
Abstract. In this paper, a new trust region method for the system of non-
linear equations is presented in which the determining of the trust region
radius incorporates the information of its natural residual. The global
convergence is obtained under mild conditions. Unlike traditional trust
region method, the superlinear convergence of the method is proven under
the local error bound condition. This condition is weaker than the non-
degeneracy assumption which is necessary for superlinear convergence of
traditional trust region method. We also propose an approximate algorithm
for the trust region subproblem. Preliminary numerical experiments are
reported.

Key words: Nonlinear equation system, Trust region method, Local error
bound, Superlinear convergence

1 Introduction

We consider the nonlinear equation system

F ðxÞ ¼ 0; ð1:1Þ
where F : Rn ! Rm is a set of continuously differentiable functions.
Throughout the paper, we assume that the solution set of (1.1) is nonempty
and denoted by X �. In all cases, k � k denotes 2-norm. Let F 0ðxÞ denote the
transpose of the Jacobian of F ðxÞ, i.e., F 0ðxÞ ¼ ðF 01ðxÞ; . . . ; F 0mðxÞÞ

T .
A problem which is closely related to (1.1) is the following minimization

problem
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min
x2Rn

WðxÞ ¼ 1
2 kF ðxÞk

2: ð1:2Þ

This problem is called the least square problem. Obviously, x� solves (1.1) iff
x� solves (1.2) when X � is nonempty.

(1.1) and (1.2) have many applications in engineering, such as nonlinear
fitting, parameter estimating and function approximating. At present, a lot of
algorithms have been proposed for solving these two problems, for examples,
Gauss-Newton method, Levenberg-Marquardt method, trust region method,
etc., see [1–3, 5, 6, 9, 11, 12]. These algorithms are superlinearly convergent if
F 0ðx�Þ is nondegenerate. Here we are interested in trust region method since
it has strong convergence and robustness. For the traditional trust region
methods, at each iterative point xk (nonstationary point), the trial step is
obtained by solving the following trust region subproblem

min UkðdÞ ¼ 1
2 kF ðxkÞ þ F 0ðxkÞdk2

s.t. kdk � D:
ð1:3Þ

It is well known that the trust region methods are globally convergent under
suitable conditions and superlinearly convergent under the condition that
F 0ðx�Þ (x� is a solution of (1.1)) is nondegenerate. However, nondegeneracy of
F 0ðx�Þ seems a too stringent requirement for the purpose of ensuring super-
linear convergence. Recently, Yamashita and Fukushima [11] showed that
Levenberg-Marquardt method with Armijo search is superlinearly convergent
under the local error bound condition. From [11], we know that the local
error bound condition is weaker than the nondegeneracy of F 0ðx�Þ, i.e.,
kF ðxÞk provides a local error bound on some neighborhood of x� if F 0ðx�Þ is
nondegenarate and the converse is not true (A example was provided in [11]).
The local error bound condition for the system (1.1) is defined as follows.

Definition 1.1. Let N be a subset of Rn such that X � \ N 6¼ ;. We say that
kF ðxÞk provides a local error bound on N for the system (1.1) if there exists a
positive constant c such that

c � distðx;X �Þ � kF ðxÞk; 8x 2 N : ð1:4Þ
where distðx;X �Þ ¼ miny2X �fkx� ykg.

In this paper, we propose a new trust region method for (1.1) or (1.2) in
which kF ðxkÞk is incorporated to determine the trust region radius. There are
two advantages in using the kF ðxkÞk information: the first is that it is effective
to determine trust region radius by using the information of kF ðxkÞk.
The second is in theoretic consideration since in this way we can prove that
the new algorithm is superlinearly convergent under the local error bound
condition. In this case, we obtain a new trust region method in which the
conditions ensuring superlinear convergence are weaker than that in the
traditional trust region methods.

For the trust region methods, the main computation is spent to solve the
subproblem. It is well known that solving the trust region subproblem ex-
actly is expensive. Hence developing approximate methods for the trust
region subproblem has been a popular research topic since 1980’s and
numerous algorithms have been proposed. However, these existed algo-
rithms are not suitable for our method since we do not assume the non-
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degeneracy of the Jacobian. In Section 4, a new approximate method is
proposed for the trust region subproblem. In this method, if an iterative
point xk is far from the solution, the accuracy needed for terminating the
approximate method is low, then the computation cost for the trial step is
less. As the iterative sequence approaches to the solution, the accuracy
becomes high. Finally we prove that the new trust region method with the
trial step generated by the approximate method is globally and superlinearly
convergent under the local error bound condition.

