
Abstract. Let A be a nonempty finite subset of the plane representing the
geographical coordinates of a set of demand points (towns, . . .), to be served
by a facility, whose location within a given region S is sought. Assuming that
the unit cost for a 2 A if the facility is located at x 2 S is proportional to
distðx; aÞ – the distance from x to a – and that demand of point a is given by
xa, minimizing the total transportation cost TCðx; xÞ amounts to solving the
Weber problem. In practice, it may be the case, however, that the demand
vector x is not known, and only an estimator x̂x can be provided. Moreover
the errors in such estimation process may be non-negligible. We propose a
new model for this situation: select a threshold value B > 0 representing the
highest admissible transportation cost. Define the robustness q of a location x
as the minimum increase in demand needed to become inadmissible, i.e.
qðxÞ ¼ minfkx� x̂xk : TCðx; xÞ > B;x � 0g and find the x maximizing q to
get the most robust location.

Key words: Facilities, Location, Continuous, Decision analysis, Risk, Pro-
gramming, Fractional

1 Introduction

In location planning one is typically concerned with finding a good location
for one or several new facilities with respect to a given set of existing facilities
(clients). The most common model in planar location theory for increasing
the quality of the location of one new facility is the so-called Weber problem,
where the average (weighted) distance of the new to the existing facilities is
taken into account (see [8] [23] [19]).

More precisely we are given a finite set A of existing facilities (represented
by their geographical coordinates) and distances da assigned to each existing
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facility a 2 A. Additionally, weights xa reflecting the relative importance of
existing facility a 2 A are provided.

With these definitions the objective function for the Weber problem can be
written as

TCðx; xÞ :¼
X

a2A

xadaðxÞ;

which should be minimized over all x in the plane or over a nonempty closed
subset S � R2 for given weight set x ¼ ðxaÞa2A.

When applying this model to real world problems, mainly two sets of
parameters have to be determined:

1. What kind of distances da should be used in the model.
2. How can we determine the weights xa.

A lot of research for finding appropriate distance functions for applying
the Weber problem to different geographical settings has been done in the last
decades, starting with [24]. Other contributions to this topic can be found in
[15], [19], [4] and references therein.

For the determination of the weights the situation is somehow different.
The existing approaches can be divided roughly into three categories:

1. All weights are assumed to be known and reliable (situation of complete
information).

2. All weights are again assumed to be known but a sensitivity analysis is
performed in order to get information about the stability of the optimal
solution with respect to small changes in the input data, e.g. [14].

3. All weights are assumed to be given with respect to a known distribution,
e.g. [9], [7], [19] and references therein.

In practice, it may however be the case that the demand x is not known
and no probabilistic distribution can be provided. Examples are activities
which concern new (generations of) products, the planning of unique and
major events for which no knowledge of the demand exists, or the planning of
installations which are supposed to serve potential clients over a long period
of time for which the evaluation of demand is unknown.

A possible strategy for such situations can be found, e.g., in [1]: lower and
upper bounds on the weights are assumed to be known, and a worst-case
approach is suggested.

In this paper we propose a different approach: we assume the existence of
an estimate x̂x for x, with all its components positive. However, when
replacing the demand x by its estimate x̂x the errors made may be rather high
and uncontrollable, (so that a sensitivity analysis would be of no help), with a
considerable (perhaps unacceptable) increase in transportation costs.

To keep transportation costs under control, we select a threshold value
B > 0; representing the highest admissible transportation cost or just the
budget given. Now, define the robustness q of a location x as the minimum
deviation in demand with respect to x̂x for which the total cost for location x
exceeds the budget. In other words: Given a norm k � k on the space of
weights we have

qðxÞ ¼ inf kx� x̂xk : TCðx; xÞ > B;x � 0f g
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By solving then the optimization problem

max
x2S

qðxÞ ð1:1Þ

we get a most robust location x� within S.
In practice, situations with an extreme amount of uncertainty on the de-

mand may be rare, which limits at first glance the usefulness of (1.1) as an
applicable decision-making tool.

However, robustness, as defined above, can be used as a secondary
(mostly tie-breaking) criterion, yielding still a problem of type (1.1). Indeed,
suppose for instance one seeks a robust solution x�

� in a set S0 defined by geographical or legal constraints
� not exceeding an upper bound on the transportation costs TCðx̂x; xÞ when
the estimate x̂x is used as weight vector,

TCðx̂x; xÞ � B0

� not exceeding a threshold value R0 for the distance separating the facility
from each demand point a;

daðxÞ � R0 8a 2 A:

By defining S as the set of points in S0 satisfying the constraints above,
finding the most robust location within S yields a problem of type (1.1).

