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Abstract. This note concerns Markov decision chains with finite state and
action sets. The decision maker is assumed to be risk-averse with constant risk
sensitive coe‰cient l, and the performance of a control policy is measured
by the risk-sensitive average cost criterion. In their seminal paper Howard and
Matheson established that, when the whole state space is a communicating
class under the action of each stationary policy, then there exists a solution to
the optimality equation for every l > 0. This paper presents an alternative
proof of this fundamental result, which explicitly highlights the essential role
of the communication properties in the analysis of the risk-sensitive average
cost criterion.
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1 Introduction

This note concerns discrete-time Markov decision chains with finite state and
action sets. The decision maker grades a random cost according to an expo-
nential utility function with constant risk sensitivity l, and it is supposed that
she has an averse attitude with respect to risk; this feature is reflected in the
positive sign of l (see Section 2 for details). When the performance of a con-
trol strategy is measured by the risk sensitive (long-run) expected average cost
criterion, Howard and Matheson proved in [6] that, if under the action of each
stationary policy the state process is a completely communicating and aperi-
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odic Markov chain, then the optimality equation has a solution for arbitrary
risk sensitivity coe‰cient l > 0. Their results rely on the Perron-Frobenious
theory for maximum eigenvalues of positive matrices. On the other hand, it
was recently shown that under the simultaneous Doeblin condition (ensuring
that the Markov chain associated to each stationary policy has a single recur-
rent class), a solution to the risk-sensitive average optimality equation can
be generally guaranteed only when l su‰ciently small (see [3], [5]), establishing
a contrast with the original results by Howard and Matheson, and showing
that the communication properties play a central role in the analysis of the
risk-sensitive average cost criterion. The objective of this note is to provide an
alternative proof of the original existence result by Howard and Matheson,
which explicitly emphasizes the importance of having communication between
every pair of states under the action of each stationary policy. The main idea
consists in using a contractive operator, previously introduced in [4], and then
parallel the so called ‘‘vanishing discount approach’’ in the study of the risk-
neutral average cost criterion [1], [7], [8].

The organization of the paper is as follows: In Section 2 the decision model
is briefly described, and the main result in [6] is stated in the form of Theo-
rem 2.1. Next, a contractive operator is introduced in Section 3 and, finally,
the proof of Theorem 2.1 is presented in Section 4.

Notation. Throughout the remainder N and R stand for the set of nonnega-
tive integers and real numbers, respectively. If S is a finite set, BðSÞ denotes
the class of real-valued functions defined on S, and for each C A BðSÞ, kCk :¼
maxsjCðsÞj denotes the corresponding maximum norm.

2 Decision model and the existence result

The Markov decision process (MDP) model M is specified by the four-tuple
M ¼ hS;A;C;Pi, where the state space S and the action sets A are finite,
C : S � A! R is the cost function, and P ¼ ½ px;yð	Þ
 is the controlled transi-
tion law. This model is interpreted as follows: At each time t A N the state
Xt ¼ x A S of a dynamical system is observed and an action At ¼ a A A is
applied. Then a cost Cðx; aÞ is incurred and, regardless of the previous states
and actions, the state of the system at time tþ 1 will be Xtþ1 ¼ y A S with
probability px;yðaÞ; this is the Markov property of the decision model. Notice
that it is assumed that every a A A is an admissible action at each state. As
noted in [2], this condition does not imply any loss of generality.

The class P of admissible control policies consists of all the rules for
choosing actions, which may depend on the current state and on the record
of previous states and actions. Given the policy p A P used to drive the sys-
tem, and the initial state X0 ¼ x, the distribution of the state-action pro-
cess fðXt;AtÞg is uniquely determined via Ionescu Tulcea’s theorem (see, for
instance, [1], [7], [8], for details). Such a distribution is denoted by Pp

x whereas
E p
x stands for the corresponding expectation operator. Define the set F :¼Q
x AS A, which consists of all functions f : S ! A. A policy p is stationary if

there exists f A F such that, under p, at each time t A N the action applied is
At ¼ f ðXtÞ. The class of stationary policies is naturally identified with F, and
with this convention FHP.

Performance Index and Utility Function. Let l > 0 be a fixed number, here-
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after referred to as the risk sensitivity coe‰cient, and define the corresponding
utility function Ul by

UlðxÞ ¼ elx; x A S: ð2:1Þ

At each transition step the decision maker grades a (bounded) random cost Y
according to the expctation of UlðYÞ. The certain equivalent Eðl;Y Þ of Y is
the unique real number satisfying UlðEðl;YÞÞ ¼ E½UlðY Þ
, so that the con-
troller is indi¤erent between incurring the random cost Y or paying the certain
equivalent for sure; notice that

Eðl;YÞ ¼ 1

l
logðE½elY 
Þ:

Since Eðl;Y ÞbE½Y 
, by Jensen’s inequality, the controller is referred to as
risk-averse. Suppose now that the system is driven by policy p A P starting
at x A S, and let Jnðp; xÞ be the certain equivalent of the total random cost
incurred up to time n:

Jnðp; xÞ ¼
1

l
logðE p

x ½elT
n

t¼0CðXt;AtÞ
Þ; ð2:2Þ

whereas the long-run average cost per statge is defined by

Jðp; xÞ ¼ lim sup
n!y

1

nþ 1
Jnðp; xÞ: ð2:3Þ

The (l-)optimal average cost at state x is

J �ðxÞ ¼ inf
p AP

Jðp; xÞ; ð2:4Þ

and a policy p is optimal if Jðp; xÞ ¼ J �ðxÞ for each x A S.