The remainder of the paper is arranged as follows. In Section 2, the
algorithm model is presented and the global convergence is studied. In
Section 3, we show the local convergence of the algorithm. A new
approximate algorithm for trust region method is presented in Section 4. In
Section 5, numerical experiments on some classical test problems are re-
ported to test the efficiency of the new algorithm. Some conclusions are
given in Section 6.

2 Algorithm model and global convergence

In our algorithm, at each iterative point xk, the trial step is obtained by
solving the following subproblem

min UkðdÞ ¼ 1
2 kF ðxkÞ þ F 0ðxkÞdk2

s.t. kdk � cpkF ðxkÞkcdp
k ;

ð2:1Þ

where 0 < c < 1, p is a nonnegative integer and 0 < c < 1. Let dp
k be the

solution of (2.1) corresponding to p.
Then we define the actual reduction as

Aredkðdp
k Þ ¼ Wðxk þ dp

k Þ �WðxkÞ; ð2:2Þ
the predict reduction as

Predkðdp
k Þ ¼ Ukðdp

k Þ �WðxkÞ; ð2:3Þ
and the ratio of actual reduction over predict reduction as

rp
k ¼

Aredkðdp
k Þ

Predkðdp
k Þ
:

Algorithm 2.1.

Step 0. Given initial point x0 2 Rn, 0 < g < 1, 0 < c < 1, � > 0, 0:5 < c < 1,
p ¼ 0, set k :¼ 0;

Step 1. If kF 0ðxkÞT F ðxkÞk � �, stop. Otherwise, solve (2.1) to obtain the trial
step dp

k ;
Step 2. Calculate Predkðdp

k Þ, Aredkðdp
k Þ and rp

k . If rp
k � g, then xkþ1 ¼ xk þ dp

k ,
go to Step 3. Otherwise, set p :¼ p þ 1 go to Step 1.

Step 3. Set k :¼ k þ 1, set p ¼ 0, choose c 2 ð0:5; 1Þ, go to Step 1.

In order to analyze the global convergence of the algorithm, the following
assumption are needed.
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Assumption 2.1. (i). F ðxÞ is twice continuously differentiable;

(ii). fxkg is a bounded sequence.

By Assumption 2.1 there exists M > 0 such that

kF 0ðxkÞT F 0ðxkÞk � M 8k: ð2:4Þ
First, we give several lemmas which are important for the analysis of the
global convergence.

Lemma 2.1. jAredkðdp
k Þ � Predkðdp

k Þj ¼ Oðkdp
k k

2Þ.

Lemma 2.2. Predkðdp
k Þ � � 1

2minfkF 0ðxkÞT F ðxkÞk=M ; dp
kgkF 0ðxkÞT F ðxkÞk.

Proof. By the definition of dp
k , we know that for any a 2 ð0; 1Þ

Predkðdp
k Þ ¼ Ukðdp

k Þ �WðxkÞ

� Uk �a
dp

k

kF 0ðxkÞT F ðxkÞk
F 0ðxkÞT F ðxkÞ

 !
�WðxkÞ

¼ �adp
kkF 0ðxkÞT F ðxkÞk

þ a2dp
k
2F ðxkÞT F 0ðxkÞF 0ðxkÞT F 0ðxkÞF 0ðxkÞT F ðxkÞ

2kF 0ðxkÞT F ðxkÞk2

� � adp
kkF 0ðxkÞT F ðxkÞk þ

1

2
a2dp

k
2M :

Thus,

Predkðdp
k Þ � min

0�a�1
�adp

kkF 0ðxkÞT F ðxkÞk þ
1

2
a2dp

k
2M

� �

� � 1

2
min kF 0ðxkÞT F ðxkÞk=M ; dp

k

n o
kF 0ðxkÞT F ðxkÞk:

h

Lemma 2.3. Algorithm 2.1 does not circle between Step 1 and Step 2 infinitely.

Proof. If Algorithm 2.1 circles between Step 1 and Step 2 at xk infinitely, then
for all i ¼ 1; 2; . . ., we have xkþi ¼ xk, p ¼ i and kF 0ðxkÞT F ðxkÞk > �. Hence

di
k ! 0 and ri

k < g: ð2:5Þ
Therefore by Lemma 2.1 and Lemma 2.2, as i!1

jri
k � 1j ¼ jAredkðdi

kÞ � Predkðdi
kÞj

jPredkðdi
kÞj

� Oðdi
k
2Þ

0:5di
kkF 0ðxkÞF ðxkÞk

! 0:

Thus, for i sufficiently large

ri
k � g; ð2:6Þ

Which contradicts (2.5). h
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Theorem 2.1. Suppose that Assumption 2.1 holds. Then either the algorithm
terminates finitely at a stationary point of WðxkÞ or generates an infinite se-
quence fxkg such that

lim
k!1
kF 0ðxkÞT F ðxkÞk ¼ 0: ð2:7Þ

Proof. Since WðxÞ � 0 for all x 2 Rn, then the sequence fWðxkÞg is bounded
from below. Suppose that the algorithm does not stop finitely. If (2.7) is not
true, then there exists a positive constant ��� and an infinite subsequence fkig
such that kF 0ðxkiÞ

