
Abstract. In this paper we consider standard fixed tree games, for which each
vertex unequal to the root is inhabited by exactly one player. We present two
weighted allocation rules, theweighted down-home allocation and theweighted
neighbour-homeallocation, both inspiredby thepainting story inMaschler et al.
(1995) . We show, in a constructive way, that the core equals both the set of
weighted down-home allocations and the set ofweighted neighbour allocations.
Since every weighted down-home allocation specifies a weighted Shapley value
(Kalai and Samet (1988)) in a natural way, and vice versa, our results provide an
alternative proof of the fact that the core of a standardfixed tree game equals the
set of weighted Shapley values. The class of weighted neighbour allocations is a
generalization of the nucleolus, in the sense that the latter is in this class as the
special member where players have all equal weights.

Key words: Cooperative games, Tree games, Core, Weighted Shapley value,
Nucleolus

JEL Classification: C71

1 Introduction

We consider cost sharing problems arising from standard fixed tree enter-
prises. There is a fixed and finite set of agents connected to a source through a
fixed tree network. We seek to allocate the cost of this tree for cases where
maintaining the connections within the network is costly. Many real-life sit-
uations can be modelled to fit in this general setting. For instance, consider
the problem of allocating the maintenance cost of an irrigation network or a
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cablevision network, setting airport taxes for planes or setting dredging fees
for ships. In a natural way each standard fixed tree problem gives rise to a
standard fixed tree game, which relates each coalition of agents/players to the
minimal expenses for maintaining the connections of all its members to the
source. This makes it possible to investigate this type of problems with
techniques from cooperative game theory. The same problem is studied in
Megiddo (1978) , Koster et al. (2001) whereas Granot et al. (1996) and
Maschler et al. (1995) study a generalization, where more than one player is
allowed to occupy each vertex. A special case, where the underlying structure
of the game is a chain, is also known as the airport problem and considered
by Littlechild (1974) , Littlechild and Owen (1977), Littlechild and Thompson
(1977) , Dubey (1982) , Potters and Sudhölter (1999), and Aadland and
Kolpin (1998).

We are concerned with the core of the standard fixed tree game, and in
section 3 we give some results on the core, essentially the same as in Koster
et al. (2001) . Inspired by the painting story presented by Maschler et al.
(1995) we introduce, in section 4, the weighted down-home allocation, where
each player is allocated a share, according to his relative weight, of the cost of
each arc along the path from the (local) source to his home. We show, by
explicitly characterizing the corresponding weight system, that each core
element can be obtained as a weighted down-home allocation. Especially, the
core element as determined by the Shapley value corresponds to the weighted
down-home allocation with equal weights to all players. Moreover, each
weighted down-home allocation is equal to a weighted Shapley value, and
therefore our results provide an alternative and constructive proof of the
result in Monderer et al. (1992) , where it is shown that the core of a concave
game, and so also the core of fixed tree games, equals the set of weighted
Shapley values. In section 5 we introduce the weighted neighbour-home allo-
cation, a generalization of the scheme in Maschler et al. (1995) for computing
the nucleolus, and show that the set of weighted neighbour-home allocations
equals the core. The weighted neighbour-home allocation is equal to the
nucleolus in the special case where all players are given equal weight. But first,
in section 2, we formally define the standard fixed tree problem and its cor-
responding game, and introduce necessary notation.

2 The fixed tree maintenance problem: the model and its game

In this paper we consider a maintenance problem G :¼ ðG; c;NÞ. Here G ¼
ðV ;EÞ is a tree, i.e. a directed connected graph without cycles, with vertex set
V and arc set E. The set V contains a distinguished vertex. We denote this
vertex by r and refer to it as the source. The function c : E! Rþ, called cost
function, associates with each arc e a cost cðeÞ. It can be interpreted as the cost
to maintain e. N ¼ f1; 2; . . . ; ng is a fixed and finite set of players. The players
are located at the vertices V nfrg; and it is assumed that at each vertex there is
exactly one player1. The players find themselves connected to the source

1 Basically, our approach differs from standardness as in Maschler et al. (1995), by assuming
precisely one player per vertex outside the source. However, this assumption is not essential for
any of our results. See Koster et al. (2001) for details.
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through the costly arcs in E: The problem under consideration is to divide the
cost of the complete network

P
e2E cðeÞ among the players in N . A vector of

cost shares is by definition a vector x 2 RN such that
P

i2N xi ¼
P

e2E cðeÞ.
Here xi represents the amount that player i has to pay according to x. Below
we will use the notation xðSÞ to express the aggregate payments of a coalition
of players S � N , i.e.

P
i2S xi. DðSÞ stands for the unit simplex in RS

þ; i.e. the

set of all vectors y 2 RS
þ such that yðSÞ ¼ 1: In the sequel we identify vertices

with players (V ¼ N [ frg). For any subgraph G0 of G, we will let EðG0Þ and
V ðG0Þ denote the corresponding arc set and vertex set, respectively. Some-
times we will also denote the player set corresponding to G0 by
NðG0Þ � V ðG0Þ. For each vertex i 2 N there is a unique path Pi from the
source to vertex i. If V ðPiÞ consists of the vertices j0 ¼ r; j1; . . . ; jq ¼ i, then
jq�1 is called the predecessor pðiÞ of vertex i. In this fashion by p�1 ið Þ we
denote the set j 2 V j p jð Þ ¼ if g: We put NðPiÞ :¼ V ðPiÞ n frg. We denote by
ei the arc ðpðiÞ; iÞ, and we will sometimes write ci :¼ cðeiÞ. The precedence
relation ðV ;�Þ on the set of vertices and/or players is defined by i � j if and
only if i 2 V ðPjÞ. Analogously we define the precedence relation ðE;�Þ on the
arcs. In this way, the arcs are considered to be directed away from the source.
A trunk of G ¼ ðV ;EÞ is a set of vertices T � N , which is closed under the
precedence relation defined above, i.e. if i 2 T and j � i, then j 2 T . Let the
followers of a vertex i be denoted by F ðiÞ :¼ fj 2 N : i � jg. A vertex i is
called a leaf if F ðiÞ ¼ fig. If e ¼ ði; jÞ, then Be is the branch at i in the direction
of j, as in Maschler et al. (1995), so V ðBeÞ :¼ fig [ F ðjÞ, NðBeÞ :¼ F ðjÞ and
EðBeÞ :¼ fðk; ‘Þ 2 E : k; ‘ 2 V ðBeÞg. With each problem G ¼ ðG; c;NÞ can be
associated a cost game ðN ; cGÞ, where the cost cGðSÞ of each coalition S is
defined as the minimal cost needed to maintain all connections of the mem-
bers of S to the source via a connected subgraph of ðV ;EÞ, i.e.

cGðSÞ ¼
X

i2TS

cðeiÞ for all ; 6¼ S � N ð1Þ

where TS ¼ fi 2 N jthere is j 2 S with i � jg, and cGð;Þ ¼ 0. So think of TS as
the smallest trunk containing S. In order to prove some of our results, we will
need to represent our cost game using the basis fðN ; u�SÞgS�N of dual una-
nimity games. The game ðN ; u�SÞ is defined by

u�SðT Þ ¼
1 if S \ T 6¼ ;;
0 otherwise.

�

When there is no confusion about the set of players then in the sequel we will
slightly abuse notation by abbreviating a game N ; cð Þ by c:

It is known (see Koster et al. (2001)), that if G ¼ ðG; c;NÞ is a maintenance
problem, then the associated cost game N ; cGð Þ, or just cG; can be represented
as a linear combination of dual unanimity games as follows:

cG ¼
X

e2E

cðeÞu�NðBeÞ: ð2Þ

3 The core of a maintenance game

We seek to allocate the the total cost cG Nð Þ of maintaining the network
corresponding to G: A vector of cost shares or cost vector for the game cG is a
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vector x 2 RN such that
P

i2N xi ¼ cG Nð Þ. The following notation will be

useful. In the sequel, for y 2 RN , yS 2 RS is the restriction of y to S � N , and
yðSÞ :¼

P
i2S yi. A solution concept for a class of cost games is no more than

a correspondence that assigns to each of the cost games under consideration
a subset of vectors of cost shares. In particular, the set of all cost shares for a
game defines a solution concept. Nevertheless, it will be not very appealing
since it is fairly large in general. In this paper we restrict ourselves to those
vectors of cost shares that satisfy collective stability. This means that a specific
vector of cost shares x will remain an eligible candidate for a solution concept
only if it is stable with respect to coalitional deviation. In the present setting
of maintenance games this means that for each coalition S � N the aggregate
payment of coalition S, i.e. x Sð Þ; is smaller than the cost of maintaining the
network that coalition S needs, i.e. cG Sð Þ: The set of all such vectors of cost
shares is called the core of the game N ; cGð Þ: So formally the definition reads
as follows:

Definition 3.1. The core of a cost game ðN ; gÞ is the set

CðgÞ :¼ fx 2 RN: xðSÞ � gðSÞ for all S � N ; xðNÞ ¼ gðNÞg:

It is a well-known fact that each standard fixed tree games is concave2 (Granot
et al. (1996)) and that for this reason (Shapley 1971ð ÞÞ the corresponding core
is nonempty. So in particular this is true for each member in the subclass of all
maintenance games. Characterizations of the core of the game ðN ; cGÞ are
found in Koster et al. (2001). The next proposition summarizes these results
and adds a characterization of the core in terms of overflows.

