
Abstract. Higher-dimensional orthogonal packing problems have a wide
range of practical applications, including packing, cutting, and scheduling. In
the context of a branch-and-bound framework for solving these packing
problems to optimality, it is of crucial importance to have good and easy
bounds for an optimal solution. Previous efforts have produced a number of
special classes of such bounds. Unfortunately, some of these bounds are
somewhat complicated and hard to generalize. We present a new approach
for obtaining classes of lower bounds for higher-dimensional packing prob-
lems; our bounds improve and simplify several well-known bounds from
previous literature. In addition, our approach provides an easy framework for
proving correctness of new bounds.

This is the second in a series of four articles describing new approaches to
higher-dimensional packing.

Key words: Cutting and packing, Higher-dimensional packing, Geometric
optimization, Discrete structures, Lower bounds

1 Introduction

The problem of cutting a rectangle into smaller rectangular pieces of given
sizes is known as the two–dimensional cutting stock problem. It arises in many
industries, where steel, glass, wood, or textile materials are cut, but it also
occurs in less obvious contexts, such as machine scheduling or optimizing the
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layout of advertisements in newspapers. The three-dimensional problem is
important for practical applications as container loading or scheduling with
partitionable resources. It can be thought of as packing axis-aligned boxes
into a container, with a fixed orientation of boxes. We refer to the generalized
problem in d � 2 dimensions as the d-dimensional orthogonal knapsack
problem (OKP-d). Being a generalization of the bin packing problem, the
OKP-d is strongly NP-complete. The vast majority of work done in this field
refers to a restricted problem, where only so–called guillotine patterns are
permitted. This constraint arises from certain industrial cutting applications:
guillotine patterns are those packings that can be generated by applying a
sequence of edge-to-edge cuts. The recursive structure of these patterns makes
this variant much easier to solve than the general or non–guillotine problem.

A common approach for obtaining bounds for geometric packing prob-
lems arises from the total volume of the items – if it exceeds the volume of the
container, the set cannot be packed. Thus, we get a one-dimensional problem
and do not have to consider the structure of possible packings. These bounds
are easy to achieve; however, they tend to be rather crude. Just like in the
one-dimensional case (see [6] for an overview and a discussion), there have
been attempts to improve these bounds. In higher dimensions, this is some-
what more complicated; see [16, 19] for two successful approaches. However,
higher-dimensional bounds are still hand-taylored, somewhat complicated
and hard to generalize.

In this paper, we propose a generalization of this method that leads to
better results. The basic idea is to use a number of volume tests, after mod-
ifying the sizes of the boxes. The transformation tries to reflect the relative
‘‘bulkiness’’ of the items, and the way they can be combined.

This is the second in a series of four paper describing new approaches to
higher-dimensional orthogonal packing. [3, 7] presents a combinatorial
characterization of feasible packings, which is the basis for an effective branch-
and-bound approach. A preliminary version of the present paper was [4]. The
third paper [5, 8] describes a resulting overall algorithm. The more recent [1]
considers higher-dimensional packing in the presence of order constraints.

The rest of this paper is organizied as follows. After some basic definitions
and notation in Section 2, Section 3 introduces the fundamental concept of
dual feasible functions. Section 4 describes how to use these functions for the
construction of conservative scales, which yield a formal basis for lower
bounds. Section 5 presents a number of lower bounds for various higher-
dimensional packing problems; Section 6 shows how to apply them to
packing classes, a concept that was introduced in [3, 7].

2 Preliminaries

2.1 Basic setup

In the following, we consider a set of d-dimensional boxes that need to be
packed into a container.

The input data is a finite set of boxes V , and a (vector-valued) size function
w : V ! Qþd

0 that describes the size of each box in any dimension x1; . . . ; xn.
For the orthogonal knapsack problem (OKP), we also have a value function
v : V ! Qþ that describes the objective function value for each box.
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The size of the container is given by a vector W 2 Qþ
d
. Whenever con-

venient, we may assume that the container is a d-dimensional unit cube.
Without loss of generality, we assume that each individual box fits into the
container, i. e., wðbÞ � W holds for each box.

For the volumes of boxes and container we use the following notation. If
b 2 V , and w is a size function defined on V , then volwðbÞ :¼

Qd
i¼1 wiðbÞ

denotes the volume of box b with respect to w. Similarly, the volume of the
container is denoted by volW :¼

Qd
i¼1 Wi:

If S is a finite set and f a real-valued function on S, then we use the
abbreviation f ðSÞ :¼

P
x2S f ðxÞ:

2.2 Orthogonal packings

We consider arrangements of boxes that satisfy the following constraints:

1. Orthogonal Packing: Each face of a box is parallel to a face of the con-
tainer.

2. Closedness: No box may exceed the boundaries of the container.
3. Disjointness: No two boxes must overlap.
4. Fixed Orientations: The boxes must not be rotated.

In the following, we imply these conditions when ‘‘packing boxes into a
container’’, ‘‘considering a set of boxes that fits into a container’’, and speak
of packings.

In the following, we assume that the position of any box is given by the
coordinate of the corner that is closest to the origin.