T F ðxkiÞk � ���. Let T ¼ fkjkF 0ðxkÞT F ðxkÞk � ���g. Meanwhile,
by Assumption 2.1 and kF 0ðxkÞT F ðxkÞk � ���ðk 2 T Þ; kF ðxkÞkðk 2 T Þ is bounded
away from 0. Without loss of generality, we can assume kF ðxkÞk � ���, 8k 2 T .

By Step 2 and Lemma 2.2, we haveX
k2T

½WðxkÞ �Wðxkþ1Þ� � �
X
k2T

g � Predkðdpk
k Þ �

X
k2T

g � 1
2
minf���=M ; cpk���g � ���

where pk is the largest p value obtained in Step 2 at the iterative point xk.
Since fWðxkÞg is bounded from below, we haveX
k2T

g � 1
2
minf���=M ; cpk���g � ��� < þ1:

Then pk ! þ1 as k ! þ1 and k 2 T . Therefore, we can assume pk � 1 for
all k 2 T .

From the determination of pkðk 2 T Þ in Step 2, the solution ~ddk corre-
sponding to the following subproblem

min UkðdÞ ¼ 1
2 kF ðxkÞ þ F 0ðxkÞdk2

s.t. kdk � cpk�1kF ðxkÞkc
ð2:8Þ

is unacceptable. Namely, if let ~xxkþ1 ¼ xk þ ~ddk, we have

WðxkÞ �Wð~xxkþ1Þ
�Predkð~ddkÞ

< g: ð2:9Þ

But from Lemma 2.2

�Predkð~ddkÞ �
1

2
minf���=M ; cpk�1���g � ���:

Follows from Lemma 2.1 that

Wð~xxkþ1Þ �WðxkÞ � Predkð~ddkÞ ¼ Oðk~ddkk2Þ ¼ Oðc2ðpk�1ÞÞ:
Thus����Wð~xxkþ1Þ �WðxkÞ

Predkð~ddkÞ
� 1

���� � Oðc2ðpk�1ÞÞ
1
2minf���c=M ; cpk�1���cg � ���c

:

Because pk ! þ1 as k ! þ1 and k 2 T , we have

WðxkÞ �Wð~xxkþ1Þ
�Predkð~ddkÞ

! 1 2 T ;

which contradicts (2.9). h
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Remark. Theorem 2.1 says that the iterative sequence fxkg generated by our
algorithm satisfies kF 0ðxkÞT F ðxkÞk ! 0. If x� is a cluster point of fxkg and
F 0ðx�Þ is nondegenerate, then we have kF ðxkÞk ! 0. This is a standard
convergence result for nonlinear equations. At present, there is no algorithm
which has the property that the iterative sequence generated by the
algorithm satisfies kF ðxkÞk ! 0 without the assumption that F 0ðx�Þ is
nodegenerate.

3 Superlinear convergence

In order to analyze the superlinear convergence, we need the following
assumption.

Assumption 3.1. (i) xk ! x�, where x� is a solution of (1.1);

(ii) There exist b 2 ð0; 1Þ and c1 2 ð0;1Þ such that

kF 0ðyÞðx�yÞ�F ðxÞþF ðyÞk� c1kx�yk2 8x;y2Nðx�;bÞ¼fxjkx�x�k�bg;

(iii) kF ðxÞk provides a local error bound on Nðx�; bÞ for the system (1.1), i.e.,
there exists c2 2 ð0;1Þ such that

c2 � distðx;X �Þ � kF ðxÞk 8x 2 Nðx�; bÞ;

(iv) 0:5 < c < 1:

Assumption 3.1 (ii) holds when F ðxÞ is continuously differentiable and F 0ðxÞ is
Lipschitz continuous. Note that by Assumption 3.1 (ii) there exists L > 0 such
that

kF ðxÞ � F ðyÞk � Lkx� yk 8x; y 2 Nðx�; bÞ: ð3:1Þ
By Assumption 3.1(i) and the continuity of kF ðxÞk we know that
kF ðxkÞk ! 0.