The remaining of the paper is organized as follows: In the next section the
model is discussed in detail, and a general solution technique is proposed. In
Section 3 we discuss a particular case, namely, the case in which distances are
measured by the Manhattan norm. The structure is then used to provide
efficient algorithms for particular choices of norm k � k: The paper ends with a
detailed example, some conclusions and an outlook to further research.

2 A possible model

For any feasible location x 2 S � R2, its robustness qðxÞ is defined as the
optimal value of the optimization problem

inf kx� x̂xk
s:t: TCðx; xÞ > B

x � 0
ð2:1Þ

where k � k is a norm in the space of weights RjAj, such as

kuk ¼ max
a2A

juaj
x̂xa

; ð2:2Þ

thus measuring the highest relative deviation, or

kuk ¼ max
a2A
juaj ð2:3Þ

measuring the highest absolute deviation, or

kuk ¼
X

a2A

juaj; ð2:4Þ

measuring the total absolute deviation, or
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kuk ¼
X

a2A

u2
a

 !1
2

ð2:5Þ

measuring the squared root of the sum of squares.
The case in which A consists of exactly one point, A ¼ fag, is trivial: the

total transportation cost TCðx; aÞ from a equals 0, thus qðaÞ ¼ þ1, and then
a is the most robust solution. Throughout the paper we will exclude this
trivial case and assume hereafter

A has at least two points ðA1Þ

2.1 Some reformulations

Under Assumption A1, TCðx; xÞ is strictly positive for any x with strictly
positive components, which implies the following

Proposition 2.1. For any x 2 R2, the problem (2.1) is feasible. In particular,

qðxÞ < þ1 8x 2 R2

Moreover, qðxÞ can also be expressed as

qðxÞ ¼ min kx� x̂xk
s:t: TCðx; xÞ � B

x � 0
ð2:6Þ

By Proposition 2.1, measuring the robustness of a given x amounts to solving
the nonlinear optimization problem (2.6). We will show below that, under
very mild conditions, the optimal value of (2.6) can be obtained explicitly.

We first recall that a norm k � k in Rn is said to be absolute iff

kðu1; u2; . . . ; unÞk ¼ kðju1j; ju2j; . . . ; junjÞk 8u 2 Rn

In particular, weighted lp norms, such as those given in (2.2)–(2.5) are
absolute norms. For technical reasons we assume in the following that

k � k is an absolute norm ðA2Þ

Proposition 2.2. For any x 2 R2,

qðxÞ ¼ max 0;
B� TCðx̂x; xÞ
kðdaðxÞÞa2Ak

	

� �
; ð2:7Þ

where k � k	 denotes the dual norm of k � k; defined as kuk	 ¼ maxkxk¼1 u>x:

For the proof, see the Appendix.
From Propositions 2.1 and 2.2 one immediately obtains
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Proposition 2.3. Define z� ¼ minx2S TCðx̂x; xÞ.
1. If z� � B, then

qðxÞ ¼ 0 8x 2 S

In particular, any x 2 S is a most robust location.

2. If z� < B, then maxx2S qðxÞ > 0. Moreover, a feasible point x� 2 S is a most
robust location iff it solves the problem

max
x2S

B� TCðx̂x; xÞ
kðdaðxÞÞa2Ak

	

Hence, for z� � B, the problem is trivial, and will not be considered in the
following, by assuming

z� < B ðA3Þ

2.2 A general solution approach

Denote by ~qq the function

~qq : x #
B� TCðx̂x; xÞ
kðdaðxÞÞa2Ak

	 ð2:8Þ

By Proposition 2.3, solving (2.1) may be reduced to maximizing on S the
nonlinear function ~qq defined in (2.8). Function ~qq has, however, a rich struc-
ture which enables its maximization by existing methods. In particular, we
can use the approach of Dinkelbach (see [6], [21]) to get the following iterative
solution procedure for

max
x2S

~qqðxÞ ¼:
NðxÞ
DðxÞ :

1. Find an optimal solution x� for problem maxx2S NðxÞ.
2. q :¼ ~qqðx�Þ.
3. Compute an optimal solution x0 for

max
x2S

NðxÞ � qDðxÞ ð2:9Þ

4. If Nðx0Þ � qDðx0Þ ¼ 0 then STOP: x0 is an optimal solution to the fractional
program.

5. q :¼ ~qqðx0Þ. Goto Step 3.

