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Abstract. This note concerns Markov decision chains with finite state and
action sets. The decision maker is assumed to be risk-averse with constant risk
sensitive coefficient 4, and the performance of a control policy is measured
by the risk-sensitive average cost criterion. In their seminal paper Howard and
Matheson established that, when the whole state space is a communicating
class under the action of each stationary policy, then there exists a solution to
the optimality equation for every A > 0. This paper presents an alternative
proof of this fundamental result, which explicitly highlights the essential role
of the communication properties in the analysis of the risk-sensitive average
cost criterion.
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1 Introduction

This note concerns discrete-time Markov decision chains with finite state and
action sets. The decision maker grades a random cost according to an expo-
nential utility function with constant risk sensitivity 4, and it is supposed that
she has an averse attitude with respect to risk; this feature is reflected in the
positive sign of 4 (see Section 2 for details). When the performance of a con-
trol strategy is measured by the risk sensitive (long-run) expected average cost
criterion, Howard and Matheson proved in [6] that, if under the action of each
stationary policy the state process is a completely communicating and aperi-
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odic Markov chain, then the optimality equation has a solution for arbitrary
risk sensitivity coefficient J. > 0. Their results rely on the Perron-Frobenious
theory for maximum eigenvalues of positive matrices. On the other hand, it
was recently shown that under the simultaneous Doeblin condition (ensuring
that the Markov chain associated to each stationary policy has a single recur-
rent class), a solution to the risk-sensitive average optimality equation can
be generally guaranteed only when A sufficiently small (see [3], [5]), establishing
a contrast with the original results by Howard and Matheson, and showing
that the communication properties play a central role in the analysis of the
risk-sensitive average cost criterion. The objective of this note is to provide an
alternative proof of the original existence result by Howard and Matheson,
which explicitly emphasizes the importance of having communication between
every pair of states under the action of each stationary policy. The main idea
consists in using a contractive operator, previously introduced in [4], and then
parallel the so called “vanishing discount approach’ in the study of the risk-
neutral average cost criterion [1], [7], [8].

The organization of the paper is as follows: In Section 2 the decision model
is briefly described, and the main result in [6] is stated in the form of Theo-
rem 2.1. Next, a contractive operator is introduced in Section 3 and, finally,
the proof of Theorem 2.1 is presented in Section 4.

Notation. Throughout the remainder N and R stand for the set of nonnega-
tive integers and real numbers, respectively. If S is a finite set, Z(S) denotes
the class of real-valued functions defined on S, and for each C € %(S), ||C|| :=
max,|C(s)| denotes the corresponding maximum norm.

2 Decision model and the existence result

The Markov decision process (MDP) model M is specified by the four-tuple
M =<{S,A4,C, Py, where the state space S and the action sets A are finite,
C: S x A — R is the cost function, and P = [p, ,(-)] is the controlled transi-
tion law. This model is interpreted as follows: At each time ¢ € IN the state
X; =x€S of a dynamical system is observed and an action 4, =a€ 4 is
applied. Then a cost C(x,a) is incurred and, regardless of the previous states
and actions, the state of the system at time 7+ 1 will be X, =y e S with
probability p, ,(a); this is the Markov property of the decision model. Notice
that it is assumed that every a € 4 is an admissible action at each state. As
noted in [2], this condition does not imply any loss of generality.

The class 2 of admissible control policies consists of all the rules for
choosing actions, which may depend on the current state and on the record
of previous states and actions. Given the policy 7 € # used to drive the sys-
tem, and the initial state Xy = x, the distribution of the state-action pro-
cess {(X;, 4,)} is uniquely determined via Ionescu Tulcea’s theorem (see, for
instance, [1], [7], [8], for details). Such a distribution is denoted by P7 whereas
E7 stands for the corresponding expectation operator. Define the set IF :=
[1..s 4, which consists of all functions f : S — A. A policy = is stationary if
there exists f € IF such that, under 7, at each time 7 € N the action applied is
A; = f(X;). The class of stationary policies is naturally identified with IF, and
with this convention IF < 2.

Performance Index and Utility Function. Let 4 > 0 be a fixed number, here-
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after referred to as the risk sensitivity coefficient, and define the corresponding
utility function U, by

Uy(x) =e™, xe8. (2.1)

At each transition step the decision maker grades a (bounded) random cost YV
according to the expctation of U,(Y). The certain equivalent E(1, Y) of Yis
the unique real number satisfying U,(E(4, Y)) = E[U;(Y)], so that the con-
troller is indifferent between incurring the random cost Y or paying the certain
equivalent for sure; notice that

E(A,Y)= % log(E[e*]).