2.3 Objective functions

Depending on the objective function, we distinguish three types of orthogonal
packing problems:

� The Strip Packing Problem (SPP) asks for the minimal height Wd of a
container that can hold all boxes, where the size in the other d � 1
dimensions W1; . . . ;Wd�1 are fixed.
� For theOrthogonal Bin Packing Problem (OBPP), we have to determine the
minimal number of identical containers that are required to pack all the
boxes.
� In the Orthogonal Knapsack Problem (OKP), each box has an objective
value. A container has to be packed, such that the total value of the packed
boxes is maximized.

To clarify the dimension of a problem, we may speak of OKP-2, OKP-3,
OKP-d, etc.

Problems SPP and OBPP are closely related. For d 2 IN, an OBPP-d
instance can be transformed into a special type of SPP-ðd þ 1Þ instance, by
assigning the same xdþ1-size to all boxes. This is of some importance for
deriving relaxations and lower bounds.

For all orthogonal packing problems we have to satisfy the constraint that
a given set of boxes fits into the container. This underlying decision problem
is of crucial importance for our approach.
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� Orthogonal Packing Problem (OPP): Decide whether a set of boxes V can
be packed into the container.

3 Dual feasible functions

The main objective of this paper is to describe good criteria for dismissing a
candidate set of boxes. We will use the volume criterion on transformed
volumes, by transforming volumes in a way that any transformed instance can
still be packed, if the original instance could be packed. For this purpose, we
describe higher-dimensional transformations called conservative scales. A
particular way of getting conservative scales is to construct them from (one-
dimensional) dual feasible functions.

For the rest of this paper, we assume without loss of generality that the
items have size xi 2 ½0; 1�, and the container size W is normalized to 1. Then
we introduce the following:

Definition 1. (Dual Feasible Functions) A function u : ½0; 1� ! ½0; 1� is called
dual feasible, if for any finite set S of nonnegative real numbers, we have the
relation

X

x2S

x � 1¼)
X

x2S

uðxÞ � 1: ð1Þ

Dual feasible functions have been used in the performance analysis of heu-
ristics for the BPP, first by Johnson [12], then by Lueker [15]; see Coffman
and Lueker [13] for a more detailed description. The term (which was first
introduced by Lueker [15]) refers to the fact that for any dual feasible func-
tion u and for any bin packing instance with item sizes x1; . . . ; xn, the vector
ðuðx1Þ; . . . ; uðxnÞÞ is a feasible solution for the dual of the corresponding
fractional bin packing problem (see [14]). By definition, convex combination
and compositions of dual feasible functions are dual feasible.

Dual feasible functions can be used for improving lower bounds for the
one-dimensional bin packing problem. This is based on the following easy
lemma.

Lemma 2. Let I :¼ ðx1; . . . ; xnÞ be a BPP instance and let u be a dual feasible
function. Then any lower bound for the transformed BPP instance
uðIÞ :¼ ðuðx1Þ; . . . ; uðxnÞÞ is also a lower bound for I .

By using a set of dual feasible functions U and considering the maximum
value over the transformed instances uðIÞ; u 2 U, we can try to obtain even
better lower bounds.

In our paper [6], we describe how dual feasible functions can be used to
obtain good classes of lower bounds for bin packing problems. Several of
these functions will be used in a higher-dimensional context later on, so we
summarize the most important results for the benefit of the reader. For the
BPP, we mostly try to increase the sizes by a dual feasible function, since this
allows us to obtain a tighter bound by using the volume criterion. The hope is
to find a uðkÞ for which as many items as possible are in the ‘‘win zones’’ –
the subintervals of ½0; 1� for which the difference is positive. Given this

314 S. P. Fekete, J. Schepers



motivation, each dual feasible function is illustrated by a figure showing its
win and loss zones.

Proposition 3. Let k 2 IN. Then

uðkÞ : ½0; 1� ! ½0; 1�

x 7!
x; for xðk þ 1Þ 2 Z

bðk þ 1Þxc 1k ; else

(

is a dual feasible function. (See Figure 1.)

The following class of dual feasible functions is the implicit basis for the
bin packing bound L2 by Martello and Toth [17, 18]. This bound is obtained
by neglecting all items smaller than a given value �. We account for these
savings by increasing all items of size larger than 1� �. Figure 2 shows the
corresponding win and loss zones.

Proposition 4. Let � 2 ½0; 12�. Then
U ð�Þ : ½0; 1� ! ½0; 1�

x 7!
1; for x > 1� �
x; for � � x � 1� �
0; for x < �

8
<

:

is a dual feasible function. (See Figure 2.)
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Fig. 1. Win and loss zones for uðkÞ
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In our paper [6], we showhow these two classes of dual feasible functions can
be combined by virtue of Lemma 2 in order to get good bounds for the one-
dimensional BPP. Our family of lower bounds can be computed in time OðnÞ
after sorting the items by size, and it dominates the class L2 that was suggested
by Martello an Toth [17,18] as a generalization of the volume bound L1. Our
framework of dual feasible functions allows an easy generalization and proof of
these bounds. In [6], we show that this generalized bound improves the
asymptotic worst-case performance from 2

3 to
3
4, and provide empirical evidence

that also the practical performance is improved significantly.
Our third class of dual feasible functions has some similarities to some

bounds that were hand-tailored for the two-dimensional and three-dimen-
sional BPP by Martello and Vigo [19], and Martello, Pisinger, and Vigo [16].
However, our bounds are simpler and dominate theirs. (We will discuss this in
detail in Section 5.)