In what follows, let x̂xk 2 X � such that

distðxk;X �Þ ¼ kx̂xk � xkk: ð3:2Þ
From Assumption 3.1 (i), for k sufficiently large

kxk � x�k � b
2
:

Then

kxk � x̂xkk � kxk � x�k � b
2
: ð3:3Þ

Thus,

distðxk;X �Þ ¼ kx̂xk � x�k � kxk � x̂xkk þ kxk � x�k � 2kxk � x�k � b: ð3:4Þ
Note that c < 1 and xk ! x̂xk, we have that for k sufficiently large

kx̂xk � xkk � cc
2kx̂xk � xkkc � kF ðxkÞkc: ð3:5Þ
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Since p starts from 0 at each iterative point xk, x̂xk � xk is a feasible point of
(2.1) corresponding to p ¼ 0 for k sufficiently large. Hence it follows from
Assumption 3.1 (ii) that

Ukðd0
k Þ � Ukðx̂xk � xkÞ

¼ 1

2
kF ðxkÞ þ F 0ðxkÞðx̂xk � xkÞk2

¼ 1

2
kF ðxkÞ þ F 0ðxkÞðx̂xk � xkÞ � F ðx̂xkÞk2

� 1

2
c1kx̂xk � xkk4

¼ 1

2
c1ðdistðxk;X �ÞÞ4: ð3:6Þ

Therefore

kF ðxkÞ þ F 0ðxkÞd0
k k ¼ Oððdistðxk;X �ÞÞ2Þ: ð3:7Þ

In addition, by (2.1)

kd0
k k � kF ðxkÞkc ¼ Oðkxk � x̂xkkcÞ ¼ Oððdistðxk;X �ÞÞcÞ: ð3:8Þ

Hence, for k sufficiently large we have xk þ d0
k 2 Nðx�; bÞ. Then

c2 � distðxk þ d0
k ;X

�Þ � kF ðxk þ d0
k Þk

� kF ðxkÞ þ F 0ðxkÞd0
k k þ Oðkd0

k k
2Þ

¼ Oðkxk � x̂xkk2Þ þ Oðkxk � x̂xkk2cÞ
¼ Oðkxk � x̂xkk2cÞ
¼ Oððdistðxk;X �Þ2cÞ: ð3:9Þ

Now we prove that for k sufficiently large the iteration formula is as follows

xkþ1 ¼ xk þ d0
k : ð3:10Þ

In fact, for k sufficiently large, Assumption 3.1 (ii) and (3.7) imply��Aredkðd0
k Þ � Predkðd0

k Þ
�� ¼ ���� 12 kF ðxk þ d0

k Þk
2 � Ukðd0

k Þ
����

¼
���� 12 F ðxkÞ þ F 0ðxkÞd0

k þ Oðkd0
k k

2Þ
��� ���2

� 1

2
F ðxkÞ þ F 0ðxkÞd0

k

�� ��2����
¼ F ðxkÞ þ F 0ðxkÞd0

k

�� �� � Oðkd0
k k

2Þ þ Oðkd0
k k

4Þ
¼ Oðkxk � x̂xkk2þ2cÞ þ Oðkxk � x̂xkk4cÞ
¼ O ðdistðxk;X �ÞÞ4c

� �
: ð3:11Þ

It follows from Assumption 3.1 (iii) that kF ðxkÞk � c2kxk � x̂xkk. Then by (3.6)

jPredkðd0
k Þj ¼

����Ukðd0
k Þ �

1

2
kF ðxkÞk2

����
� c2kxk � x̂xkk2 þ Oðkxk � x̂xkk4Þ
¼ Oððdistðxk;X �ÞÞ2Þ: ð3:12Þ
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Note that c > 0:5, from (3.11) and (3.12) we know that

lim
k!1
jr0k � 1j ¼ lim

k!1

jAredkðd0
k Þ � Predkðd0

k Þj
jPredkðd0

k Þj
¼ 0:

Hence r0k > g for k sufficiently large. So the iteration formula is (3.10) for k
sufficiently large.With the abovediscussion,The following theorem is obtained.

Theorem 3.1. With Assumption 3.1, for k sufficiently large the iteration formula
is as follows

xkþ1 ¼ xk þ d0
k ;

and

distðxkþ1;X �Þ ¼ Oððdistðxk;X �ÞÞ2cÞ;
i.e., Algorithm 2.1 is superlinearly convergent.

4 Approximate algorithm for the subproblem

In the previous sections, we adopt the exact solution of (2.1) as the trial step.
However, Solving (2.1) exactly is expensive, especially for large scale prob-
lems. Therefore, it is necessary to have an approximate algorithm for (2.1). In
this section, we propose an algorithm which solves (2.1) approximately and
adopt the obtained approximate solution as the trial step. Here we use the
idea in x 7.3 in [2]. For simplicity, we omit the subscript and drop the term
1
2 kF ðxkÞk2 in (2.1). Then (2.1) is equivalent to the following problem

mind2Rn HðdÞ ¼ 1
2 dT F 0T F 0d þ F T F 0d

s.t. kdk � d:
ð4:1Þ

It is well known that dM solves (4.1) iff there exists kM � 0 such that

ðF 0T F 0 þ kM IÞdM ¼ �F 0T F ; ð4:2Þ

kM ðkdMk � dÞ ¼ 0; ð4:3Þ

kdMk � d: ð4:4Þ
where I is n� n unit matrix.

