
Abstract. The coupled task problem is to schedule n jobs on one machine
where each job consists of two subtasks with required delay time between
them. The objective is to minimize the makespan. This problem was analyzed
in depth by Orman and Potts [3]. They investigated the complexity of different
cases depending on the lengths ai and bi of the two subtasks and the delay
time Li. NP-hardness proofs or polynomial algorithms were given for all
cases except for the one where ai ¼ a, bi ¼ b and Li ¼ L. In this paper we
present an exact algorithm for this problem with time complexity Oðnr2LÞ
where r � ffiffiffi

aa�1
p

holds. Therefore the algorithm is linear in the number of jobs
for fixed L.

Key words: Scheduling, Coupled Tasks, Dynamic Programming

1 Introduction

The coupled task problem can be defined as follows. We are given n jobs each
of them consisting of two distinct tasks (operations). The sequence of these
tasks is fixed and also a fixed delay time has to pass between the two tasks. So,
each job i can be denoted by a triple ðai; Li; biÞ; where the values represent the
processing time of the first task, the delay time between the tasks and the
processing time of the second task, respectively. It is important that in this
type of problem the second task must be scheduled exactly Li þ ai units after
the start of the first one. During the delay time the machine is idle and so it
can process other jobs in this interval. The aim is to schedule n coupled tasks
on one machine in such a way that no two tasks overlap and the latest
finishing time of the jobs is minimized. (This time is called makespan and

Math Meth Oper Res (2004) 59:193–203
DOI 10.1007/s001860300328

� Research was supported by DAAD exchange program 324 PPP-Ungarn.

An exact algorithm for scheduling identical
coupled tasks

Dino Ahr1, József Békési2, Gábor Galambos2, Marcus Oswald1,

Gerhard Reinelt1�

1 Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 368,
D-69120 Heidelberg, Germany
2 Department of Informatics, Juhász Gyula Teacher’s Training College, University of Szeged,
Pf. 396, H-6720 Szeged, Hungary

Manuscript received: April 2003/Final version received: October 2003

denoted by Cmax). Preemption is not allowed, i.e., every subtask has to be
processed continuously.

Several applications of the problem are discussed in [3].
Scheduling problems are normally classified using the standard three field

notation ajbjc, introduced by Graham et al. in [1]. Here the first field describes
the machine environment, the second the job characteristics and the last one
is the optimality criterion. Following the idea in [3] we write in the second
field Coup-Task indicating that all jobs in fact consist of coupled tasks. With
this formulation (1jCoup-Task, ai ¼ a; Li ¼ L; bi ¼ bjCmax) denotes a coupled
task problem where all jobs are identical, the so-called Identical Coupled Task
Problem (ICTP).

The general problem (1jCoup-TaskjCmax) is NP-hard [4]. Shapiro [5]
discussed practical situations where the problem arises and gave three simple
heuristics. Unfortunately, these heuristics have not been analyzed in detail.
Only experimental results showed their efficiency. Orman and Potts [3]
studied the problem from a complexity point of view. They covered all sub-
cases except for the identical case ai ¼ a, Li ¼ L, bi ¼ b. Fig. 1 presents an
example of an optimal schedule for the identical case.

In this paper we investigate this special case. Section 2 contains some basic
definitions and lemmas for helping to understand the idea of our solution.
Section 3 describes a graph-theoretic model which leads to a solution algo-
rithm for the problem based on shortest path computations. Implementation
issues and computational results are discussed in Sect. 4. In Sect. 5 the
structure of optimal schedules is analysed. The formulation of some open
problems concludes the paper.

2 Preliminaries

Throughout the paper we denote by a and b the operation time of the first and
the second task of a job, by L the common delay time, and by n the number of
jobs. We always assume that a, b and L are integers, because we can convert
rationals to integers by multiplying with a suitable number.

Without losing generality we can assume that a � b, since the following
theorem (cf. [3]) holds.

Theorem 1 For given a and b the problem ð1jCoup-Task; ai ¼ a; Li ¼ L; bi
¼ bjCmaxÞ and its reverse ð1jCoup-Task; ai ¼ b; Li ¼ L; bi ¼ ajCmaxÞ are
equivalent.

We may also assume that a < L < ðn� 1Þa, since otherwise the simple
greedy algorithm (i.e., start the first job at time 0; and each subsequent job as
soon as possible) already gives the optimal solution.

We will use certain patterns to represent idle and busy times of the pro-
cessor with respect to a given schedule. These patterns consist of 0’s and 1’s
indicating if the processor is idle or busy during a certain time unit.

