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Abstract. We consider a discrete time finite Markov decision process
(MDP) with the discounted and weighted reward optimality criteria. In [1]
the authors considered some decomposition of limiting average MDPs. In
this paper, we use an analogous approach for discounted and weighted
MDPs. Then, we construct some hierarchical decomposition algorithms for
both discounted and weighted MDPs.

Key words: Discounted MDP, Weighted MDP, Decomposition, Strongly
Connected Classes, Graph theory

1 Introduction

Many dynamic planning problems have successfully been analyzed as
Markov decision processes; e.g. see [4], [9], [10], and [11]. In these references
there are several examples motivating the discounted, average, and weighted
reward criteria. First, we consider a discrete time Markov decision process
(MDP) with finite state and action spaces under discounted reward opti-
mality criterion, and we propose an algorithm for the computation of an
optimal solution which is based on the decomposition by using the tech-
nique of levels introduced in [12] for stochastic games. The proposed
algorithm finds the optimal value and the corresponding optimal action for
any state, step by step, until all states are considered. The computation of
an optimal action in any state is done through some restricted MDPs.

The fact that the weighted reward criterion is the weighted sum of a
discounted and an average reward criteria, leads to the use of the algorithm
above and the algorithm developed in [1] for limiting average MDPs to
construct two new algorithms: the first determines e-optimal strategies for
the restricted weighted MDPs and the second constructs an e-optimal
strategy for the original weighted MDP.
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This paper is organized as follows: in Section 2, we define weighted
MDPs. In Section 3, we propose a decomposition algorithm to determine a
discounted optimal strategy. Finally, in Section 4, we propose a level based
algorithm to determine an ultimately deterministic e-optimal strategy for
weighted MDPs.

2 Definitions and preliminaries

We consider a stochastic dynamic system which is observed at discrete time
points t = 1,2,.... At each time point ¢ the state space of the system is de-
noted by X, where X; is a random variable whose values are in a state space E.
At each time point ¢ if the system is in state i, an action
a € A(i) ={1,2,...,m(i)} has to be chosen. In this case, two things happen: a
reward r(i,a) is earned immediately, and the system moves to a new state j
according to the transition probability p,,;. Let 4, be the random variable
which represents the action chosen at time ¢.

We denote by H, = (E x A)"~' x E the set of all histories up to time 7, and

by Y= {(QIaQZ7-~-7¢]|A\) : Z‘;ﬂ] qa = 17qa > 031 <a< |A|} the set of prOb-

ability distributions over 4 = |J;.z 4(i). A strategy = is defined by a sequence

n=(n',n%,...) where n' : H, — ¥ is a decision rule. A Markov strategy is one

in which 7’ depends only on the current state at time ¢. A stationary strategy is
a Markov strategy with identical decision rules. A deterministic (or pure)
strategy is a stationary strategy whose single decision rule is nonrandomized.
An ultimately deterministic strategy is a Markov strategy n = (n!,7%,...)
such that there exist a deterministic strategy g and an integer # such that
n' =g for all ¢t > .

Let F, Fy, Fs, Fp and Fyp be the sets of all strategies, Markov strategies,
stationary strategies, deterministic strategies, and ultimately deterministic
strategies, respectively.

Let P.(X, = j,A; = a | X; = i) be the conditional probability that at time t
the system is in state j and the action taken is a, given that the initial state is i
and the decision maker uses a strategy n. Now, if R, denotes the reward at
time ¢, then for any strategy 7 and an initial state i, the expectation of R, is
given by Ex(Ri, 1) = 3" icp D uea(y Pr(Xi = jodi = a | Xy = 0)r(j,a).

The manner in which the resulting stream of expected rewards
{Ex(Ry,i): t=1,2,...} are aggregated defines the Markov decision processes
discussed in the sequel.

In the discounted reward MDP, the corresponding overall reward criterion
is defined by:

VA(m) =Y & 'Ey(R,i), i € E, where o€ [0,1) is a fixed discount
factor. A strategy f* is called discounted optimal if for all i€ E,
VA(f*) = maxqep V(n) := V*(i). We will denote this MDP by I'(«).