Optimality Equation. The optimality equation (OE) associated to the criterion
in (2.2)–(2.4) is given by

Ulðgþ hðxÞÞ ¼ min
a

X
y

pxyðaÞUlðCðx; aÞ þ hðyÞÞ
" #

; x A S; ð2:5Þ

where g is a real number and h : S ! R is a given function. When the pair
ðg; hð	ÞÞ satisfies this equality, it follows that: (i) The optimal average cost is g
regardless of the initial state, i.e., J �ð	Þ1 g, and (ii) If f A F satisfies that, for
each x A S, f ðxÞ minimizes the term within brackets in (2.5), then f is optimal.
Under the assumption that each stationary policy induces an aperiodic Mar-
kov chain, Howard and Matheson proved, via the Perron-Frobenious theory
of positive matrices, the following fundamental result [6] (rewards, instead of
costs, were used in that paper).

Theorem 2.1. Suppose that each stationary policy induces a Markov chain for
which the state space is a communicating class, i.e.,

Solution to the risk-sensitive average optimality equation 475



C: For every x; y A S and f A F, there exists an integer n ¼ nðx; y; f Þ such that
P f
x ½Xn ¼ y
 > 0.

In this case, for each l > 0, there exists a pair ðg; hð	ÞÞ satisfying the OE (2.5).

When condition (C) above fails, but the Markov chains associated to sta-
tionary policies have always a single recurrent class, the existence of a solution
to the OE (2.5) can be ensured only if jlj is su‰ciently small (see [3], [5]), estab-
lishing a contrast with the results in [6], and highlighting the role of Condi-
tion (C) in the existence of solutions to the OE for arbitrary l > 0. The key
analytical tool employed in [6] was the Perron-Frobenious theory for maxi-
mum eigenvalues of positive matrices. The objective of the paper is to provide
an alternative proof of Theorem 2.1 which explicitly emphasizes the role of
condition C to ensure that, for every l > 0, the OE (2.5) has a solution. The
following lemma will be useful.

Lemma 2.1. Assume that Condition (C) in the statement of Theorem 2.1 holds.
Let f A F be fixed, and suppose that A is a nonempty subset of the state space
satisfying the following property:

x A A ) y A A if pxyð f ðxÞÞ > 0: ð2:6Þ

In this case A ¼ S.

Proof. Let y A S be arbitrary and pick z A A. By condition (C) there
exist states xi, i ¼ 1; 2; . . . ; n such that (a) x0 ¼ z and xn ¼ y, and (b)
pxixiþ1

ð f ðxiÞÞ > 0 for i ¼ 0; 1; 2; . . . ; n� 1. In this case, xi A A implies that
xiþ1 A A, by (2.6). Therefore, x0 ¼ z A A yields that xn ¼ y A A, so that
A ¼ S, since the state y is arbitrary. r

3 A discounted operator

The argument used to establish Theorem 2.1 in the following section is
based on the contractive operator introduced in (3.1) below which, in the
present risk-sensitive context, allows to follow the so called ‘vanishing dis-
count approach’ used to study the risk-neutral average cost criterion. For each
a A ð0; 1Þ, the operator Ta : BðSÞ ! BðSÞ is determined as follows: Given
W A BðSÞ, TaW is implicitly specified by

Ulð½TaW 
ðxÞÞ ¼ min
a

X
y

pxyðaÞUlðCðx; aÞ þ aWðyÞÞ
" #

; x A S: ð3:1Þ

Remark 3.1. (i) Suppose that the decision maker selects a single action at time
t ¼ 0, incurring a cost CðX0;A0Þ, and paying a terminal cost WðX1Þ at time
t ¼ 1. If this latter figure is discounted at rate a, CðX0;A0Þ þ aWðX1Þ repre-
sents the value at time zero of the total cost incurred by the controller, and
½TaW 
ðxÞ is the minimum certain equivalent of those discounted random total
costs.

(ii) Operator Ta was used in [4] to establish, for values of l su‰ciently close
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to the origin, the existence of solutions to (2.5) for MDPs satisfying the simul-
taneous Doeblin condition over a denumerable state space.

The basic properties of Ta are stated in the following lemma.

Lemma 3.1. For each a A ð0; 1Þ assertions (i)–(iii) below hold.

(i) Ta is a contraction operator on BðSÞ with coe‰cient a, i.e. for each
V ;W A BðSÞ,

kTV � TWka akV �Wk:

(ii) There exists a unique function Va A BðSÞ such that TaVa ¼ Va, and

(iii) kð1 � aÞVaka kCk.

