
Abstract. This paper addresses an optimal inventory control in a supply
chain in which customers arrive at a facility according to a Poisson process
and the facility provides service which takes exponential amounts of time,
using items supplied by an outside supplier with exponential lead time pro-
cess. Formulating our model as a Markov decision problem, we identify a
replenishment policy which maximizes the facility’s profit subject to the costs
of service delay, inventory holding, and replenishment setup and analytically
examine how the changes in system parameters affect the optimal profit and
the optimal replenishment policy. We show that these results can be extended
to Erlang lead time process. We present numerical study for the optimal
performance evaluation and comparison of the optimal replenishment policy
with ðQ; rÞ policy.

Key words: Inventory management, Optimal control, Markov decision pro-
cesses, Erlang process

1. Introduction

This paper addresses an optimal inventory control in a supply chain in which
customers arrive at a facility randomly and the facility provides service which
takes random amounts of time using items supplied by an outside supplier. If
the facility places a replenishment order, it arrives after random amounts of
time. When inventory is depleted, a service is not provided until items are
available. The facility earns a revenue whenever a service to each customer is
completed while it faces the costs of service delay, inventory holding, and
replenishment setup. The goal of this paper is to characterize an optimal
replenishment policy which maximizes the facility’s profit and to examine a
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monotonic impact of systems parameters on the optimal policy and optimal
profit.

Several strategic issues emerge from our model. The first question is when
the facility should replenish items to maximize its profits and how many items
should be replenished. The second question is how the change in system
parameters and the randomness in demand, service, and lead time processes
affect the replenishment decision. To provide some insights into the nature of
this problem, we first address these issues in the context of a M=M=1 queueing
system with an exponential replenishment process. It is our hope that the
insights gained here will remain useful in addressing other systems for which
exponential distributions are inappropriate.

By extending our model to the one with an Erlang lead time process, this
paper discusses how the variability in replenishment lead time processes
affects the facility’s profit and how much reduction in lead time variability
leads to increase in the profit. New logistics relationships among business
partners in the supply chain have been developed in an attempt to eliminate
uncertainty in the logistics flow. One such relationship is vendor-managed
inventory (VMI) under which the supplier controls the management of the
facility’s inventory, making such decisions as when and how much inventory
to ship to the facility ([15]). VMI is known to achieve a greater reduction in
actual lead time and its variability through information sharing which enables
the supplier to observe the demands at the facility when they occur ([8]). The
reduction in lead time and its variability brings the cost savings and both the
supplier and the facility can be beneficiaries if they agree to share the savings
([6]).

Several recent papers ([1] [2] [3] [4] [10] [11] [12]) have considered the model
of interest in cost minimization settings. Berman et al. [1] studied a model
with deterministic demand rate, service and lead times, and found an optimal
order quantity. Optimal replenishment policies for the Markovian model with
instantaneous lead time process were analyzed in Berman and Kim [2] and He
et al. [11]. He and Jewkes [10] and He et al. [12] focused on computing optimal
replenishment policies. Berman and Sapna in [4] found an optimal stocking
level for the finite queueing model with Poisson arrivals, general service times,
and zero lead time.

Perhaps the model studied in Berman and Kim [3] is the closest to the
work in this paper. Berman and Kim [3] assumed that the replenishment lead
time process follows an Erlang distribution and characterized an optimal
inventory policy as a monotonic threshold structure using a Markov decision
process approach. The model proposed in the present paper can be viewed as
an extension of the Berman and Kim model in the sense that we assume a
revenue is generated upon the service, incorporate it into the inventory
control, and find an optimal policy which maximize the profit subject to the
same cost components as considered in the Berman and Kim model. In
addition to that, we provide a sensitivity analysis of the optimal performance
with respect to system parameters.

The rest of this paper is organized as follows. The next section provides
the formulation of our Markov decision model. Sect. 3 completely charac-
terizes the optimal replenishment policy and Sect. 4 considers how the
changes in system parameters have an impact on the optimal policy and
optimal profit. In Sect. 5, we numerically investigate monotonic properties of
system parameters on the optimal performance and exhibit the beneficial
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effect of a replenishment decision based on both customer and inventory
information over those based on inventory information only. Section 6
extends our model to the one with Erlang replenishment processes and
numerically shows that a reduction in lead time variability results in a sig-
nificant increase of profitability. In Sect. 7, we consider a model allowing
multiple outstanding orders and demonstrate its importance under a long
replenishment process and heavy traffic. The last section contains conclu-
sions.

2. Model definition

A facility providing a single class of service faces customers arriving
according to a Poisson process with rate k > 0. Each customer requires
exactly one item in inventory for service. Service times are independent and
identically distributed (i.i.d.) exponential random variables with mean l�1

and are independent of all else. Denote the capacity utilization by qð< 1Þ.
A revenue of R is generated whenever a service to each customer is

completed. A linear cost c1 is assessed for each unit of time per each customer
queued. This cost can be viewed as providing an incentive to minimize the
weighted flow times of customer orders. A holding cost c2 is incurred for each
unit of time per each unit of item in inventory. A replenishment order with
size of Q units incurs a lump-sum cost of K and takes an exponential lead time
with mean d�1. We assume that a replenishment order in process is never
interrupted until it is completed and for mathematical tractability there is at
most one outstanding order.

At each decision epoch a policy specifies whether or not a replenishment
order is placed. The set of decision epochs consists of customer arrival, service
completion, and order completion epochs. The original problem is a con-
tinuous time Markov decision problem (MDP). Let the profits at time w 2 R
be discounted with a factor e�bw. Following the uniformization process
(Bertsekas 1987), it can be formulated with an equivalent discrete time MDP
with a transition rate c,kþ lþ d and a discount factor c

bþc. Without any loss
of generality, we assume that bþ c ¼ 1.

We denote the customer queue length and inventory level at time
n ¼ 0; 1; 2; . . . by x1ðnÞ and x2ðnÞ, respectively. A state at a decision epoch n is
described by the following vector: ðx1ðnÞ; x2ðnÞ; dÞ. d is such an indicator
variable that no replenishment orders are in process if d ¼ 0 whereas a
replenishment order is in process if d ¼ 1. The state space is denoted by
S ¼ Zþ � Zþ � f0; 1g. At a decision epoch n, there are two admissible actions
only in each state ðx1ðnÞ; x2ðnÞ; 0Þ: Do not replenish and Replenish.

The goal of this paper is to find a control policy p that maximizes the
following expected discounted profits over an infinite horizon:

E
X1

n¼0
cn R1fn 2 Cpg �

X2

i¼1
cixiðnÞ � K1fn 2 Dpgg

 !
jðx1ð0Þ; x2ð0Þ; dÞ

" #

ð2:1Þ
where Cp and Dp denote the set of random instances that a service is com-
pleted and a replenishment order is placed under policy p, respectively. For
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convenience, let ðx1ð0Þ; x2ð0Þ; dÞ ¼ ðx1; x2; dÞ. Let Jðx1; x2; dÞ be the optimal
expected discounted profit over an infinite horizon when the initial state is
given by ðx1; x2; dÞ. Then, Jðx1; x2; dÞ is the maximum of the expected dis-
counted profits in (2.1).

We denote pðx1; x2Þ ¼ lR1fx1 > 0; x2 > 0g �
P2

i¼1 cixi and Dðx1; x2Þ ¼
ðx1 � 1; x2 � 1Þ if x1 > 0 and x2 > 0; ðx1; x2Þ otherwise. Define the value iter-
ation operator Tu, Tp, and T on any function f as

Tuf ðx1;x2;dÞ¼
pðx1;x2Þþlf ðDðx1;x2Þ;dÞþkf ðx1þ1; x2;dÞþdf ðx1;x2;dÞ if d¼0

pðx1;x2Þþlf ðDðx1;x2Þ;dÞþkf ðx1þ1;x2;dÞþdf ðx1;x2þQ;0Þ if d¼1;

(

Tpf ðx1; x2; 0Þ ¼ �K þ Tuf ðx1; x2; 1Þ;

Tf ðx1; x2; dÞ ¼
maxfTuf ðx1; x2; dÞ; Tpf ðx1; x2; dÞg ifd ¼ 0

Tuf ðx1; x2; dÞ if d ¼ 1.

(

where operators Tu and Tp correspond to Do not replenish and Replenish
action, respectively. Since Tu, Tp, and T are contraction operators, the optimal
profit function J can be shown to satisfy the following optimality equation:

Jðx1; x2; dÞ ¼
maxfTuJðx1; x2; dÞ; TpJðx1; x2; dÞg if d ¼ 0
TuJðx1; x2; dÞ if d ¼ 1.

