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1 Introduction

Let K be a nonempty subset, and f : K � K ! R be a real valued function
such that f ðx; xÞb 0, Ex A K . The equilibrium problem (in short, EP) is the
problem of finding x A K such that

f ðx; yÞb 0; for all y A K :

The EP has many applications in physics, mathematical economics, and opera-
tions research, etc. Recently, the EP is extensively generalized to the vector
valued functions (see [1–3, 6, 8, 11–13] and references therein).

In this paper, we consider a more general form of vector equilibrium prob-
lems (in short, VEP) with a moving ordering cone and set-valued mappings.
Let X, Y and Z be real topological vector spaces, K be a nonempty convex
subset of X and D be a nonempty subset of Y. Let C : K xZ be a set-valued
mapping such that, Ex A K , CðxÞ is a closed, convex and proper cone with apex
at the origin and with nonempty interior, i.e. intCðxÞ0q. Let T : K xD
and f : K � K � DxZ be set-valued mappings such that, Ex A K , TðxÞ0q
and Ex A K , t A D, 0 A f ðx; x; tÞHCðxÞ. Throughout this paper, unless other-
wise specified, we fix these notations and assumptions.



We consider the following generalized vector equilibrium problems (in
short, GVEP).

(GVEP 1) Find y A K such that Ex A K , bv A TðyÞ, f ðx; y; vÞN intCðyÞ.
(GVEP 2) Find y A K such that Ex A K , bu A TðxÞ, f ðx; y; uÞN intCðyÞ.
(GVEP 3) Find y A K and v A TðyÞ such that f ðx; y; vÞN intCðyÞ, Ex A K .

The following problems are the special cases of (GVEP 1).
(1) If X ¼ Y , K ¼ D and Ex A K , TðxÞ ¼ x, F : K � K xZ, and let

f ðx; y; tÞ :¼ �Fðx; yÞ, then (GVEP 1) reduces to finding y A K such that

F ðx; yÞN�intCðyÞ; Ex A K :

It was investigated in Konnov and Yao [12].
(2) If Y ¼ D ¼ LðX ;ZÞ, the space of all continuous linear operators from

X into Z, T : K xLðX ;ZÞ and f ðx; y; tÞ :¼ ðt; y � xÞ, then (GVEP 1) reduces
to finding y A K such that Ex A K , bt A TðyÞ,

ðt; y � xÞ B intCðyÞ;

where ðt; zÞ is the evaluation of t A LðX ;ZÞ at z A Z. This was studied in Kon-
nov and Yao [11].

(3) If h : K � K ! X , Ex A K , hðx; xÞ ¼ 0, Y ¼ D ¼ LðX ;ZÞ and T : K x

LðX ;ZÞ, let f ðx; y; tÞ :¼ ðt; hðx; yÞÞ, then (GVEP 1) reduces to finding y A K
such that Ex A K , bt A TðyÞ,

ðt; hðx; yÞÞ B intCðyÞ.

It was considered in Ding and Tarafdar [8].
(4) If DHX �, the topological dual of X, h : K � K ! X , hðx; xÞ ¼ 0,

Ex A K ; T : K xD and y : K � D ! LðX ;ZÞ, and let f ðx; y; tÞ ¼ ðyðy; tÞ;
hðx; yÞÞ, then (GVEP 1) reduces to finding y A K such that Ex A K , bt A TðyÞ

ðyðy; tÞ; hðx; yÞÞ B intCðyÞ:

It was investigated in Ansari, Siddiqi and Yao [2].
The purpose of this paper is to prove the existence theorems for (GVEP 1)

under certain assumptions on f and T, which extend some results in [2, 11].

2 Preliminaries

In this section, we give some definitions and recall some well-known results we
need.