This third class also ignores items of size below a threshold value �. For
the interval ð�; 12�, these functions are constant, on ð12 ; 1� they have the form of
step functions. Figure 3 shows that for small values of �, the area of loss zones
for /ð�Þ exceeds the area of win zones by a clear margin. This contrasts to the
behavior of the functions uðkÞ and U ð�Þ, where the win and loss areas have the
same size.

Theorem 5. Let � 2 ½0; 12Þ. Then

/ð�Þ : ½0; 1� ! ½0; 1�

x 7!
1� bð1�xÞ��1c

b��1c ; for x > 1
2

1
b��1c ; for � � x � 1

2

0; for x < �

8
>><

>>:

is a dual feasible function. (See Figure 3.)

Proof. Let S be a finite set of nonnegative real numbers, with
P

x2S
x � 1. Let

S0 :¼ fx 2 Sj� � x � 1
2g: We distinguish two cases:

If all elements of S have size at most 1
2, then by definition of S0,

(ε)
y = U    (x)

0
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1

1−ε

y

xε

Fig. 2. Win and loss zones for U ð�Þ
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1 �
X

x2S

x �
X

x2S0
x � jS0j� ð2Þ

holds. Since jS0j is integral, it follows that jS0j � b��1c, hence
X

x2S

/ð�ÞðxÞ ¼
X

x2S0
/ð�ÞðxÞ ¼ jS0j 1

b��1c � 1: ð3Þ

Otherwise S contains exactly one element y > 1
2 and we have

1 �
X

x2S

x � y þ
X

x2S0
x � y þ jS0j�: ð4Þ

Therefore jS0j � bð1� yÞ��1c and hence

X

x2S

/ð�ÞðxÞ ¼ /ð�ÞðyÞ þ
X

x2S0
/ð�ÞðxÞ ¼ 1� bð1� yÞ��1c

b��1c þ jS0j 1

b��1c � 1: ð5Þ

h

4 Conservative scales

In this section we return to our original goal: deducing necessary conditions
for feasible packings.

There can only be a packing if the total volume of the boxes does
not exceed the volume of the container. This trivial necessary criterion is
called the volume criterion. As we will see, it remains valid even if we apply
appropriate transformations on the box sizes.

For any coordinate i, let
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FðV ;wiÞ :¼ fS � V jwiðSÞ � 1g; i 2 f1; . . . ; dg
be the family of i-feasible box sets, i.e., the subsets of boxes whose total

i-width does not exceed the width of the container. If we replace w by a size
function w0 without reducing these families, then all packing classes remain
intact:

Theorem 6. Let ðV ;wÞ and ðV ;w0Þ be OPP instances. If for all i 2 f1; . . . ; dg
we have

FðV ;wiÞ � FðV ;w0iÞ; ð6Þ

then any packing class for ðV ;wÞ is also a packing class for ðV ;w0Þ.

Proof. Aswe showed in our paper [3], the existence of a packing is equivalent to
the existence of a packing class, i.e., a set of d graphs Gi ¼ ðV ;EiÞ; i ¼ 1; . . . ; d
that have the following properties:

ðP1Þ : Each Gi :¼ ðV ;EiÞ is an interval graph.

ðP2Þ : Each stable set S of Gi is xi � feasible:

ðP3Þ :
\d

i¼1
Ei ¼ ;:

(Intuitively, these graphs describe the overlap of the i-projections of the boxes.)
This means we can focus on packing classes. The only condition on a

packing class that involves the size of the objects deals with condition (P2):
Any stable set of one of the component graphs Gi should be i-feasible, i.e., the
total sum of i-widths should not exceed the i-width of the container. This
means that an OPP instance is characterized by the families of i-feasible box
sets. By assumption, these are not changed when replacing w by w0. h

Definition 7 (Conservative Scales). A function w0 satisfying the conditions of
Theorem 6 is called a conservative scale for ðV ;wÞ.

The desired generalization of the volume criterion follows directly from
Theorem 6:

Corollary 8. If w0 s a conservative scale for the OPP-instance ðV ;wÞ, then
X

b2V

volw0 ðbÞ � 1 ð7Þ

is a necessary condition for the existence of a packing class for ðV ;wÞ.

In order to apply the new criterion, we need a method for constructing
functions w0. A particular way of getting conservative scales is given by the
dual feasible functions described in the previous section.

Lemma 9. Let ðV ;wÞ be an OPP instance and let u1; . . . ; ud be dual feasible
functions. Then w0 :¼ ðu1ðw1Þ, . . . , udðwdÞÞ is a conservative scale for ðV ;wÞ.
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Proof. For i 2 f1; . . . ; dg the functions ui are dual feasible, hence

S 2 FðV ;wiÞ ,
X

b2S

wiðbÞ � 1)
X

b2S

uiðwiðbÞÞ � 1, S 2 FðV ;w0iÞ:

h

In the previous section,we described the dual feasible functions uðkÞ; k 2 IN; that
can be computed in constant time for any item. They can be used to construct a
conservative scale for an OPP instance in d � jV j-linear time. By checking the
volume criterion for a small set of conservative scales, we get a fast heuristic
method for identifying OPP instances without a feasible packing.

