
Abstract. We consider a discrete time finite Markov decision process
(MDP) with the discounted and weighted reward optimality criteria. In [1]
the authors considered some decomposition of limiting average MDPs. In
this paper, we use an analogous approach for discounted and weighted
MDPs. Then, we construct some hierarchical decomposition algorithms for
both discounted and weighted MDPs.

Key words: Discounted MDP, Weighted MDP, Decomposition, Strongly
Connected Classes, Graph theory

1 Introduction

Many dynamic planning problems have successfully been analyzed as
Markov decision processes; e.g. see [4], [9], [10], and [11]. In these references
there are several examples motivating the discounted, average, and weighted
reward criteria. First, we consider a discrete time Markov decision process
(MDP) with finite state and action spaces under discounted reward opti-
mality criterion, and we propose an algorithm for the computation of an
optimal solution which is based on the decomposition by using the tech-
nique of levels introduced in [12] for stochastic games. The proposed
algorithm finds the optimal value and the corresponding optimal action for
any state, step by step, until all states are considered. The computation of
an optimal action in any state is done through some restricted MDPs.

The fact that the weighted reward criterion is the weighted sum of a
discounted and an average reward criteria, leads to the use of the algorithm
above and the algorithm developed in [1] for limiting average MDPs to
construct two new algorithms: the first determines �-optimal strategies for
the restricted weighted MDPs and the second constructs an �-optimal
strategy for the original weighted MDP.
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This paper is organized as follows: in Section 2, we define weighted
MDPs. In Section 3, we propose a decomposition algorithm to determine a
discounted optimal strategy. Finally, in Section 4, we propose a level based
algorithm to determine an ultimately deterministic �-optimal strategy for
weighted MDPs.

2 Definitions and preliminaries

We consider a stochastic dynamic system which is observed at discrete time
points t ¼ 1; 2; . . .. At each time point t the state space of the system is de-
noted by Xt where Xt is a random variable whose values are in a state space E.
At each time point t, if the system is in state i, an action
a 2 AðiÞ ¼ f1; 2; . . . ;mðiÞg has to be chosen. In this case, two things happen: a
reward rði; aÞ is earned immediately, and the system moves to a new state j
according to the transition probability piaj. Let At be the random variable
which represents the action chosen at time t.

We denote by Ht ¼ ðE � AÞt�1 � E the set of all histories up to time t, and
by W ¼ fðq1; q2; . . . ; q Aj jÞ :

P Aj j
a¼1 qa ¼ 1; qa � 0; 1 � a � Aj jg the set of prob-

ability distributions over A ¼
S

i2E AðiÞ. A strategy p is defined by a sequence

p ¼ ðp1; p2; . . .Þ where pt : Ht ! W is a decision rule. A Markov strategy is one
in which pt depends only on the current state at time t. A stationary strategy is
a Markov strategy with identical decision rules. A deterministic (or pure)
strategy is a stationary strategy whose single decision rule is nonrandomized.
An ultimately deterministic strategy is a Markov strategy p ¼ ðp1; p2; . . .Þ
such that there exist a deterministic strategy g and an integer t0 such that
pt ¼ g for all t � t0.

Let F , FM , FS , FD and FUD be the sets of all strategies, Markov strategies,
stationary strategies, deterministic strategies, and ultimately deterministic
strategies, respectively.

Let PpðXt ¼ j;At ¼ a j X1 ¼ iÞ be the conditional probability that at time t
the system is in state j and the action taken is a, given that the initial state is i
and the decision maker uses a strategy p. Now, if Rt denotes the reward at
time t, then for any strategy p and an initial state i, the expectation of Rt is
given by EpðRt; iÞ ¼

P
j2E

P
a2AðjÞ PpðXt ¼ j;At ¼ a j X1 ¼ iÞrð j; aÞ.

The manner in which the resulting stream of expected rewards
fEpðRt; iÞ : t ¼ 1; 2; . . .g are aggregated defines the Markov decision processes
discussed in the sequel.