Given a maintenance problem G ¼ ðG; c;NÞ and a cost vector x, we define
the overflow over the arc e 2 E Gð Þ as the amount that the members of NðBeÞ,
i.e. the inhabitants of the branch Be, pay in excess of the cost of the arcs of Be.
Formally, the definition of the overflow over e is given by

OeðxÞ :¼
X

i2NðBeÞ
xi �

X

f2EðBeÞ
cðf Þ ¼

X

i2NðBeÞ
ðxi � ciÞ:

If e ¼ ði; jÞ, we will sometimes write OjðxÞ instead of OeðxÞ, and it is easily
seen that

OjðxÞ ¼
X

‘2F ðjÞ
ðx‘ � c‘Þ ¼ ðxj � cjÞ þ

X

‘2p�1ðjÞ
O‘ðxÞ: ð3Þ

Proposition 3.2. Let x 2 RN . Then the following statements are equivalent:

ðiÞ x 2 CðcGÞ;
ðiiÞ xðNÞ ¼ cGðNÞ; x � 0; and xðT Þ � cGðT Þ for every trunk T ,
ðiiiÞ xðNÞ ¼ cGðNÞ, x � 0, and OeðxÞ � 0 for all e 2 E,
ðivÞ There exist ye 2 DðNðBeÞÞ for all e 2 E, such that xi ¼

P
e2EðPiÞ ye

i cðeÞ for
all i 2 N .

2 A cost game N ; cð Þ is concave if for all i 2 N ; S � T � Nn if g it holds that c S [ if gð Þ
�c Sð Þ � c T [ if gð Þ � c Tð Þ: So the marginal costs of adding a player i to a coalition decrease
with its cardinality.
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Proof. These results essentially appear as Propositions 3.1 ððiÞ , (ii)), 3.2
(ðiiÞ , ðiiiÞ), and 3.3 (ðiÞ , ðivÞ ) in Koster et al. (2001). u

Definition 3.3. A pseudo subtree of a tree G ¼ ðV ;EÞ is a connected subgraph
G0 ¼ ðV 0;E0Þ such that there exists an r0 2 V such that

(a) r0 is the minimal element in V 0 with respect to �,
(b) there is exactly one vertex in V 0 that has r0 as predecessor.

Definition 3.4. A pseudo subtree G0 ¼ ðV 0;E0Þ of G rooted at r0 yields a
restricted maintenance problem C0 ¼ ðG0; c0;N 0Þ where c0 is the restriction of c
to E0 and N 0 ¼ V 0nfr0g.Let T ¼ ðG1; . . . ;GpÞ be an ordered collection of
pseudo subtrees of G. Then T is said to be a partition of G into pseudo subtrees
if and only if

(a) for all k ¼ 1; . . . ; p, there exists rk 2 V ðGkÞ such that Gk is the pseudo
subtree of G rooted at rk,

(b) ðNðG1Þ; . . . ;NðGpÞÞ is a partition of N .

Given an allocation vector x, let EðxÞ :¼ fe 2 E : OeðxÞ > 0g. The graph
ðV ;EðxÞÞ contains p connected subgraphs, where 1 � p � n. For each of these
subgraphs, 1 � k � p, we construct a pseudo subtree Gk with player set
NðGkÞ. Let rk 2 V n NðGkÞ be such that rk 2 V ðPiÞ for every i 2 NðGkÞ, and
rk ¼ pðiÞ for exactly one i 2 NðGkÞ. Let V ðGkÞ :¼ NðGkÞ [ frkg
and EðGkÞ :¼ fe ¼ ði; jÞ : i; j 2 V ðGkÞg. Then Gk :¼ ðV ðGkÞ;EðGkÞÞ is a
pseudo subtree rooted at rk, and T ðxÞ :¼ ðG1; . . . ;GpÞ is a partition of G into
pseudo subtrees. We will refer to T ðxÞ as the partition of G induced by x.

Example 3.5. Consider the maintenance problem G ¼ ðG; c;NÞ described by
Fig. 1, where the arc weights are given by cðeÞ :¼ 10 for all e 2 E.

The allocation x ¼ ð4; 5; 15; 16Þ is a core element, and the corresponding
overflows are indicated next to the arcs in the figure. By removing all the arcs
with zero overflows, we obtain the partition of G into the pseudo subtrees G1

and G2, where NðG1Þ ¼ f1; 4g, NðG2Þ ¼ f2; 3g, r1 ¼ r, and r2 ¼ 1.
For any i 2 N , let 1 � kðiÞ � p be such that i 2 NðGkðiÞÞ. Let, for any

i 2 N , ~F ðiÞ :¼ F ðiÞ \ V ðGkðiÞÞ. For 1 � k � p and e 2 EðGkÞ, let ~Be be

defined such that V ð ~BeÞ :¼ V ðBeÞ \ V ðGkÞ, Nð ~BeÞ :¼ NðBeÞ \ NðGkÞ, and
Eð ~BeÞ :¼ EðBeÞ \ EðGkÞ. In an analogous manner, for 1 � k � p and i 2
V ðGkÞ, define ~Pi. We will write ~OeðxÞ :¼

P
i2Nð ~BeÞðxi � ciÞ.

Fig. 1. The maintenance problem for Example 3.5
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Proposition 3.6. ðiÞ Let T be a partition of G into pseudo subtrees. ThenQp
k¼1 CðcGk Þ � CðcGÞ, where ðNðGkÞ; cGk Þ is the cost game corresponding to the

restricted maintenance problem Gk.
ðiiÞ Let x 2 CðcGÞ, and T ¼ ðG1; . . . ;GpÞ :¼ T ðxÞ. Then x 2

Qp
k¼1 CðcGk Þ.

Proof. ðiÞ This result appears as Proposition 3.8ðiÞ in Koster et al. (2001).
ðiiÞ A similar result appears as Proposition 3.8ðiiÞ in Koster et al. (2001). In
order to prove it, we use the core characterization in Proposition 3ðiiiÞ. Let
1 � k � p. Because x 2 CðcGÞ is efficient with respect to the game cG, and since
T has been constructed by removing only arcs with zero overflows, it is clear
that xNðGkÞ is efficient with respect to the game cGk . Also, xNðGkÞ � 0 follows
from x 2 CðcGÞ and Proposition 3. We will complete the proof by showing
that ~OiðxÞ ¼ OiðxÞ � 0 for all i 2 NðGkÞ, where the inequality follows from
x 2 CðcGÞ and Proposition 3ðiiiÞ. Note that, by (3) and the construction of T ,
~OiðxÞ ¼ xi � ci ¼ OiðxÞ for any i 2 NðGkÞ such that i is a leaf in Gk, since i
must either be a leaf in G, or we must have OjðxÞ ¼ 0 for every j 2 p�1ðiÞ.
Then, for every i 2 NðGkÞ such that i is not a leaf in Gk,
~OiðxÞ ¼ ðxi � ciÞ þ

P
j2p�1ðiÞ\ ~F ðiÞ

~OjðxÞ ¼ ðxi � ciÞ þ
P

j2p�1ðiÞ OjðxÞ ¼ OiðxÞ. u

4 The core and the set of weighted down-home allocations

Proposition 3ð Þ shows that the core of a maintenance game is in general fairly
large and multi-valued. In this section the focus is on a particular single-
valued solution concept that assigns a single vector of cost shares to each
game under consideration: the Shapley value (Shapley (1953)). It is one of the
most celebrated single-valued solution concepts for transferable utility games.
For concave cost games it has the geometric interpretation of the barycenter
of the core. Moreover, for specific classes of games the Shapley value is a very
intuitive concept and allows for an elegant expression. Two such classes are
airport games and maintenance games (cf. Littlechild and Thompson (1977),
Dubey (1982), Koster et al. (2001).