Example 10. Consider the three-dimensional OPP
‘‘Do nine cubes of size 2

5 fit into a unit cube container?’’.
The total volume is 9	 8

125 ¼ 0:576 � 1, hence the volume criterion does not
produce an answer. By applying the dual feasible function uð2Þ to all components,
we get a conservative scale. The transformed boxes are cubes of size 1

2. Now the
total volume is 9	 1

8 ¼ 1:125 > 1, so with the help of Corollary 8, we get the
answer ‘‘no’’ to the original question.

5 Bounds for orthogonal packing problems

Corollary 8 yields a generic method for deriving linear relaxations of
orthogonal packing problems: Let W be an arbitrary set of conservative
scales for ðV ;wÞ. Then the difficult constraint

‘‘ There is a packing class for ðS;wÞ00

can be replaced by the linear restriction

8w0 2 W : volw0 ðSÞ � 1:

The corollary implies that the latter is a relaxation. In the following we will
use this method to obtain bounds for all orthogonal packing problems.

5.1 Strip packing problem

For the SPP-d, we get a lower bound:

Lemma 11. Let V be a set of boxes, let w be a size function on V , and letW be
a finite set of conservative scales for ðV ;wÞ. Then the function LSPP ðV ;wÞ,
defined by

LSPP ðV ;wÞ :¼ max
w02W

volw0 ðV Þ;

is a lower bound for the SPP instance ðV ;wÞ.

The proof is immediate.
If a conservative scale w0 is composed from dual feasible functions as

described in Section 3, which can be evaluated in constant time for each box,
then LSPP ðV ;w0Þ can be computed in time that is linear in d � jV j.
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5.2 Orthogonal knapsack problem

By using the above relaxation, the OKP turns into a higher-dimensional
knapsack problem (MKP) (see [9]). While the OKP is strongly NP-hard, the
MKP can be solved in pseudopolynomial time by using the dynamic program
for the one-dimensional problem.

In case of W ¼ fw0g we get a one-dimensional knapsack problem as an
OKP relaxation, with item weights given by box volumes with respect to the
conservative scale w0, and capacity given by the volume of the container.
These bounds are used in the implementation of our OKP algorithm, which is
described in detail in our paper [5]

5.3 Orthogonal bin packing problem

The OBPP is relaxed to a Vector Packing Problem (see [10], [11]). This
problem is still strongly NP-hard.

In order to derive a bound for the OBPP that is easier to compute, we
consider the continuous lower bound L0 for the one-dimensional BPP. For
unit capacity, this bound arises as the sum of item sizes, rounded up to the
next integer. L0 yields a good approximation of the optimum, as long as there
are sufficiently many ‘‘small’’ items (see [17, 18]).

For many instances, a majority of boxes has at least one dimension that is
significantly smaller than the size of the container. This means that the box
volume is significantly smaller than the volume of the container. In general,
this is still true after a transformation by a conservative scale. This makes it
plausible to use L0 on transformed volumes. Summarizing:

Lemma 12. Let V be a set of boxes, let w be a size function on V , and letW be
a finite set of conservative scales for ðV ;wÞ. Then the function LOBPP ðV ;wÞ,
defined by

Fig. 4. Trying to fit nine cubes of size 0:4 into a unit container. (Example 10)
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LOBPP ðV ;wÞ :¼ max
w02W
d volw0 ðV Þe;

is a lower bound for the normalized OBPP instance ðV ;wÞ.

For conservative scales w0 that are composed from dual feasible functions
as described in Section 3, LOBPP ðV ;w0Þ can be computed in time linear in
d � jV j — just like the bounds for strip packing from Lemma 11.

We demonstrate the advantages of our method by showing that general-
izations of the lower bounds for the OBPP-2 and the OBPP-3 from the papers
by Martello and Vigo [19] and Martello, Pisinger, and Vigo [16] fit into this
framework. Those bounds are stated as maxima of several partial bounds that
can all be stated as in Lemma 12. The necessary conservative scales can all be
constructed from dual feasible functions uð1Þ;U ð�Þ and /ð�Þ. In [19] and [16],
these partial bounds are all derived by separate considerations, some of which
are quite involved. We will discuss two of these cases to demonstrate how our
framework leads to a better understanding of bounds and helps to find
improvements. Particularly useful for this purpose is the decomposition of
bounds into independent one-dimensional components, which was estab-
lished in Lemma 9.