�

3. Structure of the optimal replenishment policy

To establish the structural properties of the optimal replenishment policy, we
show that certain properties of the functions defined on state space S are
preserved under the operator T (Porteus [13]). Let F be the set of all functions
defined on S such that if f 2 F , then

D1f ðx1; x2; 0Þ � D1f ðx1; x2; 1Þ; ð3:1Þ

D2f ðx1; x2; 0Þ � D2f ðx1; x2; 1Þ; ð3:2Þ

D1f ðx1; x2; 1Þ � D1f ðx1; x2 þ Q; 0Þ; ð3:3Þ

D2f ðx1; x2; 1Þ � D2f ðx1; x2 þ Q; 0Þ; ð3:4Þ

D11f ðx1; x2; dÞ � D11f ðx1 þ 1; x2; dÞ; ð3:5Þ

D11f ðx1; x2; dÞ �
1

1� ðkþ dÞ ðlR� c1 � c2Þ; ð3:6Þ

lD11f ðx1; x2; dÞ � lR; ð3:7Þ

D11f ðx1; x2; 0Þ � D11f ðx1; x2; 1Þ; ð3:8Þ

D11f ðx1; x2; 1Þ � D11f ðx1; x2 þ Q; 0Þ ð3:9Þ
where D1f ðx1; x2; dÞ,f ðx1 þ 1; x2; dÞ �f ðx1; x2; dÞ, D2f ðx1; x2; dÞ, f ðx1; x2 þ 1;

dÞ� f ðx1; x2; dÞ, and D11f ðx1; x2; dÞ,f ðx1 þ 1; x2 þ 1; dÞ� f ðx1; x2; dÞ.
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From Equations (3.1)–(3.4) the incremental profit of holding one more
customer in queue and one more item in inventory is increasing and
decreasing, respectively, in the progress of the replenishment process, which is
straightforward because the larger inventory means less service delay but extra
payment of holding costs. Equations (3.5)–(3.9) characterize the behavior of
D11. Equation (3.5) can be rewritten as f ðx1 þ 2; x2 þ 1; dÞ þf ðx1; x2; dÞ �
f ðx1 þ 1; x2 þ 1; dÞ þ f ðx1 þ 1; x2; dÞ, which can be interpreted as a diagonal
dominance (see [9] for terminology). Equations (3.6) and (3.7) provide an
upper bound on D11. Equations (3.8) and (3.9) have the same interpretations
as of Equations (3.2) and (3.4). We first present the following result:

Lemma 1. If f 2 F ,

D1Tuf ðx1; x2; 0Þ � D1Tpf ðx1; x2; 0Þ; ð3:10Þ

D2Tuf ðx1; x2; 0Þ � D2Tpf ðx1; x2; 0Þ: ð3:11Þ

D11Tuf ðx1; x2; 0Þ � D11Tpf ðx1; x2; 0Þ: ð3:12Þ

Proof. See the Appendix.

Equations (3.10) and (3.11) guarantee a threshold property and a mono-
tonicity of the optimal replenishment policy, respectively. For the detailed
explanation, refer to Berman and Kim [3]. Equation (3.12) is a stronger
condition than Equation (3.11). To see this, suppose that Tpf ðx1; x2; 0Þ
�Tuf ðx1; x2; 0Þ � 0. By Equation (3.12), Tuf ðx1 þ 1; x2 þ 1; 0Þ �Tpf ðx1 þ 1; x2
þ1; 0Þ � Tuf ðx1; x2; 0Þ� Tpf ðx1; x2; 0Þ � 0, which implies a monotonicity with
respect to the upward diagonal direction.

The following lemma says that Equations (3.1)–(3.9) are preserved under
operator T .

Lemma 2. If f 2 F , then Tf 2 F .

Proof. See the Appendix.

We now state the optimal replenishment policy the structure of which is
similar to the one in Berman and Kim[3]. Theorem 1 can be shown using
Lemmas 1 and 2 and the proof is omitted.

Theorem 1. (i) The optimal value function J satisfies Equation (3.1)–(3.9), that
is, J 2 F .

(ii) Let
Hðx1Þ :¼ maxfx2 2 f0; 1; . . . ;1g : TpJðx1; x2; 0Þ > TuJðx1; x2; 0Þg ð3:13Þ

If there does not exist such x2 satisfying (3), set Hðx1Þ :¼ �1. Then, it is
optimal to replenish Q units of items if x2 � Hðx1Þ.

(iii) The threshold function Hðx1Þ is increasing in x1; i.e.,

Hðx1Þ � Hðx1 þ 1Þ; x1 � 0: ð3:14Þ
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We note that the optimal properties obtained under the discounted profit
criterion can be extended to the average profit problem by applying the results
of [7] and [14].

4. Monotonicity of optimal performance with respect to system parameters

In this section we analyze how the optimal discounted profit and optimal
replenishment policy change as a function of system parameters. We first set
the monotonicity of the total discounted profit as a function of some system
parameters given the order quantity, which is an intuitive result.

Theorem 2. The optimal profit function Jðx1; x2; dÞ is increasing in l, d, and R
and decreasing in c1, c2, and K.

Proof. See the Appendix.

We next proceed to characterize the monotonicity of the replenishment
policy with respect to the replenishment cost K and revenue R given the order
quantity. Consider two instances of the scheduling problem described by (2).
To differentiate each other, we use symbol A and B in the first and second
case, respectively, for system parameters, optimal profit function, and optimal
replenishment policy. We first show the monotonicity of the optimal
replenishment policy Hðx1Þ with respect to the replenishment cost K.

Theorem 3. Suppose that kA ¼ kB, lA ¼ lB, dA ¼ dB, RA ¼ RB, cA
1 ¼ cB

1 ,
cA
2 ¼ cB

2 , and KA < KB. Then, HAðx1Þ � HBðx1Þ for all x1 � 0.

Proof. See the Appendix.

Figure 1 displays how the optimal replenishment policy shifts as a func-
tion of K for the example with R ¼ 50, c1 ¼ 3, c2 ¼ 1, k ¼ 0:6, l ¼ 1, d ¼ 0:1,
Q ¼ 20.

The monotonicity of Hðx1Þ with respect to the revenue R is also preserved
in the following theorem.

Theorem 4. Suppose that kA ¼ kB, lA ¼ lB, dA ¼ dB, KA ¼ KB, cA
1 ¼ cB

1 ,
cA
2 ¼ cB

2 , and RA < RB. Then, HAðx1Þ � HBðx1Þ for all x1 � 0.

Proof. See the Appendix.

Figure 2 displays how the optimal replenishment policy shifts as a func-
tion of R for the example with K ¼ 100, c1 ¼ 3, c2 ¼ 1, k ¼ 0:6, l ¼ 1,
d ¼ 0:1, Q ¼ 20. The same truncation levels as in Figure 1 are used here.

5. Numerical study

In this section, we evaluate the optimal performance with respect to system
parameters and compare the optimal replenishment policy to ðQ; rÞ policy. To
this end, we compute the optimal average profits using value iteration [5]. The
stopping rule given by Proposition 7, Ch 7 of Bertsekas [5] is used and the
termination criterion � is set to 10�3.
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Fig. 1. Optimal policy as a function of the replenishment cost K
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Fig. 2. Optimal policy as a function of the revenue R
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5.1. Evaluation of optimal performance

Test examples and computational results are reported in Table 1–4. In these
tables, Q� and �J � represent the optimal order quantity and optimal average
profit. To find Q� and �J �, we first compute the optimal average profit �JðQÞ
given Q using value iteration. Then, varying Q, we find Q� which maximizes
�JðQÞ. Numerical investigation indicates that �JðQÞ may be convex with respect
to Q even though we could not prove it.

Example 1–24 in Table 1 are grouped into 2 sets by the revenue
R ¼ 50; 100. Each group is divided into 3 sub-groups by the lead time:
d ¼ 0:1; 0:2; 1. Each sub-group has 4 different arrival rates: k ¼ 0:3; 0.5, 0.7,
0.9. Table 2 examines the impact of the service rate on the optimal perfor-
mance. In Table 3–4, we investigate the impact of c1 and c2, respectively, on
the optimal performance. Example 37–48 in Table 3 (Example 49–50 in Table
4) are the same as Example 13–24 in Table 1 except for c1 (c2).

Based on the computational results, we observe the following monotonic
behavior of the optimal performance with respect to system parameters
assuming all other parameters are held constant:

1. Q�is non-decreasing as the arrival rate k increases.
2. Q� is non-decreasing and �J� is non-increasing as the mean lead time d�1

increases.
3. �J � is non-decreasing as the service rate l increases.
4. Q� is non-decreasing, and �J � is non-decreasing as the revenue R increases.