Hence, in order to use Dinkelbach’s approach, at each iteration a problem of
type (2.9) must be solved. In turns out that problems (2.9) are manageable at
least for a wide class of distance measures. Indeed, one has

Lemma 2.4. Suppose that, for each a 2 A, da is induced by a norm in R2. Then,
any problem of type (2.9) to be solved in Step 3 of Dinkelbach’s algorithm has a
concave (non-differentiable) objective.
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Proof. Since k � k is, by assumption, monotone, its dual k � k	 is also mono-
tone [2]. Hence, the function x 7!kðdaðxÞÞa2Ak

	 is convex, since it is the com-
position of the convex functions da with the monotonically increasing convex
function k � k	. Moreover, by Assumption A3, ~qqðx�Þ > 0, and by construction
of N and D, each q obtained in Step 5 is also positive, thus the function
x 7!qkðdaðxÞÞa2Ak

	 is convex, from which the result follows. h

Hence, as soon as the feasible region S is a convex set, the optimization
problem in Step 3 is a maximization of a concave function over a convex set
(or equivalently a minimization of a convex function over a convex set) for
which numerous algorithms exist (see, for example, [13]).

Anyway, Dinkelbach’s approach is not the only option to maximize ~qq. We
recall that a function f is said to be explicitly quasiconcave if both upper level
sets and strict upper level sets are convex sets, see e.g. [16] for further details.

Lemma 2.5. Suppose that, for each a 2 A, da is induced by a norm in R2. Then,
~qq is explicitly quasiconcave. In particular, for S convex, any local maximum of ~qq
is also a global maximum on S.

Moreover, if S ¼ R2; a most robust solution exists in the convex hull of the
set A:

Proof. It has been shown in the proof of Lemma 2.4 that the function
x 7!kðdaðxÞÞa2Ak

	 is convex, and it is obviously positive. The result then fol-
lows from the algebra of convex functions, see [16]. It is known that, for any x
not in coðAÞ; the convex hull of A there exists some x0 2 coðAÞ satisfying

daðx0Þ � daðxÞ 8a 2 A;

see [12]. Since any absolute norm (such as k � k	) is monotone,

kðdaðx0ÞÞa2Ak
	 � kðdaðxÞÞa2Ak

	;

and the result follows. h

Hence, any local-search procedure leads to global optimality. Moreover,
when S is the whole plane, the search can be further reduced to the convex
hull of A:

3 Solution procedures for the Manhattan metric

In this section we will develop particular solution procedures for the
unconstrained case (i.e., S ¼ R2), with the Manhattan metric, i.e.

daðxÞ ¼ l1ðx; aÞ ¼ jx1 � a1j þ jx2 � a2j 8a 2 A

where the index 1 and 2 refers to the first and second coordinate, respectively.
Contrary to the iterative (and, in principle, infinite) general-purpose

method, here we propose a finite algorithm that, for some particular
important choices of k � k; finds a most robust solution in subquadratic time.

By Proposition 2.1, the robust facility location problem can now be
written as

max
x2R2

~qqðxÞ ¼ B�
P

a2A xal1ðx; aÞ
l1ðx; aÞa2A

�� ��	 :
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Let a011 ; . . . ; a0P1
be the different values of the first coordinates of the existing

facilities A sorted in increasing order, such that

a011 < a021 < � � � < a0P1

holds. a012 ; . . . ; a0Q2
are defined analogously with respect to the second coor-

dinates of a 2 A. Additionally we define a001 ¼ a002 ¼ �1 and a0P1þ1 ¼
a0Q2þ1 ¼ þ1 and we get a subdivision of the plane into OðjAj2Þ rectangular
cells

hs; ti :¼ x ¼ ðx1; x2Þ : a0s1 � x1 � a0s1þ1; a0t2 � x2 � a0t2þ1
n o

;

for s 2 f0; 1; 2; . . . ; Pg and t 2 f0; 1; 2; . . . ;Qg.
By the structure of the l1 norm, we can eliminate a part of the plane being

candidate for containing a globally optimal solution. Indeed, one has

Lemma 3.1. Let R ¼ ½a011 ; a
0
P1

 � ½a012 ; a

0
Q2

 be the smallest rectangle containing

all a 2 A. Then all globally optimal solutions for the robust location problem are
contained in R.

Proof. Let x0 62 R and x00 its orthogonal projection on R. Then we know from
[11] that l1ðx00; aÞ < l1ðx0; aÞ, for all a 2 A. Using this fact we have for the
numerator of ~qq, that B�

P
a2A xal1ðx00; aÞ > B�

P
a2A xal1ðx0; aÞ. For the

denominator of ~qq we get using in addition that k � k	 is monotone
kl1ðx0; aÞk	 � kl1ðx00; aÞk	. In total we get ~qqðx00Þ > ~qqðx0Þ and therefore only
points in R can be globally optimal. h

As will be shown in Subsection 3.2, finding the most robust location with
a cell hs; ti, i.e., solving

max
x2hs;ti

B�
P

a2A xal1ðx; aÞ
l1ðx; aÞa2A

�� ��	 ðP :hs; tiÞ

can be efficiently done for particular choices of norm k � k.
This fact and Lemma 3.1 suggest a procedure for finding the most robust

location in the plane presumably more efficient than Dinkelbach’s algorithm,
namely, solve for each bounded cell hs; ti the corresponding problem ðP :hs; tiÞ.
We will postpone to Subsection 3.2 a detailed discussion on how Problems
ðP :hs; tiÞ can be solved, and devote Subsection 3.1 to design more efficient
search procedures which avoid complete enumeration of the OðjAj2Þ bounded
cells.