We state the original formulation of the most complicated partial bound
in [19]. The only modification (apart from the naming of variables) arises
from applying their bound to the normalized OBPP-2. (The integrality of
input data that is required in [19] is of no consequence in this context.) For
two parameters p; q 2 ð0; 12�, Martello and Vigo set

I1ðp; qÞ :¼ b 2 V j w1ðbÞ > 1� p ^ w2ðbÞ > 1� qf g;

I2ðp; qÞ :¼ b 2 V n I1ðp; qÞ j w1ðbÞ >
1

2
^ w2ðbÞ >

1

2

� �

;

I3ðp; qÞ :¼ b 2 V j 1

2
� w1ðbÞ � p ^ 1

2
� w2ðbÞ � q

� �

;

mðb;p;qÞ :¼ 1

p

� �
1�w2ðbÞ

q

� �

þ 1

q

� �
1�w1ðbÞ

p

� �

� 1�w1ðbÞ
p

� �
1�w2ðbÞ

q

� �

;

Lðp;qÞðV ;wÞ :¼ jI1ðp; qÞ [ I2ðp; qÞj þ
jI3ðp; qÞj �

P
b2I2ðp;qÞmðb; p; qÞ

bp�1cbq�1c

� �

:

Martello and Vigo derive the bound Lðp;qÞ (which is denoted by L3ðp; qÞ in
[19]) by a geometric argument that uses a certain type of normal form of two-
dimensional packings. This implies that only boxes from the sets I1ðp; qÞ,
I2ðp; qÞ, I3ðp; qÞ are taken into account.

We now give a formulation according to Lemma 12 that uses a conser-
vative scale.

Theorem 13. Let p; q 2 ð0; 12�. With

w0ðp;qÞ :¼ ð/ðpÞ 
 w1;/
ðqÞ 
 w2Þ

we have

Lðp;qÞðV ;wÞ ¼ d volw0ðp;qÞ ðI1ðp; qÞ [ I2ðp; qÞ [ I3ðp; qÞÞe:
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Proof. In the following we only use elementary transformations and the
definition of the dual feasible functions /ð�Þ from Theorem 5.

By definition of I1ðp; qÞ and I3ðp; qÞ it follows immediately that

8b 2 I1ðp; qÞ : volw0ðp;qÞ ðbÞ ¼ 1 � 1 ¼ 1

and

8b 2 I3ðp; qÞ : volw0ðp;qÞ ðbÞ ¼
1

bp�1c
1

bq�1c :

Furthermore, we get for b 2 I2ðp; qÞ
volw0ðp;qÞ ðbÞ ¼ /ðpÞðw1ðbÞÞ � /ðqÞðw2ðbÞÞ

¼ 1� bð1� w1ðbÞÞp�1c
bp�1c

� �

1� bð1� w2ðbÞÞq�1c
bq�1c

� �

¼ 1� bð1� w1ðbÞÞp�1c
bp�1c � bð1� w2ðbÞÞq�1c

bq�1c

þ bð1� w1ðbÞÞp�1cbð1� w2ðbÞÞq�1c
bp�1cbq�1c

¼ 1�
1
q

j k
ð1�w1ðbÞÞ

p

j k
þ 1

p

j k
ð1�w2ðbÞÞ

q

j k
� ð1�w1ðbÞÞ

p

j k
ð1�w2ðbÞÞ

q

j k	 


bp�1cbq�1c

¼ 1� mðb; p; qÞ
bp�1cbq�1c :

All in all, this yields:

dvolw0ðp;qÞ ðI1ðp; qÞ [ I2ðp; qÞ [ I3ðp; qÞÞe

¼
X

b2I1ðp;qÞ
volw0ðp;qÞ ðbÞ þ

X

b2I2ðp;qÞ
volw0ðp;qÞ ðbÞ þ

X

b2I3ðp;qÞ
volw0ðp;qÞ ðbÞ

2

6
6
6

3

7
7
7

¼
X

b2I1ðp;qÞ
1þ

X

b2I2ðp;qÞ
1� mðb; p; qÞ
bp�1cbq�1c

� �

þ
X

b2I3ðp;qÞ

1

bp�1cbq�1c

2

6
6
6

3

7
7
7

¼ jI1ðp; qÞj þ jI2ðp; qÞj �
X

b2I2ðp;qÞ

mðb; p; qÞ
bp�1cbq�1c þ

I3ðp; qÞ
bp�1cbq�1c

2

6
6
6

3

7
7
7

¼ Lðp;qÞðV ;wÞ:
h

This alternative formulation of Lðp;qÞ from Theorem 13 reveals a significant
disadvantage of the bound: Boxes that are not contained in one of the sets
I1ðp; qÞ; I2ðp; qÞ; I3ðp; qÞ are disregarded for the balance, even if their volume is
positive with respect to w0ðp;qÞ. In particular, boxes are disregarded that are
narrow in one coordinate direction (wiðbÞ � 1

2) and wide in the other
(wiðbÞ > 1

2). For example, the OBPP-2 instance with

V :¼ fb1; b2; b3g; wðb1Þ :¼ 2

3
;
1

2

� �

;wðb2Þ ¼ wðb3Þ :¼ 1

2
;
2

3

� �
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yields Lðp;qÞðV ;wÞ ¼ 0 for all p; q 2 ð0; 12�. None of the other partial bounds
from [19] exceed the value of 1. However, the above discussion yields the
following improvement of Lðp;qÞ:

L0ðp;qÞðV ;wÞ ¼ dvolw0ðp;qÞ ðV Þe
This yields L0ð

1
2;
1
2ÞðV ;wÞ ¼ 2, which is the optimal value.