Definition 1. Let f : K � K � DxZ be given.
(i) f ðx; y; tÞ is Cy-pseudomonotone with respect to T if, Ex; y A K ,

Eu A TðxÞ, v A TðyÞ, f ðx; y; vÞN intCðyÞ implies f ðx; y; uÞN intCðyÞ.
(ii) f ðx; y; tÞ is weakly Cy-pseudomonotone with respect to T if, Ex;

y A K , Ev A TðyÞ, f ðx; y; vÞN intCðyÞ implies f ðx; y; uÞN intCðyÞ for some
u A TðxÞ.
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(iii) f ðx; y; tÞ is u-hemicontinuous with respect to T if, Ex; y A K , a A ½0; 1	,
xa ¼ yþ aðx� yÞ, then mapping a! f ðx; y;TðxaÞÞ ¼ 6

t ATðxaÞ
f ðx; y; tÞ is upper

semicontinuous at a ¼ 0.
(iv) f ðx; y; tÞ is Cy-concave in x if, for any fixed y A K , t A D, Ex1; x2 A K ,

a A ½0; 1	, f ðax1 þ ð1� aÞx2; y; tÞH af ðx1; y; tÞ þ ð1� aÞ f ðx2; y; tÞ þ CðyÞ.
(v) f ðx; y; tÞ is a‰ne in x if, for any fixed y A K , t A D, Ex1; x2 A K ,

a A ½0; 1	, f ðax1 þ ð1� aÞx2; y; tÞ ¼ af ðx1; y; tÞ þ ð1� aÞ f ðx2; y; tÞ.

Remark 1. If f is a single valued mapping, and ‘‘H’’ is replaced with ‘‘A’’ in
some places, then the above definitions for the single valued mapping are
obtained.

Definition 2. Let X and Y be topological spaces, T : X xY a set-valued
mapping. (i) T is said to be upper semicontinuous at x A X if, for any open set
V containing TðxÞ, there is an open set U containing x such that for each
t A U , TðtÞHV ; T is called upper semicontinuous on X if it is upper semi-
continuous at all x A X . (ii) T is said to be closed if the graph of T, i.e.,
GrðTÞ :¼ fðx; yÞ : x A X ; y A TðxÞg, is a closed subset of X � Y .

Lemma 1. (i) T is closed if and only if for any net fxlg, xl ! x and any net
fylg, yl A TðxlÞ, yl ! y, one has y A TðxÞ. (ii) If T is compact valued, then T
is upper semicontinuous at x if and only if for any net fxlg, xl ! x and any net
fylg, yl A TðxlÞ, there exist y A TðxÞ and a subnet fyl 0 g of fylg, such that
yl 0 ! y.

Lemma 2. (i) If y is a solution of (GVEP 3), then it is a solution of (GVEP 1).
(ii) If f ðx; y; tÞ is weakly Cy-pseudomonotone with respect to T and y is a

solution of (GVEP 1), then it is a solution of (GVEP 2).
(iii) If f ðx; y; tÞ is Cy-concave in x and u-hemicontinuous with respect to T,

and y is a solution of (GVEP 2), then it is a solution of (GVEP 1).

Proof. (i) and (ii) are obvious. We need only to show (iii). Let y A K be a solu-
tion of (GVEP 2). Then, Ex A K , there is a u A TðxÞ,

f ðx; y; uÞN intCðyÞ: ð1Þ

If y is not a solution of (GVEP 1), then there is an x A K such that
Ev A TðyÞ, f ðx; y; vÞH intCðyÞ, i.e., f ðx; y;TðyÞÞH intCðyÞ. Since f is u-
hemicontinuous with respect to T, there is a d A ð0; 1Þ such that for all a A
ð0; dÞ, xa ¼ y þ aðx � yÞ A K , f ðx; y;TðxaÞÞH intCðyÞ, i.e., Et A TðxaÞ,

f ðx; y; tÞH intCðyÞ: ð2Þ

Since f ðx; y; tÞ is Cy-concave in x and f ðy; y; tÞHCðyÞ, by (2), we have
f ðxa; y; tÞHaf ðx; y; tÞþð1� aÞ f ðy; y; tÞþCðyÞHintCðyÞþCðyÞHintCðyÞ,
a contradiction to (1). r

Let Cþ :¼ CofCðxÞ : x A Kg and C �
þ :¼ fs A Z � : ðs; xÞb 0; Ex A Cþg,

where CoðAÞ is the convex hull of a set A.
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Lemma 3 ([11]). Let s A C �
þnf0g and HðsÞ ¼ fx A Z : ðs; xÞb 0g. Then

(i) HðsÞ is a closed convex cone in Z.
(ii) If HðsÞ0Z, then intHðsÞ ¼ saðð0;þyÞÞ.