3.1 A search procedure

In order to develop procedures with low computing times, it is of great
importance to have good dominance rules, i.e., tests which enable us to
eliminate cases without explicit evaluation.

Since ~qq is explicitly quasiconcave (see Lemma 2.5), we get the following

Lemma 3.2. Let C be closed and convex, and let x� be optimal to

max
x2C

~qqðxÞ
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Denote by TCðx�Þ the set

TCðx�Þ ¼ x 2 R2 : x ¼ x� þ kðx	 � x�Þ for some k � 0; x	 2 C
� �

Then, x� also solves

max
x2TCðx�Þ

~qqðxÞ

The interest of this result stems from the fact that, if C is a bounded cell hs; ti,
then the sets TC are either the whole plane, a halfspace or a quadrant.

We introduce now the following notation: for any bounded cell hs; ti, let us
denote by ci

hs;ti; i ¼ 1; 2; 3; 4 its corner points, c1 ¼ ða0s1 ; a
0
t2Þ, c2 ¼ ða0s1 ; a

0
t2þ1Þ,

c3 ¼ ða0s1þ1; a
0
t2þ1Þ and c4 ¼ ða0s1þ1; a

0
t2Þ, see Figure 3.1, and let x�hs;ti denote an

optimal solution to P :hs; ti.
With this notation we obtain from Lemma 3.2 the following

Lemma 3.3. Let hs; ti be a bounded cell, and let x�hs;ti 2 argmaxx2hs;ti ~qqðxÞ

� If x�hs;ti 2 intðhs; tiÞ then x�hs;ti is also an optimal solution to Problem (P.hs; ti).
� If x�hs;ti is contained in the relative interior of an edge of hs; ti then the complete
halfspace defined by this edge and hs; ti can be excluded from the search, (see
Figure 3.2).
� If x�hs;ti is a corner point of hs; ti, then the cone generated by x�hs;ti and the two
adjacent edges of hs; ti can be excluded (see Figure 3.3).

If a part of the cells can be excluded from the search procedure we can delete
them from the set of cells and perform a search procedure only for the
remaining ones. We say row i can be deleted if all cells hi; ji, for j ¼ 1; . . . ;Q
can be excluded from the search procedure. We say column j can be deleted if
all cells hi; ji, for i ¼ 1; . . . ; P can be excluded from the search procedure.

Fig. 3.1. A subdivision of the plane in cells hs; ti, with P ¼ 6 and Q ¼ 4
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Given two points u; v, let ðuvÞ denote the open segment with endpoints u; v.
Using Lemma 3.1 and Lemma 3.3 we get the following corollary, which will
serve as a start-point for a search procedure.

Fig. 3.2. If x�hs;ti is in the relative interior of the boundary then the whole halfspace containing
hs; ti can be excluded

Fig. 3.3. If x�hs;ti is a corner point of the cell, only a cone can be excluded
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Corollary 3.4. For cell h1; 1i with corner points c1, c2, c3 and c4 we have the
following cases.

� If x�h1;1i 2 intðh1; 1iÞ or x�h1;1i 2 ðc1c2Þ or x�h1;1i 2 ðc4c1Þ or x�h1;1i ¼ c1 then x�h1;1i
is also globally optimal.
� If x�h1;1i 2 ðc2c3Þ or x�h1;1i ¼ c2 then row 1 can be deleted.
� If x�h1;1i 2 ðc3c4Þ or x�h1;1i ¼ c4 then column 1 can be deleted.
� If x�h1;1i ¼ c3 then only cell h1; 1i can be excluded.

From this result we get the following idea for an algorithm. We start with cell
h1; 1i and apply Corollary 3.4. If a row or a column can be deleted we restart
with a reduced cell system and a new cell h1; 1i. Otherwise we perform
diagonal steps to h2; 2i, h3; 3i, . . ., hk; ki until another dominance rule as the
ones shown in the following lemmata is fulfilled.

Lemma 3.5. If x�hl;li ¼ c3hl;li for all l ¼ 1; 2; . . . ;minðP ;QÞ then, if Q � P
(respect. P � Q) we can eliminate the first Q columns (respect. the first P rows).

