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1 Introduction

Let K be a nonempty subset, and f : K x K — IR be a real valued function
such that f(x,x) > 0, Vx € K. The equilibrium problem (in short, EP) is the
problem of finding x € K such that

f(x,y) =0, forall yeKk.

The EP has many applications in physics, mathematical economics, and opera-
tions research, etc. Recently, the EP is extensively generalized to the vector
valued functions (see [1-3, 6, 8, 11-13] and references therein).

In this paper, we consider a more general form of vector equilibrium prob-
lems (in short, VEP) with a moving ordering cone and set-valued mappings.
Let X, Y and Z be real topological vector spaces, K be a nonempty convex
subset of X and D be a nonempty subset of Y. Let C : K 3 Z be a set-valued
mapping such that, Vx € K, C(x) is a closed, convex and proper cone with apex
at the origin and with nonempty interior, i.e. int C(x) # . Let T: K3 D
and [ : K x K x D 3 Z be set-valued mappings such that, Vx e K, T(x) #
andVxe K, te D, 0 € f(x,x,t) = C(x). Throughout this paper, unless other-
wise specified, we fix these notations and assumptions.
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We consider the following generalized vector equilibrium problems (in
short, GVEP).

(GVEP 1) Find y € K such that Vx e K, Jv e T(y), f(x, y,v) & int C(p).
(GVEP 2) Find y € K such that Vx e K, Ju e T(x), f(x, y,u) & int C(p).
(GVEP 3) Find y € K and v € T(y) such that f(x, y,v) £ int C(y), Vx € K.

The following problems are the special cases of (GVEP 1).
() If X=Y, K=D and VxeK, T(x)=x, F: KxK33Z, and let
f(x,y,t) := —F(x, y), then (GVEP 1) reduces to finding y € K such that

F(x,y) ¢ —intC(y), VYxeKkK.

It was investigated in Konnov and Yao [12].

(2)If Y =D = L(X,Z), the space of all continuous linear operators from
Xinto Z, T: K3 L(X,Z) and f(x, y,?) := (¢, y — x), then (GVEP 1) reduces
to finding y € K such that Vx e K, 3t e T(y),

(1, y —x) ¢ int C(y),

where (¢, z) is the evaluation of r € L(X, Z) at z € Z. This was studied in Kon-
nov and Yao [11].

B)Ifn:KxK—X,¥xeK,n(x,x)=0,Y=D=L(X,Z)and T : K3
L(X,Z), let f(x,p,t):= (t,n(x,y)), then (GVEP 1) reduces to finding y € K
such that Vx € K, 3re T(y),

(£,n(x,y)) ¢ int C(p).

It was considered in Ding and Tarafdar [8)].

(4) If D < X*, the topological dual of X, 7: K x K — X, 5n(x,x) =0,
VxeK; T: K-’D and 0: K x D — L(X,Z), and let f(x,y,t) = (0(y,1),
n(x,y)), then (GVEP 1) reduces to finding y € K such that Vx e K, It € T(y)

(0(y,1),n(x,y)) ¢int C(p).

It was investigated in Ansari, Siddigi and Yao [2].
The purpose of this paper is to prove the existence theorems for (GVEP 1)
under certain assumptions on f and T, which extend some results in [2, 11].

2 Preliminaries

In this section, we give some definitions and recall some well-known results we
need.

Definition 1. Let /' : K x K x D 3 Z be given.

(i) f(x,»,t) is Cy-pseudomonotone with respect to T if, Vx,yeK,
Vue T(x),ve T(y), f(x,y,v) & int C(y) implies f(x, y,u) & int C(y).

(ii) f(x,p,t) is weakly C,-pseudomonotone with respect to 7 if, Vx,
yeK,Yve T(y), f(x,y,v) &int C(y) implies f(x, y,u) ¢ int C(y) for some
ueT(x).
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(iii) f(x, y, 1) is u-hemicontinuous with respect to T'if, Vx, y € K, a € [0, 1],
Xy =y +o(x—y), thenmapping o — f(x, y, T(xy)) = ) f(x,p,1)is upper
semicontinuous at & = 0. teT(x,)

(iv) f(x, y,t) is Cy-concave in x if, for any fixed y e K, t € D, Vx1,x; € K,
e [0, 1], floxy + (1 = a)x2, y, 1) < of (x1, p,0) + (1 — o) f (32, p, 1) + C(p).