For both mentioned classes of games the Shapley value is calculated by an
equal split of the costs of each arc in the network among its users. Here we
will slightly change this procedure by the introduction of a dynamical process
of uniformly distributing the costs of the network. This serves our goal: to
treat the class of weighted Shapley values (Kalai and Samet (1988)). Starting
with an arbitrary weight system the dynamic procedure results in a weighted
down-home allocation. From the procedure itself we conclude that this
weighted down-home allocation is a core element. Then we conclude that it
represents a specific weighted Shapley value. Hence, we immediately obtain
the well-known result that the set of all weighted Shapley values is a subset of
the core. Moreover, with this dynamic approach we are able to show the
converse, that the set of weighted Shapley values is exactly the core. Mon-
derer et al. (1992) show this result for the large class of all concave games.
Nevertheless, where their proof needed a fixed point argument, our proof is
constructive.

Definition 4.1. Let G ¼ ðG; c;NÞ be a maintenance problem, and let
BðGÞ denote the set of weight systems for G. Then b :¼ ðT ;wÞ belongs to
BðGÞ if
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(a) T ¼ ðG1; . . . ;GpÞ is a partition of G into pseudo subtrees,
(b) w 2 RN ; wi � 0 for all i 2 N , and
(c) wð ~F ðiÞÞ > 0 for all i 2 N such that ci > 0.

Consider a maintenance problem G ¼ ðG; c;NÞ and some weight system
b 2 BðGÞ. For each pseudo subtree Gk, interpret the vertices in NðGkÞ as the
homes of the different players and the arcs in EðGkÞ as the roads to the
community center (rk). The cost of a road is expressed as the number of days
it takes (for one person) to paint the stripes on the road. The work is done by
the players themselves according to the following rules3

ðiÞ Every worker keeps painting as long as the road from the community
center to his home has not been completed.

ðiiÞ Every worker does his job on an unfinished segment between the com-
munity center and his home.

ðiiiÞ Every worker starts painting at the same moment.
ðivÞ Every worker i 2 N paints with velocity wi.
ðvÞ Each worker paints as close to the community center as the rules (i)–(iv)

permit him to.

We call the resulting allocation the weighted down-home allocation, and
denote it dbðGÞ. It is given by, for any player i 2 N ,

db
i ðGÞ ¼

X

e2Eð ~PiÞ

wi

wðNð ~BeÞÞ
cðeÞ:4 ð4Þ

So according to the weighted down-home allocation the users of an arc e
share the costs cðeÞ proportionally to their individual weights.4

Example 4.2. Consider the maintenance problem G that is graphically de-
picted in Fig. 1, where cðeÞ :¼ 10 for every e 2 E. Let T :¼ ðG1;G2Þ be
the partition into pseudo subtrees of G, where NðG1Þ :¼ f1; 2; 3g and

NðG2Þ :¼ f4g, and let w :¼ ð1; 1; 3; 1Þ. For b :¼ ðT ;wÞ we have dbðGÞ ¼
2; 4 1

2 ; 23
1
2 ; 10

� �
. Player 1 only contributes to the cost of arc ðr; 1Þ, so his total

contribution is 10 � 15 ¼ 2. Player 2 contributes to the cost of arc ðr; 1Þ and
ð1; 2Þ, with relative weights of 1

5 and
1
4, respectively, so his total contribution is

10 � 920 ¼ 4 1
2. Player 3 contributes at arc ðr; 1Þ, ð1; 2Þ, and ð2; 3Þ, with relative

weights of 3
5,

3
4, and 1, respectively, hence his total contribution is 10 � 4720 ¼ 23 1

2.
Player 4 is the only player in his pseudo subtree, and contributes the entire
cost of the arc that he uses, i.e. 10.

From Proposition 3.2 ivð Þ it follows that each down-home allocation
specifies a core-element. But as we are about to show, the converse also holds.
For each core element x there is a weight system b such that the corre-

3 These rules are inspired by the painting story presented in Maschler et al. (1995).
4 Koster et al. (2001) treat the weighted home-down allocation, which results by replacing ‘‘the
community center’’ in vð Þ by ‘‘his home’’. The resulting allocation is related to a weighted version
of the constrained egalitarian solution of Dutta and Ray (1989) (see Koster (2002)).
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sponding down-home allocation dbðGÞ equals x. We will show how such a
weight system b is easily calculated for a given x 2 CðcGÞ.

First of all, the partition of the player set is derived from the partition of G
into pseudo subtrees induced by x; this can be done by considering the over-
flows in the tree. Next the weights for the players are calculated for each such
separate subproblem. Without loss of generality, we will assume that the
partition into pseudo subtrees of G with respect to x is trivial, or, equivalently,
all the overflows are positive except at the arc that leaves the source. We do this
because the following procedures will be the same for each pseudo subtree.

It is assumed that player 1 is the player directly connected to the source.
The cost of the corresponding arc e1 is covered by the collective of players N .
Suppose that x is a down-home allocation. Then our objective is, if at
all possible, to find a suitable vector of weights w such that for
b ¼ ðfNg;wÞ 2 BðGÞ we have dbðGÞ ¼ x. First of all, with the interpretation of
the weights as painting speeds, the arc e1 is painted in

cðe1Þ
wðNÞ ¼ cðe1Þ units of time;

if we assume that w is normalized such that wðNÞ ¼ 1. Moreover, each of the
painting players is finished with e1 at the same time. In particular, if player 1
is painting at all (in case x1 > 0) then he is also painting for cðe1Þ units of time.
On the other hand he must complete x1 by himself, at speed w1, so we have the
condition x1

w1
¼ cðe1Þ; and thus w1 ¼ x1

cðe1Þ : Note that cðe1Þ > 0 by the fact that
x1 > 0 and x is a core-element.

After having calculated this first weight, we proceed by consecutively
assigning weights to each of the players in the sets p�1ð1Þ; p�1ðp�1ð1ÞÞ; . . . ;
until all the players have a weight. Basically we repeat the above type of
reasoning using an induction argument. Consider a player i 62 p�1ð1Þ. Then,
according to x, his followers F ðiÞ contribute OiðxÞ > 0 to the maintenance cost
of the path from the root to his predecessor, player pðiÞ. Recall again the
painting story. The speed at which the collective of players F ðiÞ operates on
the path from r to pðiÞ is given by the aggregate of the weights wðF ðiÞÞ. Then
the time that the group of players F ðiÞ needs to complete OiðxÞ is given by

OiðxÞ
wðF ðiÞÞ :

Similarly, it holds that the followers of pðiÞ contribute OF ðpðiÞÞðxÞ to the path
from the source to pðpðiÞÞ plus the full cost of maintaining the arc
ðpðpðiÞÞ; pðiÞÞ. The collective of players F ðpðiÞÞ paints at speed wðF ðpðiÞÞÞ,
which means that the time that it needs to complete their part of the path
from the root to pðiÞ equals

OpðiÞðxÞ þ cðepðiÞÞ
wðF ðpðiÞÞÞ :

Then this indicates the time that each of the individuals in F ðpðiÞÞ is working
on the path from r to pðiÞ, and especially each of the players in F ðiÞ. But then
we must have the equality

OiðxÞ
wðF ðiÞÞ ¼

OpðiÞðxÞ þ cðepðiÞÞ
wðF ðpðiÞÞÞ :
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This determines an iterative procedure for calculating all the weights wðF ðiÞÞ
for each i 2 F ð1Þ n f1g, since

wðF ðiÞÞ ¼ wðF ðpðiÞÞÞ OiðxÞ
OpðiÞðxÞ þ cðepðiÞÞ

for all i 2 N , and

wi ¼ wðF ðiÞÞ �
X

j2p�1ðiÞ
wðF ðjÞÞ:

Example 4.3. Consider the network G depicted in Fig. 2.