Since E(2,Y) = E[Y], by Jensen’s inequality, the controller is referred to as
risk-averse. Suppose now that the system is driven by policy 7 € # starting
at x e S, and let J,(7, x) be the certain equivalent of the total random cost
incurred up to time n:

1 n
Jn(m, x) = - log(E7 (e, (2.2)
whereas the long-run average cost per statge is defined by

. 1
J(m, x) = lim supTJ,,(n, X). (2.3)

n—oo H+1
The (1-)optimal average cost at state x is

J*(x) = grglf/)J(n, X), (2.4)

and a policy =z is optimal if J(z, x) = J*(x) for each x € S.

Optimality Equation. The optimality equation (OE) associated to the criterion
in (2.2)—(2.4) is given by

U,(g+ h(x)) = main Z Po(@)Uy(C(x,a) +h(y))|, x€S, (2.5)

where ¢ is a real number and /: S — IR is a given function. When the pair
(g, h(-)) satisfies this equality, it follows that: (i) The optimal average cost is g
regardless of the initial state, i.e., J*(-) = ¢, and (ii) If f € TF satisfies that, for
each x € S, f(x) minimizes the term within brackets in (2.5), then f is optimal.
Under the assumption that each stationary policy induces an aperiodic Mar-
kov chain, Howard and Matheson proved, via the Perron-Frobenious theory
of positive matrices, the following fundamental result [6] (rewards, instead of
costs, were used in that paper).

Theorem 2.1. Suppose that each stationary policy induces a Markov chain for
which the state space is a communicating class, i.e.,
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C: For every x,y € S and f € TF, there exists an integer n = n(x, y, ) such that
Pl[X, =y >0.

In this case, for each A > 0, there exists a pair (g, h(-)) satisfying the OE (2.5).

When condition (C) above fails, but the Markov chains associated to sta-
tionary policies have always a single recurrent class, the existence of a solution
to the OE (2.5) can be ensured only if |A| is sufficiently small (see [3], [5]), estab-
lishing a contrast with the results in [6], and highlighting the role of Condi-
tion (C) in the existence of solutions to the OE for arbitrary 1 > 0. The key
analytical tool employed in [6] was the Perron-Frobenious theory for maxi-
mum eigenvalues of positive matrices. The objective of the paper is to provide
an alternative proof of Theorem 2.1 which explicitly emphasizes the role of
condition C to ensure that, for every 4 > 0, the OE (2.5) has a solution. The
following lemma will be useful.

Lemma 2.1. Assume that Condition (C) in the statement of Theorem 2.1 holds.
Let f € IF be fixed, and suppose that </ is a nonempty subset of the state space
satisfying the following property:

xed =>yed if po(f(x)) >0. (2.6)
In this case o/ = S.

Proof. Let ye S be arbitrary and pick ze€.o/. By condition (C) there
exist states x;, i=1,2,...,n such that (a) xo=z and x, =y, and (b)
DPxixiy (f(x:)) >0 for i=0,1,2,...,n— 1. In this case, x; € o/ implies that
Xiy1 € o/, by (2.6). Therefore, xo =z € o/ yields that x, = y € o/, so that
of = S, since the state y is arbitrary. O

3 A discounted operator

The argument used to establish Theorem 2.1 in the following section is
based on the contractive operator introduced in (3.1) below which, in the
present risk-sensitive context, allows to follow the so called ‘vanishing dis-
count approach’ used to study the risk-neutral average cost criterion. For each
o€ (0,1), the operator T, : B(S) — %(S) is determined as follows: Given
W e #(S), T, W is implicitly specified by

Ui([TxW](x)) = min Y ro@U(Clx.a) +oaW(y)|, xeS.  (3.1)

Remark 3.1. (i) Suppose that the decision maker selects a single action at time
t =0, incurring a cost C(Xy, Ao), and paying a terminal cost W (X)) at time
¢t = 1. If this latter figure is discounted at rate o, C(Xp, Ag) + oW (X7) repre-
sents the value at time zero of the total cost incurred by the controller, and
[T, W](x) is the minimum certain equivalent of those discounted random total
costs.

(ii) Operator T, was used in [4] to establish, for values of 1 sufficiently close
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to the origin, the existence of solutions to (2.5) for MDPs satisfying the simul-
taneous Doeblin condition over a denumerable state space.

The basic properties of T, are stated in the following lemma.
Lemma 3.1. For each o € (0, 1) assertions (i)—(iii) below hold.

(i) Ty is a contraction operator on B(S) with coefficient o, i.e. for each
V., W e %(S),

TV — TW| <a||V — W|.