Based on (4.2)–(4.4), an approximate algorithm is designed as follows (the
algorithm is stated indetail inAlgorithm4.1):First,we solveF 0T F 0d ¼ �F 0T F to
obtain its least norm solution dð0Þ and checkwhether kdð0Þk � d. If kdð0Þk � d,
then we obtain a solution of (4.1). Otherwise, we further find an approximation
k̂k > 0 of kM such that the solution dðk̂kÞ of ðF 0T F 0 þ k̂kIÞd ¼ �F 0T F satisfying
kdðk̂kÞk � d. Then dðk̂kÞ is an approximate solution of (4.1).

We use Newton method to obtain such a k̂k. To this end, for k > 0, define

/ðkÞ ¼ 1

kdðkÞk �
1

d
; ð4:5Þ

where dðkÞ is the solution of the following system of linear equations
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F 0T F 0 þ kI
� �

d ¼ �F 0T F : ð4:6Þ

Then kM > 0 solves (4.2) and (4.3) if and only if /ðkM Þ ¼ 0: As shown in x
7.3 in [2], /ðkÞ is almost a linear function for k > 0, we can obtain an
approximation k̂k > 0 of kM very efficiently by using Newton method.
Moreover, let

F 0T F 0 þ kI ¼ LLT ;

LLT dðkÞ ¼ �F 0T F ;

LwðkÞ ¼ dðkÞ:
Then the Newton step is

� /ðkÞ
/0ðkÞ

¼ kdðkÞk � d
d

� �
kdðkÞk2

kwðkÞk2

 !
:

Thus, the iteration formula is simple. Since we want to keep k > 0 at each
iteration, in Step 7 of Algorithm 4.1, set kþ ¼ k� /ðkÞ

/0ðkÞ > 0 if k� /ðkÞ
/0ðkÞ > 0,

otherwise, kþ ¼ 1
2 k (kþ is the value of next iteration of k).

Now we discuss the termination criteria. In order to ensure that Algo-
rithm 2.1 is globally convergent, we need the approximate solution ~dd sat-
isfying

Hð~ddÞ � � 1

4
min F 0T F

��� ���	 F 0T F 0
��� ���; d� �

F 0T F
��� ���: ð4:7Þ

However, it is possible that kF 0T F 0k equals to 0. Set �MM ¼ maxfkF 0T F 0k; 1g:
Then, instead of (4.7), we require

Hð~ddÞ � � 1

4
min F 0T F

��� ���	 �MM ; d

� �
F 0T F
��� ���: ð4:8Þ

It is analogous to the proof of Lemma 2.2 that dðkÞ satisfies (4.8) if k is
sufficiently close to kM . In addition, we also need a condition similar to (3.7)
in order to obtain the superlinear convergence of Algorithm 2.1. To this end
we require that

jd� kdðkÞkj � kF k2c: ð4:9Þ
Our approximate algorithm is stated below.

Algorithm 4.1.

Step 1. Factorize F 0T F 0 ¼ U T VU , where U is an orthogonal matrix,
V

is a
diagonal matrix. Calculate d ¼ �U T ð

V
ÞþUF 0T F , where ð

V
Þþ is the

Moore-Penrose generalized inverse. If kdk � d, stop.
Step 2. Choose k > 0.
Step 3. Factorize F 0T F 0 þ kI ¼ LLT .
Step 4. Solve LLT d ¼ �F 0T F .
Step 5. If HðdÞ � � 1

4minfkF 0T F k= �MM ; dgkF 0T F k and jd� kdkj � kF k2c, stop.
Otherwise go to Step 6.
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Step 6. Solve Lw ¼ d.
Step 7. Let

k :¼
1
2 k; if kþ kdk�d

d

� �
kdk2

kwk2

� �
� 0;

kþ kdk�d
d

� �
kdk2

kwk2

� �
; otherwise;

8<
:

go to Step 3.

Remark. For this algorithm, it is noted that when x is far from the
solution of (1.1), kF 0F k and kF k are large. Then Algorithm 4.1 can stop
early at Step 5 and the computation of trial step is less. As an iterative
sequence approaches to the solution, the difference between the trial step
and the exact solution of (2.1) becomes small. In this way, we can obtain
the superlinear convergence of our trust region method. Note that our
algorithm is different from the traditional trust region methods since the
algorithm is superlinearly convergent without assuming of the nondegen-
eracy of F 0ðx�Þ. Thus it is possible that the Newton step does not exist in
our case. Therefore the existing approximate algorithms for the trust
region subproblem, which guarantee the global and local superlinear
convergence of the traditional trust region methods, can not be applied to
our new method.