As in earlier examples the maintenance costs of the different arcs are all
10. Check that x ¼ ð5; 13; 12Þ is a core element for cG. The numbers at the arcs
in Figure 2 denote the overflows corresponding to x. Firstly, observe that the
partition T of G into pseudo subtrees induced by x is trivial. Assume that x is
a down-home allocation: there is a vector of weights w with wi > 0 for all
i 2 f1; 2; 3g such that dbðGÞ ¼ x for b ¼ ðT ;wÞ 2 BðGÞ. Recall the painting
story for the weighted down-home allocation. The players 1,2, and 3
respectively paint at velocities w1;w2; and w3 respectively at e1 as long as
cðe1Þ ¼ 10 is not completed. Furthermore, the contribution of player 1 to-
gether with the overflows O2ðxÞ and O3ðxÞ respectively determine the parts of
cðe1Þ that are individually covered by the players 1,2 and 3 respectively. Given
the velocities we can compute the time that the players need to finish these
parts in three ways, as

x1
w1
;

O2ðxÞ
w2

; and
O3ðxÞ

w3
:

These numbers are equal by the fact that all the players will continue painting
on e1 until it is finished, which implies that the finishing time of the collective
of players equals the individual finishing times.

Since we are completely informed about the individual contribution of
player 1 and the overflows corresponding to each branch emanating from the
node of player 1, we must therefore have

5

w1
¼ 3

w2
¼ 2

w3
;

and thus w ¼ ðw1;
3
5w1;

2
5w1Þ. Since w is a vector in the unit simplex, we get

w1 ¼ 1
2, w ¼ ð12; 3

10;
2
10Þ. The reader may verify that indeed dbðGÞ ¼ x for

b ¼ ðfGg;wÞ.

Fig. 2. The tree network corresponding to Example 4.3 with overflows
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Example 4.4. Consider the network as in Figure 3. All arcs have equal
maintenance cost 10.

Consider the core element x=(4,12,12,12) of the corresponding 4-player
maintenance game. The overflows corresponding to x are the numbers to
the arcs in Figure 3. The partition into pseudo subtrees by x is (again)
trivial. Assume that x is a down-home allocation, i.e. there is a vector
w 2 R4 with all positive coordinates such that for b ¼ ðfGg;wÞ we have
dbðGÞ ¼ x. We will see that similar reasoning as in the above example 4.3
leads to conditions that determine w. Basically, the only difference with the
situation in example 4.3 is that it is not directly clear what are the individual
contributions of the players 3 and 4 at e1. We are only able to monitor their
aggregate efforts by means of O3ðxÞ. The same considerations as in the
above example lead to the conclusion that players 1,2, and the collective of

players 3 and 4 finish in x1
w1
; O2ðxÞ

w2
and O3ðxÞ

w3þw4
time units, respectively. Since

these numbers are all equal we have

4

w1
¼ 2

w2
¼ 4

w3 þ w4
:

Therefore, at this stage we are able to express w2 and w3 þ w4 in terms of w1,
i.e. w2 ¼ 1

2w1;w3 þ w4 ¼ w1. But now we can calculate w1 by the equality
wðNÞ ¼ 1, i.e. w1 ¼ 2

5. This means that we only have to consider w3 and w4

since w2 ¼ 1
2 w1 ¼ 1

5. Consider the path from the root to vertex 3. The players
3 and 4 reach vertex 3 at the same time. The time they need to complete the
entire path equals the time for completing e1 plus the time necessary for
completing e3, i.e.

O3ðxÞ
w3 þ w4

þ cðe3Þ
w3 þ w4

¼ O3ðxÞ þ cðe3Þ
w3 þ w4

:

At this precise moment player 4 has completed exactly O4ðxÞ. Using the
velocity of player 4, w4, therefore the time that player 4 must spend equals
O4ðxÞ

w4
and thus

O4ðxÞ
w4
¼ O3ðxÞ þ cðe3Þ

w3 þ w4
; so that

2

w4
¼ 14

w3 þ w4
¼ 35;

from which we see that w4 ¼ 2
35 and w3 ¼ w1 � w4 ¼ 2

5� 2
35 ¼ 12

35. Thus
w ¼ 2

5 ;
1
5 ;

12
35 ;

2
35

� �
:

Now we will formalize the above ideas. For any core allocation x, we
define a weight system b 2 BðGÞ such that x ¼ dbðGÞ. First, find the partition

Fig. 3. The tree network corresponding to Example 4.4 with overflows
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T ¼ ðG1; . . . ;GpÞ of G into pseudo subtrees induced by x. Then a weight
vector w can be found by first, for all i 2 N , calculating the sums

wð ~F ðiÞÞ ¼
1 if pðiÞ ¼ rkðiÞ,

~OiðxÞ
~OpðiÞðxÞþcpðiÞ

wð~F ðpðiÞÞÞ else,

(

ð5Þ

in a recursive manner, and then the individual weights are given by

wi ¼ wð ~F ðiÞÞ �
X

j2 ~F ðiÞ
wð ~F ðjÞÞ for all i 2 N : ð6Þ

Proposition 4.5. Let x 2 CðcGÞ. There exists b :¼ ðT ;wÞ 2 BðGÞ such that
x ¼ dbðGÞ, where T ¼ T ðxÞ, and w satisfies ð5Þ and ð6Þ.

Proof. First we show the existence part. Observe that T ðxÞ exists and that if,
for some i 2 N , we have jNðGkðiÞÞj ¼ 1, then (5) and (6) imply wi ¼ 1. To
prove existence for w, it is therefore sufficient to show that

~OiðxÞ þ ci > 0 for all i 2 N such that jNðGkðiÞÞj > 1: ð7Þ
Since ci � 0 for all i 2 N , and since ~OiðxÞ > 0 for all i 2 N such that pðiÞ 6¼ rkðiÞ,
the only possible problem arises if ci ¼ 0 for a player i such that pðiÞ ¼ rkðiÞ.
Suppose that this is the case. Then, since, by the construction of T , xNðGkðiÞÞ is a
vector of cost shareswith respect to thegame cGkðiÞ ,wemust have ~OjðxÞ ¼ 0 for all
j 2 p�1ðiÞ \ ~F ðiÞ, contradicting the fact that T is induced by x. It holds that
b 2 BðGÞ: clearly, T ¼ ðG1; . . . ;GpÞ is a partition of G into pseudo subtrees.
From (5), (7), and because ~OiðxÞ > 0 if pðiÞ 6¼ rkðiÞ, it follows that

wð ~F ðiÞÞ > 0 for all i 2 N : ð8Þ
Also, for any i 2 N , we have from (5) and (6) that

wi ¼ wð ~F ðiÞÞ 1�
X

j2p�1ðiÞ\ ~F ðiÞ

~OjðxÞ
~OiðxÞ þ ci

8
<

:

9
=

;

¼ wð ~F ðiÞÞ
P

j2 ~F ðiÞðxj � cjÞ þ ci �
P

j2 ~F ðiÞnfigðxj � cjÞ
~OiðxÞ þ ci

¼ wð ~F ðiÞÞ xi

~OiðxÞ þ ci
� 0:

ð9Þ

Here the last inequality follows from (7) and (8), and because Proposition 3.2
and x 2 CðcGÞ imply x � 0.

Finally we show that x ¼ dbðGÞ. For any i 2 N it follows from (9) that

xi ¼ wi

~OiðxÞ þ ci

wð ~F ðiÞÞ
: ð10Þ

For any k such that 1 � k � p, and i 2 NðGkÞ, define the number

tk
j :¼

0 if i ¼ rk,
~OiðxÞþci

wð~F ðiÞÞ else.

(

ð11Þ
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From this definition follows, for any i 2 NðGkÞ, that tk
i ¼

P
j2Nð ~PiÞðt

k
j � tk

pðjÞÞ.
Also, by (10) we have xi ¼ witk

i for all i 2 NðGkÞ . We will complete the proof
by showing that tk

j � tk
pðjÞ ¼

cj

wð ~F ðjÞÞ for all j 2 NðGkÞ, and by referring to the

definition given in (4). If pðjÞ ¼ rkðjÞ, then ~OjðxÞ ¼ 0, so the result follows
from (11). Else

tk
j � tk

pðjÞ ¼
~OjðxÞ þ cj

wð ~F ðjÞÞ
�

~OpðjÞðxÞ þ cpðjÞ

wð ~F ðpðjÞÞÞ
¼

~OjðxÞ þ cj � ~OjðxÞ
wð ~F ðjÞÞ

¼ cj

wð ~F ðjÞÞ
;

where the second equality follows from (5). u

Theorem 4.6. The core of the maintenance game ðN ; cGÞ equals the set of down-
home allocations, i.e. fdbðGÞ j b 2 BðGÞg ¼ CðcGÞ:

Proof. That the weighted down-home allocations form a superset of CðcGÞ
follows from Proposition 4.5. To show the inclusion, suppose b 2 BðGÞ. The
proof is complete by first noting that dbðGkÞ 2 CðcGk Þ for every k ¼ 1; . . . ; p by

ðivÞ in Proposition 3.2, and from Proposition 3.6ðiÞ. u

In Monderer et al. (1992), it is shown by a non-constructive proof that the
set of weighted Shapley values equals the core for convex games. Here we
show this result for maintenance games in a constructive way. But first we will
develop the notion of the weighted Shapley values.