Table 1. Test examples and optimal average profits

Ex. R K c1 c2 k l d Q� �J�

1 50 100 3 1 0.3 1 0:1 11 3.276
2 0.5 16 5.387
3 0.7 20 4.054
4 0.9 23 )6.175
5 0.3 0:2 10 5.265
6 0.5 13 9.352
7 0.7 16 10.230
8 0.9 18 1.371
9 0.3 1 9 6.274
10 0.5 11 11.795
11 0.7 13 15.101
12 0.9 14 8.990
13 100 100 3 1 0.3 1 0.1 11 18.263
14 0.5 16 30.252
15 0.7 20 38.553
16 0.9 24 36.657
17 0.3 0.2 10 20.264
18 0.5 13 34.343
19 0.7 16 45.139
20 0.9 18 45.235
21 0.3 1 9 21.274
22 0.5 11 36.795
23 0.7 13 50.089
24 0.9 15 53.304
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5. Q� is non-decreasing, and �J � is non-increasing as the customer holding cost
c1 increases.

6. Q� is non-increasing, �J � is non-increasing as the inventory holding cost c2
increases.

Table 2. Optimal performance as a function of the service rate l

Ex. R K c1 c2 k l d Q� �J�

25 50 100 3 1 0:9 1 0:1 23 )6.175
26 1.2 23 6.972
27 1.4 24 12.558
28 1.6 24 15.480
29 1 0:2 18 1.371
30 1.2 19 14.500
31 1.4 19 19.651
32 1.6 18 22.225
33 1 1 14 8.990
34 1.2 15 21.094
35 1.4 15 25.290
36 1.6 14 27.232

Table 3. Optimal performance as a function of c1

Ex. R K c1 c2 k l d Q� �J�

37 100 100 4.5 1 0.3 1 0.1 12 16.490
38 0.5 17 26.990
39 0.7 21 32.750
40 0.9 24 24.410
41 0.3 0.2 10 18.992
42 0.5 13 31.888
43 0.7 16 40.364
44 0.9 19 34.104
45 0.3 1 8 20.414
46 0.5 11 35.089
47 0.7 13 46.256
48 0.9 15 43.255

Table 4. Optimal performance as a function of c2

Ex. R K c1 c2 k l d Q� �J�

49 100 100 3 1.5 0.3 1 0.1 10 15.995
50 0.5 15 26.079
51 0.7 18 31.879
52 0.9 21 27.423
53 0.3 0.2 8 18.543
54 0.5 11 31.451
55 0.7 14 40.462
56 0.9 16 38.333
57 0.3 1 7 19.834
58 0.5 9 34.605
59 0.7 11 47.089
60 0.9 12 49.197
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It is interesting to see from the first observation that the optimal profit
does not necessarily increase in k. The intuition behind this is that as the
capacity utilization (q) becomes high, the revenue rate lR will be increasingly
offset by service delay and inventory holding costs. In fact, computational
results show that �J� is convex with respect to k. Hence, it is conjectured that
there exists k� which achieves the maximum of profit for the given system
parameters.

5.2. Numerical comparison of optimal policy with ðQ; rÞ

In this section, we numerically investigate the beneficial effect of utilizing
information on both customers in queue and inventory over utilizing only
inventory information when making replenishment decisions.

To this end, we numerically evaluate ðQ; rÞ policy for the examples 1–24 in
Table 1. In implementing ðQ; rÞ policy, we consider three types of reorder
point: r ¼ k=d; 1:2k=d; 1:4k=d. Note that k=d is the average lead time demand.
In Table 5, Qh is the order quantity which maximizes the average profit under
ðQ; rÞ policy, and �JðQ;rÞ is the average profit corresponding to Qh and r. The
column of % is defined as the change in percentage of the profit under ðQ; rÞ
policy relative to the optimal profit.

The sub-optimality of ðQ; rÞ policy varies with the system parameters.
When q ¼ 0:3 or 0.5, the performance of ðQ; rÞ policy becomes improved as
reorder point decreases. When q ¼ 0:7 and 0.9, we have an opposite result.

Table 5. Performance of ðQ; rÞ policy

Ex. r ¼ k=d r ¼ 1:2k=d r ¼ 1:4k=d

Qh �JðQh ;rÞ % Qh �JðQh ;rÞ % Qh �JðQh ;rÞ %

1 11 2.771 15.4 11 2.771 15.4 10 2.422 26.1
2 18 4.848 10.0 16 4.823 10.5 16 4.691 12.9
3 25 2.853 29.6 24 3.163 22.0 23 3.371 16.8
4 30 )7.892 27.8 29 )7.419 20.1 27 )6.738 9.1
5 9 4.805 8.7 9 4.805 8.7 8 4.262 19.1
6 13 8.954 4.3 12 8.800 5.9 12 8.800 5.9
7 20 8.950 12.5 18 9.399 8.1 18 9.399 8.1
8 26 )1.539 212.3 24 )0.569 141.5 23 0.153 88.8
9 8 5.611 10.6 8 5.611 10.6 8 5.611 10.6
10 11 11.434 3.1 11 11.434 3.1 11 11.434 3.1
11 14 14.400 4.6 14 14.400 4.6 14 14.400 4.6
12 20 5.761 35.9 17 7.944 11.6 17 7.944 11.6
13 12 17.963 1.6 12 17.963 1.6 10 17.413 4.7
14 18 29.688 1.9 17 29.675 1.9 16 29.560 2.3
15 28 36.606 5.1 25 37.445 2.9 24 37.703 2.2
16 33 33.844 7.7 32 34.484 5.9 29 35.468 3.2
17 9 19.805 2.3 9 19.805 2.3 8 19.262 4.9
18 13 33.939 1.2 12 33.789 1.6 12 33.789 1.6
19 20 43.745 3.1 18 44.223 2.0 18 44.223 2.0
20 28 41.466 8.3 26 42.616 5.8 24 43.509 3.8
21 8 20.611 3.1 8 20.611 3.1 8 20.611 3.1
22 11 36.434 1.0 11 36.434 1.0 11 36.434 1.0
23 14 49.377 1.4 14 49.377 1.4 14 49.377 1.4
24 20 49.651 6.9 17 52.080 2.3 17 52.080 2.3
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This result means that the reorder point should be carefully determined based
on the capacity utilization.

The ðQ; rÞ policy performs much worse when R ¼ 50 than when R ¼ 100.
We also note that it does not perform well even for Qh ¼ Q� when R ¼ 50.
The intuition behind this is that the optimal policy adjusts the reorder point
depending on the system status in order to save costs and the effect of holding
cost savings on the profit is more obvious when R ¼ 50 than when R ¼ 100.

Table 5 also indicates that even though ðQ; rÞ policy is implemented, the
order quantity Q and reorder point r should be chosen depending on the
system parameters in order to achieve the best performance, which means
ðQ; rÞ policy requires almost the same effort as the optimal policy in terms of
computational complexity.

6. Extension to Erlang lead time distributions

One can expect that as the lead time process becomes less variable, the
facility’s profit would increase and it would be willing to dedicate more of
its effort to assist the supplier in lead time variability reduction. To discuss
it, the replenishment lead time, D, is assumed to have a M-Erlang distri-
bution where M is a positive integer, that is, D ¼

PM
i¼1 Di where Di’s are

exponential random variables with rate Md. Dis are considered as order
process phases that are performed in sequence. If an order is placed, then, it
enters phase M . Spending a time exponentially distributed with rate Md, the
order enters phase M � 1. A replenishment order completion occurs on
leaving phase 1.

The state in the Erlang lead time model is described by ðx1; x2; dÞ where d
represents the remaining replenishment process phase(s). No orders are in
process if d ¼ 0 while d phases are left for the order completion if d > 0. The
operator T is the same as before but Tu and Tp can be defined as

Tuf ðx1;x2;dÞ

¼

pðx1;x2Þþkf ðx1þ1;x2;0Þþlf ðDðx1;x2Þ;0ÞþMdf ðx1;x2;0Þ ifd¼ 0

pðx1;x2Þþkf ðx1þ1;x2;dÞþlf ðDðx1;x2Þ;dÞþMdf ðx1;x2;d�1Þ if 1< d�M

pðx1;x2Þþkf ðx1þ1;x2;1Þþlf ðDðx1;x2Þ;1ÞþMdf ðx1;x2þQ;0Þ if d¼ 1,

8
>>><

>>>:

Tpf ðx1; x2; 0Þ ¼ �K þ Tuf ðx1; x2;MÞ:

The followings are functional properties of f defined on state space S which
establish the structure of the optimal replenishment policy for the Erlang
model:

D1Tf ðx1; x2; dÞ � D1Tf ðx1; x2; dþ 1Þ � D1Tf ðx1; x2; 0Þ; 1 � d � M � 1;

ð6:1Þ

D2Tf ðx1; x2; dÞ � D2Tf ðx1; x2; dþ 1Þ � D2Tf ðx1; x2; 0Þ; 1 � d � M � 1;

ð6:2Þ
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D1f ðx1; x2; 1Þ � D1f ðx1; x2 þ Q; 0Þ; ð6:3Þ