(v) f(x,y,t) is affine in x if, for any fixed ye K, te D, Vx;,x; € K,

oxe [07 1]’ f(axl +(1 *O()Xz,y,l‘) = af(xlayvt)+(1 *O()f(Xz,y,l).

Remark 1. If f is a single valued mapping, and “<” is replaced with “€” in
some places, then the above definitions for the s1ngle valued mapping are
obtained.

Definition 2. Let X and Y be topological spaces, 7: X 3 Y a set-valued
mapping. (i) 7 is said to be upper semicontinuous at x € X if, for any open set
V' containing 7'(x), there is an open set U containing x such that for each
te U, T(t) = V; T is called upper semicontinuous on X if it is upper semi-
continuous at all x e X. (ii) 7 is said to be closed if the graph of 7, i.e.,
G(T):={(x,y): xe X,ye T(x)}, is a closed subset of X x Y.

Lemma 1. (i) T is closed if and only if for any net {x;}, x, — x and any net
{y.}, y2,€T(x)), vy — y,onehas y € T(x). (ii) If T is compact valued, then T
is upper semicontinuous at x if and only if for any net {x,}, x, — x and any net
{.}, vieT(x;), there exist y € T(x) and a subnet {y;'} of {y,}, such that

Yir—= b

Lemma 2. (i) If'y is a solution of (GVEP 3), then it is a solution of (GVEP 1).
(ii) If f(x, y,t) is weakly C,-pseudomonotone with respect to T and y is a
solution of (GVEP 1), then it is a solution of (GVEP 2).
(iit) If f(x, y,t) is Cy-concave in x and u-hemicontinuous with respect to T,
and y is a solution of (GVEP 2), then it is a solution of (GVEP 1).

Proof. (i) and (ii) are obvious. We need only to show (iii). Let y € K be a solu-
tion of (GVEP 2). Then, Vx € K, there is a u € T(x),

S(x, y,u) £ int C(y). (1)

If y is not a solution of (GVEP 1), then there is an X € K such that
Yve T(y), f(X,y,v) cintC(y), ie., f(X,»,T(y)) =intC(y). Since f is u-
hemicontinuous with respect to 7, there is a d € (0,1) such that for all o €
(0,0), xo =y+a(x—y)eK, f(X,y,T(x,)) cintC(y), ie., YVt e T(x,),

J(x,p,1) =int C(y). (2)
Since f'(x, y,t) is Cy-concave in x and f(y, y,t) = C(p), by (2), we have

S 1) Saf (%, 7,0+ (1= f (3, 7,0) + C(») = int C(3) + C() = int (),
a contradiction to (1). O

Let C;:=Co{C(x):xeK} and Cj:={seZ":(s,x)>0,Yxe C,},
where Co(A4) is the convex hull of a set A4.
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Lemma 3 ([11]). Let s € C:\{0} and H(s) = {x € Z : (s,x) > 0}. Then

(i) H(s) is a closed convex cone in Z.
(i) If H(s) # Z, then int H(s) = s7((0, +0)).

Proof: We need only to show (ii). If x € s7((0,400)), then s(x) = (s, x) > 0.
Since s is continuous, there is a neighbourhood V of the origin in Z such that,
Vzex+ V, s(z) > 0. Hence, x € int H(s). On the other hand, if x € int H(s),
then there is a neighbourhood ¥ of the origin in Z such that x + V' < int H (s).
We shall show s(x) > 0. If it is false, then s(x) = 0. Since V is absorbing,
Vz e Z, there is an r > 0 such that rze V. We have 0 < s(x +rz) = rs(z).
Hence s(z) > 0, i.e., z € H(s). Thus z < H(s), a contradiction.

The following is a result of Chowdhury and Tan [6] which is a generaliza-
tion of the well-known Fan-Browder fixed point theorem.