Definition 4.7. Call a weight system for the game ðN ; gÞ a pair l :¼ ðS; kÞ,
where S ¼ ðS1; . . . ; SqÞ is an ordered partition of the player set N , and
kS‘ 2 RS‘

þþ \ DðS‘Þ for all ‘ ¼ 1; . . . ; q. LetMðgÞ be the set of all such weight
systems for the game ðN ; gÞ.

Definition 4.8. Take a weight system l ¼ S; kð Þ for all games in CN ; i.e. all
games with player set N : The corresponding weighted Shapley value is the
linear function Ul : C! RN that is defined for each unanimity game uS as
follows. Let mðSÞ :¼ minfj : Sj \ S 6¼ ;g, and let �S :¼ S \ SmðSÞ. Then

ðUlÞiðuSÞ ¼
ki

kð�SÞ if i 2 �S,

0 otherwise.

(

ð12Þ

Note that with the unanimity games as a basis for CN ; this completes the
definition of Ul:

In the unanimity game uS , the importance of the players depend on how
they are ‘‘ranked’’, i.e. where they are located in the ordered collection S. In a
cost game the most important players, i.e. those in �S, carry the entire cost. In
the case of our cost game cG, because of (2), we only need to consider the
(dual) unanimity games corresponding to users of arcs, i.e. the games
u�NðBeÞ for all e 2 E. If, for some e 2 E and i 2 N , we have i 2 NðBeÞ, we say
that i is present at e. For some e 2 E, let

SðeÞ :¼ NðBeÞ \ Sminfj:NðBeÞ\Sj 6¼;g;

and if i 2 SðeÞ, we say that i is a senior player at e. If i is present, but not a
senior player, at e, there must exist some j 6¼ i such that j 2 SðeÞ, and we say
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that i is dominated by j at e. The weighted Shapley value for a maintenance
game is given by the value of the dual unanimity game for each arc,

ðUlÞiðu�NðBeÞÞ ¼
ki

kðSðeÞÞ if i 2 SðeÞ,

0 otherwise.

(

ð13Þ

Example 4.9. Consider the example illustrated in Figure 4, where cðeÞ :¼ 10
for all e 2 E.Let S :¼ ðf2; 3g; f1; 4; 5gÞ and k :¼ 1

4 ;
1
2 ;

1
2 ;

1
4 ;

1
2

� �
, hence l ¼

ðS; kÞ 2 MðcGÞ. The corresponding weighted Shapley value is UlðcGÞ ¼
ð0; 15; 15; 10; 10Þ. Player 1 pays nothing, since he is not among the senior
players at any arc. Players 2 and 3 dominate all other players at arc ðr; 1Þ, and
since they both have the same weight, they both pay 5 here. Only player 2 is
present at ð1; 2Þ, so he pays for this arc alone. Since he is not present at any
other arc except ðr; 1Þ, his total contribution is 5þ 10 ¼ 15. Player 3 domi-
nates all other players at ð1; 3Þ, and since he is not present at any other arc
except ðr; 1Þ, his total contribution is 5þ 10 ¼ 15. Players 4 and 5 are dom-
inated by other players at all arcs where they are present, except at the arcs e4
and e5, respectively, where they make up the entire set of senior players, and
therefore they contribute 10 each.

Theorem 4.10. ðiÞ For any b 2 BðGÞ, there exists l 2MðcGÞ such that
UlðcGÞ ¼ dbðGÞ.
ðiiÞ For any l 2 MðcGÞ, there exists b 2 BðGÞ such that UlðcGÞ ¼ dbðGÞ.

Proof. ðiÞ Let b ¼ ðT ;wÞ 2 BðGÞ for some maintenance problem G. Note that
the elements of T ¼ ðG1; . . . ;GpÞ can be ordered arbitrarily without affecting
dbðGÞ, and we choose an ordering such that kðiÞ < kðjÞ ) j 62 NðPiÞ for any
pair i; j 2 N . Let, for every k ¼ 1; . . . ; p;, Sk :¼ fi 2 NðGkÞ j wi > 0g and
Spþk :¼ fi 2 NðGkÞ j wi ¼ 0g. The ordered collection ðS1; . . . ; Sp; Spþ1; . . . ; S2pÞ
contains q nonempty elements, where p � q � 2p, and let S :¼ ðS1; . . . ; SqÞ be
the ordered collection obtained by deleting the empty elements. Also, for every
i 2 N , let

ki :¼
wi

wðS‘ðiÞÞ if wi > 0,

1
jS‘ðiÞj otherwise,

(

ð14Þ

where ‘ðiÞ ¼ ‘ if and only if i 2 S‘. It is easily seen that l :¼ ðS; kÞ 2 MðGÞ.
For any i 2 N , we have

Fig. 4. The maintenance problem as in Example 4.9
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Ul
i ðcGÞ ¼

X

e2E
SðeÞ3i

ki

kðSðeÞÞ cðeÞ ¼
X

e2Eð ~PiÞ
SðeÞ3i

ki

kðSðeÞÞ cðeÞ

¼
X

e2Eð ~PiÞ
SðeÞ3i

wi

wðSðeÞÞ cðeÞ ¼
X

e2Eð ~PiÞ

wi

wðNð ~BeÞÞ
cðeÞ ¼ db

i ðGÞ:

The first equality follows from (2), the additivity of the weighted Shapley value,
and (13). The second equality follows from the fact that we can have i 2 SðeÞ
only if e 2 Eð ~PiÞ. Suppose, on the contrary, that i 2 SðeÞ for some e 2 E n Eð ~PiÞ.
Since we can have i 2 SðeÞ only if i is present at e, wemust have e 2 EðPiÞ. Then,
by the construction of S, we must have NðBeÞ \ Sj 6¼ ; for some j < ‘ðiÞ,
implying i 62 SðeÞ, a contradiction. In order to prove the third equality, it is
sufficient to show that if i 2 SðeÞ for some i 2 N and e 2 Eð ~PiÞ such that

cðeÞ > 0, then ki ¼ wi
wðS‘ðiÞÞ, and hence kðSðeÞÞ ¼ wðSðeÞÞ

wðS‘ðiÞÞ. Suppose that this is not

true. Thenwi ¼ 0 by (14), and b 2 BðGÞ implies that there exists some j 2 Nð ~BeÞ
such that wj > 0. Then, by the construction of S, i 62 SðeÞ, a contradiction. The
fourth equality follows because, for any e 2 E and i 2 N , i 2 Nð ~BeÞ n SðeÞ im-
plieswi ¼ 0 (by the constructionofS ), sowðNð ~BeÞÞ ¼ wðSðeÞÞ. The last equality
follows from (4). ðiiÞLet l ¼ ðS; kÞ 2 MðcGÞ for somemaintenance problem G.
We construct T by applying algorithm 4.11.

Algorithm 4.11.

Initialization
Let S0m :¼ Sm for every m ¼ 1; . . . ; q, w :¼ k, and ‘ :¼ 1.