Lemma 3.6 Consider the robust location problem in cell hk; ki with k > 1 and
minðP ;QÞ � k and corner points c1, c2, c3 and c4. Additionally we assume that
x�hk;ki 6¼ c3 and in all cells hl; li, with l < k, x�hl;li ¼ c3hl;li. Then the following cases
can occur.

� If x�hk;ki 2 intðhk; kiÞ then x�hk;ki is also globally optimal.

� If x�hk;ki 2 ðc2c3Þ then the first k rows (row 1 up to row k) can be deleted.

� If x�hk;ki 2 ðc3c4Þ then the first k columns can be deleted.

� If x�hk;ki 2 ðc1c2Þ or x�hk;ki ¼ c2 then the first k � 1 rows can be deleted.

� If x�hk;ki 2 ðc4c1Þ or x�hk;ki ¼ c4 then the first k � 1 columns can be deleted.

Fig. 3.4 The region which can be excluded if x�hk;ki ¼ x�hk�1;k�1i
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� If x�hk;ki ¼ c1 then the deletion rules depends on cell hk � 1; ki (see Figure 3.4).

– If x�hk�1;ki 2 intðhk � 1; kiÞ then x�hk�1;ki is also globally optimal.
– If x�hk�1;ki 2 ðc1hk�1;kic2hk�1;kiÞ or x�hk�1;ki 2 ðc2hk�1;kic3hk�1;kiÞ or x�hk�1;ki ¼ c2hk�1;ki
then the first k � 1 rows can be deleted.

– If x�hk�1;ki 2 ðc3hk�1;kic4hk�1;kiÞ or x�hk�1;ki 2 ðc4hk�1;kic1hk�1;kiÞ or x�hk�1;ki ¼ c4hk�1;ki
then the first k � 1 columns can be deleted.

Proof. The proof follows from Lemma 3.3 and using the fact that by
assumption all cells hi; ji with i; j � k are already dominated. In the last case it
should be noted that by the explicitly quasiconcavity of ~qq and the given
solution in the adjacent cells isolated locally optimal points in c1hk�1;ki or
c3hk�1;ki cannot occur. h

Now we have all technical details fixed to formulate a search algorithm to
solve the problem.

Algorithm 3.1. Algorithm to find the most robust location

Input: Existing facilities A with corresponding weights x̂x.
Output: x� 2 argmax

x2R2
~qqðxÞ

1. Compute the data for the cells hs; ti. Denote the set of all bounded cells
by C.

2. k :¼ 1
3. While P > 1 and Q > 1 DO

(a) Compute x�hk;ki and apply Corollary 3.4, Lemma 3.5 and Lemma 3.6.
(b) If rows or columns can be deleted then reduce C, P , Q accordingly and

set k :¼ 1. Goto Step 3.
(c) k :¼ k þ 1.
(d) If k > minfP ;Qg then delete the first k rows in the case P ¼ minfP ;Qg

and the first k columns otherwise. Reduce C, P , Q accordingly and set
k :¼ 1. Goto Step 3.

4. Now only one row or column is left. Do any search procedure to determine
the cell containing an optimal solution x�.

5. Output: x�.

It is clear that the algorithm leads to an optimal solution. We discuss now its
complexity. Since by the preceding results we are able to delete at least k � 1
rows or columns after investigating k þ 1 cells, we have

Lemma 3.7. Algorithm 3.1 solves OðjAjÞ problems of type P :hs; ti.

Step 1 needs OðjAj log jAjÞ time for sorting. Moreover, by Lemma 3.7, the
while loop needs OðjAj � KÞ time, where K is the complexity for finding an
optimal solution with respect to a cell. Searching the last row or column needs
also OðjAj � KÞ time. Summing up we have

Proposition 3.8. If each problem P :hs; ti can be solved in OðKÞ time, then a
most robust location can be obtained in OðjAj logðjAjÞ þ jAjKÞ time.
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In the following we will show how the problem in a cell can be solved and
therefore determining the overall complexity of the algorithm.

3.2 Finding the most robust location in a cell

In the last section we have seen how we can search in linear time all cells hs; ti.
Now we will fix a cell hs; ti and solve P :hs; ti. The following lemma shows that
in a cell ~qq has an additional property.

Lemma 3.9 (see [8]) l1ðx; aÞ, a 2 A is affine linear in hs; ti for all
s 2 f0; 1; 2; . . . ; Pg and t 2 f0; 1; 2; . . . ;Qg.

We denote the numerator of ~qq in hs; ti by NðxÞ and the denominator by
DðxÞ. From Lemma 3.9 we know that NðxÞ can be written as an affine linear
function say NðxÞ ¼ aT

hs;tixþ bhs;ti. Therefore only the form of the denomi-
nator DðxÞ has to be determined. In order to do that we have to look at
possible choices for norm k � k.