Proof. We need only to show (ii). If x A saðð0;þyÞÞ, then sðxÞ ¼ ðs; xÞ > 0.
Since s is continuous, there is a neighbourhood V of the origin in Z such that,
Ez A x þ V , sðzÞ > 0. Hence, x A intHðsÞ. On the other hand, if x A intHðsÞ,
then there is a neighbourhood V of the origin in Z such that x þ V H intHðsÞ.
We shall show sðxÞ > 0. If it is false, then sðxÞ ¼ 0. Since V is absorbing,
Ez A Z, there is an r > 0 such that rz A V . We have 0a sðx þ rzÞ ¼ rsðzÞ.
Hence sðzÞb 0, i.e., z A HðsÞ. Thus zHHðsÞ, a contradiction.

The following is a result of Chowdhury and Tan [6] which is a generaliza-
tion of the well-known Fan-Browder fixed point theorem.

Theorem 1. Let A;B : K xK W fqg be two set-valued mappings such that

(i) Ez A K, AðzÞHBðzÞ;
(ii) Ez A K, BðzÞ is convex;
(iii) Ez A K, AaðzÞ is compactly open (i.e., AaðzÞXL is open in L for each non-

empty and compact subset L of K);
(iv) there exist a nonempty, closed and compact subset M of K and z A M, such

that KnM HBaðzÞ;
(v) Ez A M, AðzÞ0q.

Then there an x A K such that x A BðxÞ.

The following is the well-known Fan lemma in [10].

Theorem 2. Let X be a Hausdor¤ topological vector space, and K be a non-
empty convex subset of X. For each x A K, let F ðxÞ be a closed subset of K such
that the convex hull of every finite subset fx1; . . . ; xng of K is contained in the

corresponding union 6
n

i¼1

FðxiÞ. If there is an x A K such that FðxÞ is compact,
then 7

x AK

F ðxÞ0q.

Definition 3 ([12]). A set-valued mapping F : K xK is called KKM-map if

Coðx1; . . . ; xngH 6
n

i¼1

F ðxiÞ for any finite subset fx1; . . . ; xng of K.

For properties of set-valued mappings and cones, we refer to Berge [4] and
Jahn [9], respectively.

3 Solutions of (GVEP) with monotonicity

In this section, we use the technique of [2], [6] and [11] to get some existence
results for (GVEP).

Theorem 3. Let X, Y, Z, K, D, C and T be as in section 1. Let f : K � K �
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DxZ be such that, Ex; y A K, t A D, f ðx; y; tÞ is a nonempty compact subset of
Z. Assume that the following conditions hold:

(i) Ex A K, t A D, 0 A f ðx; x; tÞHCðxÞ;
(ii) f ðx; y; tÞ is Cy-pseudomonotone with respect to T and Cy-concave in x;
(iii) f ðx; y; tÞ is u-hemicontinuous with respect to T and upper semicontinuous

in y;
(iv) the set-valued mapping W : K xZ defined by WðxÞ :¼ ZnintCðxÞ, Ex A K,

is closed;
(v) there are a nonempty, closed and compact subset M of K and a z A M such

that for each z A KnM, f ðz; z; tÞH intCðzÞ, Et A TðzÞ;

Then (GVEP 1) has a solution y A M.

Proof. Define A;B : K xK W fqg by

AðzÞ :¼ fx A K : bu A TðxÞ; f ðx; z; uÞH intCðzÞg

and

BðzÞ :¼ fx A K : Ew A TðzÞ; f ðx; z;wÞH intCðzÞg; Ez A K :

The proof is divided into the following steps.
(i) Ez A K, AðzÞHBðzÞ;
In fact, if x B BðzÞ, then there is a w A TðzÞ such that f ðx; z;wÞN intCðzÞ.