In the discounted reward MDP, the corresponding overall reward criterion
is defined by:

V a
i ðpÞ ¼

P1
t¼1 at�1EpðRt; iÞ, i 2 E, where a 2 0; 1½ Þ is a fixed discount

factor. A strategy f � is called discounted optimal if for all i 2 E,
V a

i ðf �Þ ¼ maxp2F V a
i ðpÞ :¼ V aðiÞ. We will denote this MDP by CðaÞ:

In the average reward MDP, the overall reward criterion is defined by:
UiðpÞ ¼ lim infT!1

1
T

PT
t¼1 EpðRt; iÞ; i 2 E. A strategy f � is called average

optimal if for all i 2 E, Uiðf �Þ ¼ maxp2F UiðpÞ :¼ V ið Þ. We will denote this
MDP by C.

In the weighted reward MDP, the overall reward criterion is defined by:
xiðpÞ ¼ kð1� aÞ V a

i ðpÞ þ ð1� kÞUiðpÞ; i 2 E, where k 2 0; 1½ � is a fixed
weighted parameter, and a is the discount factor in the MDP CðaÞ. We denote
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this MDP by Cða; kÞ. A strategy f � is called optimal if for all i 2 E,
xiðf �Þ ¼ maxp2F xiðpÞ. Let � > 0, for any i 2 E, a strategy f � is called
�� i�optimal if xiðf �Þ � maxp2F xiðpÞ � �. A strategy f � is called �� opti-
mal if f � is �� i�optimal for all i 2 E.

Remark 2.1 Weighted MDPs were formally introduced in [7] even though they
can be viewed as special cases of more general models considered in [3]. In [7] the
authors show that optimal strategies may not exist and propose an algorithm to
determine an �–optimal strategy.

3 Decomposition of discounted MDP

In this section, we consider discounted MDPs with finite state and action
spaces. Let G ¼ ðE;UÞ be the graph associated with the original MDP, that is,
the state space represents the set of nodes and U :¼ fði; jÞ 2 E2 : piaj > 0 for
some a 2 AðiÞg the set of directed arcs. The state space can be partitioned into
strongly connected classes C1, C2; . . ., Cp. Note that the strongly connected
classes are defined to be the classes with respect to the relation on G defined
by: i is strongly connected to j if and only if i ¼ j or there exist a directed path
from i to j and a directed path from j to i. There are many good algorithms in
graph theory for the computation of such partition, e.g., see [6]. Now, we
construct by induction the levels of the graph G. The level L0 is formed by all
classes Ci such that Ci is closed, that is, any arc emanating from Ci has both
nodes in Ci . The nth level Ln is formed by all classes Ci such that the end of
any arc emanating from Ci is in some level Ln�1,Ln�2; . . . ;L0.

Remark 3.1 Let Ci be a strongly connected class in the level Ln then Ci is closed
with respect to the restricted MDP to the state space E � ðL0 [ L1 [ . . . [ Ln�1Þ.

It is clear that, from Remark 3.1, the following algorithm finds the levels.

Algorithm 3.1:
X E; n  0; Ln  f Ci : Ci is closed g
If L0 ¼ E Stop.
Otherwise, unless X 6¼ ; do
Delete Ln (i.e X X�Ln and eliminate all arcs coming into Ln);
Lnþ1  fCi : Ci is closed in the MDP restricted to Xg;
n nþ 1.

In what follows, we construct, by induction, the restricted MDPs corre-
sponding to each level Ln, n ¼ 0; 1; 2; . . . ;L. Let ðClkÞ, k 2 f1; 2; . . . ;KðlÞg be
the strongly connected classes corresponding to the nodes in level l.

Construction of the restricted MDPs in level L0: For each k ¼ 1; 2; . . . ;
Kð0Þ, we denote by MDP0k the restricted MDP corresponding to the class C0k
that is the restricted MDP in which the state space is S0k ¼ C0k. Note that any
restricted MDP, MDP0k is well defined since any class C0k is closed and can be
easily solved by a finite algorithm (see [5]).