3.2.1 The maximum error

If we choose k � k as the maximum norm k � kl1 , we get DðxÞ ¼
P

a2A l1ðx; aÞ:
Therefore we can also apply the cell subdivision for the denominator and get
an affine linear representation of DðxÞ in hs; ti, i.e. DðxÞ ¼ kT

hs;tixþ lhs;ti.
Summing up we can write P :hs; ti as

max
x2hs;ti

aT
hs;tixþ bhs;ti

kT
hs;tixþ lhs;ti

; ð3:1Þ

a linear fractional program. Using the fact that in this case ~qqðxÞ is pseudo-
convex (see [3]) we get the following lemma.

Lemma 3.10. An optimal solution for (3.1) can always be found in one of the
four corner points of hs; ti.

Since ahs;ti; bhs;ti; khs;ti; lhs;ti can be found in OðjAjÞ time, the total com-
plexity for solving each P :hs; ti is linear, thus, by Proposition 3.8, a most
robust location can be obtained in OðjAj logðjAjÞ þ jAj2Þ ¼ OðjAj2Þ time. Such
complexity can be further improved by observing that, in Algorithm 3.1, one
moves from a cell hs; ti to an adjacent one or eventually (case 3d) to a cell of
the form hsþ i; ti or hs; t þ ji.

It turns out that the linear fractional representation of ~qq in such new cell is
easily obtained in terms of the coefficients for cell hs; ti. Indeed, it is easily
checked the following

Lemma 3.11. Define

I 1hs; ti ¼ fk1 : a0s1 � ak1 � a0t1g
I 2hs; ti ¼ fk2 : a0s2 � ak2 � a0t2g
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One has:

ahsþi;tþji ¼ ahs;ti þ
 
2

X

k2I 1hsþ1;sþii
xk; 2

X

l2I2htþ1;tþji
xl

!

bhsþi;tþji ¼ bhs;ti � 2
X

k2I1hsþ1;sþii
xkak1 � 2

X

l2I2htþ1;tþji
xlal2

khsþi;tþji ¼ khs;ti þ
 
2

X

k2I 1hsþ1;sþii
1; 2

X

l2I 2htþ1;tþji
1

!

lhsþi;tþji ¼ lhs;ti � 2
X

k2I1hsþ1;sþii
ak1 � 2

X

l2I2htþ1;tþji
al2

Hence, after solving P :h1; 1i in OðjAjÞ time, by Lemma 3.7, only OðjAjÞ up-
dates of parameters a; b; k; l are required. By Lemma 3.11, it follows that
such updates can be performed in total OðjAjÞ time. Hence, Steps 2 to 5 of
Algorithm 3.1 can be executed in OðjAjÞ time. Since Step 1 requires
OðjAj logðjAjÞÞ time, the overall complexity of the procedure is OðjAj logðjAjÞþ
jAjÞ ¼ OðjAj logðjAjÞÞ time.

3.2.2 Sum of errors

If we measure the error as the absolute sum of errors, i.e., we choose k � k as
the l1 norm k � kl1 we get DðxÞ ¼ maxfl1ðx; aÞ : a 2 Ag.

The denominator can be simplified by using the following lemma (see [18]).

Lemma 3.12. There exists a partition A1:hs; ti; A2:hs; ti; A3:hs; ti; A4:hs; ti of
A, such that for all x 2 hs; ti

daðxÞ ¼ x1 þ x2 þ ca 8a 2 A1:hs; ti
daðxÞ ¼ x1 � x2 þ ca 8a 2 A2:hs; ti
daðxÞ ¼ �x1 þ x2 þ ca 8a 2 A3:hs; ti
daðxÞ ¼ �x1 � x2 þ ca 8a 2 A4:hs; ti

Furthermore, for any nonempty Ai there exists ai 2 Ai:hs; ti, i ¼ 1; . . . ; 4, such
that for all x 2 hs; ti

max
a2A

daðxÞf g ¼ max daiðxÞ : Ai:hs; ti 6¼ ;
� �

:

With this result we can write the problem again as a linear fractional program
of the following type

max
aT
hs;tixþ bhs;ti

z
subject to

daiðxÞ � z 8i ¼ 1; . . . ; 4 with Ai:hs; ti 6¼ ;
x1 � a0s1
x1 � a0s1þ1
x2 � a0t2
x2 � a0tþ22
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In addition, we know from [5] that a linear fractional program can be con-
verted in a linear program by introducing one additional variable. Therefore
the dimension is fixed and the problem

max
x2hs;ti

~qqðxÞ

can be solved in Oð1Þ time after building the sets Ai:hs; ti, and then the
coefficients ahs;ti; bhs;ti and the points ai defined in Lemma 3.12 have been
obtained. Since this information can be obtained in OðjAjÞ time, it follows
from Proposition 3.8 that a most robust location can be obtained in OðjAj2Þ,
although, as in Section 3.2, such complexity can be improved if, at each
iteration, the problem P :hs; ti is not constructed from scratch but from the
corresponding problem in the previous iteration. Such goal can be attained if,
e.g., the elements of each Ai:hs; ti are stored in Fibonacci heaps, thus enabling
the construction of the corresponding ai in constant time, while insertions and
deletions are done in logarithmic time. See [10] for details.