Fig. 1. An optimal schedule for 5 jobs with values a ¼ 3, b ¼ 2, L ¼ 11

194 D. Ahr et al.

Definition 1 A 0-1 sequence of length L is called P ða; b; LÞ pattern, if it contains
1’s only in blocks of length b and if each such block is followed by at least a� b
0’s.

In our algorithm we will schedule the jobs one after the other and will use
P ða; b; LÞ patterns to describe the processor status in the gap of the job
scheduled last so far.

For example, the sequence 11000110110 is a P ð3; 2; 11Þ pattern, but the
sequence 11011100110 is not, because it contains a block of 1’s of length 3.
The set of all possible Pð3; 2; 7Þ patterns is f0000000; 1100000; 0110000;
0011000; k 0001100; 0000110; 1101100; 1100110; 0110110g.

Lemma 1 The total number npða; b; LÞ of possible P ða; b; LÞ patterns is OðrLÞ,
where r is the absolute value of the root with the greatest absolute value of the
equation 1þ xa�1 ¼ xa. For a � 2 an upper bound of r is given by

ffiffiffi

aa�1
p

.

Proof. If L < a we have npða; b; LÞ ¼ 1, since in this case only the pattern
0 . . . 0 satisfies the condition.

We show the recursion npða; b; LÞ ¼ npða; b; L� 1Þ þ npða; b; L� aÞ for
L � a. In this case the patterns can be classified into two groups. The first
group contains those patterns, which end with a block of 1’s and a� b 0’s.
The second group consists of patterns which end with more than a� b 0’s.
The number of patterns in the first group obviously is npða; b; L� aÞ and the
second group contains npða; b; L� 1Þ elements. And therefore the recursion
holds.

The characteristic equation of the recursion is 1þ xa�1 ¼ xa and the first
part of the lemma follows by the well-known solution method of linear
recursions.

It remains to show that
ffiffiffi

aa�1
p

is an upper bound for r if a � 2. First of all
we show that

ffiffiffi

aa�1
p

> 1þ 1
a for all a � 2. For a ¼ 2 this follows from a sim-

ple calculation, for a � 3 it follows from the well-known fact that
ð1þ 1

aÞ
a�1 < e < a. Now we assume that r >

ffiffiffi

aa�1
p

. Then we have

ra � ra�1 ¼ ra�1ðr � 1Þ > að
ffiffiffi

aa�1
p
� 1Þ > að1þ 1

a
� 1Þ ¼ 1:

On the other hand with r being the greatest absolute value of a root of
1þ xa�1 ¼ xa the triangular inequality yields 1þ ra�1 � ra which is a con-
tradiction. h

Suppose we have started exactly k jobs and the schedule has the property,
that no new job can be started before the first task of the last job. This means
that job k þ 1 can only be started after the start of the last job, possibly before
but in any case after its second task. The starting time of the new job depends
on the idle time periods between the two tasks of the last job. We can rep-
resent the schedule in the gap of the last job by a P ða; b; LÞ pattern. In
principle, situations corresponding to every P ða; b; LÞ pattern are possible.
Fig. 2 visualizes the concept of Pða; b; LÞ patterns.

We now investigate how a further job affects the schedule. It is obvious,
that we can start a new job only at those positions, where we have an idle
period of length at least a. This means that the corresponding P ða; b; LÞ
pattern contains a block of 0’s of length a at that position. If we start the new

An exact algorithm for scheduling identical coupled tasks 195

job at a given position, then the new gap pattern for the last job (which will be
defined as Sðp; iÞ below) will be generated by a rule. First we copy some bits –
their number depending on the position of the new job – from the right hand
side of the original pattern, then add b bits of 1’s and fill the pattern with 0’s
up to length L. It is also obvious, that the increase of the makespan depends
on the starting position of the new job. Fig. 3 illustrates the method of
generating the new pattern.

More exactly, we can define the following operator.

Definition 2 Let p be a P ða; b; LÞ pattern and i, 1 � i � L� aþ 1, be an integer
such that

p½i� ¼ p½iþ 1� ¼ . . . ¼ p½iþ a� 1� ¼ 0: ð1Þ
Then Sðp; iÞ is the 0–1 sequence

p½iþ a� p½iþ aþ 1� . . . p½L� 1b 0iþa�b�1

where 1k (0k) denotes a string of k 1’s (0’s). Furthermore we define the number
wðSðp; iÞÞ ¼ iþ a� 1.

Lemma 2 If p is a P ða; b; LÞ pattern, then Sðp; iÞ is a Pða; b; LÞ pattern for
1 � i � L� aþ 1 and wðSðp; iÞÞ gives the increase of the makespan.