In the average reward MDP, the overall reward criterion is defined by:
@;(m) :liminfr_,oolTZtrzlEn(Rt,i); i€ E. A strategy f* is called average
optimal if for all i € E, ®;(f*) = maxger O;(n) := V(). We will denote this
MDP by T

In the weighted reward MDP, the overall reward criterion is defined by:
wi(n) = A1 —a) V*(n) + (1 —A)®i(n), i € E, where A€ [0,1] is a fixed

weighted parameter, and « is the discount factor in the MDP T'(a). We denote
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this MDP by T'(a,4). A strategy f* is called optimal if for all i € E,
o;(f*) = maxger w;(n). Let € >0, for any i € E, a strategy f* is called
e — i—optimal if w;(f*) > max,cr w;(n) —e. A strategy f* is called e— opti-
mal if /* is e — i—optimal for all i € E.

Remark 2.1 Weighted M DPs were formally introduced in [7] even though they
can be viewed as special cases of more general models considered in [3]. In[7] the
authors show that optimal strategies may not exist and propose an algorithm to
determine an e—optimal strategy.

3 Decomposition of discounted MDP

In this section, we consider discounted MDPs with finite state and action
spaces. Let G = (E, U) be the graph associated with the original MDP, that is,
the state space represents the set of nodes and U := {(i, ) € E* : p;y; > 0 for
some a € A(i)} the set of directed arcs. The state space can be partitioned into
strongly connected classes C;, Cs,..., C,. Note that the strongly connected
classes are defined to be the classes with respect to the relation on G defined
by: i is strongly connected to j if and only if i = j or there exist a directed path
from i to j and a directed path from j to i. There are many good algorithms in
graph theory for the computation of such partition, e.g., see [6]. Now, we
construct by induction the levels of the graph G. The level L, is formed by all
classes C; such that C; is closed, that is, any arc emanating from C; has both
nodes in C; . The nth level L, is formed by all classes C; such that the end of
any arc emanating from C; is in some level L,,_1,L,_»,...,Lg.

Remark 3.1 Let C; be a strongly connected class in the level L, then C; is closed
with respect to the restricted MDP to the state space E — (LyUL U ...UL,_).

It is clear that, from Remark 3.1, the following algorithm finds the levels.

Algorithm 3.1:

Q—En—0,L, —{C;:C;isclosed }

If Ly = E Stop.

Otherwise, unless Q # () do

Delete L, (i.e Q «— Q—L, and eliminate all arcs coming into L,);
L,.1 < {C;: C; is closed in the MDP restricted to Q};
n—n+1.

In what follows, we construct, by induction, the restricted MDPs corre-
sponding to each level L,, n =0,1,2,... L. Let (Cy), k € {1,2,...,K(I)} be
the strongly connected classes corresponding to the nodes in level /.

Construction of the restricted MDPs in level Ly: For each £ =1,2,...,
K(0), we denote by MDPy, the restricted MDP corresponding to the class Cyy
that is the restricted MDP in which the state space is Sy = Cor. Note that any
restricted MDP, MDPy, is well defined since any class Cy is closed and can be
easily solved by a finite algorithm (see [5]).

We denote by mox an optimal strategy and Vi, (i), i € Co, the optimal value
in state i.

Construction of the restricted MDPs in level L;: For each k=1,
2,...,K(1), we denote by MDPy; the restricted MDP defined by:
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State space: Sy = Cyx U {j € Lo : 3i € Cy, Ja € A(i) and piq; > 0}.
Action spaces: For each s € S}, the associated action space is:

Alk(S) :A(S) if s € Cyy and Alk(S) = {9} if s ¢ Cik.

Transition probabilities: Let i, j € S);: The associated transition probabil-
ities are:

pi(jli,a) = Diaj ifie Cy, acA()and pi(j|i,a) =1ifi=jandi & Cy;

Rewards: Let i € Sj;.

Ifi € Cii ; rig(i,a) :=r(i,a).

Ifig Cy; Ine{l,2,....,K(0)}: i€ Cy, and r(i,0) := (1 — O()V()O;l(l)

Remark 3.2 The construction of restricted MDPs corresponding to different
optimality criteria differs from the definition of rewards. Let i € (Six — Cix)
then there exists h € {1,2,...,K(0)} such that i € Coy. In order to conserve the
optimal value at state i, we define ri; (i, 0) := Vou(i) and ri,(i, 0) := (1 — ) Vg, (i)
in the case of average M DPs and discounted M DPs respectively.

