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Abstract. This paper considers the problem of searching for good second-
order multiple recursive generators (MRGs) with long period and good lattice
structure. An adaptive genetic algorithm with reversals is proposed. The pro-
posed algorithm is compared with forward/backward and random methods,
and its e¤ectiveness and e‰ciency is numerically confirmed by the experi-
ments. The extensively tested second-order MRG ð1259791845; 1433587751Þ
found from the proposed algorithm possesses the properties of long period
and good lattice structure and is therefore recommended.
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1. Introduction

For the requirements of long sequence, reproduction, and verification in
applications, it is preferable to use deterministic functions that random num-
bers (RNs) can be generated directly in the computer. The method of deter-
ministic RN generator seems to have been proposed first by Lehmer [17].
Since then, a large variety of methods have been developed in an attempt to
devise ideal RN generators. Important methods may be categorized into five
classes (i) multiple recursive generator (MRG), (ii) generalized feedback shift
register generator, (iii) add-with carry and subtract-with-borrow generator,
(iv) combined generator, and (v) inverse generator. For more details, see
Fishman [6], Knuth [11], and Niederreiter [19]. This paper deals with the
MRG proposed initially by Knuth. L’Ecuyer and Blouin [14] performed the
first practical implementation. Later, the MRG literature has grown explo-
sively. A kth-order MRG is based on the following formula:

Xn 1 a1Xn�1 þ a2Xn�2 þ � � � þ akXn�k ðmod mÞ; ð1Þ



where modulus m is usually chosen to be the largest prime number less than
the computer’s word size, ak and at least one multiplier aj0k are not zero, and
starting values X0;X1; . . . ;Xk�1 are not all zero.

In designing an ideal MRG, the sets of multipliers ða1; a2; . . . ; akÞ with
long period and high spectral value are sought. Several articles have addressed
this issue and three approaches have been devised: exhaustive search (ES)
proposed by Fishman and Moore [7], random search (RS) proposed by
L’Ecuyer, Blouin, and Couture [15], and forward/backward search (FBS)
proposed by Kao and Tang [10]. In fact, searching for full period MRGs
with maximum spectral value criterion is a rather di‰cult task. We have two
reasons to believe that this task is a combinatorial optimization problem
(COP). One is that the number of possible sets of multipliers is usually large
enough so that an ideal kth-order MRG with modulus 231 � 1, when k b 2,
has not been reported to date. The other reason is that the corresponding
nonconvex multimodal objective function (spectral value) is very bump. As a
result, heuristic methods are often used. Recent developments in heuristic
methodology include simulated annealing, genetic algorithm (GA) (see, e.g.,
Reeves [20]), and taboo search (TS). GA is widely recognized as a powerful
tool for dealing with COPs. The scheme of GAs is to update the population of
solutions iteratively to maximize globally some objective functions. But since
it uses the fixed crossover and mutation rates, several variants of GAs have
been proposed in an attempt to accelerate the convergence rate. On the other
hand, according to the analysis of Schrack and Choit [21], the search with
reveals, originally proposed by Lawrence and Steiglitz [12], is theoretically
superior to the search without reversals in terms of both the probability of
success and the expected relative improvement per function evaluation.
Therefore, this paper proposes a modification to GA whose incorporates
crossover-rate and mutation-rate adaptive method and applies the Lawrence-
Steiglitz reversal method.

The remainder of this article is organized as follows. We first provide a
concise review of ideal MRGs. In section 3, we describe a GA, and propose an
adaptive GA with reversals. Section 4 introduces a number of evaluation
measures to evaluate and compare the lattice structure of MRGs derived from
the proposed algorithm, RS, and FBS methods. The computational experi-
mentation is conducted and one extensively tested second-order MRG is pre-
sented in section 5. Finally, section 6 gives some concluding remarks.