Proof. The statement of the lemma follows directly from the definition of
Sðp; iÞ, because we replace some right hand side bits of p by one block of 1’s of
length b followed by at least a� b 0’s. Obviously the new last job starts
iþ a� 1 time units after the previous last job. h

3 Graph model and algorithm

In the above section we have shown that we can associate with every schedule
a P ða; b; LÞ pattern characterizing the state of the machine in the gap of the
job currently started as the last job. It is obvious, that this pattern will usually
change, when we add a new job to the schedule.

0 1

1 2 3 4 1 2 3 4

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 720

1 1 1 1 11 0 0 0 0 0

Fig. 2. Gap of last job represented by a P ð3; 2; 11Þ pattern

0 1

1 52 3 4 1 2 3 4 5

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 1 12 23 4 5 6 7 8 920 30

1 1
1 1

1
1 1

1
1 0

1
1 0

1 0 0 0 0
0 0

0
0

Fig. 3. Generating the new pattern after starting a new job

196 D. Ahr et al.

A natural idea is to represent the relations between the patterns by a
directed graph. The vertices of the graph are the possible patterns and we
connect two vertices by an arc, if the corresponding pattern can be followed
by the other one when a job is added. We can also assign a weight to each arc,
giving the increase of the makespan caused by this change of schedule.

Definition 3 For given integers a, b and L we define the directed graph
G ¼ ðV ;AÞ with arc weights wðp; qÞ, for every ðp; qÞ 2 A as follows.

– V :¼ p j p is a P ða; b; LÞ patternf g,
– A :¼ p; qð Þ j q ¼ Sðp; iÞ for i; 1 � i � L� aþ 1f g [fðp; 0LÞ j p 2 V g,
– wðp; qÞ :¼ min1�i�L�aþ1 wðSðp; iÞÞ j Sðp; iÞ ¼ qf g,
– wðp; 0LÞ :¼ aþ bþ L.

Note that edges ðp; 0LÞ model the possibility to start the next job right after
the termination of the second subtask of the last job. In this case the make-
span is increased by aþ bþ L.

Fig. 4 shows an example graph. Note that the same pattern may occur
repeatedly in a schedule and can even be followed by itself.

Now, the coupled-task problem amounts to finding a minimal weight path
in G starting from pattern 0L consisting of exactly n� 1 arcs. Since the weight
of each arc represents the increase of the makespan, the total weight of such a
path is the real makespan minus the time of the first job, which is aþ bþ L. If
we minimize the weights of the paths consisting of n� 1 arcs, then we min-
imize the makespan for n jobs.

000000

11

11

11

11

11
11

6

6

6

3

3

4

5
5

110000

011000110110

000110 001100

Fig. 4. The weighted pattern graph for Pð3; 2; 6Þ patterns

An exact algorithm for scheduling identical coupled tasks 197

More precisely, the makespan M of the identical coupled task scheduling
problem with parameters a; b; L and n can be expressed as

min
p2P ða;b;LÞ patterns

w p0; p1; . . . ; pn�1ð Þ j p0 ¼ 0L; ðpi; piþ1Þ 2 A; pn�1 ¼ p
� �

where w p0; p1; . . . ; pn�1ð Þ ¼
Pn�2

i¼0 wðpi; piþ1Þ and p0; . . . ; pn�1 is a minimal
weight path between 0L and p.

This way our problem reduces to a special shortest path problem in a
directed graph with positive arc weights. In the following we deal with this task.

Let w0kðpÞ denote the shortest path length from 0L to p with k arcs. The
following recursive formula applies for determining w0kðpÞ:

w0kðpÞ ¼ min
q

w0;k�1ðqÞ þ wðq; pÞ j ðq; pÞ 2 A
� �

:

Based on this observation we can give an algorithm computing w0;n�1ðpÞ
for each P ða; b; LÞ pattern. EðuÞ denotes the set of vertices that are connected
to u by an outgoing arc.

Algorithm MinWeight(G, n)

For each v 2 V do

For i :¼ 0 to n� 1 do

Dv i½ � :¼ 1
Pv i½ � :¼ �1

Dv0 ½0� ¼ 0 (where v0 represents the pattern 0LÞ
For i :¼ 1 to n� 1 do

For each u 2 V do

For each v 2 EðuÞ do
if Du i� 1½ � þ wðu; vÞ < Dv i½ � then

Dv i½ � :¼ Du i� 1½ � þ wðu; vÞ
Pv i½ � :¼ u

After executing MinWeight we have w0; n�1ðpÞ ¼ Dp½n� 1� for each pattern.
Let us denote p� the pattern which corresponds to the endnode of a shortest
path having n� 1 edges. We obtain the length of this path as
Dp� ½n� 1� ¼ minfDv½n� 1� j v 2 V g and the associated schedule by recur-
sively visiting the nodes Pv½n� 1�, starting from v ¼ p�. Fig. 5 and Fig. 6 show
shortest paths for the example graph depicted in Fig. 4.