For this algorithm, we have the following results.

Lemma 4.1. Algorithm 4.1 terminates finitely.

Proof. If /ðkJ Þ < 0 for some J > 0, then by Lemma 7.3.2 in [2], the se-
quence fkjg generated by Algorithm 4.1 converges to kM . Thus fdðkjÞg
converges to dM . Similar to Lemma 2.2, we can prove that
HðdM Þ � � 1

2minfkF 0T F k= �MM ; dgkF 0T F k. Since /ðkM Þ ¼ 0, there exists an
integer J > 0 such that kJ satisfying the termination criteria in Step 5.

If /ðk0Þ > 0, by Lemma 7.3.3 in [2] and Step 7, and note that the algo-
rithm does not terminate at Step 1, then there exists an integer J > 0 such that
/ðkJ Þ � 0. Therefore the lemma is true. h

Lemma 4.2. Let d be generated by Algorithm 4.1, then

HðdÞ � � 1

4
min F 0T F

��� ���	 �MM ; d

� �
F 0T F
�� ��: ð4:10Þ

Proof. (4.10) is trivial if Algorithm 4.1 terminates at Step 5. If Algorithm 4.1
terminates at step 1, then d is an optimum of (4.1). It is similar to the proof of
Lemma 2.2 that (4.10) holds. h

Now we consider Algorithm 2.1 in which the trial step is the approximate
solution generated by Algorithm 4.1 at each iterative point xk. Let ~ddp

k be the
trial step generated by Algorithm 4.1. From Lemma 4.2 we have

292 J.-l. Zhang, Y. Wang



Predkð~ddp
k Þ ¼ Hð~ddp

k Þ � �
1

4
min F 0ðxkÞT F ðxkÞ

��� ���	 �MM ; dp
k

� �
F 0ðxkÞT F ðxkÞ
�� ��:

Similar to Theorem 2.1, we have the following theorem.

Theorem 4.1. Suppose that Assumption 2.1 holds. Let fxkg be generated by
Algorithm 2.1 with the trial step generated by Algorithm 4.1, then

lim
k!1

F 0ðxkÞT F ðxkÞ
�� �� ¼ 0:

In what follows, we analyze the superlinear convergence of Algorithm 2.1
with the trial step generated by Algorithm 4.1. To this end, assuming that
Assumption 3.1 holds. First we give the following lemma, which says that the
difference between the approximate solution generated by Algorithm 4.1 and
the exact solution of (2.1) is sufficiently small for sufficiently large k.

Lemma 4.3. There exists L1 > 0 such that kd0
k � ~dd0

k k � L1kF ðxkÞk2c; for all k
sufficiently large, where d0

k is the exact solution of (2.1) corresponding to
p ¼ 0.

Proof. If algorithm stops at Step 1, we have ~dd0
k ¼ d0

k . The conclusion is trivial.
If Algorithm 4.1 stops at Step 5, then kd0

k k ¼ d0k and the corresponding
Lagrange multiplier kM > 0. Hence F 0ðxkÞT F 0ðxkÞ þ kM

k I (where I is n� n unit
matrix) is positive definite. From Corollary 5.1 and the statement following it
in [4], there exist �0 > 0 and L1 > 0 such that for all D satisfying kD� d0kk < �0

the solution ds of the following problem

mind2Rn
1
2 dT F 0T F 0d þ F T F 0d

s.t. kdk � D

satisfies kds � d0
k k � L1kD� d0k j.

Note that ~dd0
k is the solution of the following problem

mind2Rn
1
2 dT F 0T F 0d þ F T F 0d

s.t. kdk � k~dd0
k k:

By Assumption 3.1, kF ðxkÞk2c < �0 for sufficiently large k. Thus by Step 5 in
Algorithm 4.1 jk~dd0

k k � d0k j � kF ðxkÞk2c < �0. Therefore,

k~dd0
k � d0

k k � L1jk~dd0
k k � d0k j � L1kF ðxkÞk2c

for sufficiently large k. h

Lemma 4.4. Suppose that Assumption 3.1 holds, then

k~dd0
k k ¼ Oðkx̂xk � xkkcÞ; ð4:11Þ

kF ðxkÞ þ F 0ðxkÞ~dd0
k k ¼ Oðkx̂xk � xkk2cÞ; ð4:12Þ

distðxþ ~dd0
k ;X

�Þ ¼ Oððdistðxk;X �ÞÞ2cÞ; ð4:13Þ
where x̂xk is defined as in Section 3.
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Proof. By Assumption 3.1 and (3.2), we know that for sufficiently large k

kF ðxkÞk ¼ Oðkx̂xk � xkkÞ: ð4:14Þ
If Algorithm 4.1 stops at Step 1 at the k-th iterative point xk, then ~dd0

k ¼ d0
k . By

(3.7) (3.8) and (3.9) the conclusions hold.
If Algorithm 4.1 stops at Step 5 at the k-th iterative point xk, by Lemma