We denote by p0k an optimal strategy and V a
0kðiÞ, i 2 C0k the optimal value

in state i.
Construction of the restricted MDPs in level L1: For each k ¼ 1;

2; . . . ;Kð1Þ, we denote by MDP1k the restricted MDP defined by:
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State space: S1k ¼ C1k [ j 2 L0 : 9i 2 C1k; 9a 2 AðiÞ and piaj > 0
� �

.
Action spaces: For each s 2 S1k, the associated action space is:

A1kðsÞ ¼ AðsÞ if s 2 C1k and A1kðsÞ ¼ fhg if s 62 C1k:

Transition probabilities: Let i; j 2 S1k: The associated transition probabil-
ities are:

p1kð j j i; aÞ ¼ piaj if i 2 C1k; a 2 AðiÞ and p1kðj j i; aÞ ¼ 1 if i ¼ j and i 62 C1k
Rewards: Let i 2 S1k.
If i 2 C1k ; r1kði; aÞ :¼ rði; aÞ.
If i 62 C1k ; 9h 2 f1; 2; . . . ;Kð0Þg : i 2 C0h and r1kði; hÞ :¼ ð1� aÞV a

0hðiÞ:

Remark 3.2 The construction of restricted MDPs corresponding to different
optimality criteria differs from the definition of rewards. Let i 2 ðS1k � C1kÞ
then there exists h 2 f1; 2; . . . ;Kð0Þg such that i 2 C0h. In order to conserve the
optimal value at state i, we define r1kði; hÞ :¼ V0hðiÞ and r1kði; hÞ :¼ ð1� aÞV a

0hðiÞ
in the case of average MDPs and discounted MDPs respectively.

Construction of the restricted MDPs in level Ln, n > 1: Let En ¼ [fCmk;
m ¼ 0; . . . ; n� 1; k ¼ 1; . . . ;KðmÞg.

Let V a
mkðiÞ be the optimal value in state i 2 En, computed in the previous

MDPmk (m < n). For each k ¼ 1; 2; . . . ;KðnÞ, we denote by MDPnk the MDP
defined by:

State space: Snk ¼ Cnk [ fj 2 En : piaj > 0 for some i 2 Cnk , a 2 AðiÞg.
Action spaces: For each i 2 Snk , the associated action space is AnkðiÞ ¼ AðiÞ

if i 2 Cnk and AnkðiÞ ¼ fhg if i 62 Cnk
Transition probabilities: For each i; j 2 Snk; pnkð j j i; aÞ ¼ piaj if i 2 Cnk;

a 2 AðiÞ and pnkð j j i; aÞ ¼ 1 if i ¼ j; i 62 Cnk
Rewards: Let i 2 Snk ; if i 2 Cnk then rnkði; aÞ :¼ rði; aÞ.
If i 62 Cnk then there exist m 2 f0; 1; . . . ; n� 1g and h 2 f1; 2; . . . ;KðmÞg

such that i 2 Cmh and
rnkði; hÞ :¼ ð1� aÞV a

mhðiÞ:
In what follows, we present the main result of this section.

Theorem 3.1 Let V a
lkðiÞ, i 2 Clk be the optimal value in the restricted MDPlk,

then V a
lkðiÞ is equal to the optimal value V aðiÞ in the original MDP.

Proof The proof is by induction. For l ¼ 0, the result follows from the fact
that each C0k, k 2 f1; 2; . . . ;Kð0Þg is closed. The optimal value V a is the
unique solution to [2]:

V aðiÞ ¼ max
a2AðiÞ
½rði; aÞ þ a

X

j2C0k

piajV aðjÞ�; i 2 C0k: ð1Þ

The optimal value V a
0k is the unique solution to:

V a
0kðiÞ ¼ max

a2A0kðiÞ
½r0kði; aÞ þ a

X

j2C0k

p0kð j j i; aÞV a
0kð jÞ�; i 2 C0k: ð2Þ

By using (1), (2), and the fact that A0kðiÞ ¼ AðiÞ, r0kði; aÞ ¼ rði; aÞ and
p0kð j j i; aÞ ¼ piaj for all i 2 C0k, it is clear that V a