D2f ðx1; x2; 1Þ � D2f ðx1; x2 þ Q; 0Þ; ð6:4Þ

D11f ðx1; x2; dÞ � D11f ðx1 þ 1; x2; dÞ; 0 � d � M ; ð6:5Þ

D11f ðx1; x2; dÞ �
1

1� ðkþ dÞ ðlR� c1 � c2Þ; 0 � d � M ; ð6:6Þ

lD11f ðx1; x2; dÞ � lR; 0 � d � M ; ð6:7Þ

D11f ðx1; x2; dÞ � D11f ðx1; x2; dþ 1Þ � D11f ðx1; x2; 0Þ; 1 � d � M � 1;

ð6:8Þ

D11f ðx1; x2; 1Þ � D11f ðx1; x2 þ Q; 0Þ: ð6:9Þ

Using the same argument as in the exponential lead time, it can be shown that
the results in Lemma 1–2 and Theorem 1 continue to be valid with Erlang
lead times. Figure 3 displays how the optimal average profit changes as a
function of the arrival rate k with a change in lead time variability for the
example with R ¼ 50, K ¼ 100, c1 ¼ 3, c2 ¼ 1, l ¼ 1, d ¼ 0:1, Q ¼ 20. In this
figure, the profit is plotted as a function of k when the replenishment process
is exponential, Erlang-2, Erlang-3, and Erlang-4. As the replenishment pro-
cess becomes less variable, the profit level at any k increases and the level of k
which achieves the maximum of the profit given the replenishment process
distribution also increases.
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Fig. 3. Optimal profit as a function of k with changes in lead time variability
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Similarly, Figure 4 demonstrates the effect of reducing lead time vari-
ability. We plot the optimal profits as a function of the lead time rate d
for cases of exponential, Erlang-2, Erlang-3, and Erlang-4 processes for the
example with R ¼ 50, K ¼ 100, c1 ¼ 3, c2 ¼ 1, k ¼ 0:6, l ¼ 1, Q ¼ 20.
Once again, we note that as the replenishment process becomes less
variable, the profit increases. However, when d � 0:5, the effect of
lowering lead time variability is minor and the profit is almost not affected
by d.

These results clearly explain the beneficial effects of decreasing lead time
variability. In fact, as lower variability leads to higher profits, the facility
might be willing to offer higher replenishment prices to the supplier in
exchange for guarantees in lead time variability.

7. Model with multiple outstanding replenishment orders

In the previous sections, our analysis is restricted to the case with at most one
outstanding replenishment order. However, one might expect that multiple
outstanding replenishment orders can contribute to dealing with demand
fluctuations. To discuss it, we extend our model to the one that a replenish-
ment order can be feasible in any states ðx1; x2; dÞ where d ð0 � d � NÞ rep-
resents the number of outstanding replenishment orders. For example, d
replenishment orders are in process when d > 0 while no orders are in process
when d ¼ 0. The optimal cost function J is given by the following optimality
equation:

Jðx1; x2; dÞ ¼ maxfTuJðx1; x2; dÞ; TpJðx1; x2; dÞg
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where

TuJðx1;x2;dÞ

¼
pðx1;x2ÞþkJðx1;x2þ 1;dÞþlJðDðx1;x2Þ;dÞþNdJðx1;x2;dÞ if d¼ 0

pðx1;x2ÞþkJðx1;x2þ 1;dÞþlJðDðx1;x2Þ;dÞ
þddJðx1;x2þQ;d�1Þþ ðN �dÞdJðx1;x2;dÞ if d> 0

8
><

>:

TpJðx1; x2; dÞ ¼ �K þ TuJðx1; x2; dþ 1Þ:
Although we could not prove monotonicity of the optimal policy with

respect to x1 and d, we provide the following conjecture based on numerical
observations:

Conjecture.

(i) Let

Hðx1; dÞ :¼ maxfx2 2 f0; 1; . . . ;1g : TpJðx1; x2; dÞ > TuJðx1; x2; dÞg ð7:1Þ
If there does not exist such x2 satisfying (7.1), set Hðx1; dÞ :¼ �1. Then, it
is optimal to replenish Q units of items whenever x2 � Hðx1; dÞ.

(ii) The reorder point Hðx1; dÞ is increasing in x1 given d, i.e.,

Hðx1; dÞ � Hðx1 þ 1; dÞ; x1 � 0: ð7:2Þ
(iii) The reorder point Hðx1; dÞ is decreasing in d given x1, i.e.,

Hðx1; dÞ � Hðx1; dþ 1Þ; d � 0: ð7:3Þ

Figure 5 presents the optimal replenishment policy for the example with
R ¼ 50, K ¼ 100, c1 ¼ 3, c2 ¼ 1, k ¼ 0:6, l ¼ 1, d ¼ 0:1, and Q ¼ 20. A
replenishment order is allowed when d ¼ 1 as well as when d ¼ 0. Therefore,
there can be two outstanding orders in the system. In this figure, symbols o
and * represent that it is optimal to replenish in ðx1; x2; 0Þ and ðx1; x2; 1Þ,
respectively. As shown in Figure 5, the monotonic threshold structure of the
optimal policy with respect to x1 and x2 is preserved when d ¼ 0 and d ¼ 1,
respectively, and the monotonicity of the optimal policy with respect to d is
also preserved.

Table 6 displays the optimal performance of the model with two out-
standing orders for examples 1–24 in Table 1. In this table, the second and
third columns represent optimal order quantities and optimal average profits,
respectively. The column of % in the fourth column shows how much the
profit increases when two outstanding orders are allowed compared to when
at most one outstanding order is allowed.

The results in Table 6 clearly demonstrate the beneficial effect of two
outstanding orders when d ¼ 0:1 or q � 0:8. They also show that when d ¼ 1,
allowing two outstanding orders does not contribute to the increase of profits.
It is interesting to see that the beneficial effect is much larger when R ¼ 50
than when R ¼ 100. As one can expect, the model with two outstanding
orders decreases the optimal replenishment quantities. In particular, when
d ¼ 0:1 and q � 0:8, the optimal replenishment quantities decrease by 40%.
This means that the optimal policy prefers more frequent replenishments with
less quantities, which might contribute to the reduction in inventory holding
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Fig. 5. Optimal policy when two outstanding orders are allowed

Table 6. Performance of the model allowing two outstanding orders

Ex. Q� �J � %

1 9 4.098 25.1
2 11 7.800 44.8
3 12 8.378 106.7
4 15 )0.598 90.3
5 9 5.314 0.9
6 11 9.693 3.6
7 12 11.514 12.6
8 13 3.833 179.6
9 9 6.274 0.0
10 11 11.795 0.0
11 13 15.101 0.0
12 14 8.990 0.0
13 9 19.098 4.6
14 11 32.791 8.4
15 13 43.336 12.4
16 15 43.254 18.0
17 10 20.314 0.2
18 11 34.693 1.0
19 12 46.493 3.0
20 13 48.034 6.2
21 9 21.274 0.0
22 11 36.795 0.0
23 13 50.089 0.0
24 15 53.304 0.0
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cost. Intuitively, it is likely that the effect of the savings in holding cost on the
profit will be more apparent when R ¼ 50 than when R ¼ 100.

8. Conclusions

In this paper, we addressed an optimal inventory control in a service facility
that earns a revenue upon each service completion but pays costs of service
delay, inventory holding, and replenishment setup. Using Markov decision
theory we were able to characterize the optimal replenishment policy that
maximizes the facility’s profit as a monotonic threshold policy. We were also
able to establish the monotonic properties of optimal profit function and
optimal reorder point with respect to system parameters.

The analysis of the Erlang lead time model confirmed that the lead time
variability has a significant effect on the facility’s profit, in particular, when
the facility faces either high utilization or long replenishment lead time pro-
cess. Numerical investigation for designed examples exhibited the outper-
formance of the policy using both customer and inventory information over
the one using inventory information only.

Even though we could not prove it, the optimality of a monotonic
threshold replenishment policy seems to be valid for the model with multiple
outstanding orders. Numerical test showed that it performs better than the
model with a single outstanding order.

Appendix

Proof of Lemma 1. The proof of Lemma 1 is very similar to that of (i) and (ii)
of Theorem 2 in Berman and Kim [3] and we omit it.

Proof of Lemma 2. Denote by ðu=pÞ the optimal action in state ðx1; x2; 0Þ
where u and p represent Do not replenish and replenish actions, respectively.
D1Tf ðx1; x2; 0Þ � D1Tf ðx1; x2; 1Þ and D2Tf ðx1; x2; 0Þ � D2Tf ðx1; x2; 1Þ can be
shown in the same way as used in proving (iii) and (iv) of Theorem 2 in
Berman and Kim [3] and we omit it.