4.3, (4.14) and (3.8), we have for sufficiently large k

k~dd0
k k � kd0

k k þ L1kF ðxkÞk2c

¼ Oðkxk � x̂xkkcÞ þ Oðkxk � x̂xkk2cÞ

¼ Oðkxk � x̂xkkcÞ:
Then (4.11) holds.

It follows from Lemma 4.3, (3.7) and (4.14) that

kF ðxkÞ þ F 0ðxkÞ~dd0
k k

2

¼ kF ðxkÞ þ F 0ðxkÞd0
k k

2 þ ðF ðxkÞ þ F 0ðxkÞd0
k Þ

T F 0ðxkÞðd0
k � ~dd0

k Þ

þ ðd0
k � ~dd0

k Þ
T F 0ðxkÞT F 0ðxkÞðd0

k � ~dd0
k Þ

¼ Oðkxk � x̂xkk4Þ þ Oðkxk � x̂xkk2þ2cÞ þ Oðkxk � x̂xkk4cÞ

¼ Oðkxk � x̂xkk4cÞ:
Then (4.12) holds.

Since xk ! x� and ~dd0
k ! 0, then xk þ ~dd0

k 2 Nðx�; bÞ for sufficiently large k.
By Assumption 3.1 (iii), (4.11) and (4.12), we have

c2 � distðxk þ ~dd0
k ;X

�Þ � kF ðxk þ ~dd0
k Þk

� kF ðxkÞ þ F 0ðxkÞ~dd0
k k þ Oðk~dd0

k k
2Þ

¼ Oðkxk � x̂xkk2cÞ

¼ Oððdistðxk;X �ÞÞ2cÞ:

Then (4.13) holds. h
Similar to (3.11) and (3.12), we can prove that

jAredkð~dd0
k Þ � Predkð~dd0

k Þj ¼ Oðkxk � x̂xkk4cÞ ð4:15Þ
and

jPredkð~dd0
k Þj ¼ Oðkxk � x̂xkk2Þ: ð4:16Þ

(4.15), (4.16) and c > 0:5 imply that

rkð~dd0
k Þ > g ð4:17Þ

for k sufficiently large. So for sufficiently large k the iteration formula is as
follows

xkþ1 ¼ xk þ ~dd0
k : ð4:18Þ

The following theorem follows from (4.18) and Lemma 4.4.
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Theorem 4.2. Suppose that Assumption 3.1 holds. The sequence fxkg is gen-
erated by Algorithm 2.1 with the trial step ~ddp

k generated by Algorithm 4.1. Then
for sufficiently large k the iteration formula is as follows

xkþ1 ¼ xk þ ~dd0
k

and

distðxkþ1;X �Þ ¼ Oððdistðxk;X �ÞÞ2cÞ;

i.e., Algorithm 2.1 is superlinearly convergent.

5 Numerical experiments

In order to see the efficiency of our method, the new trust region method
is tested on some classical problems. The algorithm is implemented in
Fortran90, and run in Compaq Visual Fortran 6.1 environment in PC. The
test problems are created by modifying the problems given in [8] and have
the same form as in [10]. The subroutine solving trust region subproblem
was provided by Jorge J. Moré. The parameters are set as follows: � ¼ 10�8,
g ¼ 10�6; c ¼ 0:5.

First, we test our algorithm with different initial points. The three rows of
every problem of the Table 5.1 indicates that the initial point are x0, 10 � x0
and 100 � x0 respectively, where x0 is suggested by Moré, Garbow and Hill-
strom in [8]. And c ¼ 0:6. ‘‘iters’’ denotes the number of solving the trust
region subproblem. 1

2 kF ðx�Þk
2 is the half of the square of the 2-norm of the

value of the function at the final iteration. Meanwhile, we compare the results
obtained by our new algorithm with that obtained by the traditional trust
region method. The parameters used in the traditional trust region methods
are as follows: � ¼ 10�8, g ¼ 10�6, D0 ¼ 1, b1 ¼ 0:25, b2 ¼ 0:75. And the trust
region radius is updated as follows:

Dkþ1 ¼
0:5Dk; rk � b1;
Dk; b1 < rk � b2;
2Dk; rk > b2;

8<
:

where � is the stop criteria and g is the accept criteria. The results are sum-
marized in Table 5.1.