2. Ideal MRGs

This section contains a survey of some basic concepts of ideal MRGs that will
be employed in the following. Long period, good lattice structure, and e‰-
cient implementation are three prerequisites for an ideal MRG. To achieve the
maximum period mk � 1, Knuth described the following conditions of obtain-
ing a full period kth-order MRG:

ð�1Þk�1
ak is a primitive root modulo m;

xr mod f ðxÞ1 ð�1Þk�1
ak ðmod mÞ;

degf½xr=q mod f ðxÞ�mod mg > 0 for each prime factor q of r;

ð2Þ
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where r ¼ ðmk � 1Þ=ðm� 1Þ, f ðxÞ ¼ xk � a1xk�1 � � � � � ak�1x� ak, and
degð f ðxÞÞ is the degree of polynomial f ðxÞ. From finite field theory,
jðmk � 1Þ=k sets of multipliers satisfy these conditions, where jðmk � 1Þ is
the Euler’s function, defined as the number of integers smaller than and rela-
tively prime to mk � 1. For the second-order MRGs with modulus 231 � 1,
5.740E17 sets of multipliers are able to produce RNs of full period. Thus, the
number of full period MRGs is usually large enough so that such MRGs are
easy to find.

For any positive integer t, the set Lt of all possible overlapping t-tuples
of successive values of Xn=m with zero vector included is the intersection
of a lattice with ð0; 1Þt. The points of Lt lie in a family of parallel ðt� 1Þ-
dimensional hyperplanes. The maximal distance dt between adjacent parallel
hyperplanes is adopted as a judging criterion for ranking MRGs. This is the
so-called spectral test. From the geometry of number, a theoretical lower
bound on dt is known exactly for t a 8:

d �t ¼
m�k=t=gt if t > k

1=m if t a k

�
ð3Þ

where gt is defined in Knuth. The worst-case performance measure

S8 ¼ min
k<ta8

d �t =dt ð4Þ

is widely adopted for rating various MRGs. The value of S8 is always between
zero and one. The larger the value of S8 is, the smaller empty slice in Lt is and
vice versa. Consequently, we seek generators with S8 close to one.

Regarding the computationally implementing a MRG, the most funda-
mental requirements are to compute one term of (1) generally and e‰ciently.
The general and e‰cient implementing

Y ¼ aiXn�i ðmod mÞ ð5Þ

has been extensively studied and developed by many scholars [16, 22]. Since
the largest prime modulus is the Mersenne prime 231 � 1 on a 32-bit com-
puter, Tang [22] indicated that the simulated division method (SDM) is a
general and e‰cient implementation. For the sake of the completeness, we
recall the SDM as follows. In computing equation (5), it is easier to com-
pute Z ¼ aiXn�i ðmod EÞ, where E ¼ 231. Let l ¼ baiXn�i=Ec. The steps of
SDM are as follows. First, compute Z  �mþ Z þ l. Secondly, if Z < 0
then Z  Z þm. Therefore, a kth-order MRG can be implemented generally
and e‰ciently by repeated applications of the SDM.

3. Genetic algorithm

The objective of this paper is using an adaptive GA with reversals to search
for good full period MRGs with maximum spectral value criterion. Several
strategies can have an important influence on the e¤ectiveness and e‰ciency
of a GA. Although we test a wide variety of variants of GAs, we come to rely
almost exclusively on the version described below, which seem to exhibit the
best spectral value.
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The decision variables of searching for good full period MRGs in terms
of spectral value are discrete. For such problem, the search space is W ¼
fA ¼ ða1; a2; . . . ; akÞ j 0 a ai < m; 1 a i a k; ak 0 0g and a simple measure of
its fitness is using the spectral value S8. The encoding of a set of multipliers as
a binary string seems obvious. More precisely, the coding of the set of multi-
pliers can be represented by a binary string of length 31k, each 31 bits corre-
sponding to one multiplier.

To cover the solution space adequately and achieve the computational e‰-
ciency, the population size of 100 is more common by many reported imple-
mentations. An initial population of good randomized approach is used to yield
better final solutions, to reduce the running time, and to increase the diversifi-
cation [2]. This e¤ective approach is adopted by using the best two MRGs
proposed by L’Ecuyer, Blouin, and Couture, and using randomly generated
98 MRGs.

At each generation, we preserve the best two sets of multipliers so far and
replace the remaining 98 members of the population with new ones by selec-
tion, crossover, and mutation operations. De Jong [4] calls this the population
overlaps. There are three selection schemes: roulette-wheel, Baker’s stochas-
tic universal selection (SUS) [3], and rank selection methods. In this paper, we
adopt the SUS method, which is the most e¤ective one in terms of accurate,
consistent, and e‰cient sampling [3].