(i) There exists a unique function V, € B(S) such that T,V, = V,, and
(iii) [|(1 =)Vl < [[C][.

Proof. Let V,W e %(S). Noting that the inequality C(x,a)+aV(y) <
C(x,a) +aW(y)+ ||V — W] is always valid, it follows that U,;(C(x,a)+

aV(y)) < eIV=WIu,(C(x,a) + aW(y)) (see (2.1)). Then, (3.1) yields that for
every x € §

U((T,V)(x)) = min

Z Po(@) Uy (C(x,a) + oV (y))

< =Wl min
a

S pol@)Ui(C(x,a) + aW(y»]
)

= e IV=Yly, ([T, W](x)),

so that [T, V](x) < [T, W](x)+o||V — W]||. Interchanging the roles of V
and W this leads to |[T,V](x) — [T, W](x)| < «||V — W||, and hence part (i)
follows, since x € S is arbitrary. The existence of the unique fixed point V,
follows from part (i) and, to conclude, observe that for every x, y € S and
aeAd, —||C|| —a|| V.|| < C(x,a) + aV,(x) < ||C|| + «|| V.|, so that

Ui(=IICll =ellVall) < Y (@) Us(C(x, @) + Vo)) < U (ICll + 2] Vi)

After taking the minimum with respect to @ € 4 in this relation, part (ii) and
(3.1) together imply that U; (—||C|| — a[|Va]|) < U (Va(x)) < U;(|[Cl[ + «l| V2 ),
so that | V,(x)| < ||C|| + o||V||- Since x € S is arbitrary, it follows that || V|| <
IC|| + || V||, which is equivalent to (1 — a)||V,|| < ||C]|- O

4 Proof of the existence result

In this section a proof of Theorem 2.1 will be given. The argument uses the
fixed points {V,}, (1) in Lemma 3.1, and relies heavily on Lemma 2.1. To

begin with, notice that (3.1) and the equaility 7, V, = V, together yield



478 R. Cavazos-Cadena, D. Hernandez-Hernandez
Up(Va(x)) =min| Y po(@) U (C(x,a) +aVu(y)) |, xeS,2e(0,1) (4.1)
3y

and, since S is finite, for each o € (0, 1) there exists z, € S such that

Vilzs) = min Vi) 42)
Define
gr= (1 —o)V,(z,), and h,(x)=V,(x)— Vy(z,), xeS. (4.3)

With this notation, it is not difficult to see that, for each o € (0,1), (4.1) is
equivalent to

Ui(ga+hs(x)) =min vay C(x,a) +ohy(y))|, xeS,oe(0,1),
(4.4)

and the finiteness of the action set implies that there exists a policy f, € IF such
that

Ui + ha(x Zpgﬂ (C(x,a) +oha(y)), x€S; (4.5)

On the other hand, observe that Lemma 3.1(iii) and (4.3) together imply
that |g,| < ||C||, whereas h,(-) > 0, by (4.2). Therefore, given a sequence {o, }
in (0, 1) increasing to 1, the finiteness of S and IF allow to pick a subsequence,
still denoted by {«,}, such that

fo,=f€F, and z,, =zeS, nel, (4.6)
and the following limits exists:

lim g,, =g, and lim &, (x) = h(x) € [0, 0], x€eS. 4.7

n—oo n—oo

Proof of Theorem 2.1. It will be shown that the function /A(-) defined in
(4.7) is finite, and that the pair (g,A(-)) satisfies (2.5). First, define .o/ :=
{x]h(x) < o}, and notice that state z in (4.6) belongs to .«7; indeed, by (4.3),
(4.6) and (4.7), h(z) = 0. Suppose now that x € .«/. Replacing a by a,, in (4.5

and taking limit as n goes to oo in the resulting equality it follows, via (4.6
and (4.7), that

=

© > Ulg +h) = 3 oo/ (DUAC S T, x2S, (@49

and this yields that /()) < oo when p,(f(x)) > 0. Therefore, x € o/ implies
that y € o if p,,(f(x)) > 0, so that, by Lemma 2.1, o/ = S, i.e., /i(-) is a finite
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function. To conclude, note that, for each x € S, a € 4 and n € N, (4.4) allows
to write

Ui(goy + 112,(%) < Y pu(@ Usn(C(x,@) + 2, (1))
¥
so that, letting n going to infinity, (4.7) yields
Uig +h(x) < Y po(@Us(Clx,a) + h(y)).
5

Since the pair (x,a) € S x A4 is arbitrary, this inequality and (4.8) show that
the finite function /A(-) and the constant g in (4.7) satisfy the optimality equa-
tion (2.5). U
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