(iii) D1Tf ðx1; x2; 1Þ � D1Tf ðx1; x2 þ Q; 0Þ : We focus on the combinations
of actions in ðx1 þ 1; x2 þ Q; 0Þ and ðx1; x2 þ Q; 0Þ. By (3.10) of Lemma 1,
ðu; pÞ is excluded. For ðu; uÞ,

D1Tf ðx1;x2;1Þ�D1Tuf ðx1;x2þQ;0Þ¼�lR1fx1¼ 0;x2¼ 0gþl½D1f ðDðx1;x2Þ;1Þ
�D1f ðDðx1;x2þQÞ;0Þ�þk½D1f ðx1þ1;x2;1Þ�D1f ðx1þ1;x2þQ;0Þ� � 0:

The inequality of l term follows by (3.3) if x1 > 0 and x2 > 0. If x1 ¼ 0 and
x2 > 0, it becomes

f ð0;x2� 1;1Þ � f ð0;x2;1Þ � ðf ð0;x2þQ� 1;0Þ � f ð0;x2þQ;0ÞÞ
¼ D2f ð0;x2þQ� 1;0Þ �D2f ð0;x2� 1;1Þ � 0 ðbyð3:4ÞÞ:

If x1 > 0 and x2 ¼ 0, it becomes D1f ðx1; 0; 1Þ � D1f ðx1 � 1;Q� 1; 0Þ �
D1f ðx1;Q; 0Þ �D1f ðx1 � 1;Q� 1; 0Þ ðby ð3:3ÞÞ ¼ D11f ðx1;Q� 1; 0Þ � D11

f ðx1 �1;Q� 1; 0Þ � 0 ðby ð3:5ÞÞ:
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Finally, if x1 ¼ 0 and x2 ¼ 0, it becomes �lRþ l½D1f ð0; 0; 1Þ � ðf ð0;Q
�1; 0Þ � f ð0;Q; 0ÞÞ� � l½D1f ð0; 0; 1Þ � ðf ð1;Q; 0Þ � f ð0;Q; 0ÞÞ� ðby ð3:7ÞÞ ¼
l½D1f ð0; 0; 1Þ � D1f ð0;Q; 0Þ� � 0 ðby ð3:3ÞÞ:

The inequality of k term follows by (3.3). Case ðp; pÞ can be shown using
the result of ðu; uÞ because

D1Tf ðx1; x2; 1Þ � D1Tpf ðx1; x2 þ Q; 0Þ � D1Tf ðx1; x2; 1Þ
� D1Tuf ðx1; x2 þ Q; 0Þ ðby ð3:10Þ � 0:

Case ðp; uÞ can be shown using the result of ðu; uÞ.
(iv) D2Tf ðx1; x2; 1Þ � D2Tf ðx1; x2 þ Q; 0Þ : We focus on the combinations

of actions in ðx1; x2 þ Qþ 1; 0Þ and ðx1; x2 þ Q; 0Þ. By (3.11) (Monotonicity),
ðp; uÞ is excluded. For ðu; uÞ,

D2Tf ðx1;x2;1Þ�D2Tuf ðx1;x2þQ;0Þ ¼ lR1fx1 > 0;x2 ¼ 0gþl½D2f ðDðx1;x2Þ;1Þ
�D2f ðDðx1;x2þQÞ;0Þ�þ k½D2f ðx1þ1;x2;1Þ�D2f ðx1þ 1;x2þQ;0Þ� � 0:

If x1 > 0 and x2 ¼ 0, the l term becomes

lRþ l½D2f ðDðx1;0Þ;1Þ�D2f ðDðx1;QÞ;0Þ�
¼ lRþ l½f ðx1� 1;0;1Þ� f ðx1;0;1Þ� ðf ðx1� 1;Q;0Þ� f ðx1� 1;Q� 1;0ÞÞ�
� l½f ðx1� 1;0;1Þ� f ðx1;0;1Þ� ðf ðx1� 1;Q;0Þ� f ðx1;Q;0ÞÞ� ðby ð3:7ÞÞ
¼ l½D1f ðx1� 1;Q;0Þ�D1f ðx1� 1;0;1Þ� � 0 ðby ð3:3ÞÞ:

Otherwise, it follows by (3.4). The k term follows by (3.4). The d term is
canceled out. Case ðp; pÞ follows by the result of ðu; uÞ because
D2Tf ðx1; x2; 1Þ � D2Tpf ðx1; x2 þ Q; 0Þ � D2Tf ðx1; x2; 1Þ � D2Tuf ðx1; x2 þ Q; 0Þ
ðby ð3:11ÞÞ � 0: Finally, case ðu; pÞ follows by the result of ðu; uÞ.

(v) D11Tf ðx1; x2; dÞ � D11Tf ðx1 þ 1; x2; dÞ : Suppose that d ¼ 1.

D11Tf ðx1;x2;1Þ�D11Tf ðx1þ1;x2;1Þ¼lR1fx1¼ 0;x2> 0gþl½D11f ðDðx1;x2Þ;1Þ

�D11f ðDðx1þ1;x2Þ;1Þ�1fx2> 0gþk½D11f ðx1þ1;x2;1Þ�D11f ðx1þ2;x2;1Þ�

þd½D11f ðx1;x2þQ;0Þ�D11f ðx1þ1;x2þQþ1;0Þ� � 0:

The term of l follows by (3.5) if x1 > 0 and x2 > 0. If x1 ¼ 0 and x2 > 0,

lRþl½D11f ðDð0;x2Þ;1Þ�D11f ðDð1;x2Þ;1Þ� ¼ lRþl½f ð0;x2;1Þ�
f ð0;x2;1Þ�D11f ð0;x2�1;1Þ� ¼ lR�lD11f ð0;x2�1;1Þ� 0 ðby ð3:7ÞÞ:

The k and d terms follow by (3.5). Assume that d ¼ 0. Using (3.10)–(3.12)
of Lemma 1, admissible actions in states ðx1 þ 1; x2 þ 1; 0Þ, ðx1; x2; 0Þ,
ðx1 þ 2; x2 þ 1; 0Þ, and ðx1 þ 1; x2; 0Þ are the following 6 cases: ðu; u; u; uÞ,
ðu; p; u; pÞ, ðu; p; p; pÞ, ðp; p; p; pÞ, ðu; u; u; pÞ, ðu; u; p; pÞ. For ðu; u; u; uÞ and
ðp; p; p; pÞ, an argument similar to one in case d ¼ 1 is applied here. For
ðu; u; p; pÞ, we have

D11Tuf ðx1; x2; 0Þ � D11Tpf ðx1 þ 1; x2; 0Þ

� D11Tpf ðx1; x2; 0Þ � D11Tpf ðx1 þ 1; x2; 0Þ ðby ð3:12ÞÞ � 0 ðbyðp; p; p; pÞÞ:
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For ðu; p; u; pÞ, we have

Tuf ðx1þ1;x2þ1;0Þ�Tpf ðx1;x2;0Þ� ½Tuf ðx1þ2;x2þ1;0Þ�Tpf ðx1þ1;x2;0Þ�

� Tuf ðx1þ1;x2þ1;0Þ�Tuf ðx1;x2;0Þ

� ½Tuf ðx1þ2;x2þ1;0Þ�Tuf ðx1þ1;x2;0Þ� ðby ð3:10Þ

� 0 ðby case ðu;u;u;uÞÞ:

Case ðu; u; p; uÞ follows by ðu; u; u; uÞ, and ðp; u; p; pÞ by ðp; p; p; pÞ.

(vi) D11Tf ðx1; x2; dÞ � 1
1�ðkþdÞ ðlR� c1 � c2Þ : Suppose d ¼ 0. We focus on

the combinations of actions in ðx1 þ 1; x2 þ 1; 0Þ and ðx1; x2; 0Þ. By (3.12),
ðp; uÞ is excluded. For ðu; uÞ, if x1x2 ¼ 0,

D11Tf ðx1; x2; 0Þ ¼ lR� c1 � c2 þ kD11f ðx1 þ 1; x2; 1Þ þ dD11f ðx1; x2; 0Þ

� lR� c1 � c2 þ ðkþ dÞ 1

1� ðkþ dÞ ðlR� c1 � c2Þ ðby ð3ÞÞ

¼ 1

1� ðkþ dÞ ðlR� c1 � c2Þ:

Otherwise,

D11Tf ðx1; x2; 0Þ ¼ �c1 � c2 þ lD11f ðx1 � 1; x2 � 1; 1Þ þ kD11f ðx1 þ 1; x2; 1Þ

þ dD11f ðx1; x2; 0Þ

� lR� c1 � c2 þ kD11f ðx1 þ 1; x2; 1Þ þ dD11f ðx1; x2; 0Þ ðby ð3:7ÞÞ

� 1

1� ðkþ dÞ ðlR� c1 � c2Þ:

For ðp; pÞ, D11Tpf ðx1; x2; 0Þ � D11Tuf ðx1; x2; 0Þ ðby ð3:12ÞÞ � 1
1�ðkþdÞ ðlR�

c1 � c2Þ. Case ðu; pÞ can be shown using the result of ðu; uÞ. The proof of d ¼ 1
is the same as that of ðp; pÞ.