Two recombination operations are distinguished: crossover and mutation
operations. The uniform crossover and standard mutation operations are used
in this paper. An associated problem is that of determining the crossover and
mutation rates. To allow wider and deeper exploration, we apply the adaptive
crossover and mutation rates proposed by Tang and Kao [23]. Specifically, the
crossover rate Pc and mutation rate Pm are increased or decreased in a heu-
ristic fashion according to the improvement or deterioration of the population
of solutions. The performance of a population of solutions is defined as its
maximum (Max) of S8. When the population of solutions is improving, the
value of Pc is increased by step 0.05 to explore a new area of the search space,
while the corresponding Pm is reduced by step 0.01 to accelerate the conver-
gence [8]. More precisely, we have Pc ¼ Pc þ 0:05 and Pm ¼ Pm � 0:01. Note
that 0 a Pc;Pm a 1 is a trivial bound on the crossover and mutation rates.
When the population of solutions is deteriorating, the values of Pc and Pm are
adjusted as Pc ¼ Pc � 0:05 and Pm ¼ Pm þ 0:01. The value of initial crossover
rate is 0.95 suggested by Grefenstette [9], while the initial mutation rate is a
small mutation probability 0.01. However, the crossover and mutation oper-
ations may generate o¤spring that do not represent full period MRGs, even
though both parents represent full period MRGs. This di‰culty can be over-
come by allowing non-full period MRGs, but to penalize them in dividing 2
into its fitness. Based on the concept of aspiration derived from TS, a non-full
period MRG that its value of S8 is larger than the second largest fitness is to
ignore them and insert it into the population.

Via the operations of selection, crossover, and mutation, temporary pop-
ulation of solutions TPi are generated from the current population of solu-
tions CPi for 1 a i a 100. An application of the search with reversals, new
population of solutions NPi, 1 a i a 100, are given by the following form:

NPi ¼
2CPi � TPi if S8ðTPiÞ < S8ðCPiÞ < S8ð2CPi � TPiÞ
TPi otherwise

�
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where S8ðGÞ is the spectral value of a MRG G. After the reversals, the oper-
ations of selection, crossover, and mutation are applied again to produce the
next generation. This process is continued until the specified number of gen-
erations, say 100, is reached.

4. Evaluation measures

We adopt a number of evaluation measures to assess and compare the pro-
posed algorithm with RS and FBS in terms of e‰ciency and e¤ectiveness.
In concern with the e‰ciency, since the computer systems adopted in the lit-
erature are not always same, the computational times can not be used to mea-
sure the e‰ciency. In this paper, the ratio of the smallest number of MRGs
required among the various types of search and that of the method is used. It
is known as relative proportion (RP) and, clearly, takes values in ð0; 1Þ.

On the other hand, the term ‘e¤ectiveness’ can be defined as the possession
of global and local randomness. The number of MRGs that pass all the tests
can serve as a judging criterion. Several tests have been proposed to make this
assessment in the literature (see, e.g., Knuth). The theoretical and empirical
tests are two ways of evaluating the global and local randomness, respectively.
First, in the case of the theoretical tests, spectral and lattice tests are the two
most powerful test known. The algorithms developed by Fincke and Pohst [5],
and by A¿erbach and Grothe [1] are the most e‰cient to compute spectral
and lattice values, respectively. Secondly, the empirical tests can be classified
as either classical statistical tests or sparse occupancy (SO) tests [11, 18]. In
concern with the classical statistical tests, runs and auto-correlation of lags
one to three statistics are chosen for testing independence, while the chi-square
and serial of dimensions two and three statistics for testing uniformity. Four
SO tests, namely, overlapping-pairs-sparse-occupancy (OPSO), overlapping-
triples-sparse-occupancy (OTSO), overlapping-quadruples-sparse-occupancy
(OQSO), and DNA tests, are used to examine both uniformity and indepen-
dence. To increase the power of empirical tests, a two-level test proposed by
L’Ecuyer [13] is used. The steps of the two-level empirical tests are as follows.
Firstly, each empirical test is duplicated 1000 times on consecutive subse-
quences of 221 RNs. Then, the empirical distribution of those 1000 statistics is
compared to the theoretical distribution by using the Kolmogorov-Smirnov
test.