0kðiÞ ¼ V aðiÞ for all i 2 C0k.
Let n > 0 and suppose that the result is true for all levels preceding n. Now,
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we shall show that the result is still true for n. Let V a
nkðiÞ; i 2 Snk be the

optimal value in the restricted MDPnk , we have that:

V a
nkðiÞ ¼ max

a2AnkðiÞ
½rnkði; aÞ þ a

X

j2Cnk

pnkð j j i; aÞV a
nkð jÞ þ a

X

j62Cnk

pnkð j j i; aÞV a
nkð jÞ�:

ð3Þ

It is clear that from the induction hypothesis, that for all i 2 ðSnk � CnkÞ,
V a

nkðiÞ ¼ V aðiÞ and V aðiÞ is computed in the preceding levels. Then, for all
i 2 Cnk :

V a
nkðiÞ ¼ max

a2AðiÞ
½rði; aÞ þ a

X

j2Cnk

piajV a
nkðjÞ þ a

X

j62Cnk

piajV aðjÞ�: ð4Þ

Since V aðiÞ; i 2 Snk is the unique solution to (4) then V aðiÞ ¼ V a
nkðiÞ for all

i 2 Cnk . h

Corollary 3.1 Let pnk be an optimal deterministic strategy for the restricted
MDPnk then for each i 2 Cnk, pnkðiÞ is an optimal action in the original MDP.

Proof For each i 2 Cnk (from Theorem 3.1) we have that:
pnkðiÞ ¼ argmaxa2AnkðiÞ

�
rnkði; aÞ þ a

P
j2Snk

pnkðj j i; aÞV a
nkðjÞ

�

¼ argmaxa2AðiÞ
�
rði; aÞ þ a

P
j2Snk

piajV aðjÞ
�
: h

Now, we propose the following decomposition algorithm for discounted
MDPs.

Algorithm 3.2:
Step 1: Find the strongly connected classes in the graph G.
Step 2: Find the levels Ll; l ¼ 0; 1; . . . ; L by Algorithm 3.1.
Step 3: Find the classes Clk; k 2 f1; 2; . . . ;KðlÞg belonging to each level.
Step 4: For each l ¼ 0; 1; . . . ; L solve the restricted MDPs: MDPlk;
k 2 f1; 2; . . . ;KðlÞg.

Example 3.1 We consider the original MDP defined by:

State space: E ¼ f1; 2; . . . ; 6g.
Action spaces: Að1Þ ¼ Að2Þ ¼ Að3Þ ¼ Að4Þ ¼ Að6Þ ¼ f1; 2g; Að5Þ ¼ f1g.
Transition probabilities: p111 ¼ p112 ¼ 1=2; p121 ¼ p211 ¼ p222 ¼ 1; p313 ¼

p323 ¼ 1; p412 ¼ 1=3; p415 ¼ 2=3; p425 ¼ 1; p514 ¼ 2=3; p515 ¼ 1=3; p615 ¼ 2=3;
p613 ¼ 1=3; p621 ¼ 1:

Rewards: rð1; 1Þ ¼ 1; rð1; 2Þ ¼ 2; rð2; 1Þ ¼ 2; rð2; 2Þ ¼ 1; rð3; 1Þ ¼ 1;
rð3; 2Þ ¼ 2; rð4; 1Þ ¼ 4; rð4; 2Þ ¼ 2; rð5; 1Þ ¼ 2; rð6; 1Þ ¼ 1; rð6; 2Þ ¼ 0.