Theorem 1. Let A,B: K 3 K U {J} be two set-valued mappings such that

(i) Vze K, A(z) = B(z),
(i) Vz € K, B(z) is convex;
(iii) Vz € K, A7(z) is compactly open (i.e., A*(z) n L is open in L for each non-
empty and compact subset L of K);
(iv) there exist a nonempty, closed and compact subset M of K and z € M, such
that K\M < B(z);
(V) VzeM, A(z) # &.

Then there an x € K such that x € B(x).
The following is the well-known Fan lemma in [10].

Theorem 2. Let X be a Hausdorff topological vector space, and K be a non-
empty convex subset of X. For each x € K, let F(x) be a closed subset of K such
that the convex hull of every finite subset {x,...,x,} of K is contained in the

corresponding union | ) F(x;). If there is an % € K such that F(X) is compact,

then () F(x) # . i=1

xeK
Definition 3 ([12]). A set-valued mapping F : K 3 K is called KKM-map if
Co(x1,...,X,} © |J F(x;) for any finite subset {xi,...,x,} of K.
i=1

For properties of set-valued mappings and cones, we refer to Berge [4] and
Jahn [9], respectively.
3 Solutions of (GVEP) with monotonicity

In this section, we use the technique of [2], [6] and [11] to get some existence
results for (GVEP).

Theorem 3. Let X, Y, Z, K, D, C and T be as in section 1. Let f: K x K X
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D 3 Z be such that,Vx,y e K, t € D, f(x,y,t) is a nonempty compact subset of
Z. Assume that the following conditions hold:

(i) VxeK,teD,0€e f(x,x,1) =« C(x);
(i) f(x,y,1) is Cy-pseudomonotone with respect to T and Cy-concave in x;
) S/

(iii) f(x, y,t) is u-hemicontinuous with respect to T and upper semicontinuous
iny,

(iv) the set-valued mapping W : K 3 Z defined by W (x) := Z\int C(x), Vx € K,
is closed;

(V) there are a nonempty, closed and compact subset M of K and a z € M such
that for each z € K\M, f(z,z,t) = int C(z), Vi € T(z),

Then (GVEP 1) has a solution y € M.
Proof. Define A,B: K 3 Ku {J} by
A(z) :={xeK:que T(x), f(x,z,u) cintC(z)}
and
B(z):={xeK:Ywe T(2), f(x,z,w) =intC(z)}, VzeK.

The proof is divided into the following steps.

(i) Vze K, A(z) = B(z);

In fact, if x ¢ B(z), then there is a w € T'(z) such that f(x,z,w) & int C(z).
Since f(x,z,1t) is C.-pseudomonotone with respect to 7, we have f(x,z,u) &
int C(z), Yu e T(x). Thus x ¢ A(z).

(i) Vz € K, B(z) is a convex subset of K;

Let xj,x; € B(z) and o € (0,1). Then, V¢ e T(z),

f(xi,z,t) cintC(z), i=1,2. (3)
By the condition (ii) and (3), we have V¢ € T'(2),
Flaxr + (1= a)xz,z,0) < af (x1,2,0) + (1 — o) f(x2,2, 1) + C(2)
cint C(z) +int C(z) + C(z) < int C(z).

Therefore ax; + (1 — a)x; € B(z).

(iii) Vx € K, A7(x) is compactly open;

Indeed, Let L be a nonempty compact subset of K, and Q := A™(x) n L =
{zeL:xe A(z)}. We need to show that L\Q is closed in L. Let a net {z,} =
L\ Q be such that z; — z. Then x ¢ A(z;). By the definition of A4, Yu € T(x),
f(x,z;,u) # int C(z,). Hence, there is ¢, € f(x,z;,u) such that ¢, ¢ int C(z,).
Since f(x, y,u) is upper semicontinuous in y, by Lemma 1, there exist a
point 7 € f(x,z,u) and a subset {¢;:} = {r;} such that ¢, — . Since the net
{(zyr,t;)} = G(W) and (z,:,¢t;) — (z,1), and G,(W) is closed in K x Z, we
have (z,¢) € G.(W), i.e., t ¢ int C(z). Hence, Vu € T(x), f(x,z,u) & int C(z),
ie., x¢ A(z). Thus z € L\Q.