To summarize, we compare the e¤ectiveness of the proposed algorithm
with that of RS and FBS in terms of spectral value, lattice value, two-level
classical statistical tests, and two-level SO tests. We also compare their e‰-
ciency with respect to RP.

5. Results

This paper proposes the adaptive GA with reversals to search for good full
period MRGs with respect to spectral value. As an illustration, the pro-
posed algorithm is applied to find good second-order MRGs. The whole
computation is conducted on a 733 MHz Pentinum III PC using Microsoft
Visual Cþþ compiler under Microsoft Windows 98 operating system. The
best second-order MRG is the set ða1; a2Þ ¼ ð1259791845; 1433587751Þ with a
spectral value of 0.78741.
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We give comparative results of the theoretical and empirical tests for the
second-order MRGs found by the proposed algorithm, RS, and FBS meth-
ods. The RS found two sets of multipliers ð1498809829; 1160990996Þ and
ð46325; 1084587Þ with the good lattice structure in terms of lattice value.
The FBS sought the good set of multipliers ð210826083;�88530043Þ with a
spectral value of 0.78559. The values of the spectral test, lattice test, and the
p-values of di¤erent two-level empirical tests of these four MRGs are shown
in Table 1, where ARi denotes the auto-correlation test of lag i, and Seriali
the serial test of dimension i. The set ð1259791845; 1433587751Þ found from
the proposed algorithm has the largest spectral and lattice values. Moreover,
at the 0.05 significant level, this set ð1259791845; 1433587751Þ passes all the
two-level empirical tests. Notably, all the rest of the sets of multipliers fail the
DNA test.

We now return to the computational e‰ciency of these methods for good
second-order MRGs. On basis of the RP, the most e‰cient method is the
proposed algorithm, next FBS. Since in the literature, L’Ecuyer, Blouin, and
Couture made no mention of the number of MRGs for the RS. We cannot
compare it with other methods, and use term ‘NA’ to refer to not available.

Therefore, the adaptive GA with reversals is a good way of obtaining an
ideal second-order MRG.

6. Conclusion

By dynamically adapting the crossover and mutation rates during searching,
and applying the Lawrence-Steiglitz reversal method, a heuristic algorithm is
proposed to find the ideal second-order MRGs with long period and good
lattice structure. Simulations are conducted to compare and evaluate its lattice
structure and computational e‰ciency with RS and FBS methods. Three

Table 1. Results of the evaluation measures for the second-order MRGs found by three methods

Method Proposed
algorithm

Forward/Backward
search

Random
search

Random
search

a1 1259791845 210826083 1498809829 46325
a2 1433587751 �885300443 1160990996 1084587

Spectral 0.78741 0.78559 0.64358 0.58103
Lattice 0.71792 0.66877 0.66843 0.35748
Runs 0.70119 0.51479 0.32158 0.04918
AR1 0.07813 0.44276 0.29976 0.31992
AR2 0.25646 0.22547 0.19011 0.00870
AR3 0.24325 0.04375 0.41696 0.53739
Chi-square 0.08677 0.38877 0.35965 0.04507
Serial2 0.34831 0.52973 0.09794 0.58315
Serial3 0.16478 0.10361 0.18279 0.01075
OPSO 0.29980 0.17840 0.30984 0.37209
OTSO 0.18415 0.00369 0.07409 0.04746
OQSO 0.08409 0.09905 0.14243 0.24288
DNA 0.13683 0.00914 0.00159 0.00021
Number of MRGs 10000 6442450941 N.A. N.A.
RP 1 644245.09 N.A. N.A.
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conclusions can be drawn from this paper. Firstly, the proposed algorithm
improves the lattice structure in terms of spectral test, lattice test, two-level
classical statistical tests, and two-level SO tests. Thus, it is the most e¤ective
one. Secondly, the proposed algorithm is preferred in terms of the RP and
thus, is the most computational e‰ciency. Thirdly, the DNA test is the most
stringent one among the two-level empirical tests. Therefore, the adaptive GA
with reversals provides good lattice structure and computational e‰ciency,
and can be applied to find ideal MRGs of higher orders.
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