Let a ¼ 1=2: The steps of Algorithm 3.2 are :
Step 1: C1 ¼ f1; 2g; C2 ¼ f3g; C3 ¼ f4; 5g; C4 ¼ f6g:
Step 2: L0 ¼ C1 [ C2; L1 ¼ C3; L2 ¼ C4:
Step 4: In level L0, the state space of the restricted MDP: MDP01 is

S01 ¼ C1; optimal actions are p01ð1Þ ¼ 2; p01ð2Þ ¼ 1 and optimal
values are V a

01ð1Þ ¼ V a
01ð2Þ ¼ 4: The state space of the restricted

MDP: MDP02 is S02 ¼ C2 and an optimal action is p02ð3Þ ¼ 2 and
the optimal value is V a

02ð3Þ = 4:
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In level L1; the state space of the restricted MDP: MDP11 is S11 ¼ C3 [ f2g;
optimal actions are p11ð4Þ ¼ 1; p11ð5Þ ¼ 1 and optimal values are V a

11ð4Þ ¼ 6,
V a
11ð5Þ ¼ 4:
In level L2, the state space of the restricted MDP: MDP21 is

S21 ¼ C4 [ f1; 3; 5g and an optimal action is p21ð6Þ ¼ 2 and the optimal value
is V a

21ð6Þ ¼ 3:

Remark 3.3 If the initial state is known, an optimal strategy and the optimal
value are computed by solving just few restricted MDPs: one does not need to
consider all states. The following algorithm explains this issue when the initial
state is i.

Algorithm 3.3:
Step 1: Determine the class Cmk such that i 2 Cmk :
Step 2: Determine the classes Cnh, n 2 f0; 1; . . . ;mg; h 2 f1; 2; . . . ;KðnÞg

such that the end of any arc emanating from Cmk is in the classes
Cnh:

Step 3: Solve the restricted MDPs: MDPnh found in Step 2.
It is clear that, in the algorithm above, the optimal value and an optimal
strategy are obtained by solving only MDPmk .

Remark 3.4 The results developed in this section for the discounted MDPs can
be extended easily to the terminating MDPs: a ¼ 1 and

P
j2E piaj < 1 for all

i 2 E, a 2 AðiÞ.

4 Decomposition of weighted MDPs

In this section, we consider a discrete time Markov Decision Process with
finite state and action spaces with the weighted reward criterion. The
levels and the restricted MDPs are constructed in similar way as in Sec-
tion 3.

Now we present the following result which will be used in the rest of this
paper.

Lemma 4.1 Let fnk be an average optimal strategy in the MDPnk then there
exists an integer N such that fnk is �-i-optimal in C a; aNkð Þ for all i 2 Cnk :

Proof For any � > 0 there exists Ni such that ankð1� aÞV aðiÞ � � wherever
n � Ni: Set N ¼ maxi2Cnk Ni, and denote by x½aNk�ðpÞ ¼ aNkð1� aÞ
V aðpÞ þ ð1� kÞUðpÞ the overall reward with the MDP: C a; aNkð Þ: We have
for each i 2 Cnk , for any p 2 F ; and for any n � N : xi½ank�ðpÞ ¼
ankð1� aÞ V a

i ðpÞ þ ð1� kÞUi ðpÞ � ankð1� aÞ V aðiÞ þ ð1� kÞV ðiÞ. By using
the former inequality and the fact that V ðiÞ ¼ Unkði; fnkÞ ¼ VnkðiÞ (see [1]), it
is clear that fnk is �� i�optimal for all i 2 Cnk in C a; aNkð Þ: h

In the following we propose an algorithm which constructs an �� optimal
ultimately deterministic strategy for all i 2 Cnk in C a; kð Þ.

Algorithm 4.1:
Step 1: Choose some average optimal strategy fnk in MDPnk.
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Choose an integer N ¼ maxi2Cnk Ni; where Ni is the smallest positive
integer such that aNikð1� aÞðV aðiÞ � V a

i ðfnkÞÞ � � ; set f nk :¼ fnk :
If f nk is discounted optimal in the MDPnk; the algorithm terminates.
Step 2: For h ¼ N down to 1:

Select the nonrandomized rule decision f h
nk defined by:

f h
nkðiÞ :¼ arg max

a2AðiÞ
rði; aÞð1� aÞkah þ

P
j2Snk

piajxj½ahk�ð f nkÞ
n o

for
i 2 Cnk :
f h

nkðiÞ :¼ h for i 2 ðSnk � CnkÞ; set f nk :¼ ð f h
nk; f

nkÞ:

Theorem 4.1 The ultimately deterministic strategy f nk ¼ ð f 1
nk ; f

2
nk; . . . ; f N

nk ;
fnk ; fnk ; . . .Þ constructed by Algorithm 4.1 is �� optimal for all i 2 Cnk in
Cða; kÞ.