Construction of the restricted MDPs in level L,, n > 1: Let E, = U{C,y,
m=0,....,n—Lik=1,...,K(m)}.

Let V(i) be the optimal value in state i € E,, computed in the previous
MDP,. (m < n). For each k =1,2,...,K(n), we denote by MDP,; the MDP
defined by:

State space: Sy, = Cyx U{j € E, : piyj > 0 for some i € Cy , a € A(i)}.

Action spaces: For each i € S, the associated action space is A, (i) = A(i)
if i € Cy and Ank(i) = {9} ifi & Cy

Transition probabilities: For each i,j € Sy; pu(Jj | i,a) = Piaj I i € Cog,
ac A(i) and pyu(j|i,a) =1ifi=j, i & Cu

Rewards: Let i € Sy;; if i € Cy then 7, (i, a) := r(i,a).

If i & Cy then there exist m € {0,1,...,n— 1} and A € {1,2,...,K(m)}
such that i € C,,;, and

rak (8, 0) := (1 — o) V2, (5).

In what follows, we present the main result of this section.

Theorem 3.1 Let Vj(i), i € Cy be the optimal value in the restricted MDPy,
then V(i) is equal to the optimal value V°(i) in the original MDP.

Proof The proof is by induction. For / = 0, the result follows from the fact
that each Cy, k€ {1,2,...,K(0)} is closed. The optimal value V* is the
unique solution to [2]:

V(i) = max[r(i,a) + o Y pi;V*()], i€ Co. (1)
acA(i) JeCo

The optimal value Vjj; is the unique solution to:

Vor (i) = _max roc(ia) + 2> poi(J | i, @)V ()], i € Cor. (2)

ok (9) JeCo

By using (1), (2), and the fact that Ay (i) = A(i), roc(i,a) =r(i,a) and
po(Jj | i,a) = pigj for all i € Cyy, it is clear that V(i) = V*(i) for all i € Cy.
Let n > 0 and suppose that the result is true for all levels preceding n. Now,
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we shall show that the result is still true for n. Let V) (i), i € Sy be the
optimal value in the restricted MDP,;, we have that:

V(i) = max [rnk(l a)+ oy pulj L)V () + oY puli i, a)Vi())]
JE€Cuk JECuk
3)

It is clear that from the induction hypothesis, that for all i € (Sy — Cuk),
Ve (i) = V*(i) and V*(i) is computed in the preceding levels. Then, for all
i€ Cy:

Vaii) = max[r(i,a) + o Y piaV() + o Y piapV* ()] 4)

A
acA(i) J€Cuk JECuk

Since V*(i), i € Sy is the unique solution to (4) then V*(i) = V(i) for all
i € Cy. O

Corollary 3.1 Let my be an optimal deterministic strategy for the restricted
MDP,; then for each i € Cyy, mu(i) is an optimal action in the original MDP.

Proof For each i € Cy; (from Theorem 3.1) we have that:
Tk (i) = argmaXeq, ) [rak(i, a) + o s, pu(j |, @) V()]
= arg maxgeq) [r(i,a) + o > jesu PiaiV* ()] O

Now, we propose the following decomposition algorithm for discounted
MDPs.

Algorithm 3.2:

Step 1: Find the strongly connected classes in the graph G.

Step 2: Find the levels L;, /[ =0,1,...,L by Algorithm 3.1.

Step 3: Find the classes Cy, k € {1,2,...,K(I)} belonging to each level.
Step 4: For each / =0, 1,...,L solve the restricted MDPs: MDPy,
ke{l,2,....K(])}.

Example 3.1 We consider the original MDP defined by:

State space: £ = {1,2,...,6}.

Action spaces: 4(1) = A(2) = A(3) = A(4) = A(6) = {1,2};4(5) = {1}.

Transition probabilities: Pii1 = P12 = 1/2, P121 = p211 = P22 = 1; P31z =
P33 = 1 pan = 1/3; pais = 2/3; paos = 15 psia = 2/3; psis = 1/3; pe1s = 2/3;
o1z = 1/3; pea1 = 1.

Rewards: r(1,1)=1; r(1,2)=2; r(2,1)=2; r(2,2)=1; r(3,1) =
7(3,2) = 2; r(4,1) = 4; 7(4,2) = 2; (5, 1) = 2; (6, 1) = 1; 7(6,2) = 0.