(vii) lD11Tf ðx1; x2; dÞ � lR:

lD11Tf ðx1; x2; dÞ ¼ l
1

1� ðkþ dÞ ðlR� c1 � c2Þ

¼ l
bþ l

ðlR� c1 � c2Þ ðby bþ lþ kþ d ¼ 1Þ � lR� c1 � c2 � lR:

(viii) D11Tf ðx1; x2; 0Þ � D11Tf ðx1; x2; 1Þ : We focus on combinations of
actions in ðx1 þ 1; x2 þ 1; 0Þ and ðx1; x2; 0Þ. By (3.12), ðp; uÞ is excluded. For
ðp; pÞ, D11Tpf ðx1; x2; 0Þ � D11Tf ðx1; x2; 1Þ ¼ 0 by the definition of value func-
tions. For ðu; uÞ, D11Tuf ðx1; x2; 0Þ � D11Tpf ðx1; x2; 0Þ ðby ð3:12ÞÞ ¼ D11Tf
ðx1; x2; 1Þ: Case ðu; pÞ can be shown using the result of ðp; pÞ.

(ix) D11Tf ðx1; x2; 1Þ � D11Tf ðx1; x2 þ Q; 0Þ : We focus on combinations of
actions in ðx1 þ 1; x2 þ Qþ 1; 0Þ and ðx1; x2 þ Q; 0Þ. By (3.12), ðp; uÞ is
excluded. For ðu; uÞ,

514 O. Berman, E. Kim



D11Tf ðx1; x2; 1Þ � D11Tuf ðx1; x2 þ Q; 0Þ
¼ lR1fx1 > 0; x2 ¼ 0g þ l½D11f ðDðx1; x2Þ; 1Þ � D11f ðDðx1; x2 þ QÞ; 0Þ�
� 1fx1 > 0g þ k½D11f ðx1 þ 1; x2; 1Þ � D11f ðx1 þ 1; x2 þ Q; 0Þ� � 0:

The non-negativity of l term follows by (3.9) if x1 > 0 and x2 > 0. If x1 > 0
and x2 ¼ 0, it becomes

lRþ l½D11f ðDðx1; 0; 1Þ � D11f ðDðx1;QÞ; 0Þ�
¼ lRþ l½f ðx1; 0; 1Þ � f ðx1; 0; 1Þ � D11f ðx1 � 1;Q� 1; 0Þ�
¼ lR� lD11f ðx1 � 1;Q� 1; 0Þ � 0 ðby ð3:7ÞÞ

:

The non-negativity of k term follows by (3.9). For ðp; pÞ, D11Tpf ðx1; x2 þ Q;
0Þ � D11Tuf ðx1; x2 þ Q; 0Þ ðby ð3:12ÞÞ � D11Tf ðx1; x2; 1Þðby caseðu; uÞÞ. Case
ðu; pÞ can be shown using the result of case ðu; uÞ. h

Proof of Theorem 2. The changes in c1, c2, R, and K guarantees higher profits
if the policy which is the optimal before the change is also applied after the
change is made. We now give the proof for l. Consider two systems, labeled
system A and system B, that are identical except for the service rates lA and lB
where lA < lB. Let p�A be the optimal policy applied to system A. For each
service in system B, we employ pB allowing for idling for the period of
l�1A � l�1B appropriately along each sample path to make the evolution of
system B identical to that of system A under p�A. It is clear that the policy pB
results in the equal performance to p�A. Because pB may not necessarily be
optimal, the optimal policy in system B will perform at least as well p�A.

Suppose dA < dB and other parameters are identical for system A and
system B. Let sk be the time epoch that the kth order is placed under p�A in
system A. By placing an order at sk þ d�1A � d�1B in system B, both systems
receive the kth order at sk þ d�1A . Therefore, both systems have the same state
realization along any sample path. Thus, a decrease in the lead time results in
an equal or more expected profit under an optimal policy. h

Proof of Theorem 3. Consider the following functional properties established
by JA and JB:

JBðx1; x2; 0Þ � JBðx1; x2; 1Þ � JAðx1; x2; 0Þ � JAðx1; x2; 1Þ � KB þ KA; ð8:4Þ

JBðx1; x2; 1Þ � JBðx1; x2 þ Q; 0Þ � JAðx1; x2; 1Þ � JAðx1; x2 þ Q; 0Þ; ð8:5Þ

D11JBðx1; x2; dÞ � D11JAðx1; x2; dÞ; ð8:6Þ

D11JBðx1; x2; 0Þ � D11JAðx1; x2; 1Þ; ð8:7Þ

D11JBðx1; x2; 0Þ � D11JAðx1; x2 þ Q; 0Þ: ð8:8Þ
We first prove the following lemma:

Lemma 3. If (8.4)–(8.8) hold,

TuJBðx1; x2; 0Þ � TpJBðx1; x2; 0Þ � ðTuJAðx1; x2; 0Þ � TpJAðx1; x2; 0Þ: ð8:9Þ
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Proof.

TuJBðx1;x2;0Þ�TpJBðx1;x2;0Þ�ðTuJAðx1;x2;0Þ�TpJAðx1;x2;0ÞÞ

¼KB�KAþl½JBðDðx1;x2Þ;0Þ�JBðDðx1;x2Þ;1Þ

�ðJAðDðx1;x2Þ;0Þ�JAðDðx1;x2Þ;1ÞÞ�

þk½JBðx1þ1;x2;0Þ�JBðx1þ1;x2;1Þ�ðJAðx1þ1;x2;0Þ�JAðx1þ1;x2;1ÞÞ�

þd½JBðx1;x2;0Þ�JBðx1;x2þQ;0Þ�ðJAðx1;x2;0Þ�JAðx1;x2þQ;0ÞÞ�

�KB�KA�ðkþlþdÞðKB�KAÞ� 0ðbykþlþd� 1Þ:

Equation (8.4) is applied to l and k terms. By (8.4) and (8.5), the d term
becomes d½JBðx1; x2; 0Þ � JBðx1; x2 þ Q; 0Þ� ðJAðx1; x2; 0Þ � JAðx1; x2 þ Q; 0ÞÞ�
� dð�KB þ KAÞ. h

We now prove HAðx1Þ � HBðx1Þ using contradiction. Suppose HAðx1Þ <
HBðx1Þ. Then, we have TuJAðHBðx1Þ; x2; 0Þ � TpJAðHBðx1Þ; x2; 0Þ and TuJBðHB

ðx1Þ; x2; 0Þ < TpJBðHBðx1Þ; x2; 0Þ. It follows that TuJBðHBðx1Þ; x2; 0Þ � Tu
JAðHBðx1Þ; x2; 0Þ < TpJBðHBðx1Þ; x2; 0Þ �TpJAðHBðx1Þ; x2; 0Þ, which is a con-
tradiction by (8.9) of Lemma 3.

To complete the proof of this theorem, we show that Equations (8.4)–(8.8)
are preserved under T . Denote by ðuA=pAÞ the optimal action for the first
instance where uA and pA represent Do not replenish and replenish actions,
respectively. Similarly, ðuB=pBÞ correspond to the second instance.

(i) TJ Bðx1; x2; 0Þ � TJ Bðx1; x2; 1Þ � TJ Aðx1; x2; 0Þ� TJ Aðx1; x2; 1Þ � KB þ KA:
We focus on admissible actions in ðx1; x2; 0ÞB and ðx1; x2; 0ÞA. Case ðpB; uAÞ is
excluded by Lemma 3. For ðpB; pAÞ, TpJBðx1; x2; 0Þ � TJAðx1; x2; 1Þ � ðTp
JAðx1; x2; 0Þ � TJAðx1; x2; 1ÞÞ ¼ �KB þ KA. For ðuB; uAÞ,

TuJ Bðx1;x2;0Þ�TJBðx1;x2;1Þ�ðTuJ Aðx1;x2;0Þ�TJAðx1;x2;1ÞÞ� TpJ Bðx1;x2;0Þ
�TJBðx1;x2;1Þ�ðTpJ Aðx1;x2;0Þ�TJAðx1;x2;1ÞÞðby Lemma3Þ¼�KBþKA:

For ðuB; pAÞ,
TuJBðx1; x2; 0Þ � TJ Bðx1; x2; 1Þ � ðTpJAðx1; x2; 0Þ � TJ Aðx1; x2; 1ÞÞ

� TpJBðx1; x2; 0Þ � TJ Bðx1; x2; 1Þ � ðTpJAðx1; x2; 0Þ

� TJ Aðx1; x2; 1ÞÞ ¼ �KB þ KA:

(ii) TJ Bðx1; x2; 1Þ � TJBðx1; x2 þ Q; 0Þ � TJ Aðx1; x2; 1Þ � TJ Aðx1; x2 þ Q; 0Þ:
We focus on admissible actions in ðx1; x2 þ Q; 0ÞB and ðx1; x2 þ Q; 0ÞA. Case
ðpB; uAÞ is excluded by Lemma 3. For ðuB; uAÞ,

TJ Bðx1; x2; 1Þ � TuJBðx1; x2 þ Q; 0Þ � ðTJ Aðx1; x2; 1Þ � TuJAðx1; x2 þ Q; 0ÞÞ
¼ l½JBðDðx1; x2Þ; 1Þ � JBðDðx1; x2 þ QÞ; 0Þ � ðJAðDðx1; x2Þ; 1Þ
� JAðDðx1; x2 þ QÞ; 0ÞÞ�
þ k½JBðx1 þ 1; x2; 1Þ � JBðx1 þ 1; x2 þ Q; 0Þ � ðJAðx1 þ 1; x2; 1Þ
� JAðx1 þ 1; x2 þ Q; 0ÞÞ� � 0:
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When x1 ¼ 0 or x2 > 0, the l term is non-negative by (8.5). When x1 > 0 and
x2 ¼ 0, it becomes

JBðDðx1; 0Þ; 1Þ � JBðDðx1;QÞ; 0Þ � ðJAðDðx1; 0Þ; 1Þ � JAðDðx1;QÞ; 0ÞÞ
¼ JBðx1; 0; 1Þ � JBðx1 � 1;Q� 1; 0Þ � ðJAðx1; 0; 1Þ � JAðx1 � 1;Q� 1; 0ÞÞ
� JBðx1; 0; 1Þ � JBðx1;Q; 0Þ
� ðJAðx1; 0; 1Þ � JAðx1;Q; 0ÞÞ ðby ð8:6ÞÞ � 0 ðby ð8:5ÞÞ

The k term is non-negative by (8.5) and the d term is canceled out. For case
ðpB; pAÞ,

TJ Bðx1; x2; 1Þ � TpJBðx1; x2 þ Q; 0Þ � ðTJ Aðx1; x2; 1Þ � TpJAðx1; x2 þ Q; 0ÞÞ
� TJBðx1; x2; 1Þ � TuJBðx1; x2 þ Q; 0Þ � ðTJ Aðx1; x2; 1Þ
� TuJAðx1; x2 þ Q; 0ÞÞðby Lemma 3Þ
� 0 ðby case ðuB; uAÞÞ

Case ðuB; pAÞ can be shown using the result of case ðuB; uAÞ because
TJ Bðx1; x2; 1Þ � TuJBðx1; x2 þ Q; 0Þ � ðTJ Aðx1; x2; 1Þ � TpJAðx1; x2 þ Q; 0ÞÞ
� TJBðx1; x2; 1Þ � TuJBðx1; x2 þ Q; 0Þ � ðTJ Aðx1; x2; 1Þ
� TuJAðx1; x2 þ Q; 0ÞÞ � 0:

(iii) D11TJ Bðx1; x2; dÞ � D11TJ Aðx1; x2; dÞ: Suppose d ¼ 1. The non-nega-
tivity of D11TJ Bðx1; x2; dÞ � D11TJ Aðx1; x2; dÞ follows by applying (8.6) to k, l,
and d terms. Suppose d ¼ 0. We focus on admissible actions in states
ðx1 þ 1; x2 þ 1; 0ÞB, ðx1; x2; 0ÞB, ðx1 þ 1; x2 þ 1; 0ÞA, and ðx1; x2; 0ÞA. Using
(3.12) of Lemmas 1 and 3, the following 6 cases are feasible: ðuB; uB; uA; uAÞ,
ðuB; uB; uA; pAÞ, ðuB; uB; pA; pAÞ, ðuB; pB; uA; pAÞ, ðuB; pB; pA; pAÞ, and ðpB; pB;
pA; pAÞ. Cases ðuB; uB; uA; uAÞ and ðpB; pB; pA; pAÞ be shown in a similar way
used in d ¼ 1. For ðuB; uB; pA; pAÞ,

D11TuJBðx1; x2; 0Þ � D11TpJAðx1; x2; 0Þ
¼ l½D11JBðDðx1; x2Þ; 0Þ � D11JAðDðx1; x2Þ; 1Þ�1fx1 > 0; x2 > 0g
þ k½D11JBðx1 þ 1; x2; 0Þ
� D11JAðx1 þ 1; x2; 1Þ� þ d½D11JBðx1; x2; 0Þ � D11JAðx1; x2 þ Q; 0Þ� � 0:

The non-negativity corresponding to l and k terms follows by (8.7). The non-
negativity of d term follows by (8.8). For ðuB; pB; uA; pAÞ,

TuJBðx1þ1;x2þ1;0Þ�TpJBðx1;x2;0Þ�ðTuJAðx1þ1;x2þ1;0Þ�TpJ Aðx1;x2;0ÞÞ
� TuJBðx1þ1;x2þ1;0Þ�TuJBðx1;x2;0Þ�ðTuJAðx1þ1;x2þ1;0Þ�TuJAðx1;x2;0ÞÞ
ðby Lemma 3Þ� 0 ðby case ðuB;uB;uA;uAÞÞ:

ðuB; uB; uA; pAÞ and ðuB; pB; pA; pAÞ follows by ðuB; uB; pA; pAÞ and ðpB; pB; pA;
pAÞ, respectively.

(iv) D11TJ Bðx1; x2; 0Þ � D11TJ Aðx1; x2; 1Þ: D11TJ Bðx1; x2; 0Þ � D11TJBðx1; x2;
1Þ ðby ð3:8ÞÞ � D11TJ Aðx1; x2; 1Þðby ðiiiÞÞ:
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(v) D11TJ Bðx1; x2; 0Þ � D11TJ Aðx1; x2 þ Q; 0Þ: D11TJ Aðx1; x2 þ Q; 0Þ � D11

TJ Aðx1; x2; 1Þ ðby ð3:9ÞÞ � D11TJ Bðx1; x2; 0Þ ðby ðivÞÞ: h

Proof of Theorem 4. Consider the following functional properties established
by JA and JB:

JBðx1; x2; 1Þ � JBðx1; x2; 0Þ � JAðx1; x2; 1Þ � JAðx1; x2; 0Þ; ð8:10Þ

JBðx1; x2 þ Q; 0Þ � JBðx1; x2; 1Þ � JAðx1; x2 þ Q; 0Þ � JAðx1; x2; 1Þ; ð8:11Þ

D11JBðx1; x2; dÞ � RB � RA þ D11JAðx1; x2; dÞ; ð8:12Þ

D11JBðx1; x2; 1Þ � RB � RA þ D11JAðx1; x2; 0Þ; ð8:13Þ

D11JBðx1; x2 þ Q; 0Þ � RB � RA þ D11JAðx1; x2; 0Þ: ð8:14Þ

We first prove the following lemma:

Lemma 4. If (8.10)–(8.14) hold,

TpJBðx1; x2; 0Þ � TuJBðx1; x2; 0Þ � ðTpJAðx1; x2; 0Þ � TuJAðx1; x2; 0ÞÞ: ð8:15Þ

Proof.

TpJBðx1;x2;0Þ�TuJBðx1;x2;0Þ�ðTpJAðx1;x2;0Þ�TuJAðx1;x2;0ÞÞ

¼l½JBðDðx1;x2Þ;1Þ�JBðDðx1;x2Þ;0Þ�ðJAðDðx1;x2Þ;1Þ�JAðDðx1;x2Þ;0ÞÞ�

þk½JBðx1þ1;x2;1Þ�JBðx1þ1;x2;0Þ�ðJAðx1þ1;x2;1Þ�JAðx1þ1;x2;0ÞÞ�

þd½JBðx1;x2þQ;0Þ�JBðx1;x2;0Þ�ðJAðx1;x2þQ;0Þ�JAðx1;x2;0ÞÞ�� 0:

(8.10) is applied to l and k terms. The non-negativity of d term follows by
(8.10) and (8.11) h

We now prove HAðx1Þ � HBðx1Þ using contradiction. Suppose HAðx1Þ >
HBðx1Þ. Then, we have TuJAðHAðx1Þ; x2; 0Þ < TpJAðHAðx1Þ; x2; 0Þ and TuJB

ðHAðx1Þ; x2; 0Þ > TpJBðHAðx1Þ; x2; 0Þ. It follows that TpJBðHAðx1Þ; x2; 0Þ �TpJA

ðHAðx1Þ; x2; 0Þ < TuJBðHAðx1Þ; x2; 0Þ � TuJAðHAðx1Þ; x2; 0Þ, which is a contra-
diction by (8.10) of Lemma 4.