Main step
Repeat

For i 2 S0‘ do
For j 2 NðPiÞ do

If ‘ðjÞ > ‘ðiÞ then
S0‘ðiÞ :¼ S0‘ðiÞ [ fjg
S0‘ðjÞ :¼ S0‘ðjÞ n fjg
wj :¼ 0

‘ :¼ ‘þ 1
until ‘ > q

The algorithm will give as output the ordered set of coalitions S01; . . . ; S0q.
Suppose that this ordered set has q0 nonempty members. Delete the empty
members, and for every 1 � ‘ � q0, let G‘

1; . . . ;G‘
i‘ be the collection of pseudo

subtrees corresponding to maximal connected, with respect to G, components
of S0‘. Clearly, the ordered set

G1
1; . . . ;G1

i1 ;G
2
1; . . . ;G2

i2 ; . . . ;Gq0

1 ; . . . ;Gq0

iq0

is a partition of G into pseudo subtrees. Let p be the number of members of
this partition, re-index, and set T :¼ ðG1; . . . ;GpÞ. Since k � 0, we have
w � 0. b :¼ ðT ;wÞ 2 BðGÞ then follows, since, for any i 2 N , wi ¼ 0 implies,
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by algorithm 4.11, that there exists some j 2 ~F ðiÞ n fig such that wj > 0. Now,
for every i 2 N ,

db
i ðGÞ ¼

X

e2Eð ~PiÞ
cðeÞ wi

wðNð ~BeÞÞ
¼
X

e2Eð ~PiÞ
SðeÞ3i

cðeÞ ki

kðSðeÞÞ

¼
X

e2EðPiÞ
SðeÞ3i

cðeÞ ki

kðSðeÞÞ ¼
X

e2E
SðeÞ3i

cðeÞ ki

kðSðeÞÞ ¼ /l
i ðcGÞ:

The first equality follows from (4), and the second equality from the fact
that wi ¼ 0 if i 62 SðeÞ for some e 2 Eð ~PiÞ, and since wðNð ~BeÞÞ ¼ kðSðeÞÞ for
every e 2 E. To see that the latter equality is correct, consider some e 2 E.
After applying algorithm 4.11, the vertices in NðPjÞ \ NðBeÞ will be included
in S0‘ðjÞ for every j 2 SðeÞ. Hence the vertex set [j2SðeÞðNðPjÞ \ NðBeÞÞ will be
connected, with respect to G, and we must therefore have SðeÞ � Nð ~BeÞ.
Also, j 2 Nð ~BeÞ n SðeÞ implies wj ¼ 0, and j 2 SðeÞ implies wj ¼ kj, hence
the desired result. The third equality follows because e 2 EðPiÞ n Eð ~PiÞ
implies, from algorithm 4.11, that NðBeÞ \ Sj 6¼ ; for some j < ‘ðiÞ, i.e. i is
dominated by the members of Sj (i 62 SðeÞ). The fourth equality follows
because e 2 E n EðPiÞ implies that i is not present at e, hence i 62 SðeÞ, and
the last equality follows from (2), the additivity of the weighted Shapley
value, and (13). u

Example 4.12. Consider the maintenance problem in Figure 5, and the weight
system b ¼ ðT ;wÞ 2 BðGÞ, where T ¼ ðG1;G2Þ and w ¼ ð1; 1; 3; 1Þ. Here, the
corresponding l ¼ ðS; kÞ 2 MðcGÞ is uniquely given by S :¼ ðf1; 2; 3g; f4gÞ
and k ¼ 1

5 ;
1
5 ;

3
5 ; 1

� �
.

Example 4.13. Consider the maintenance game in example 4.9 (see the below
Figure 6) and the weight system l ¼ ðS; kÞ 2 MðcGÞ, where S ¼ ðf2; 3g,
f1; 4; 5gÞ and k ¼ 1

4 ;
1
2 ;

1
2 ;

1
4 ;

1
2

� �
. By applying algorithm 4.11, we obtain the

partition S0 ¼ ðf1; 2; 3g; f4; 5gÞ of the player set, and the weight vector
w ¼ 0; 12 ;

1
2 ;

1
4 ;

1
2

� �
: Note that player 1 has been absorbed by the partition

member containing 2 and 3, since 1 is dominated by these two players, and
that, accordingly, his weight is now zero. By taking maximal connected
subsets of each partition member, we obtain a partition of G into pseudo
subtrees, equal to T ¼ ðG1;G2;G3Þ, where NðG1Þ ¼ f1; 2; 3g, NðG2Þ ¼ f4g,
and NðG3Þ ¼ f5g.

Fig. 5. The maintenance problem for Example 4.12
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Theorems 4.6 and 4.10 together imply:

Corollary 4.14. The core of the maintenance game ðN ; cGÞ equals the set of
weighted Shapley values, i.e. fUlðcGÞ : l 2MðcGÞg ¼ CðcGÞ:

Monderer et al. (1992) show a more general result, that the set of all
weighted Shapley values equals the core of any concave cost game. However,
in proving this they needed a fixed point theorem.

5 The core and the set of weighted neighbour-home allocations

In the case of the weighted down-home allocation, the players have an
obligation to help their neighbours (predecessors), since they are required to
start working from the community center towards their own home. A less
extreme social obligation results by applying rules (i)-(iv) in section 4, as well
as vð Þ and við Þ below. The resulting allocation will be called the neighbour-
home allocation.

(v) If, for any worker i 2 N , the road between rkðiÞ and pðiÞ has not been
finished yet, then i is working outside his own arc ei.

(vi) Each worker paints as close to his home as the rules ðiÞ � ðiiiÞ; ðivÞ; ðvÞ
permit.

The algorithm in Maschler et al. (1995) produces a special case of the
weighted neighbour-home allocation, the nucleolus, where T ¼ fGg and
wi ¼ 1

jN j for all i 2 N . We will show, analogous to the treatment in Section 4
for the weighted down-home allocation, that the set of weighted neighbour-
home allocations equals the core, when the weight systems vary over the set
BðGÞ. In order to do this, we need to present the scheme implied by rules
ið Þ � vð Þ in a more formal manner, and this is done in Algorithm 5.1.
Let b ¼ ðT ;wÞ 2 BðGÞ, where T ¼ ðG1; . . . ;GpÞ. The neighbour-home
allocation, denoted gbðGÞ, is obtained by, for each of the restricted main-
tenance problems Gk, 1 � k � p, applying 5 to the restricted maintenance
problem Gk.

Let xðe; qÞ 2 ½0; cðeÞ	 be the part of the cost of arc e 2 EðGkÞ which is paid
before stage q. Let Eq � EðGkÞ be the subset of arcs whose cost is covered at
stage q, and let EðqÞ :¼ [j<qEj. Let eði; qÞ be the arc to which player i is
contributing in stage q, and let Sðe; qÞ :¼ fi 2 NðGkÞ j eði; qÞ ¼ eg be the set of
players contributing to arc e in stage q. Let QðiÞ denote the first stage in which
i stops contributing.

Fig. 6. The maintenance problem as in Example 4.13
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Algorithm 5.1.

Step 0

q :¼ 1; xðe; 1Þ :¼ 0 for all e 2 EðGkÞ;Eð1Þ :¼ ;;

eði; 1Þ :¼ epðiÞ if pðiÞ 6¼ rk,
ei otherwise.

�

Step 1

For any e 2 EðGkÞ n EðqÞ such that Sðe; qÞ 6¼ ;, it would take

tðe; qÞ :¼ cðeÞ�xðe;qÞ
wðSðe;qÞÞ units of time to finish for arc e. Thus, the first arc will

be finished after tðqÞ :¼ minftðe; qÞ j e 2 EðGkÞ n EðqÞ and Sðe; qÞ 6¼ ;g
units of time. Then wðSðe; qÞÞtðqÞ is the fraction of an arc e 2
EðGkÞ n EðqÞ which is constructed at stage q, and therefore xðe; qþ 1Þ :¼
xðe; qÞ þ wðSðe; qÞÞtðqÞ. Let Eq :¼ fe 2 EðGkÞ n EðqÞ j tðe; qÞ ¼ tðqÞg be
the subset of arcs finished at stage q, and let Eðqþ 1Þ :¼ EðqÞ [ Eq be
the subset of arcs finished at or before stage qþ 1. Consider every
i 2 Sðe; qÞ and e 2 Eq. If there exists an unfinished arc between
e ¼ eði; qÞ and the source, i.e. f � e such that f 2 EðGkÞ n Eðqþ 1Þ,
then choose such an f as close to e as possible, and set eði; qþ 1Þ :¼ f .
If such an arc does not exist, and if i’s own arc is not finished, i.e.
ei 2 EðGkÞ n Eðqþ 1Þ, set eði; qþ 1Þ :¼ ei. Otherwise, set QðiÞ :¼ q and

gb
i ðGÞ :¼

PQðiÞ
q¼1 tðqÞwi.