Since f ðx; z; tÞ is Cz-pseudomonotone with respect to T, we have f ðx; z; uÞN
intCðzÞ, Eu A TðxÞ. Thus x B AðzÞ.

(ii) Ez A K , BðzÞ is a convex subset of K;
Let x1; x2 A BðzÞ and a A ð0; 1Þ. Then, Et A TðzÞ,

f ðxi; z; tÞH intCðzÞ; i ¼ 1; 2: ð3Þ

By the condition (ii) and (3), we have Et A TðzÞ,

f ðax1 þ ð1� aÞx2; z; tÞH af ðx1; z; tÞ þ ð1� aÞ f ðx2; z; tÞ þ CðzÞ

H intCðzÞ þ intCðzÞ þ CðzÞH intCðzÞ:

Therefore ax1 þ ð1� aÞx2 A BðzÞ.
(iii) Ex A K , AaðxÞ is compactly open;
Indeed, Let L be a nonempty compact subset of K, and Q :¼ AaðxÞXL ¼

fz A L : x A AðzÞg. We need to show that LnQ is closed in L. Let a net fzlgH
LnQ be such that zl ! z. Then x B AðzlÞ. By the definition of A, Eu A TðxÞ,
f ðx; zl; uÞN intCðzlÞ. Hence, there is tl A f ðx; zl; uÞ such that tl B intCðzlÞ.
Since f ðx; y; uÞ is upper semicontinuous in y, by Lemma 1, there exist a
point t A f ðx; z; uÞ and a subset ftl 0 gH ftlg such that tl 0 ! t. Since the net
fðzl 0 ; tl 0 ÞgHGrðWÞ and ðzl 0 ; tl 0 Þ ! ðz; tÞ, and GrðWÞ is closed in K � Z, we
have ðz; tÞ A GrðWÞ, i.e., t B intCðzÞ. Hence, Eu A TðxÞ, f ðx; z; uÞN intCðzÞ,
i.e., x B AðzÞ. Thus z A LnQ.

(iv) By the condition (v), KnM HBaðzÞ;
(v) We claim that there is a point y A M such that AðyÞ ¼ q.
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Suppose to the contrary that, Ey A M, AðyÞ0q. Then, by Theorem 1, B
has a fixed point x A K , i.e., x A BðxÞ. Then, Et A TðxÞ, f ðx; x; tÞH intCðxÞ.
But, by the condition (i), 0 A f ðx; x; tÞ. Hence 0 A intCðxÞ, a contradiction to
CðxÞ0Z.

If y A M and AðyÞ ¼ q, then for each x A K , bu A TðxÞ such that
f ðx; y; uÞN intCðyÞ. This means y is a solution of (GVEP 2). By Lemma 2, y
is a solution of (GVEP 1). r

Corollary 1. Let X, Y, K, D and T be as in Theorem 3. Let Z ¼ R and for each
x A K, CðxÞ ¼ Rþ ¼ ½0;þyÞ, and f : K � K � DxR be such that Ex; y A K,
t A D, f ðx; y; tÞ is a nonempty, closed and bounded subset of R. Assume that
all conditions in Theorem 3 hold. Then there is a y A M such that, Ex A K,
bv A TðyÞ, f ðx; y; vÞN intRþ.

Corollary 2. Let X, Y, Z, K, D, C and T be as in Theorem 3, and f : K � K �
D ! Z be a single valued mapping. Assume that Conditions (ii), (iv) and (v)
in Theorem 3 hold. The conditions (i) and (iii) in Theorem 3 are replaced with
the following

(i) 0 Ex A K, t A D, f ðx; x; tÞ ¼ 0;
(iii) 0 f ðx; y; tÞ is u-hemicontinuous with respect to T and continuous in y.

Then there is a y A M such that Ex A K, bv A TðyÞ, f ðx; y; vÞ B intCðyÞ.