From Table 5.1, we can see that our algorithm can solve these nonlinear
equation systems from any initial point. However, the efficiency of the
algorithm depends on different initial points. Generally speaking, the farther
the initial point is from the solution, the worse the algorithm performs.
But, for ROSENBROCK, POWELL SINGULAR, POWELL BADLY
SCALED, HELICAL VALLEY, WATSON, DISCRETE INTEGRAL
EQUATION, BROYDEN TRIDIAGONAL and BROYDEN BANDED,
our algorithm is insensitive to the initial point. From Table 5.1, we also find
that in most cases our new algorithm is more efficient than the traditional
trust region method. However, for some problems (for example, CHEBY-
QUAD and VARIABLY DIMENSIONED), the traditional algorithm is
robust. In summary, the results in Table 5.1 show that the performance of
our new algorithm is notable.
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Then we test our algorithm with different choices of c. We choose c ¼ 0:5,
0.8, 1, 1.5 respectively. And the initial point is set as the standard initial point
suggested in [8]. We only record the number of solving the trust region
subproblem. The results are summarized in Table 2. From Table 5.2, it is
noted that the algorithm performs bad if c > 1. For c 2 ½0:5; 1�, the algorithm
performs good for some problems but bad for the rest when the c value is near
to 1. Generally speaking, it is proper to choose c 2 ½0:6; 0:8�.

Table 5.1. Numerical results with different initial points

Function n x0 New algorithm Traditional algorithm

iters 1
2 kF ðx�Þk

2 iters 1
2 kF ðx�Þk

2

Rosenbrock 2 1 15 0.44–16 23 0.22–17
10 3 0.78–15 44 0.11–16

Powell singular 4 1 11 0.31–7 11 0.65–7
10 14 0.47–7 54 0.24–7
100 18 0.19–7 494 0.62–7

Powell badly scaled 2 1 731 0.46–9 104 0.71–8
10 4 0.99–8 4 0.99–8
100 3 0.10–5 9 0.10–5

Wood 4 1 31 0.74–9 45 0.47–12
10 162 0.17–10 58 0.40–11
100 480 0.13–10 568 0.12–13

Helical valley 3 1 10 0.65–14 9 0.44–14
10 12 0.69–17 19 0.15–18
100 12 0.31–10 108 0.13–11

Watson 30 1 557 0.23–6 2195 0.26–7
10 557 0.23–6 2195 0.26–7
100 557 0.23–6 2195 0.26–7

Chebyquad 30 1 289 0.82–3 316 0.82–3
10 8934 0.11 1253 0.15
100 – – 2185 0.011

Brown almost linear 30 1 24 0.73–13 10 0.15–13
10 497 1.13 47 0.20–12
100 1260 0.99 293 0.52–13

Discrete boundary
value

30 1 19 0.59–8 2 0.63–10

10 83 0.16–11 11 0.41–9
100 163 0.25–11 105 0.36–8

Discrete integral
equation

30 1 3 0.98–16 3 0.98–16

10 6 0.74–14 12 0.21–14
100 11 0.12–11 101 0.83–10

Trigonometric 30 1 85 0.99–5 149 0.99–5
10 111 0.76–4 196 0.76–4
100 124 0.17–3 23 0.62–10

Variably dimensioned 30 1 519 0.17–10 20 0.26–9
10 1173 0.25–10 36 0.57–11
100 – – 413 0.80–11

Broyden tridiagonal 30 1 4 0.11–10 5 0.68–16
10 8 0.58–16 54 0.33–15
100 11 0.61–13 547 0.16–15

Broyden banded 30 1 5 0.15–9 6 0.11–13
10 11 0.57–13 55 0.80–11
100 17 0.40–16 548 0.25–11
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6 Conclusion

In this paper, we present a new trust region method which utilize kF ðxkÞk to
determine the trust region radius. The algorithm is globally convergent under
mild conditions. Furthermore, we have proved that the method is superlin-
early convergent under the condition that kF ðxÞk provides a local error bound
for system (1.1) rather than the nondegeneracy of Jacobian of F ðxÞ at the
solution. This condition is weaker than the nondegeneracy assumption used
in the traditional trust region methods.

When realizing the trust region method, the main cost is to compute the
trial step. In order to ensure the trust region method having good con-
vergence properties and costing less computation, it is reasonable to rec-
ognize that the difference between the trial step and the exact solution of
trust region subproblem should be large if the iterative point is far from
the solution of (1.1) while the difference between them should become
small as the iterative sequence approaches to the solution. The approxi-
mate method presented in Section 4 has this property. Moreover, we have
proved that the new trust region method with the trial step generated by
the approximate algorithm is globally and superlinearly convergent under
the local error bound condition. This makes the algorithm more practi-
cable.
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