Proof. Let V ;W A BðSÞ. Noting that the inequality Cðx; aÞ þ aVðyÞa

Cðx; aÞ þ aWðyÞ þ akV �Wk is always valid, it follows that UlðCðx; aÞþ
aVðyÞÞa ealkV�WkUlðCðx; aÞ þ aWðyÞÞ (see (2.1)). Then, (3.1) yields that for
every x A S

Ulð½TaV 
ðxÞÞ ¼ min
a

X
y

pxyðaÞUlðCðx; aÞ þ aVðyÞÞ
" #

a ealkV�Wk min
a

X
y

pxyðaÞUlðCðx; aÞ þ aWðyÞÞ
" #

¼ ealkV�WkUlð½TaW 
ðxÞÞ;

so that ½TaV 
ðxÞa ½TaW 
ðxÞ þ akV �Wk. Interchanging the roles of V

and W this leads to j½TaV 
ðxÞ � ½TaW 
ðxÞja akV �Wk, and hence part (i)
follows, since x A S is arbitrary. The existence of the unique fixed point Va

follows from part (i) and, to conclude, observe that for every x; y A S and
a A A, �kCk � akVakaCðx; aÞ þ aVaðxÞa kCk þ akVak, so that

Ulð�kCk� akVakÞa
X
y

pxyðaÞUlðCðx; aÞ þ aVaðyÞÞaUlðkCkþ akVakÞ:

After taking the minimum with respect to a A A in this relation, part (ii) and
(3.1) together imply that Ulð�kCk� akVakÞaUlðVaðxÞÞaUlðkCkþ akVakÞ,
so that jVaðxÞja kCk þ akVak. Since x A S is arbitrary, it follows that kVaka

kCk þ akVak, which is equivalent to ð1 � aÞkVaka kCk. r

4 Proof of the existence result

In this section a proof of Theorem 2.1 will be given. The argument uses the
fixed points fVaga A ð0;1Þ in Lemma 3.1, and relies heavily on Lemma 2.1. To

begin with, notice that (3.1) and the equaility TaVa ¼ Va together yield
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UlðVaðxÞÞ ¼ min
a

X
y

pxyðaÞUlðCðx; aÞ þ aVaðyÞÞ
" #

; x A S; a A ð0; 1Þ ð4:1Þ

and, since S is finite, for each a A ð0; 1Þ there exists za A S such that

VaðzaÞ ¼ min
x AS

VaðxÞ: ð4:2Þ

Define

ga ¼ ð1 � aÞVaðzaÞ; and haðxÞ ¼ VaðxÞ � VaðzaÞ; x A S: ð4:3Þ

With this notation, it is not di‰cult to see that, for each a A ð0; 1Þ, (4.1) is
equivalent to

UlðgaþhaðxÞÞ¼min
a

X
y

pxyðaÞUlðCðx; aÞ þ ahaðyÞÞ
" #

; x A S; a A ð0; 1Þ;

ð4:4Þ

and the finiteness of the action set implies that there exists a policy fa A F such
that

Ulðga þ haðxÞÞ ¼
X
y

pxyð faðxÞÞUlðCðx; aÞ þ ahaðyÞÞ; x A S; ð4:5Þ

On the other hand, observe that Lemma 3.1(iii) and (4.3) together imply
that jgaja kCk, whereas hað	Þb 0, by (4.2). Therefore, given a sequence fang
in ð0; 1Þ increasing to 1, the finiteness of S and F allow to pick a subsequence,
still denoted by fang, such that

fan 1 f A F; and zan 1 z A S; n A N; ð4:6Þ

and the following limits exists:

lim
n!y

gan ¼ g; and lim
n!y

hanðxÞ ¼ hðxÞ A ½0;y
; x A S: ð4:7Þ

Proof of Theorem 2.1. It will be shown that the function hð	Þ defined in
(4.7) is finite, and that the pair ðg; hð	ÞÞ satisfies (2.5). First, define A :¼
fx j hðxÞ < yg, and notice that state z in (4.6) belongs to A; indeed, by (4.3),
(4.6) and (4.7), hðzÞ ¼ 0. Suppose now that x A A. Replacing a by an in (4.5)
and taking limit as n goes to y in the resulting equality it follows, via (4.6)
and (4.7), that

y > Ulðgþ hðxÞÞ ¼
X
y

pxyð f ðxÞÞUlðCðx; f ðxÞÞ þ hðyÞÞ; x A S; ð4:8Þ

and this yields that hðyÞ < y when pxyð f ðxÞÞ > 0. Therefore, x A A implies
that y A A if pxyð f ðxÞÞ > 0, so that, by Lemma 2.1, A ¼ S, i.e., hð	Þ is a finite
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function. To conclude, note that, for each x A S, a A A and n A N, (4.4) allows
to write

Ulðgan þ hanðxÞÞa
X
y

pxyðaÞUlðCðx; aÞ þ anhanðyÞÞ

so that, letting n going to infinity, (4.7) yields

Ulðgþ hðxÞÞa
X
y

pxyðaÞUlðCðx; aÞ þ hðyÞÞ:

Since the pair ðx; aÞ A S � A is arbitrary, this inequality and (4.8) show that
the finite function hð	Þ and the constant g in (4.7) satisfy the optimality equa-
tion (2.5). r
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