Corollary 3. Let X, Y, Z, K, D, C and T be as in Theorem 3. Assume that the
following conditions hold:

(i) the single valued mapping h : K � K ! X is a‰ne in the first argument
and continuou in the second argument; Ex A K, hðx; xÞ ¼ 0;

(ii) the single valued mapping y : K � D ! LðX ;ZÞ is continuous in the first
argument and ðyðy; tÞ; hðx; yÞÞ is Cy-pseudomonotone with respect to T;

(iii) the bilinear form ð� ; �Þ between LðX ;ZÞ and X is continuous;
(iv) T : K xD is u-hemicontinuous with respect to y, i.e., Ex; y A K, a A ½0; 1	,

xa ¼ ax þ ð1� aÞy, the mapping a ! ðyðy;TðxaÞÞ; hðx; yÞÞ is upper semi-
continuous at a ¼ 0;

(v) the set-valued mapping W : K xZ defined by WðxÞ :¼ ZnintCðxÞ is
closed;

(vi) there exist a nonempty, closed and compact subset M of K and z A M such
that for each z A KnM, ðyðz; tÞ; hðz; zÞÞ A intCðzÞ, Et A TðzÞ;

Then there is a y A M such that Ex A K, bv A TðyÞ,

ðyðy; vÞ; hðx; yÞÞ B intCðyÞ:

Proof. Let f ðx; y; tÞ ¼ ðyðy; tÞ; hðx; yÞÞ, Ex; y A K and t A D. Then it is easy
to check that all the conditions in Corollary 2 hold. Corollary 2 yields the
conclusion. r

Remark 2. Theorem 3.1 in [2] is similar to the above corollary.

Corollary 4. Let X and Z be real Banach spaces, and K be a nonempty convex
subset of X. Let C : K xZ be as in section 1. Let T : K xLðX ;ZÞ be a set-
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valued mapping with TðxÞ0q, Ex A K. Assume that the following conditions
hold:

(i) T is Cx-pseudomonotone, i.e., Ex; y A K, Et 0 A TðxÞ, t 00 A TðyÞ, ðt 0; x � yÞ B
intCðxÞ implies ðt 00; x � yÞ B intCðxÞ;

(ii) T is u-hemicontinuous, i.e., Ex; y A K, a A ½0; 1	, the mapping a !
ðTðax þ ð1� aÞyÞ; y � xÞ is upper semicontinuous at a ¼ 0.

(iii) the set-valued mapping W : K xZ, WðxÞ :¼ ZnintCðxÞ, Ex A K, has a
weakly closed graph GrðWÞ in X � Z;

(iv) there exist a nonempty, and weakly compact subset M of K and a z A M
such that, Ez A KnM, ðt; z � zÞH intCðzÞ, Et A TðzÞ.

Then there is y A M such that, Ex A K, bv A TðyÞ, ðv; y � xÞ B intCðyÞ.

Proof. In Corollary 2, let X and Z be endowed with their weak topologies, and
let D ¼ Y ¼ LðX ;ZÞ and f ðx; y; tÞ ¼ ðt; y � xÞ, Ex; y A K , t A D. We need to
show that f ðx; y; tÞ is weakly continuous in y. Let a net fylgHK be such
that yl * y, where ‘‘*’’ denotes ‘‘converges weakly to’’. Since t A LðX ;ZÞ, t
is continuous from the weak topology of X to the weak topology of Z ([7, Chap.
6, Thm 1.1]). We have f ðx; yl; tÞ ¼ ðt; yl � xÞ * ðt; y � xÞ ¼ f ðx; y; tÞ. Cor-
ollary 2 yields the conclusion. r

Remark 3. Theorem 3.1 in [11] is the special case of M ¼ K in the above
corollary 4.