Obviously, the time complexity of this algorithm is dominated by time
complexity OðV 2nÞ of MinWeight. Since jV j ¼ OðrLÞ, the overall complexity
of our algorithm is Oðnr2LÞ where r � ffiffiffi

aa�1
p

. Note that
ffiffiffi

aa�1
p

goes to 1 for
increasing a.

4 Implementation techniques and experiments

An important question for the implementation of our algorithm is the effi-
cient generation of the pattern graph. We have to generate all P ða; b; LÞ

198 D. Ahr et al.

patterns and connect them based on operator S, which also has to be realized
efficiently. The patterns can be handled as integer numbers where we need a
binary representation of at least L bits. If L is small, then we can use built-in
arithmetic, otherwise some long arithmetic has to be implemented. Using this
binary number representation, the operator S can be defined as follows.
Suppose p represents a P ða; b; LÞ pattern and i, 1 � i � L� aþ 1, is an inte-
ger. Condition (1) can be checked by the relational operator

p mod 2L�iþ1 < 2L�i�aþ1:

If this condition holds, then the formula for obtaining a new pattern is

Sðp; iÞ ¼ p mod 2L�i�aþ1� �

2iþa�1 þ 2b � 1
� �

2iþa�b�1:

The following observation helps to decrease the number of necessary edges in
the pattern graph.

Lemma 3 Suppose we have an optimal schedule. Then there exists a schedule
with the same makespan which contains no idle period of length larger than
aþ b� 2 before processing the first subtask of the last job.

Proof. Let S be an optimal schedule containing a gap longer than aþ b� 2
and let this gap start at time t before the first subtask of the last job is
processed.

In the time interval ½t þ Lþ a; t þ Lþ aþ b� 1� the machine either is idle
or is occupied by one first subtask of some job or by two first subtasks.

000000

11

11

11

11

11
11

6

6

6

3

3

4

5
5

110000

011000110110

000110 001100

Fig. 5. Shortest path with 2 arcs for the P ð3; 2; 6Þ pattern graph

An exact algorithm for scheduling identical coupled tasks 199

In the first case some job can be started earlier than before, in the second
case the job being processed in this time interval could have been started at
time t. In the third case let t be the starting time of the second first subtask.
This starting time lies inside the above interval, therefore t þ Lþ a �
t � t þ Lþ aþ b� 1 holds. Since the length of the gap starting at time t is at
least aþ b� 1, it would have been possible to start the job corresponding to
the second first subtask Lþ a timesteps earlier at a time between t and
t þ b� 1. Neither of the three modifications increases the makespan, but
eliminates the large gap at time t.

By repeating this method we get an optimal schedule which contains only
idle time periods of length at most aþ b� 2, except for gaps occurring after
the last job has been started. h

The following algorithm generates the pattern graph GðV ;AÞ. It makes use
of Lemma 3 to avoid the introduction of unnecessary graph edges.

Algorithm GenGraph(a, b, L)

V :¼ f0g
Að0Þ :¼ f0g
wð0; 0Þ :¼ aþ bþ L

For each unmarked element u 2 V do

Let J be the indices of bits 1 in u [f0g

000000

11

11

11

11

11
11

6

6

6

3

3

4

5
5

110000

011000110110

000110 001100

Fig. 6. Shortest path with 3 arcs for the P ð3; 2; 6Þ pattern graph

200 D. Ahr et al.

For each j 2 J do

For i :¼ jþ 1 to jþ aþ b� 1 do

if p mod 2L�iþ1 < 2L�i�aþ1 then

v :¼ ðu mod 2L�i�aþ1Þ2iþa�1 þ ð2b � 1Þ2iþa�b�1

if v not in V then

Add v to V

if v not in AðuÞ then
Add v to AðuÞ
wðu; vÞ :¼ iþ a� 1

Mark u

Output GðV ;AÞ
We have implemented our algorithm using the above techniques and tested it
for up to 2000 jobs and gap values up to L ¼ 30 (in order to be able to use the
machine arithmetic). Table 1 displays running times and optimal values on a
433 MHz P-II PC for example problems with n ¼ 1000 and n ¼ 2000 and also
gives optimum values for n ¼ 1000. The times show that solutions for fairly
large problems can be computed in short time.