Step 2

If Eðqþ 1Þ ¼ EðGkÞ, terminate. Otherwise, set q :¼ qþ 1, and repeat
step 1.

We will first illustrate the algorithm by an example.

Example 5.2. For example 4.2 we have gbðGÞ ¼ ð4; 4; 22; 10Þ. Player 4 is alone
in his pseudo subtree G2, so he will contribute the entire cost of the arc ð1; 4Þ,
i.e. 10. For pseudo subtree G1 we apply algorithm 5.1. Initially,
eð1; 1Þ ¼ eð2; 1Þ ¼ ðr; 1Þ and eð3; 1Þ ¼ ð1; 2Þ. The first arc is finished after
tð1Þ ¼ minf102 ; 103 g ¼ 10

3 ¼ tðð1; 2Þ; 1Þ units of time, and the set of arcs finished
in the first stage is E1 ¼ fð1; 2Þg. Now eð3; 2Þ ¼ ðr; 1Þ and Sððr; 1Þ; 2Þ ¼
f1; 2; 3g, i.e. all three players will be contributing to arc ðr; 1Þ in the second

stage. Then tð2Þ ¼ tððr; 1Þ; 2Þ ¼ 10�10
3 �ð1þ1Þ
5 ¼ 2

3, and E2 ¼ fðr; 1Þg. Players 1 and

2 stop contributing after the second stage, i.e. Qð1Þ ¼ Qð2Þ ¼ 2, and they each
contribute, in total, 1 � 10

3 þ 2
3

� �
¼ 4. Player 3 now starts contributing to his

own arc, i.e. eð3; 3Þ ¼ ð2; 3Þ. He will finish this arc in tð3Þ ¼ 10
3 units of time,

and then stop contributing (Qð3Þ ¼ 3). His total contribution is
3 � 10

3 þ 2
3þ 10

3

� �
¼ 22. Since all the arcs have been finished after stage 3, the

algorithm terminates.

Now we turn to the following question: Given a core element y, can we
find a weight system b ¼ ðT ;wÞ 2 BðGÞ such that y ¼ gbðGÞ? It turns out that
the answer is yes, and Proposition 3.6 iið Þ suggests that we choose T :¼ T ðyÞ.
We will now illustrate, using two examples, how the weight vector w can be
found.
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Example 5.3. Consider Example 4.4 again, and the core element
y ¼ ð4; 12; 12; 12Þ, for wich the partition T ðyÞ is trivial. First, note that arc
e1 will be finished after 4

w1
units of time. Moreover, players 2 and 3 will be

contributing at this arc until it is finished, and will return home (to their
own arcs) exactly when this is the case. In order to calculate how long 2
and 3 will be contributing at arc e1, we need to find their far-away con-
tributions, i.e. how much they contribute at arcs other than their own. We
will do this by first finding their home contributions, i.e. how much they
contribute at their own arcs. Player 2’s home contribution is obviously
given by the cost of his own arc, i.e. 10, since he has no followers other
than himself. Thus his far-away contribution, i.e. the amount that he will
contribute at arc e1, is 12 - 10 = 2. For player 3 the picture is more
complicated, since he has a follower, player 4. Rule ðviÞ implies that if 4
contributes anything above the cost of his own arc, this contribution will
first be used to arc e3. This is indeed the case, since player 4 contributes
12 ) 10 = 2 in excess of the cost of his own arc. The home contribution
of player 3 will thus be only 10 ) 2 = 8. Since he contributes 12 in total,
his far-away contribution will be 12 ) 8 = 4. To sum up, we know now
that players 1, 2, and 3 contributes 4, 2, and 4, respectively, at arc e1. This
implies 4

w1
¼ 2

w2
¼ 4

w3
. Player 4 will be contributing at e3 until this arc is

finished. His contribution at this arc is 2, as we stated above. Player 3 will
stop contributing at all exactly when his own arc is finished, at which
point he will have contributed 12. This implies 12

w3
¼ 2

w4
. A weight vector

that satisfies both equalities above is w ¼ ð4; 2; 4; 46Þ.
To formalize the notions of home and far-away contributions, let

y ¼ gbðGÞ for some weight system b 2 BðGÞ, and let i 2 NðGkÞ, 1 � k � p.
Note that the contribution of the players in ~F ðiÞ n fig at or below ei will be
given by what they contribute in excess of the cost of their own arcs, i.e. byP

j2 ~F ðiÞnfigðyj � cjÞ. Because of rule ðviÞ, this excess contribution will first be
used at arc ei. Player i will cover the remaining part ci �

P
j2 ~F ðiÞnfigðyj � cjÞ of

the cost of his own arc, if this expression is positive. Hence, player i’s home
contribution is given by

hiðyÞ :¼ ci �
X

j2 ~F ðiÞnfig
ðyj � cjÞ

0

@

1

A

þ

¼ ci �
X

j2p�1ðiÞ\ ~F ðiÞ

~OjðyÞ

0

@

1

A

þ

;

and his far-away contribution is fiðyÞ :¼ yi � hiðyÞ. Next we will consider an
example where some players contribute nothing, which makes finding the
weight vector slightly more complicated.

Fig. 7. The maintenance problem as in Example 5.4
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Example 5.4. Consider the maintenance problem depicted illustrated in Fig. 7,
and the corresponding core element y ¼ ð0; 12; 16; 0; 16; 16Þ.We set the weights
of players which do not make any contribution, to zero, i.e. w1 :¼ w4 :¼ 0.
Player 2 has no followers other than himself, he will have to contribute to the
entire cost of his own arc e2, i.e. h2ðyÞ ¼ 10. The remaining 12 - 10=2 (¼ f2ðyÞ)
that he contributes, will be used to pay for the cost of arc e1. Player 3 will also
contribute at this arc, but how much? The answer can be found by noting that
the followers of 3 (except himself), i.e. players 4, 5 and 6, contribute 0+16+16
= 32, while the total cost of their own arcs is only 30. Hence we have
h3ðyÞ ¼ 10� 2 ¼ 8 and f3ðyÞ ¼ 16� 8 ¼ 8. Players 2 and 3 will return home at
exactly the same time, i.e. when arc e1 is finished. This will happen after

f2ðyÞ
w2
¼ 2

w2
or

f3ðyÞ
w3
¼ 8

w3
ð15Þ

units of time. Note that the weights of players 2 and 3 are not related to the
weight of the player in front of them, as was the case in the Example 5.3
h5ðyÞ ¼ h6ðyÞ ¼ 10, since neither player 5 nor player 6 have followers other
than themselves, and therefore f5ðyÞ ¼ f6ðyÞ ¼ 16� 10 ¼ 6. Because of rule
(v), they cannot return home until the players in front of them have all
finished. The last such player will be the closest one that makes a positive
contribution, i.e. player 3, who finishes after 16

w3
units of time. Our weight

vector must therefore satisfy

6

w5
¼ 6

w6
¼ 16

w3
: ð16Þ

A weight vector that satisfies (15) and (16), such that weight zero is assigned
to players that do not contribute anything, is given by w ¼ ð0; 4; 16; 0; 6; 6Þ.

For any i 2 NðGkÞ, let pþðiÞ be the first predecessor of i in Gk such that
yi > 0. If no such predecessor exists, let pþðiÞ :¼ rk. Also, let
NþðGkÞ :¼ fi 2 NðGkÞ j yi > 0g. Note that if i 2 NðGkÞ is such that pðiÞ 6¼ rk
and ~OiðyÞ > 0, then he will contribute a nonzero amount to the cost of the
arcs in Eð ~PpþðiÞÞ, and will return home exactly when all the arcs in Eð ~PiÞ n feig
have been finished. Since fiðyÞ

wi
is the total time that player i spends contributing

to arcs other than his own, we have

pþðiÞ ¼ pþðjÞ 6¼ rk )
fiðyÞ

wi
¼ fjðyÞ

wj
for all i; j 2 NþðGkÞ: ð17Þ

Also, if a player contributes to the cost of the arcs of his predecessors, he will
return home exactly when the last one of his predecessors stops contributing,
i.e.

fiðyÞ
wi
¼

ypþðiÞ
wpþðiÞ

for all i 2 NþðGkÞ such that pþðiÞ 6¼ rk: ð18Þ

Let, for k ¼ 1; . . . ; p, BkðxÞ :¼ fi 2 NðGkÞ : pþðiÞ ¼ rkg.