Theorem 4. Let X, Y, Z, K, D, C and T be as in Theorem 3, and s A C �
þnf0g,

HðsÞ0Z. Assume that the conditions (i), (iii), (iv) and (v) in Theorem 3 hold,
the condition (ii) is replaced with the following

(ii) 0 f ðx; y; tÞ is Cy-concave in x and HðsÞ-pseudomonotone with respect to
T, i.e., Ex; y A K, Eu A TðxÞ, v A TðyÞ, f ðx; y; vÞN intHðsÞ implies
f ðx; y; uÞN intHðsÞ. Then (GVEP 1) is solvable.

Proof. Define ~ff : K � K � DxR by

~ff ðx; y; tÞ ¼ ðs; f ðx; y; tÞÞ; Ex; y A K ; t A D:

Since f is HðsÞ-pseudomonotone with respect to T, by Lemma 3, Ex; y A K ,
Eu A TðxÞ, v A TðyÞ, ~ff ðx; y; vÞN intRþ implies ~ff ðx; y; uÞN intRþ. By Cor-
ollary 1, by A M such that Ex A K , bv A TðyÞ,

ðs; f ðx; y; vÞÞ ¼ ~ff ðx; y; vÞN intRþ:

Hence,

f ðx; y; vÞN intHðsÞ:

Since s A C �
þnf0g and intHðsÞI intCþ I intCðyÞ, we have

f ðx; y; vÞN intCðyÞ:

Thus y is a solution of (GVEP 1). r
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Remark 4. In a like manner, as in Corollaries 3 and 4, we can obtain some
results similar to Theorem 6 in [2] and Theorem 4.1 in [11] from the above
theorem.

4 Solutions of (GVEP) without monotonicity

Theorem 5. Let X be a Hausdor¤ topological vector space, and let Y, Z, K, D, C
and T as in Theorem 3. Assume that the following conditions hold:

(i) f : K � K � DxZ, Ex; y A K, t A D, f ðx; y; tÞ is a nonempty compact
subset of Z, and 0 A f ðx; x; tÞ;

(ii) for any fixed y A K and t A D, f ðx; y; tÞ is Cy-concave in x; for any fixed
x A K, f ðx; y; tÞ is upper semicontinuous in ðy; tÞ;

(iii) T is upper semicontinuous and for each x A K, TðxÞ is a nonempty compact
subset of D;

(iv) the set-valued mapping W : K xZ defined by WðxÞ :¼ ZnintCðxÞ, Ex A K,
is closed;

(v) there exist a nonempty compact subset M of K and an x A M such that,
Ex A KnM, f ðx; x;TðxÞÞH intCðxÞ.

Then (GVEP 1) is solvable.

Proof. Define F : K xK by

F ðxÞ ¼ fy A K : f ðx; y;TðyÞÞX ðZnintCðyÞÞ0qg; Ex A K :

(i) Ex A K , F ðxÞ is closed in K;
In fact, let a net fylgHFðxÞ be such that yl ! y A K . We need to show

y A FðxÞ. Since yl A F ðxÞ, we have

f ðx; yl;TðylÞÞX ðZnintCðylÞÞ0q:

Then for each l, bvl A TðylÞ such that

f ðx; yl; vlÞX ðZnintCðylÞÞ0q:

Therefore, for each l, bwl A f ðx; yl; vlÞ such that wl A ZnintCðylÞ. Since T
is upper semicontinuous and vl A TðylÞ, by Lemma 2, there exist v A TðyÞ
and a subnet fvl 0 g of fvlg such that vl 0 ! v. Since f ðx; y; vÞ is upper semi-
continuous in ðy; vÞ, by Lemma 2, there exist w A f ðx; y; vÞ and a subnet
fwl 00 g of fwl 0 g such that wl 00 ! w. Hence w A f ðx; y;TðyÞÞ. Since GrðWÞ is
closed and ðyl 00 ;wl 00 Þ ! ðy;wÞ, we have w A ZnintCðyÞ, i.e., f ðx; y;TðyÞÞX
ðZnintCðyÞÞ0q. Thus y A F ðxÞ.