Proof After Step1, f nk is �-optimal in Cða; aNkÞ by Lemma 4.1. After each
iteration in Step 2, f nk is �-optimal in Cða; ah�1kÞ by Lemma 3 in [7]. h

Remark 4.1 Algorithm 4.1 finds an ��optimal strategy for all states belonging
to the same strongly connected class Ci by solving just the restricted MDP to Ci.
However, in [7] for each state i 2 E an �� i�optimal strategy is constructed by
solving the whole original MDP.

Remark 4.2 Note that fnk and f nk refer to a deterministic strategy and an
ultimately deterministic strategy respectively.

In the rest of this section, we will present a new method to construct an
��optimal strategy in Cða; kÞ by using the restricted MDPs. To that end, we
consider the following lemmata.

Lemma 4.2 Let fnk ; n 2 0; 1; . . . ; Lf g; k 2 1; 2; . . . ;KðnÞf g be some determin-
istic strategies in MDPnk and define f 2 FD such that f ðiÞ :¼fnkðiÞ for all i 2 Cnk
then V aði; f Þ ¼ V aði; fnkÞ and Uið f Þ ¼ Uið fnkÞ for all i 2 Cnk :

Proof The proof is by induction on n. For n ¼ 0, C0k; k 2 1; 2; . . . ;Kð0Þf g are
closed, then it is clear that for all i 2 C0k: V aði; f Þ ¼ V aði; f0kÞ and
Uið f Þ ¼ Uið f0kÞ.

Suppose that the result is true until the level n� 1. Now we shall show that
the result is still true in the level n. Let i 2 Cnk ; from the definition of the
strategy f , it follows that:

V aði; f Þ ¼ rði; fnkðiÞÞ þ a
X

j2Cnk

pifnkðiÞjV
að j; f Þ þ a

X

j2ðSnk�CnkÞ
pifnkðiÞjV

að j; f Þ:

ð5Þ
It is clear from the induction hypothesis that:

V aði; fnkÞ ¼ rði; fnkðiÞÞ þ a
X

j2Cnk

pifnkðiÞjV
að j; fnkÞ þ a

X

j2ðSnk�CnkÞ
pifnkðiÞjV

að j; f Þ:

ð6Þ
Since (V aði; fnkÞ; i 2 CnkÞ is the unique solution to the equality above, then
V aði; f Þ ¼Vaði; fnkÞ for all i 2 Cnk; n 2 0; 1; . . . ; Lf g; k 2 1; 2; . . . ;KðnÞf g.
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To show the second part, it suffices to use the following classical result:
lima!1�ð1� aÞVaði; f Þ ¼ Uiðf Þ for all i 2 Cnk, f 2 FD. h

Let M ¼ maxi2E Ni; where Ni is the smallest positive integer such that
aNikð1� aÞV aðiÞ � �:

Lemma 4.3 If fnk is average optimal in the MDPnk; n 2 0; 1; . . . ; Lf g;
k 2 1; 2; . . . ;KðnÞf g then the strategy f constructed above is ��optimal in
Cða; aMkÞ.

Proof From Lemma 4.2 and definition of xð f Þ; we have that
xi½apk�ð f Þ ¼ xi½apk�ð fnkÞ for each i 2 Cnk and p � 1. Then, the result follows
from Lemma 4.1. h

Now, we suppose that fnk, n 2 0; 1; . . . ; Lf g, k 2 1; 2; . . . ;KðnÞf g are
average optimal strategies in the MDPnk . First, we will construct �-optimal
strategies f nk in Cnkða; kÞ; such that the ‘‘tail’’ of f nk is equal to fnk after stage
M ¼ maxi2E Ni and its ‘‘head’’ is computed with the same manner as in
Algorithm 4.1. That is f nk ¼ ðf 1

nk; f
2
nk; . . . ; f M

nk ; fnk ; fnk ; . . . :Þ where
f 1

nk ; f
2
nk ; . . . ; f M

nk are the decision rules computed in Step 2 of Algorithm 4.1.
The following theorem constructs an ��optimal strategy in Cða; kÞ:

Theorem 4.2 Let f ¼ ðf 1; f 2; . . . ; f M ; f ; f ; . . .Þ 2 FUD be defined by: for all
i 2 Cnk ; f ðiÞ ¼ fnkðiÞ and f hðiÞ ¼ f h

nkðiÞ; h 2 1; 2; . . . ;Mf g. Then f is ��opti-
mal in Cða; kÞ:

Proof The result follows from Lemma 4.2 and Theorem 3 in [7]. h

From Theorem 4.2, we can derive the following algorithm.
Algorithm 4.2:
Step 1: Choose some average optimal strategy fA as defined in Lemma
4.3. Let M ¼ max

i2E
Ni; where Ni is the smallest positive integer such that:

aNikð1� aÞðV aðiÞ � V a
i ðfA)Þ � �:

If fA is discounted optimal in the original MDP, the algorithm terminates.
Set f :¼ fA:
Step 2: For h ¼ M down to 1:
For n 2 0; 1; . . . ; Lf g, k 2 1; 2; . . . ;KðnÞf g select the nonrandomized rule
decision fhnk defined by:
fhnkðiÞ ¼ argmaxa2AðiÞ

�
rði; aÞð1� aÞkah þ

P
j2Snk

piajxj½ahk�ðf Þ
�
for i 2 Cnk:

f h
nkðiÞ ¼ h for i 2 ðSnk � CnkÞ: Set f hðiÞ ¼ f h

nkðiÞ for i 2 Cnk ; n 2
0; 1; . . . ; Lf g; k 2 1; 2; . . . ;KðnÞf g; h2 0; 1; . . . ;Mf g:

Remark 4.3 From Theorem 4.2, it follows that the ultimately deterministic
policy f ¼ ðf 1; f 2; . . . ; f M ; fA; fA; . . .Þ constructed in Algorithm 4.2 above is
��optimal in Cða; kÞ:

References

[1] Abbad M, Boustique H (2003) Decomposition of Limiting Average Markov Decision
Problems, to appear in Operations Research Letters

[2] Blackwell D (1962) Discrete Dynamic Programming. Ann. Math. Statist. 33:719–726

244 M. Abbad, C. Daoui



[3] Feinberg EA (1982) Controlled Markov Processes with Arbitrary Numerical Criteria. Theo.
Prob. Appl. 27:486–503

[4] Feinberg EA, Shwartz A (1994) Markov Decision Models with Weighted Discounted
Criteria. Math. Oper. res. 19:152–168

[5] Filar JF, Schultz TA (1988) Communicating MDPs: Equivalence and Properties. Opera-
tions Research Letters Vol. 7(6):303–307

[6] Gondran M, Minoux M (1990) Graphes et Algorithmes, 2nd edition
[7] Krass D, Filar JA, Sinha SS (1992) A Weighted Markov Decision Process, Operations

Research Vol. 40(6):1180–1187
[8] Krass D (1989) Contributions to the Theory and Applications of Markov Decision

Processes, Ph.D. Thesis Johns Hopkins University, Baltimore
[9] Puterman ML (1994) Markov Decision Processes, John Wiley and Sons, Inc., New York
[10] Tijms HC (1986) Stochastic Modeling and Analysis: A computational Approach, John

Wiley, New York
[11] White DJ (1985) Real applications of Markov Decision Processes. Interfaces 15(6):73–83
[12] Zeynep M, Avsan, Melike Baykal-Gursoy (1999) A Decomposition Approach for

Undiscounted Two Person Zero-Sum Stochastic Games, Mathematical Methods of O.R.
Vol. 49(3):483–500

Hierarchical algorithms for discounted and weighted Markov decision processes 245