3.2.3 More general cases

The previous approach can directly be adapted to the case where k � k is a
monotone polyhedral norm, because its dual is then also polyhedral and
monotone, and each problem P :hs; ti can also be transformed in a fractional
linear program using the fact that

kxk	 ¼ max eT x 8e 2 ExtðBÞ;
where ExtðBÞ denotes the set of extreme points of the unit ball of k � k. By
substituting the constraints

daiðxÞ � z

by

eT ðx� aiÞ � z 8e 2 ExtðBÞ
we get a fractional linear program for the general polyhedral norm case, with
three variables and OðjAjjExtðBÞjÞ constraints. By including one additional
variable, this problem turns out to be equivalent to a linear problem with four
variables and OðjAjjExtðBÞjÞ constraints, thus solvable in OðjAjjExtðBÞjÞ time
by existing procedures, [17].

If k � k is a general (non-polyhedral) monotone norm we can use the ap-
proach of Dinkelbach (see Section 2.2) for solving

max
x2hs;ti

~qqðxÞ:

Example 3.1. We are given 10 existing facilities a1 ¼ ð0; 0Þ, a2 ¼ ð1; 0Þ, a3 ¼
ð1;�1Þ, a4 ¼ ð0; 1Þ, a5 ¼ ð0; 2Þ, a6 ¼ ð5; 6Þ, a7 ¼ ð6; 3Þ, a8 ¼ ð8; 4Þ, a9 ¼
ð10; 5Þ and a10 ¼ ð6; 10Þ. The estimator for the weights is x̂x ¼ ð4; 4; 4; 4;
4; 1; 1; 1; 1; 1Þ and the budget B is 100.

The distance daðxÞ ¼ l1ðx; aÞ and the deviation in the space of weights is
measured by the maximum error (k � k ¼ l1). Therefore our objective function
for finding the most robust location is now like in Section 3.2.1. We use
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Algorithm 3.1 together with Lemma 3.10 to solve the problem. In our case we
proceed as follows:

1. Start in cell h1; 1i and compute ~qqðxÞ for all corner points. We get x�h1;1i ¼ c3

(with objective value 0:22) and we continue with h2; 2i. Now we get
x�h2;2i ¼ c2 (with objective value 0:25) and by Lemma 3.6 we can delete the
first row and restart.

2. Start in cell h1; 2i. We get x�h1;2i ¼ c3 (with objective value 0:25) and we
continue with h2; 3i. Now we get x�h2;3i ¼ c1 (with objective value 0:25)
and we have to look at cell h1; 3i according to Lemma 3.6. Here we
have x�h1;3i ¼ c4 (with objective value 0:25) and we can delete the first
column.

3. Restart with h2; 2i, where we get x�h2;2i ¼ c2 and delete according to Cor-

ollary 3.4 the first row.
4. Restart in cell h2; 3i and get x�h2;3i ¼ c1 (with objective value 0:25) and

conclude by Corollary 3.4 that x�h2;3i ¼ c1 ¼ ð1; 1Þ is globally optimal.

In Figure 3.5 the cell system with the deleted rows and columns is shown.

4 Conclusions and extension

In this paper we have addressed a planar single-facility location problem in
which a high level of uncertainty is involved in the demand vector.

The concept of robustness of a feasible solution x as a measure of the
acceptance of x is introduced, and the most robust location is then sought.

Finding the most robust location amounts to solving a nonlinear frac-
tional problem, solvable by existing methods such as Dinkelbach’s algorithm
when distances are induced by norms, or by more efficient ad-hoc procedures
when further assumptions (e.g. distances measured by the Manhattan norm)
are made. In particular, an optimal solution can be found with an ad-hoc
method in subquadratic time for some choices of k � k: An empirical analysis
of the performance of Dinkelbach’s strategy for more general instances (e.g.,
when constraints exist) is an interesting area to be explored, which was out-
side the scope of the present paper.

The concept of robustness could also be used in another usual location
setting, namely, location on networks, leading again to nonlinear fractional
programs which, under further assumptions on the norm k � k, can be solved
by inspecting a finite set of candidate points.

Another interesting extension of this model is obtained if not only the
robustness but also the actual transportation cost are taken into account via a
biobjective problem, which again becomes piecewise linear and tractable
under polyhedrality assumptions on k � k.