(iv) By the condition (v), K\M < B™(2);

(v) We claim that there is a point y € M such that A(y) = .
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Suppose to the contrary that, Vy € M, A(y) # . Then, by Theorem 1, B
has a fixed point x € K, i.e., x € B(x). Then, V¢ e T(x), f(x,x,t) < int C(x).
But, by the condition (i), 0 € f(x, x, 7). Hence 0 € int C(x), a contradiction to
C(x) # Z.

If yeM and A(y) = &, then for each xe K, Jue T(x) such that
f(x, y,u) & int C(y). This means y is a solution of (GVEP 2). By Lemma 2, y
is a solution of (GVEP 1). O

Corollary 1. Let X, Y, K, D and T be as in Theorem 3. Let Z = R and for each
xeK,C(x)=R; =[0,+0),and f : K x K x D3R be such that Vx, y € K,
teD, f(x,y,t) is a nonempty, closed and bounded subset of R. Assume that
all conditions in Theorem 3 hold. Then there is a y € M such that, Vx € K,
Sve T(3), f(x, 7,v) £ intR .

Corollary 2. Let X, Y, Z, K, D, C and T be as in Theorem 3, and f : K x K X
D — Z be a single valued mapping. Assume that Conditions (ii), (iv) and (v)
in Theorem 3 hold. The conditions (i) and (iii) in Theorem 3 are replaced with
the following

(i) VxeK,teD, f(x,x,1) =0;
(i) f(x, y, 1) is u-hemicontinuous with respect to T and continuous in y.

Then there is a y € M such that Vx € K, v e T(y), f(x, y,v) ¢ int C(y).

Corollary 3. Let X, Y, Z, K, D, C and T be as in Theorem 3. Assume that the
following conditions hold:

(1) the single valued mapping n : K x K — X is affine in the first argument
and continuou in the second argument; ¥x € K, (x, x) = 0;

(ii) the single valued mapping 0 : K x D — L(X,Z) is continuous in the first
argument and (0(y, t),n(x, y)) is Cy-pseudomonotone with respect to T;

(iii) the bilinear form (- ,-) between L(X,Z) and X is continuous;

(iv) T : K 3 D is u-hemicontinuous with respect to 0, i.e., Vx,y € K, o € [0, 1],
Xy = ax + (1 — o)y, the mapping o — (0(y, T (x,)),n(x, y)) is upper semi-
continuous at o. = 0;

(V) the set-valued mapping W : K 3 Z defined by W(x):= Z\int C(x) is
closed;

(vi) there exist a nonempty, closed and compact subset M of K and zZ € M such
that for each z € K\M, (0(z,1),n(Z,z)) e int C(z), Vt € T(z);

Then there is a y € M such that Vx e K, Jve T(y),

(0(y,v),n(x, y)) ¢ int C(y).
Proof. Let f(x,y,t) = (0(y,1),n(x,y)), Vx,y € K and r € D. Then it is easy
to check that all the conditions in Corollary 2 hold. Corollary 2 yields the
conclusion. O

Remark 2. Theorem 3.1 in [2] is similar to the above corollary.

Corollary 4. Let X and Z be real Banach spaces, and K be a nonempty convex
subset of X. Let C: K 3 Z be as in section 1. Let T : K 3 L(X,Z) be a set-
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valued mapping with T(x) # &, Vx € K. Assume that the following conditions
hold:

(i) Tis Cy-pseudomonotone,i.e.,Vx,ye K,¥t' e T(x),t" € T(y), ({',x —y) ¢

int C(x) implies (t",x — y) ¢ int C(x);

(i) T is u-hemicontinuous, ie., VYx,ye K, a€|0,1], the mapping o —
(T(ox+ (1 —a)y), y — x) is upper semicontinuous at o = 0.