We now give a description of the OBPP bound from [19] with the above
improvement in the framework of conservative scales. Like the proof of
Theorem 13, it can be derived by using only the definition of conservative
scales and elementary transformations.

Theorem 14. For p; q 2 ð0; 12� let

wð1ÞðpÞ :¼ ðuð1Þ 
 w1; U ðpÞ 
 w2Þ;
wð2ÞðpÞ :¼ ðU ðpÞ 
 w1; uð1Þ 
 w2Þ;
wð3ÞðpÞ :¼ ðuð1Þ 
 w1; /ðpÞ 
 w2Þ;
wð4ÞðpÞ :¼ ð/ðpÞ 
 w1; uð1Þ 
 w2Þ;
wð5ÞðpÞ :¼ ð w1; U ðpÞ 
 w2Þ;
wð6ÞðpÞ :¼ ðU ðpÞ 
 w1; w2Þ;

wð7Þðp;qÞ :¼ ð/ðpÞ 
 w1; /ðqÞ 
 w2Þ:
By Lemma 12, the maximum over the partial bounds is

L2d :¼ max max
k2f1;...;6g

max
0<p�1

2

fd volwðkÞðpÞ ðV Þeg; max
0<p�1

2; 0<q�1
2

fd volwð7Þðp;qÞ ðV Þeg
( )

:

L2d dominates the bound L4 from [19].

Like for the bound L2 (see Martello and Toth [17]), finding the maxima
over the parameters p; q can be reduced to considering finitely many values.
This makes it possible to compute the one-parametric bounds in time OðjV jÞ,
and the two-parametric bound in time OðjV j2Þ, provided that the boxes are
sorted by size for each coordinate direction.

Most partial bounds for the OKP-3 that are given in [16] disregard boxes
that do not span at least half the container volume in two coordinate direc-
tions. Since these boxes have to be stacked in the third direction, it is possible
to use the corresponding bounds for the one-dimensional BPP.

Not counting symmetry, there is only one partial bound in [16] that is
really based on higher-dimensional properties. For this bound, we derive a
dominating new bound in terms of conservative scales.

For this purpose, let p; q 2 ð0; 12� and consider the sets

J1ðp; qÞ :¼ b 2 V j w1ðbÞ > 1� p ^ w2ðbÞ > 1� qf g;
J2ðp; qÞ :¼ b 2 V n J1ðp; qÞ j w1ðbÞ > p ^ w2ðbÞ > qf g:

A simplified formulation of the lower bound for the normalized OBPP-3 is

Lðp;qÞðV ;wÞ :¼
X

b2J1ðp;qÞ
w3ðbÞ þ

X

b2J2ðp;qÞ
volwðbÞ

2

6
6
6

3

7
7
7
:
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In the first two coordinate directions, the size of the box is rounded to the full
size of the container, if and only if both sizes exceed their respective threshold
values ð1� pÞ and ð1� qÞ. Noting that the same effect can be reached in each
dimension by using the dual feasible function U ð�Þ, we see that the intercon-
nection between both directions is unnecessary. Using the conservative scale

w0ðp;qÞ :¼ ðU ðpÞ 
 w1;U ðqÞ 
 w2;w3Þ;
we can round up both sizes in the same way, but independent from each
other. This yields the following bound that dominates Lðp;qÞ:

L0ðp;qÞðV ;wÞ :¼ w0ðp;qÞðV Þ
l m

:

For an example that there is some improvement, consider the OBPP-3
instance ðV ;wÞ with five boxes of sizes 2

3 ;
1
2 ;

1
2

� �
. For all p; q 2 ð0; 12� the set

J1ðp; qÞ is empty, so that Lðp;qÞðV ;wÞ � d volwðV Þe ¼ 5
6

 �
¼ 1 holds. On the

other hand, L0ðp;qÞðV ;wÞ ¼ d54e ¼ 2 yields the optimal value.
All other partial bounds from [16] can be formulated as in Lemma 12. The

proof is left to the reader.

Theorem 15. Using the following conservative scales, we get a description of the
bound from [16], including the improvement mentioned above.

wð1ÞðpÞ :¼ ðuð1Þ 
 w1; uð1Þ 
 w2; U ðpÞ 
 w3Þ;
wð2ÞðpÞ :¼ ðuð1Þ 
 w1; U ðpÞ 
 w2; uð1Þ 
 w3Þ;
wð3ÞðpÞ :¼ ðU ðpÞ 
 w1; uð1Þ 
 w2; uð1Þ 
 w3Þ;
wð4ÞðpÞ :¼ ðuð1Þ 
 w1; uð1Þ 
 w2; /ðpÞ 
 w3Þ;
wð5ÞðpÞ :¼ ðuð1Þ 
 w1; /ðpÞ 
 w2; uð1Þ 
 w3Þ;
wð6ÞðpÞ :¼ ð/ðpÞ 
 w1; uð1Þ 
 w2; uð1Þ 
 w3Þ;

wð7Þðp;qÞ :¼ ðU ðpÞ 
 w1; U ðqÞ 
 w2; w3Þ;
wð8Þðp;qÞ :¼ ðU ðpÞ 
 w1; w2; U ðqÞ 
 w3Þ;
wð9Þðp;qÞ :¼ ð w1; U ðpÞ 
 w2; U ðqÞ 
 w3Þ:

Then the maximum of the corresponding partial bounds according to Lemma 12
is

L3dðV ;wÞ :¼max

(

max
k2f1;...;6g

max
0<p�1

2

fd volwðkÞðpÞ ðV Þeg; max
k2f7;...;9g

max
0<p�1

2; 0<q�1
2

fd volwðkÞðp;qÞ ðV Þeg:
)

This dominates the bound L2 from [16].