(ii) F is a KKM-map;
If it is false, then there exist x1; . . . ; xn A K and ai > 0,

Pn

i¼1

ai ¼ 1, x̂x ¼
Pn

i¼1

aixi such that x̂x B 6
n

i¼1

FðxiÞ. Then, Ei, x̂x B F ðxiÞ, i.e.,

f ðxi; x̂x;Tðx̂xÞÞH intCðx̂xÞ; i ¼ 1; 2; . . . ; n:
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For each t A Tðx̂xÞ,

f ðxi; x̂x; tÞH intCðx̂xÞ; i ¼ 1; . . . ; n: ð4Þ

Since f ðx; y; tÞ is Cy-concave in x and intCðxÞ is convex, by (4),

0 A f ðx̂x; x̂x; tÞH
Xn

i¼1

ai f ðxi; x̂x; tÞ þ Cðx̂xÞH intCðx̂xÞ þ Cðx̂xÞH intCðx̂xÞ;

a contradiction to Cðx̂xÞ0Z.
(iii) By the condition (v), FðxÞHM. Since F ðxÞ is closed and M is com-

pact, FðxÞ is compact. It follows from Theorem 2 that 7
x AK

F ðxÞ0q. If y A

7
x AK

FðxÞ, then y A K such that, Ex A K , f ðx; y;TðyÞÞX ðZnintCðyÞÞ0q.

Therefore, bv A TðyÞ such that f ðx; y; vÞN intCðyÞ, i.e., y is a solution of
(GVEP 1). r

Corollary 5. Let f : K � K � D ! Z be a gingle valued mapping in Theorem 5.
Assume that conditions (iii), (iv) and (v) in Theorem 5 hold. The conditions
(i) and (ii) in Theorem 5 are replaced with the following

(i) 0 Ex A K, t A D, f ðx; x; tÞ ¼ 0;
(ii) 0 for any fixed y A K and t A D, f ðx; y; tÞ is Cy-concave in x; for any fixed

x A K, f ðx; y; tÞ is continuous in ðy; tÞ;

Then there is a y A K such that, Ex A K, bv A TðyÞ, f ðx; y; vÞ B intCðyÞ.

Corollary 6. Let X and Z be real Banach spaces, and K be a nonempty convex
subset of X. Let C : K xZ be as in Theorem 5, and T : K xLðX ;ZÞ be a set-
valued mapping with nonempty compact values. Assume that the following con-
ditions hold:

(i) T is upper semicontinuous;
(ii) the set-valued mapping W : K xZ defined by WðxÞ :¼ ZnintCðxÞ,

Ex A K, has a weakly closed graph GrðWÞ in X � Z;
(iii) there exist a nonempty, weakly compact subset M of K and an x A M such

that, Ex A KnM, 6
t ATðxÞ

ðt; x � xÞ ¼ ðTðxÞ; x � xÞH intCðxÞ.

Then there is y A K such that, Ex A K, bt A TðyÞ, ðt; y � xÞ B intCðyÞ.

Proof. In Corollary 5, let Y ¼ D ¼ LðX ;ZÞ and f ðx; y; tÞ ¼ ðt; y � xÞ, Ex;
y A K , t A D. Let X and Z be endowed with their weak topologies. We shall
show that f ðx; y; tÞ is weakly continuous in ðy; tÞ.

Indeed, let a net fylgHK and a net ftlgHD be such that yl * y A K
and tl ! t A D. We need to show f ðx; yl; tlÞ * f ðx; y; tÞ. Since f ðx; yl; tlÞ ¼
ðtl; yl � xÞ ¼ ðtl � t; yl � xÞ þ ðt; yl � xÞ and fylg is bounded in the norm
topoloty of X, we have

kðtl � t; yl � xÞka ktl � tk � kyl � xk ! 0;

i:e:; ðtl � t; yl � xÞ ! 0:
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Since t A LðX ;ZÞ and t is continuous from the weak topology of X to the
weak topology of Z, we have

ðt; yl � xÞ * ðt; y � xÞ:

Hence,

f ðx; yl; tlÞ ¼ ðtl � t; yl � xÞ þ ðt; yl � xÞ * ðt; y � xÞ ¼ f ðx; y; tÞ:

Corollary 5 yields the desired result. r
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