Let oo = 1/2. The steps of Algorithm 3.2 are :

Step 1: C = {1,2}, G = {3}, Cy = {4, 5}, Cy = {6}

Step 2: Lo=CiUCy; L1 =C5; Ly = Cy.

Step 4: In level Ly, the state space of the restricted MDP: MDPy, is
So1 = C), optimal actions are 7g; (1) = 2, 71 (2) = 1 and optimal
values are V(1) = Vi (2) = 4. The state space of the restricted
MDP: MDPy, is Sy = C» and an optimal action is 7,(3) = 2 and
the optimal value is V5 (3) = 4.
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In level L;, the state space of the restricted MDP: MDP;; is S;; = C3 U {2},
optimal actions are m;;(4) = 1, m1;(5) = 1 and optimal values are V7 (4) = 6,
K(3) = 4.

In level L,, the state space of the restricted MDP: MDP, is
Sy1 = C4U{1,3,5} and an optimal action is 71 (6) = 2 and the optimal value
is V7 (6) = 3.

Remark 3.3 If the initial state is known, an optimal strategy and the optimal
value are computed by solving just few restricted M DPs: one does not need to
consider all states. The following algorithm explains this issue when the initial
state is i.

Algorithm 3.3:
Step 1: Determine the class C,; such that i € C,y.
Step 2: Determine the classes Cpy, n € {0,1,...,m}, he {1,2,...,K(n)}
such that the end of any arc emanating from C,, is in the classes
Cun.
Step 3: Solve the restricted MDPs: MDP,, found in Step 2.
It is clear that, in the algorithm above, the optimal value and an optimal
strategy are obtained by solving only MDP,,.

Remark 3.4 The results developed in this section for the discounted M DPs can
be extended easily to the terminating MDPs: o =1 and jep Piaj < 1 for all
i€E, acA().

4 Decomposition of weighted MDPs

In this section, we consider a discrete time Markov Decision Process with
finite state and action spaces with the weighted reward criterion. The
levels and the restricted MDPs are constructed in similar way as in Sec-
tion 3.

Now we present the following result which will be used in the rest of this

paper.

Lemma 4.1 Let f,; be an average optimal strategy in the MDP,; then there
exists an integer N such that f,; is e-i-optimal in T(o, ¥ 1) for all i € Cpy.

Proof For any € > 0 there exists N; such that o"A(1 — a)V*(i) < e wherever
n>N;. Set N=maxec,N;, and denote by o[eVi](n)=oVA(1—a)
V*(r) + (1 — A)®(r) the overall reward with the MDP: I'(x, V). We have
for each i€ Cy, for any ne€F, and for any n>N: wod"l](n) =
"1 — o) V*(r) + (1 =)D (n) <o"iA(l —a) V*(i)+ (1 — )V (i). By using
the former inequality and the fact that V(i) = @u (i, fur) = V(i) (see [1]), it
is clear that f,; is € — i—optimal for all i € C; in T'(a, 0V A). O

In the following we propose an algorithm which constructs an e— optimal
ultimately deterministic strategy for all i € Cy in I'(a, ).

Algorithm 4.1:
Step 1: Choose some average optimal strategy f,; in MDP,.
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Choose an integer N = max,ec, N;, where N; is the smallest positive

integer such that o™ 2(1 — o) (V*(i) — V*(fu)) < €5 set f = foy.

If /% is discounted optimal in the MDP,;, the algorlthm terminates.

Step 2: For 7 = N down to 1.

Select the nonrandomized rule decision f7, defined by
1(0) = arg max { (i, @) (1 — 02 + 2, pugeo;[2A)( /) } for
1€ Cy acd(i)

nhk( ) = 0 for i € (Su — Cuc); set f= ( nkafnk)
Theorem 4.1 The ultimately deterministic strategy f™ = (fL,f%, ..., fY,
Juks faks - --) constructed by Algorithm 4.1 is e— optimal for all i € Cy in
(o, 2).

Proof After Stepl, /™ is e-optimal in I'(x, &V 1) by Lemma 4.1. After each
iteration in Step 2, /¥ is e-optimal in I'(«,o/~!1) by Lemma 3 in [7]. O

Remark 4.1 Algorithm 4.1 finds an e—optimal strategy for all states belonging
to the same strongly connected class C; by solving just the restricted MDP to C;.
However, in [7] for each state i € E an ¢ — i—optimal strategy is constructed by
solving the whole original MDP.

