area, such as splitting and resolution (see e.g. [17, Section 6] and the
references therein). Secondly, the computational time for the SDP-based
algorithms is dominated by the effort required to solve the SDPs. We have
solved all the SDPs using a general-purpose solver which does not take
advantage of the structure of the SDP relaxations for SAT. Future research
will consider how the structure of the R2 and R3 relaxations could be spe-
cifically exploited.

Table 3. Computational results for unsatisfiable 3-SAT instances

Instances with n ¼ 50 variables and m ¼ 218 clauses

SDP
used

Statistics of initial SDP
averaged over 20 instances

# of
instances

Performance statistics averaged
over the solved instances

# linear
constraints

Dimension
of Y

CPU
seconds
to solve

solved
(2-hour
timeout)

# calls
to SDP
solver

Deepest
node
reached

CPU seconds
for proof
of UnSAT

Gap 269 51 2 20 363 23 526
R2 485 267 12 20 41 6 337
R3 5090 773 1189 2 8 3 6139

Instances with n ¼ 75 variables and m ¼ 325 clauses

SDP
used

Statistics of initial SDP
averaged over 20 instances

# of
instances

Performance statistics averaged
over the solved instances

# linear
constraints

Dimension
of Y

CPU
seconds
to solve

solved
(3-hour
timeout)

# calls
to SDP
solver

Deepest
node
reached

CPU seconds
for proof
of UnSAT

Gap 401 76 3 6 2626 41 7564
R2 725 400 30 20 194 11 2955
R3 7886 1220 4628 0 - - -
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34. Toh KC, Todd MJ, Tütüncü RH (1999) SDPT3—a MATLAB software package for
semidefinite programming, version 1.3. Optim. Methods Softw., 11/12(1–4):545–581

35. van Maaren H (1999) Elliptic approximations of propositional formulae. Discrete Appl.
Math., 96/97:223–244

36. Wolkowicz H Solving semidefinite programs using preconditioned conjugate gradients.
Optim. Methods Softw., to appear

37. Wolkowicz H, Saigal R, Vandenberghe L, editors. (2000) Handbook of semidefinite
programming. Kluwer Academic Publishers, Boston, MA

38. Zwick U (1999) Outward rotations: a tool for rounding solutions of semidefinite
programming relaxations, with applications to MAX CUT and other problems. In
Proceedings of 31st STOC, pages 679–687

On semidefinite programming relaxations for the satisfiability problem 367