These extensions are currently under research.

5 Appendix

Lemma 5.1. Let x 2 R2 such that TCðx̂x; xÞ < B. Then,

min kx� x̂xk : TCðx; xÞ � B;x � 0f g ¼ min kx� x̂xk : TCðx; xÞ ¼ Bf g
ð5:1Þ
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Proof. For any x1 2 RjAj such that

TCðx1; xÞ � B;x1 � 0; ð5:2Þ

define k as

k ¼ TCðx1; xÞ � B
TCðx1 � x̂x; xÞ

It follows from the assumptions and (5.2) that

TCðx1; xÞ � B > TCðx̂x; xÞ;
thus k 2 ½0; 1Þ. Defining x2 as

x2 ¼ ð1� kÞx1 þ kx̂x;

Fig. 3.5. Illustration for Example 3.1

346 E. Carrizosa, S. Nickel



it follows that

TCðx2; xÞ ¼ TCðx1; xÞ � kTCðx1 � x̂x; xÞ
¼ B:

Hence, since k 2 ½0; 1Þ,
kx1 � x̂xk � ð1� kÞkx1 � x̂xk

¼ kð1� kÞx1 þ kx̂x� x̂xk
¼ kx2 � x̂xk
� min kx� x̂xk : TCðx; xÞ ¼ Bf g

Hence,

qðxÞ � min kx� x̂xk : TCðx; xÞ ¼ Bf g
Conversely, given x3 2 RjAj such that TCðx; xÞ ¼ B, define x4 2 RjAj as

x4
a ¼ maxfx3

a; 0g 8a 2 A

Then, x4 � 0 and

TCðx4; xÞ ¼
X

a2A

x4
adaðxÞ

¼
X

fa2A:x3
a�0g

x4
adaðxÞ þ

X

fa2A:x3
a<0g

x4
adaðxÞ

¼
X

fa2A:x3
a�0g

x3
adaðxÞ

�
X

a2A

x3
adaðxÞ

¼ TCðx3; xÞ

¼ B

This implies that qðxÞ � kx4 � x̂xk.
Moreover, since,

jx4
a � x̂xaj � jx3

a � x̂xaj 8a 2 A;

thus, since any absolute norm is a monotonic norm, [2],

kx4 � x̂xk � kx3 � x̂xk;
and hence

kx3 � x̂xk � min kx� x̂xk : TCðx; xÞ � B;x � 0f g
h

Proof of Proposition 2.2. If TCðx̂x; xÞ � B, then x̂x is feasible for (2.6), thus
qðxÞ ¼ 0. If x satisfies TCðx̂x; xÞ < B, then, by Lemma 5.1, qðxÞ is the distance
(according to metric k � k) from point x̂x 2 RjAj to the hyperplane
fx 2 RjAj : TCðx; xÞ ¼ Bg. Hence,
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qðxÞ ¼ B� TCðx̂x; xÞ
kðdaðxÞÞa2Ak

	 ;

e.g. [20], and then the result follows. h
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[14] Labbé M, Thisse J-F, Wendell RE (1991) Sensitivity analysis in minisum facility location
problems. Operations Research 39:961–969

[15] Love RF, Morris JG, Wesolowsky GO (1988) Facilities Location: Models and Methods
North Holland, New York

[16] Martos B (1975) Nonlinear Programming Theory and Methods. North-Holland, Amster-
dam

[17] Megiddo N (1982) Linear-time alogrithms for linear programming in R3 and related
problems. SIAM Journal on Computing 12:759–776

[18] Mehrez A, Sinuany-Stern Z, Stulman A (1986) An enhancement of the dreznerwesolowshy
algorithm for single-facility location with maximum of rectilinear distance. Journal of the
Operational Research Society 37:971–977

[19] Plastria F (1995) Continuous location problems. In: Drezner Z (ed.) Facility Location.
A Survey of Applications and Methods, chapter 11, pp. 225–260, Springer

[20] Plastria F, Carrizosa E (2001) Gauge distances and median hyperplanes. Journal of
Optimization Theory and Applications 110:173–182

[21] Schaible S (1976) Fractional programming II on Dinkelbach’s algorithm. Management
Science 22:868–873

348 E. Carrizosa, S. Nickel



[22] Wesolowsky GO (1997) Probabilisitic weights in the one-dimensional facility location
problem. Management Science 24:224–229

[23] Wesolowsky GO (1993) The Weber Problem: History and Perspectives. Location Science
1:5–23

[24] Witzgall CJ (1964) Optimal Location of a Central Facility: Mathematical Models and
Concepts. Technical Report 8388. National Bureau of Standards Report, US Department of
Commerce, National Bureau of Standards, Washington DC

Robust facility location 349