Like L2d , L3d can be computed in quadratic time.
From the new formulation of L2d and L3d it is immediate how the bounds

can be improved by applying further dual feasible functions, without
changing the complexity. uð1Þ;U ð�Þ, and /ð�Þ are all dual feasible functions with
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win zones in the interval ð12 ; 1�. (See Figures 1, 2, 3). This suggests it may be a
good idea to use uðkÞ; k � 2 as well, where sizes � 1

2 may be rounded up.

6 Bounds for packing classes

As mentioned in the proof of Theorem 6, and described in detail in our
paper [3], it suffices to construct packing classes instead of explicit feasible
geometric arrangements of boxes. This allows us to enumerate over feasible
packings by performing a branch-and-bound scheme over the edge sets of the
component graphs Gi ¼ ðV ;EiÞ. At each stage of this scheme, we have fixed a
subset of edges Eþ;i � Ei; i ¼ 1; . . . ; d to be in the ith component graph Gi.

In the following, we describe how conservative scales can be used for
constructing bounds on partial edge sets. In our exact algorithm that is
described in [5], they help to limit the growth of the search tree.

First of all, conservative scales can be used to weaken the assumptions of
Theorem 9 from our paper [3]:

Theorem 16. Let E be a packing class for ðV ;wÞ, w0 be a conservative scale for
ðV ;wÞ, i 2 f1; . . . ; dg and S � V . Let Gi be the ith component graph of E. Then
Gi½S� contains a clique of cardinality dw0iðSÞe.

Proof. By Theorem 6, any packing class E for ðV ;wÞ is also a packing class
for ðV ;w0Þ. Then the claim follows from Theorem 9 in [3]. h

Now we generalize conservative scales. We assume that only packing
classes E are relevant that satisfy the condition

Eþ;i � Ei; i ¼ 1; . . . ; d; ð8Þ
where Eþ;1 . . . ; Eþ;d are given edge sets on V .

Consider a set of boxes S � V that contains two boxes b; c, such that
e ¼ bc 2 Eþ;i. With e, at least one of the edges of the clique ES must be
contained in the ith component graph of any relevant packing class. This
implies that S can never occur as an independent set of the ith component
graph in condition (P2). Therefore, i-feasibility of S is not an issue, so
removal of S from FðV ;wiÞ cannot delete any relevant packing classes. This
means that for the purpose of size modification, we only have to consider sets
of boxes S with cliques ES that are disjoint from Eþ;i. The family of these sets
is denoted by

FðV ;wi; Eþ;iÞ :¼ S 2 FðV ;wiÞjES \ Eþ;i ¼ ;
� �

:

Therefore, the assumptions of Theorem 6 can be weakened:

Theorem 17. Let ðV ;wÞ and ðV ;w0Þ be OPP-d instances, let
Eþ ¼ ðEþ;1 . . . ; Eþ;dÞ be d-tuples of edge sets on V , and let E be a packing class
of ðV ;wÞ that satisfies (8). Suppose that for all i 2 f1; . . . ; dg the following
holds:

FðV ;wi; Eþ;iÞ � FðV ;w0iÞ: ð9Þ
Then E is a packing class for ðV ;w0Þ.
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Proof. Like in the proof for Theorem 6 we only have to check condition (P2).
By (8) any independent set S of the ith component graph satisfies ES \ Ei ¼ ;.
Then the assumption (9) guarantees that (P2) remains valid when changing w
to w0. h

Definition 18. (Generalization of Definition 7) Given the assumptions of
Theorem 17. Then we say that w0 is a conservative scale for ðV ;w; EþÞ.

Definitions 7 and 18 are compatible. A conservative scale for
ðV ;w; ð;; . . . ; ;ÞÞ is a conservative scale for ðV ;wÞ. Conversely, a conservative
scale for ðV ;wÞ is a a conservative scale for ðV ;w; EþÞ for any d-tuple of edge
sets Eþ of V .

Corollary 8 can now be generalized:

Corollary 19. Let w0 be a conservative scale for ðV ;w; EþÞ. Then condition (7)
from Corollary 8 is a sufficient condition for the existence of a packing class for
ðV ;wÞ that satisfies condition (8).

So far we have used a selection of easily constructible conservative scales
in order to apply the volume criterion. Now we describe a method for
improving conservative scales by increasing the total box volume. Our
approach uses the information provided by (8). The idea is to stretch an
individual box along a given coordinate as much as possible while preserving
a conservative scale.