Remark 4.2 Note that f,; and "™ refer to a deterministic strategy and an
ultimately deterministic strategy respectively.

In the rest of this section, we will present a new method to construct an
e—optimal strategy in I'(«, ) by using the restricted MDPs. To that end, we
consider the following lemmata.

Lemma 4.2 Let fuyr, n € {0,1,...,L}, k€ {1,2,...,K(n)} be some determin-
istic strategies in MDP,;, and deﬁnef S FD such thalf( ) :=fu (i) for alli € Cy
then V*(i, f) = V*(i, fur) and ©;( f) = ©;( fur) for all i € Cyy.

Proof The proof is by induction on n. Forn =0, Co, k € {1,2,...,K(0)} are
closed, then it is clear that for all i€ Cyu: V*(i,f)=V*(i,fox) and

;(f) = Oi( for)-

Suppose that the result is true until the level n — 1. Now we shall show that
the result is still true in the level n. Let i € Cy, from the definition of the
strategy f, it follows that:

Va(l7f) ”k + o Z plfnk l)] 7 Z plfnk 1)] 7f)
JECuk Sk — nk)
(5)

It is clear from the induction hypothesis that:

V“(laﬁ?k) - I" fnk + o Z pzm ] fnk Z Plj,,k ] f)

JECuk JESu—

(6)
Since (V* ( o fuk),i € Cy) is the unique solution to the equallty above, then
V@i, /) =V, fur) for alli € Co, n € {0,1,..., L}, k € {1,2,...,K(n)}.
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To show the second part, it suffices to use the following classical result:
lim, - (1 —a)V*(i, f) = ®;(f) for all i € Cy, f € Fp. O

Let M = max;cg NV;, where N; is the smallest positive integer such that
aNiA(1 — ) V(i) < e

Lemma 4.3 If fu is average optimal in the MDPy, n€{0,1,...,L},
ke{l,2,....,K(n)} then the strategy f constructed above is e—optimal in
(o, 0™ ).

Proof From Lemma 4.2 and definition of w(f), we have that
Wil () = wi[eP2]( fur) for each i € Cy and p > 1. Then, the result follows
from Lemma 4.1. O

Now, we suppose that f, n€ {0,1,...,L}, k€ {1,2,...,K(n)} are
average optimal strategies in the MDP,;. First, we will construct e-optimal
strategies /™ in [ (a, 4), such that the “tail”” of ™ is equal to f,; after stage
M = max;cg N; and its “head” is computed with the same manner as in
Algorithm 41 That is  f™ = (fuo s+ s Sof s Joks Soks - --)  Where
fr o fM are the decision rules computed in Step 2 of Algorithm 4.1.

The followmg theorem constructs an e—optimal strategy in I'(a, 1).

Theorem 4.2 Let [ = (f', f2,....fM . f,f,...) € Fyp be defined by: for all
i € Cu, f(i) = fu(i) and f"(i) = f2 (i), h€ {1,2,...,M}. Then f is e—opti-
mal in T'(a, 2).

Proof The result follows from Lemma 4.2 and Theorem 3 in [7]. O

From Theorem 4.2, we can derive the following algorithm.

Algorithm 4.2:

Step 1: Choose some average optimal strategy f4 as defined in Lemma

4.3. Let M = max N;, where N; is the smallest positive integer such that:
oM A1 = ) (V{Ef — V2(£0) < e.

If £y is d1scounted opt1mal in the original MDP, the algorithm terminates.
Set [ := f4.

Step 2: For # = M down to 1.

Forne {0,1,...,L}, k€ {1,2,...,K(n)} select the nonrandomized rule

decision {" defined by:

fﬁk() = argmax,cq(; { (i,a)(1 - OC)AOC + Zjesnkplalw] ol Al } forie Cpy.
(@) = 0 for i € (Sy — Cur). Set f(i) = f(i) fori € Cu, n €
{0,1,...,L}, ke {1,2,...,K(n)}, he {0,1,...,M}.

Remark 4.3 From Theorem 4.2, it follows that the ultimately deterministic
policy f= (' f2 ... ™ fu,fu,...) constructed in Algorithm 4.2 above is
e—optimal in T'(a, 1).
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