Proposition 5.5. Let x 2 CðcGÞ. There exists b :¼ ðT ;wÞ 2 BðGÞ such that
x ¼ gbðGÞ, where T ¼ T ðxÞ, and w satisfies, for every k ¼ 1; . . . ; p,
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fiðxÞ
wi
¼ fjðxÞ

wj
for all i; j 2 NþðGkÞ \ BkðxÞ; ð19Þ

fiðxÞ
wi
¼

xpþðiÞ
wpþðiÞ

for all i 2 NþðGkÞnBk; ð20Þ

wi ¼ 0 for all i 2 NðGkÞnNþðGkÞ: ð21Þ

Proof. Claim 1: existence. Clearly, T ðxÞ exists. Let 1 � k � p. In order to
show that

(19)–(21) have a solution, note that, for every i 2 NðGkÞ,

fiðxÞ ¼ xi � hiðxÞ ¼ xi � ci �
X

j2 ~F ðiÞnfig
ðxj � cjÞ

0

@

1

A

þ

¼ xi � ci þ xi � ci �
X

j2 ~F ðiÞ
ðxj � cjÞ

0

@

1

A

þ
¼ xi � xi � ~OiðxÞ

� �
þ:

The construction of T implies, for every i 2 NðGkÞ, that ~OiðxÞ > 0 if pðiÞ 6¼ rk,
hence

pðiÞ 6¼ rk and xi > 0) fiðxÞ > 0: ð22Þ
A solution can be found by arbitrarily fixing w�i > 0 for some i� 2
NþðGkÞ \ BkðxÞ. Note that, since the subtree Gk has exactly one node adjacent
to the source, pði�Þ ¼ rk implies jNþðGkÞ \ BkðxÞj ¼ 1, in which case ð19Þ
places no further restrictions on the weight vector. If jNþðGkÞ \ BkðxÞj > 1,
and hence pði�Þ 6¼ rk, which means that 22ð Þ applies, we can use 23ð Þ to
determine wj for every j 2 NþðGkÞ \ BkðxÞ n fi�g. For the players in
NþðGkÞ n BkðxÞ, we determine the weights from (20) in a recursive manner. In
the rest of the proof, let y :¼ gbðGÞ. Then, for i 2 NðGkÞ and 1 � k � p,

xi > 0, wi > 0, yi > 0 for all i 2 N ; ð23Þ

where the first equivalence follows from (22) and the construction of w de-
scribed above. Since y is a result of Algorithm 5.1, where only players with
positive weights have to pay anything, we have yi > 0) wi > 0. Finally,
wi > 0 implies xi > 0, and from x 2 CðcGÞ and Proposition 3 (iv), there must
exist some arc e 2 Eð ~PiÞ such that cðeÞ > 0. Then, since y has been constructed
using Algorithm 5.1, we have wi > 0) yi > 0.

Claim 2: b 2 B Gð Þ: Clearly, T ¼ T xð Þ is a partition of G into pseudo
subtrees. Also, x � 0, together with (23), imply w � 0. Let ci > 0 for some
i 2 NðGkÞ, 1 � k � p. Since xNðGkÞ 2 CðcGk Þ by Proposition 3.6 (ii), we must
have ~OiðxÞ ¼

P
j2 ~F ðiÞðxj � cjÞ � 0 by Proposition 3.1 (iii). Since xj � 0 and

cj � 0 for all j 2 ~F ðiÞ, there must exist some ‘ 2 ~F ðiÞ such that x‘ > 0, and
w‘ > 0 then follows from (23).
Claim 3: x ¼ gb Gð Þ: We have

yðNðGkÞÞ ¼ cGk ðNðGkÞÞ ¼ xðNðGkÞÞ; ð24Þ
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for 1 � k � p, where the first equality follows from Algorithm 5.1 and
b 2 BðGÞ, and the second from x 2 CðcGÞ and Proposition 3.6 (ii). If
NðGkÞ ¼ fig for some i 2 N , then xi ¼ yi follows directly, so we will assume in
the following that jNðGkÞj > 1. Suppose, contrary to our claim, that

xNðGkÞ 6¼ yNðGkÞ. By (24), there must exist i; j 2 NðGkÞ such that xi < yi and
xj > yj. We will complete the proof by showing that this leads to a contra-
diction. Consider node i. We will first show that

x‘ � y‘ for all ‘ 2 ~F ðiÞ ð25Þ
To prove 25ð Þ, first note that x‘ ¼ 0, y‘ ¼ 0 follows from 23ð Þ. Next, note
that w satisfies (19)–(21) with respect to x, by definition, and with respect to y,
since we derived (19)– 21ð Þ from Algorithm 5.1 Also, because of (23), we have
BkðxÞ ¼ BkðyÞ, and the definitions of pþð
Þ and NþðGkÞ are unambiguous.
Then 20ð Þ implies that fmðxÞ < fmðyÞ for every m 2 ðpþÞ�1ðiÞ, so there must
exist some ‘ 2 ~F ðiÞ n fig such that x‘ < y‘. The argument can be repeated for
i :¼ ‘, and by continuing in this manner, we will eventually have shown that
there is a leaf ‘ 2 ~F ðiÞ such that x‘ < y‘. Now we will show that x‘ � y‘ for
every leaf ‘ 2 ~F ðiÞ. Suppose, on the contrary, that this was not true, i.e., there
exists a leaf m 2 ~F ðiÞ such that xm > ym. Then it must be possible to find two

branches ~Bpq and ~Bps, both rooted at p 2 ~F ðiÞ, such that m 2 Nð ~BpqÞ and
xt � yt for all t 2 Nð ~BpqÞ, and such that xt � yt for all t 2 Nð ~BpsÞ. This implies
htðxÞ � htðyÞ and ftðxÞ � ftðyÞ for all t 2 Nð ~BpqÞ, and xm > ym together with
20ð Þ give

fqðxÞ > fqðyÞ ) xp > yp:

On the other hand, for every t 2 Nð ~BpsÞ we have htðxÞ � htðyÞ and
ftðxÞ � ftðyÞ, which together with 5ð Þ gives

fqðxÞ � fqðyÞ ) xp � yp;

hence we have a contradiction. Now, since every ‘ 2 ~F ðiÞ such that ‘ is a leaf
of Gk satisfies x‘ � y‘, we can use 20ð Þ in a recursive manner to prove 25ð Þ:
Then xi < yi and 27ð Þ together imply fiðxÞ < fiðyÞ, which, by 5ð Þ, implies
xpþðiÞ < ypþðiÞ. Setting i :¼ pþðiÞ, we can successively repeat this argument
until we have i 2 NþðGkÞ \ BkðxÞ. We have thus shown that there exists
i 2 NþðGkÞ \ BkðxÞ such that xi < yi. Using the same line of argument for
node j, we can show that there exists j 2 NþðGkÞ \ BkðxÞ such that xj > yj. If
jNþðGkÞ \ BkðxÞj ¼ 1, this is in itself a contradiction, otherwise the contra-
diction follows from 19ð Þ. u

In the same way that Proposition 4.5 enabled us to prove Theorem 4.6,
Proposition 5.5 enables us to prove that the set of neighbour-home alloca-
tions equals the core.

Theorem 5.6. The core of the maintenance game ðN ; cGÞ equals the set of
neighbour allocations, i.e. fgbðGÞ j b 2 BðGÞg ¼ CðcGÞ:

We know, from Maschler et al. (1995), that gðT ;wÞðGÞ is equal to the
nucleolus of cG if we set T ¼ fGg and wi ¼ 1

jN j for all i 2 N . In Yanovskaya
(1992) , the weighted nucleolus is defined by replacing the ordinary excess
function by a weighted excess function, and it is shown that every point in the
relative interior of the core can be obtained as a weighted nucleolus. For the
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game ðN ; gÞ, and some pre-imputation x, this weighted excess function is
given by, for any S 6¼ N ; ;, �pðS; xÞ :¼ pSðgðSÞ � xðSÞÞ, where pS > 0. Let
b :¼ ððG1; . . . ;GpÞ;wÞ 2 BðGÞ for some maintenance problem G, and let
k ¼ 1; . . . ; p. Suppose we set pS :¼ f ðwNðGkÞÞ for all S � NðGkÞ such that
S 6¼ ;, where f : RNðGkÞ ! R. An interesting open problem is whether we can
pick the function f such that gbðGÞ, when restricted to the members of NðGkÞ,
is the weighted nucleolus of the game cGk .
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