5 Structure of optimal schedules

If, for fixed a, b and L, the number of jobs goes to infinity, then the shortest
paths in the pattern graph must contain cycles. So, for large n, best paths
consist of some first path segment followed by a certain number of repetitions
of cycles followed by a terminating segment to meet the number of jobs.
Obviously, it makes no sense to repeat cycles other than minimum weight
mean cycles, i.e., directed cycles C such that

wðCÞ
jCj ¼ min

nwðF Þ
jF j j F cycle in G

o

:

Table 1. Running times of ICTP on a 433 MHz P-II PC

a b l n Time
(ms)

n Time
(ms)

Opt
n = 1000

4 2 10 1000 60 2000 110 6478
4 2 15 1000 381 2000 751 6971
4 2 20 1000 3074 2000 6149 6460
6 3 20 1000 401 2000 811 9628
6 3 25 1000 2013 2000 4006 9723
6 3 30 1000 12660 1500 18667 9690
8 4 20 1000 140 2000 261 12956
8 4 25 1000 470 2000 941 12284
8 4 30 1000 1770 2000 3566 13942
10 5 20 1000 60 2000 131 17445
10 5 25 1000 190 2000 370 16195
10 5 30 1000 561 2000 1091 14940

An exact algorithm for scheduling identical coupled tasks 201

Minimum mean cycles in a graph G ¼ ðV ;AÞ can be computed in time
OðV ðV þ AÞÞ ([2]). Obviously, there may be several minimum weight mean
cycles.

So let, for given a, b and L, C be a minimum weight mean cycle with length
la; b; L, weight wa; b; L and optimal ratio ra; b; L ¼ wa; b; L=la; b; L. Then we can
conclude for the makespan MðnÞ of an optimal schedule for n jobs that

lim
n!1

MðnÞ
n
¼ ra; b; L:

Table 2 gives optimal ratios and corresponding minimum weight mean cycle
lengths and weights for some problems.

6 Conclusions

In this paper we presented an exact algorithm for the scheduling problem
(1jCoup-Task; ai ¼ a; Li ¼ L; bi ¼ bjCmax). Some open questions remain for
future research.

A main one is the question of the true complexity of the above problem.
Our algorithm is polynomial only in n, so it does not prove that the problem
belongs to P .

We conjecture that the problem is polynomially solvable and that it might
even be possible to derive an explicit formula for the optimum schedule length
depending on a, b and L. So far, however, we did not succeed in proving this.

A first step could be to find a formula for the best weight-length ratio of
cycles in the pattern graph. E.g., for b ¼ 1, we conjecture that the minimum
mean cycle ratio is

ra; 1; L ¼
aþ1þ2L
2Lþ1

aþ1
; if L � �1aþ 1;

aþ1þL
b L

aþ1cþ1
; if L 6� �1aþ 1:

8

<

:

Table 2. Minimum weight mean cycle ratios

a b L la; b; L wa; b; L ra; b; L

3 1 10 3 14 4.666
3 1 15 8 34 4.250
3 1 20 6 24 4.000
4 2 10 4 26 6.500
4 2 15 3 21 7.000
4 2 20 4 26 6.500
6 3 20 3 29 9.666
6 3 25 18 176 9.777
6 3 30 4 39 9.750
8 4 20 4 52 13.000
8 4 25 3 37 12.333
8 4 30 3 42 14.000
10 5 20 2 35 17.500
10 5 25 4 65 16.250
10 5 30 1 15 15.000

202 D. Ahr et al.

Another question is whether the size of the pattern graph can be decreased by
eliminating transitions which can only lead to suboptimal schedule.

Furthermore, it would be interesting to construct good heuristics for non-
polynomial cases of the coupled-task problem with a thorough worst-case or
average-case analysis. There are only very few results published so far in this
respect.

Acknowledgements. The authors are grateful to Hans Kellerer who called their attention to this

problem.

References

1. Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete
Mathematics 5:287–326

2. Karp RM (1978) A Characterization of the Minimum Cycle Mean in a Digraph. Discrete
Mathematics 23:309–311

3. Orman AJ, Potts CN (1997) On the Complexity of Coupled-Task Scheduling. Discrete Applied
Mathematics 72:141–154

4. Rinnooy Kan AHG (1976) Machine Scheduling Problems, Martinus Nijhoff, The Hague
5. Shapiro RD (1980) Scheduling Coupled Tasks. Naval Research Logistics Quarterly 20:

489–498

An exact algorithm for scheduling identical coupled tasks 203