Lemma 20. Let ðV ;wÞ be an OPP-d instance and let Eþ be a d-tuple of edge
sets on V . Let b 2 V be a box and let i 2 f1; . . . ; dg be a coordinate direction.
Choose

k � max wiðSÞjS 2 FðV ;wi; Eþ;iÞ and b 2 S
� �

: ð10Þ

Then the size function w0 given by

w0jðcÞ :¼ wjðcÞ þ ð1� kÞ for (j,c) = (i,b)
wjðcÞ else

�

ð11Þ

is a conservative scale for ðV ;w; EþÞ.

Proof. Condition (9) needs to be checked only for coordinate i and for sets
containing b. Therefore consider a set S 2 FðV ;wi; Eþ;iÞ with b 2 S. Then the
choice of k assures that

w0iðSÞ ¼ wiðSÞ þ ð1� kÞ � wiðSÞ þ ð1� wiðSÞÞ ¼ 1:
h

It suffices to consider an upper bound for the maximum in (10) for these
computations. For example, the family FðV ;wi; Eþ;iÞ is contained in the the
power set of fbg [ fc 2 V jbc 2 Eþ;ig. Replacing the family by the power set
yields an upper bound that can be computed as the solution of a one-
dimensional knapsack problem.
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The following example illustrates the technical lemma and the underlying
terms.

Example 21. Consider the OPP-2 instance ðV ;w;W Þ with

V :¼ 10; . . . ; 60f g; W :¼ ð20; 13Þ;

wð10Þ ¼ wð20Þ :¼ ð8; 7Þ; wð30Þ :¼ ð12; 4Þ;
wð40Þ ¼ wð50Þ :¼ ð6; 6Þ; wð60Þ :¼ ð8; 3Þ:

Using Theorem 20, we construct a conservative scale that disproves the exis-
tence of a packing class with the side constraints

E1 � Eþ;1 :¼ f1030; 4050g
We start by giving an intuitive idea of the situation. Let direction 1 be ‘‘hori-
zontal’’ and let direction 2 be ‘‘vertical’’. For a packing class, consider the space
right and left of box 10:

� Box 30 must be outside of this space, as it is adjacent to 10 in in Eþ;1; this
implies a horizontal overlap with 10.
� If 20 or 60 are packed alongside 10, horizontal free space of size

W1 � w1ð10Þ � w1ð20Þ ¼ W1 � w1ð10Þ � w1ð60Þ ¼ 20� 8� 8 ¼ 4 is left at the
respective level, which does not fit any further boxes.
� 40 and 50 would both fit next to 10. Because of 4050 2 Eþ;1, one of these boxes

must lie above the other. This means that at most one of the boxes 40 and 50 is
packed alongside 10, leaving horizontal free space of size
W1 � w1ð10Þ � w1ð40Þ ¼ W1 � w1ð10Þ � w1ð50Þ ¼ 20� 8� 6 ¼ 6.

At any level right and left of box 10, at least a total of 4 units must remain free.
This implies an unpacked space of size at least 4 � 7.

These facts can be covered by the terminology of conservative scales:
The maximal sets from FðV ;w1; Eþ;1Þ that contain 10 are

f10; 20g; f10; 40g; f10; 50g; f10; 60g:
This implies

maxfw1ðSÞjS 2FðV ;w1;Eþ;iÞ;10 2 Sg¼maxf8þ8;8þ8;8þ6;8þ6g¼ 16:

By Theorem 20 we get from w a conservative scale for ðV ;w; EþÞby replacing
w1ð10Þ ¼ 8 by 8þ ð20� 16Þ ¼ 12. With respect to this conservative scale, the
total box volume is

12 � 7þ 8 � 7þ 12 � 4þ 6 � 6þ 6 � 6þ 8 � 3 ¼ 284 > 20 � 13 ¼ W1 � W2:

By Theorem 19, no packing class with E1 � Eþ;1 can exist. h

7 Conclusions

We have described a new framework for obtaining lower bounds for
higher-dimensional packing problems. We have shown that all known
classes of lower bounds for these problems can easily be formulated in and
improved by this framework. In this paper we have given three particular
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classes of dual feasible functions. Furthermore, any additional set of dual
feasible functions for one-dimensional packing (described in detail in our
paper [6]) can be used immediately for constructing new lower bounds for
higher-dimensional packing problems, by using convex combinations and
compositions.

When considering the performance of bounds resulting from dual feasible
functions, one should also realize the limitations: As any such bound con-
siders only one item at a time (which is why the bounds have linear com-
plexity after sorting), complications resulting from the more involved
combination of items cannot explicitly be recognized. Again, see [6] for a
discussion in the context of one-dimensional bin packing. Thus, a possible
way to stronger bounds may be to consider logical implications of several
packed items at a time.

We omit a separate computational study on the performance of our new
bounds. Instead, we demonstrate their usefulness by applying them to actu-
ally solve higher-dimensional packing problems to optimality. Combining our
new classes of bounds with our characterization of feasible packings
(described in [3,7]), we get a powerful method that can solve instances of
previously unmanageable size. All technical details are described in our paper
[5].
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