(iii) the set-valued mapping W : K 3 Z, W(x) := Z\int C(x), Yx € K, has a
weakly closed graph G, (W) in X x Z;

(iv) there exist a nonempty, and weakly compact subset M of K and a ze M
such that,Vz € K\M, (t,z — 2Z) cint C(z), Vt € T(z).

Then there is y € M such that,Vx e K, Jve T(y), (v, y — x) ¢ int C(p).

Proof. In Corollary 2, let X and Z be endowed with their weak topologies, and
let D=Y =L(X,Z) and f(x,y,t) = (t,y — x), Vx, ye K, t € D. We need to
show that f(x, y,f) is weakly continuous in y. Let a net {y;} = K be such
that y;, — y, where “—"" denotes “converges weakly to”. Since t € L(X,Z), ¢
is continuous from the weak topology of X to the weak topology of Z ([7, Chap.
6, Thm 1.1]). We have f(x, y;,t) = (t,y;, —x) — (t, y — x) = f(x, y, t). Cor-
ollary 2 yields the conclusion. O

Remark 3. Theorem 3.1 in [11] is the special case of M = K in the above
corollary 4.

Theorem 4. Let X, Y, Z, K, D, C and T be as in Theorem 3, and s € C;\{0},
H(s) # Z. Assume that the conditions (i), (iii), (iv) and (v) in Theorem 3 hold,
the condition (ii) is replaced with the following

(i1)" f(x,y,t) is Cy-concave in x and H(s)-pseudomonotone with respect to
T, ie, Vx,yeK, YueT(x), veT(y), f(x,y,v)&intH(s) implies
f(x, y,u) & int H(s). Then (GVEP 1) is solvable.

Proof. Define f : K x K x D3 R by

fx,p,0) = (s, f(x,»,0), Vx,yeK,teD.
Since f is H(s)-pseudomonotone with respect to 7, by Lemma 3, Vx, y € K,

Yue T(x), ve T(y), f(x,y,v) «intIR, implies f(x, y,u) « intIR,. By Cor-
ollary 1, 3y € M such that Vx e K, v e T(y),

(5, £ (x, »,0)) = F(x, »,v) & int R..
Hence,
f(x, y,v) & int H(s).
Since s € C;\{0} and int H(s) > int C; > int C(y), we have
f(x,p,0)  int C(y).
Thus y is a solution of (GVEP 1). O
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Remark 4. In a like manner, as in Corollaries 3 and 4, we can obtain some
results similar to Theorem 6 in [2] and Theorem 4.1 in [11] from the above
theorem.

4 Solutions of (GVEP) without monotonicity

Theorem 5. Let X be a Hausdorff topological vector space, and let Y, Z, K, D, C
and T as in Theorem 3. Assume that the following conditions hold:

() f: KxKxD33Z, Vx,yeK, teD, f(x,y,t) is a nonempty compact

subset of Z, and 0 € f(x,x,t);

(ii) for any fixed y € K and t € D, f(x, y,t) is Cy-concave in x; for any fixed
xeK, f(x,y,1t) is upper semicontinuous in (y,t);

(iii) T is upper semicontinuous and for each x € K, T(x) is a nonempty compact
subset of D;

(iv) the set-valued mapping W : K 3 Z defined by W (x) := Z\int C(x), Vx € K,
is closed;

(v) there exist a nonempty compact subset M of K and an X € M such that,
Vx e K\M, f(x,x,T(x)) < int C(x).

Then (GVEP 1) is solvable.

Proof. Define F : K 3 K by

F(x)={yeK: f(x,»,T(y)n(Z\intC(y)) # &}, VxeK.

(i) Vx € K, F(x) is closed in K;
In fact, let a net {y,} = F(x) be such that y, — y € K. We need to show
y € F(x). Since y, € F(x), we have

S0 32, T(y2)) 0 (Z\int C(y,)) # &

Then for each 4, v, € T(y;) such that

S(x,y0,0) n(Z\int C(y;)) # &.