To complete the proof of this theorem, we show that Equations (8.4)–(8.8)
are preserved under T .

(i) TJ Bðx1; x2; 1Þ � TJ Bðx1; x2; 0Þ � TJ Aðx1; x2; 1Þ � TJ Aðx1; x2; 0Þ: We focus
on admissible actions in ðx1; x2; 0ÞB and ðx1; x2; 0ÞA. Case ðuB; pAÞ is excluded
by Lemma 4. For ðpB; pAÞ, TJ Bðx1; x2; 1Þ � TpJBðx1; x2; 1Þ� ðTJ Aðx1; x2; 1Þ � Tp
JAðx1; x2; 0ÞÞ ¼ 0. For ðuB; uAÞ,

TJ Bðx1; x2; 1Þ � TuJBðx1; x2; 1Þ � ðTJ Aðx1; x2; 1Þ � TuJAðx1; x2; 0ÞÞ

� TJBðx1; x2; 1Þ � TpJBðx1; x2; 1Þ � ðTJ Aðx1; x2; 1Þ

� TpJAðx1; x2; 0ÞÞðby Lemma 4Þ ¼ 0:
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For ðpB; uAÞ,
TJ Bðx1; x2; 1Þ � TpJBðx1; x2; 1Þ � ðTJ Aðx1; x2; 1Þ � TuJAðx1; x2; 0ÞÞ

� TJ Bðx1; x2; 1Þ � TpJBðx1; x2; 1Þ � ðTJ Aðx1; x2; 1Þ � TpJAðx1; x2; 0ÞÞ ¼ 0:

(ii) TJ Bðx1; x2 þ Q; 0Þ � TJ Bðx1; x2; 1Þ � TJ Aðx1; x2 þ Q; 0Þ � TJ Aðx1; x2; 1Þ:
We focus on admissible actions in ðx1; x2 þ Q; 0ÞB and ðx1; x2 þ Q; 0ÞA. Case
ðuB; pAÞ is excluded by Lemma 4. For ðuB; uAÞ,

TuJBðx1; x2 þ Q; 0Þ � TJBðx1; x2; 1Þ � ðTuJAðx1; x2 þ Q; 0Þ � TJ Aðx1; x2; 1ÞÞ

¼ lðRB � RAÞ1fx1 > 0; x2 ¼ 0g þ l½JBðDðx1; x2 þ QÞ; 0Þ � JBðDðx1; x2Þ; 1Þ

� ðJAðDðx1; x2 þ QÞ; 0ÞÞ � JAðDðx1; x2Þ; 1Þ� þ k½JBðx1 þ 1; x2 þ Q; 0Þ

� JBðx1 þ 1; x2; 1Þ � ðJAðx1 þ 1; x2 þ Q; 0ÞÞ � JAðx1 þ 1; x2; 1Þ�

þ d½JBðx1; x2 þ Q; 0Þ � JBðx1; x2 þ Q; 0Þ � ðJAðx1; x2 þ Q; 0Þ

� JAðx1; x2 þ Q; 0ÞÞ� � 0:

When x1 > 0 and x2 > 0 or when x1 ¼ 0 and x2 � 0, l term is non-negative by
(8.11). When x1 > 0 and x2 ¼ 0, it becomes

lðRB � RAÞ þ l½JBðDðx1;QÞ; 0Þ � JBðDðx1; 0Þ; 1Þ � ðJAðDðx1;QÞ; 0Þ

� JAðDðx1; 0Þ; 1ÞÞ�

¼ lðRB � RAÞ þ l½JBðx1 � 1;Q� 1; 0Þ � JBðx1; 0; 1Þ � ðJAðx1 � 1;Q� 1; 0Þ

� JAðx1; 0; 1ÞÞ

� l½JBðx1;Q; 0Þ � JBðx1; 0; 1Þ � ðJAðx1;Q; 0ÞÞ � JAðx1; 0; 1Þ�ðbyð8:12ÞÞ

� 0 ðby ð8:11ÞÞ:

The k term is non-negative by (8.11) and the d term is canceled out. For case
ðpB; pBÞ,

TpJBðx1; x2 þ Q; 0Þ � TJBðx1; x2; 1Þ � ðTpJAðx1; x2 þ Q; 0Þ � TJ Aðx1; x2; 1ÞÞ

� TuJBðx1; x2 þ Q; 0Þ � TJ Bðx1; x2; 1Þ � ðTuJAðx1; x2 þ Q; 0Þ

� TJ Aðx1; x2; 1ÞÞðby Lemma 3Þ

� 0 ðby case ðuB; uAÞÞ
Case ðpB; uAÞ can be shown using the result of case ðuB; uAÞ because

TpJBðx1;x2þQ;0Þ�TJBðx1;x2;1Þ�ðTuJ Aðx1;x2þQ;0Þ�TJAðx1;x2;1ÞÞ

� TuJBðx1;x2þQ;0Þ�TJBðx1;x2;1Þ�ðTuJAðx1;x2þQ;0Þ�TJAðx1;x2;1ÞÞ� 0:

(iii) D11TJ Bðx1; x2; dÞ � RB � RA þ D11TJ Aðx1; x2; dÞ: Suppose d ¼ 1. Then,
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D11TJ Bðx1; x2; 1Þ � D11TJAðx1; x2; 1Þ
¼ lðRB � RAÞ1fx1x2 ¼ 0g þ l½D11JBðDðx1; x2Þ; 1Þ
� D11JAðDðx1; x2Þ; 1Þ�1fx1 > 0; x2 > 0g
þ k½D11JBðx1 þ 1; x2; 1Þ � D11JAðx1 þ 1; x2; 1Þ� þ d½D11JBðx1; x2 þ Q; 0Þ
� D11JAðx1; x2 þ Q; 0ÞÞ� � ðkþ lþ dÞ ðRB � RAÞ ðby ð8:12ÞÞ � RB � RA:

Suppose d ¼ 0. We focus on admissible actions in states ðx1 þ 1; x2 þ 1; 0ÞB,
ðx1; x2; 0ÞB, ðx1 þ 1; x2 þ 1; 0ÞA, and ðx1; x2; 0ÞA. Using (3.12) of Lemma 1 and
Lemma 5, the following 6 cases are feasible: ðuB; uB; uA; uAÞ, ðpB; pB; pA; pAÞ,
ððpB; pB; uA; uAÞÞ, ðpB; pB; uA; pAÞ, ðuB; pB; uA; pAÞ, and ðuB; pB; uA; uAÞ. Cases
ðuB; uB; uA; uAÞ and ðpB; pB; pA; pAÞ be shown in a similar way used in proving
case d ¼ 1. For ðpB; pB; uA; uAÞ,

D11TpJ Bðx1;x2;0Þ�D11TuJ Aðx1;x2;0Þ

¼lðRB�RAÞ1fx1x2¼0gþl½D11JBðDðx1;x2Þ;1Þ�D11JAðDðx1;x2Þ;0Þ�
�1fx1>0;x2>0g

þk½D11J Bðx1þ1;x2;1Þ�D11J Aðx1þ1;x2;0Þ�þd½D11JBðx1;x2þQ;0Þ

�D11JAðx1;x2;0ÞÞ�

�ðkþlþdÞðRB�RAÞðbyð8:13Þ tolandk terms and ð8:14Þ tod termÞ�RB�RA:

For ðuB; pB; uA; pAÞ,
TuJBðx1þ1;x2þ1;0Þ�TpJBðx1;x2;0Þ�ðTuJAðx1þ1;x2þ1;0Þ�TpJ Aðx1;x2;0ÞÞ

� TuJBðx1þ1;x2þ1;0Þ�TuJBðx1;x2;0Þ�ðTuJAðx1þ1;x2þ1;0Þ�TuJAðx1;x2;0ÞÞ

ðby Lemma 4Þ�RB�RA ðby case ðuB;uB;uA;uAÞÞ:

ðuB; pB; uA; uAÞ and ðpB; pB; uA; pAÞ follows by ðuB; uB; pA; pAÞ and ðpB; pB; pA;
pAÞ, respectively.

(iv) D11TJ Bðx1; x2; 1Þ � RB � Rþ D11TJ Aðx1; x2; 0Þ:
D11TJ Bðx1; x2; 1Þ � D11TJ Bðx1; x2; 0Þ ðby ð3:8ÞÞ � RB � RA

þ D11TJ Aðx1; x2; 0Þðby ðiiiÞÞ:

(v) D11TJ Bðx1; x2 þ Q; 0Þ � RB � Rþ D11TJ Aðx1; x2; 0Þ:
D11TJ Bðx1; x2 þ Q; 0Þ � D11TJ Bðx1; x2; 1Þ ðby ð3:9ÞÞ � RB � RA

þ D11TJ Aðx1; x2; 0Þðby ðivÞÞ: h
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