Therefore, for each A, 3w, € f(x, y;,v;) such that w; € Z\int C(y;,). Since T
is upper semicontinuous and v; € T(y;), by Lemma 2, there exist ve T(y)
and a subnet {v;'} of {v;} such that v, — v. Since f(x, y,v) is upper semi-
continuous in (y,v), by Lemma 2, there exist w e f(x, y,v) and a subnet
{w;»} of {w,;} such that w;» — w. Hence w e f(x, y, T(y)). Since G.(W) is
closed and (y,~,w;») — (y,w), we have w e Z\int C(y), i.e., f(x,»,T(y)) N
(Z\int C(y)) # &. Thus y € F(x).

(ii) Fis a KKM-map; "

If it is false, then there exist xi,...,x, € K and o; >0, Y a; =1, X =

n n i=1
>~ ax; such that X ¢ | ) F(x;). Then, Vi, X ¢ F(x;), i.e.,
i=1 ;

i=1

f(x, %, T(x)) cintC(x), i=1,2,...,n
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For each 1 € T(x),
f(xi,%,0) cintC(x), i=1,...,n (4)

Since f'(x, y,t) is Cy-concave in x and int C(x) is convex, by (4),

0e f(x,%,1) < z”:otif(xi,)%, 1)+ C(x) cint C(x) + C(x) < int C(%),
i=1

a contradiction to C(X) # Z.
(iii) By the condition (v), F(X) = M. Since F(X) is closed and M is com-
pact, F(x) is compact. It follows from Theorem 2 that () F(x) # &J. If y €

M F(x), then ye K such that, Yxe K, f(x.7, T(7)) > (Z2\int C(3)) # &.

xek
Therefore, Jv e T(y) such that f(x, y,v) & int C(p), i.e., y is a solution of
(GVEP 1). U

Corollary 5. Let f : K x K x D — Z be a gingle valued mapping in Theorem 5.
Assume that conditions (iii), (iv) and (v) in Theorem 5 hold. The conditions
(i) and (ii) in Theorem 5 are replaced with the following

(i) Vxe K, teD, f(x,x,t) =0;
(ii) for any fixed y € K and t € D, f(x, y,t) is Cy-concave in x; for any fixed
xe K, f(x,y,t) is continuous in (y,t);

Then there is a y € K such that, Vx € K, v e T(y), f(x, y,v) ¢ int C(p).

Corollary 6. Let X and Z be real Banach spaces, and K be a nonempty convex
subset of X. Let C : K 3 Z be as in Theorem 5,and T : K 3 L(X, Z) be a set-
valued mapping with nonempty compact values. Assume that the following con-
ditions hold:

(1) T is upper semicontinuous;
(i) the set-valued mapping W :K 3 Z defined by W (x):= Z\int C(x),
Vx € K, has a weakly closed graph G.(W) in X x Z;
(iii) there exist a nonempty, weakly compact subset M of K and an X € M such
that,Yxe K\M, |) (t,x —x) = (T(x),x — X) < int C(x).

teT(x)

Then there is y € K such that,Yx e K, 3t e T(y), (t, y — x) ¢ int C(p).

Proof. In Corollary 5, let Y =D = L(X,Z) and f(x, y,t) = (t,y — x), Vx,
yeK, teD. Let X and Z be endowed with their weak topologies. We shall
show that f(x, y, ) is weakly continuous in (y, ).

Indeed, let a net {y;} = K and a net {¢;} = D be such that y;, — ye K
and 7; — t € D. We need to show f(x, y;,t;) — f(x, y, ). Since f(x, y), t;) =
(tyyy,—x)=(t; —t,y;,—x)+ (¢, y;, —x) and {y;} is bounded in the norm
topoloty of X, we have

1@t =6,y =) < [z = tll - ||z = xI| = 0,

1.e., (l;_ — 1,y — x) — 0.
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Since t € L(X,Z) and ¢ is continuous from the weak topology of X to the
weak topology of Z, we have

(Zvy/l _x) - (Ly—x).

Hence,

f(xa y,:,l;,) = (Zi =LY —X) + (ta Vi — X) - (t7y —X) :f(x7 Y Z)'

Corollary 5 yields the desired result. O
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