Generalized vector equilibrium problems with set-valued mappings

Jun-Yi Fu, An-Hua Wan

Department of Mathematics, Nanchang University, Nanchang, China, 330047 (e-mail: fujunyihotmail@163.net) Faculty of Science, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China, 710049

Manuscript received: September 2000

Abstract. In this paper, we introduce a more general form of vector equilibrium problems with a moving ordering cone and set-valued mappings, and obtain some existence theorems for generalized vector equilibrium problems, which extend and unify some existence results for similar problems.

Key Words: Vector equilibrium problem, moving cone, set-valued mapping, pseudo-monotonicity, topological vector space

1 Introduction

Let K be a nonempty subset, and $f: K \times K \to \mathbb{R}$ be a real valued function such that $f(x, x) \ge 0$, $\forall x \in K$. The equilibrium problem (in short, EP) is the problem of finding $x \in K$ such that

 $f(x, y) \ge 0$, for all $y \in K$.

The EP has many applications in physics, mathematical economics, and operations research, etc. Recently, the EP is extensively generalized to the vector valued functions (see [1-3, 6, 8, 11-13] and references therein).

In this paper, we consider a more general form of vector equilibrium problems (in short, VEP) with a moving ordering cone and set-valued mappings. Let X, Y and Z be real topological vector spaces, K be a nonempty convex subset of X and D be a nonempty subset of Y. Let $C: K \rightrightarrows Z$ be a set-valued mapping such that, $\forall x \in K$, C(x) is a closed, convex and proper cone with apex at the origin and with nonempty interior, i.e. int $C(x) \neq \emptyset$. Let $T: K \rightrightarrows D$ and $f: K \times K \times D \rightrightarrows Z$ be set-valued mappings such that, $\forall x \in K$, $T(x) \neq \emptyset$ and $\forall x \in K$, $t \in D$, $0 \in f(x, x, t) \subset C(x)$. Throughout this paper, unless otherwise specified, we fix these notations and assumptions. We consider the following generalized vector equilibrium problems (in short, GVEP).

(GVEP 1) Find $y \in K$ such that $\forall x \in K$, $\exists v \in T(y)$, $f(x, y, v) \notin$ int C(y). (GVEP 2) Find $y \in K$ such that $\forall x \in K$, $\exists u \in T(x)$, $f(x, y, u) \notin$ int C(y). (GVEP 3) Find $y \in K$ and $v \in T(y)$ such that $f(x, y, v) \notin$ int C(y), $\forall x \in K$.

The following problems are the special cases of (GVEP 1). (1) If X = Y, K = D and $\forall x \in K$, T(x) = x, $F: K \times K \rightrightarrows Z$, and let f(x, y, t) := -F(x, y), then (GVEP 1) reduces to finding $y \in K$ such that

 $F(x, y) \not\subset -\text{int } C(y), \quad \forall x \in K.$

It was investigated in Konnov and Yao [12].

(2) If Y = D = L(X, Z), the space of all continuous linear operators from X into Z, $T : K \rightrightarrows L(X, Z)$ and f(x, y, t) := (t, y - x), then (GVEP 1) reduces to finding $y \in K$ such that $\forall x \in K, \exists t \in T(y)$,

 $(t, y - x) \notin \operatorname{int} C(y),$

where (t, z) is the evaluation of $t \in L(X, Z)$ at $z \in Z$. This was studied in Konnov and Yao [11].

(3) If $\eta : K \times K \to X$, $\forall x \in K$, $\eta(x, x) = 0$, Y = D = L(X, Z) and $T : K \rightrightarrows L(X, Z)$, let $f(x, y, t) := (t, \eta(x, y))$, then (GVEP 1) reduces to finding $y \in K$ such that $\forall x \in K$, $\exists t \in T(y)$,

 $(t,\eta(x,y)) \notin \operatorname{int} C(y).$

It was considered in Ding and Tarafdar [8].

(4) If $D \subset X^*$, the topological dual of X, $\eta : K \times K \to X$, $\eta(x, x) = 0$, $\forall x \in K$; $T : K \rightrightarrows D$ and $\theta : K \times D \to L(X, Z)$, and let $f(x, y, t) = (\theta(y, t), \eta(x, y))$, then (GVEP 1) reduces to finding $y \in K$ such that $\forall x \in K, \exists t \in T(y)$

 $(\theta(y, t), \eta(x, y)) \notin \text{int } C(y).$

It was investigated in Ansari, Siddiqi and Yao [2].

The purpose of this paper is to prove the existence theorems for (GVEP 1) under certain assumptions on f and T, which extend some results in [2, 11].

2 Preliminaries

In this section, we give some definitions and recall some well-known results we need.

Definition 1. Let $f : K \times K \times D \rightrightarrows Z$ be given.

(i) f(x, y, t) is C_y -pseudomonotone with respect to T if, $\forall x, y \in K$, $\forall u \in T(x), v \in T(y), f(x, y, v) \notin \text{ int } C(y) \text{ implies } f(x, y, u) \notin \text{ int } C(y).$

(ii) f(x, y, t) is weakly C_y -pseudomonotone with respect to T if, $\forall x$, $y \in K$, $\forall v \in T(y)$, $f(x, y, v) \neq \text{int } C(y)$ implies $f(x, y, u) \neq \text{int } C(y)$ for some $u \in T(x)$.

(iii) f(x, y, t) is *u*-hemicontinuous with respect to *T* if, $\forall x, y \in K, \alpha \in [0, 1]$, $x_{\alpha} = y + \alpha(x - y)$, then mapping $\alpha \to f(x, y, T(x_{\alpha})) = \bigcup_{t \in T(x_{\alpha})} f(x, y, t)$ is upper semicontinuous at $\alpha = 0$.

(iv) f(x, y, t) is C_y -concave in x if, for any fixed $y \in K$, $t \in D$, $\forall x_1, x_2 \in K$, $\alpha \in [0, 1]$, $f(\alpha x_1 + (1 - \alpha)x_2, y, t) \subset \alpha f(x_1, y, t) + (1 - \alpha)f(x_2, y, t) + C(y)$. (v) f(x, y, t) is affine in x if, for any fixed $y \in K$, $t \in D$, $\forall x_1, x_2 \in K$, $\alpha \in [0, 1]$, $f(\alpha x_1 + (1 - \alpha)x_2, y, t) = \alpha f(x_1, y, t) + (1 - \alpha)f(x_2, y, t)$.

Remark 1. If f is a single valued mapping, and " \subset " is replaced with " \in " in some places, then the above definitions for the single valued mapping are obtained.

Definition 2. Let X and Y be topological spaces, $T: X \rightrightarrows Y$ a set-valued mapping. (i) T is said to be upper semicontinuous at $x \in X$ if, for any open set V containing T(x), there is an open set U containing x such that for each $t \in U$, $T(t) \subset V$; T is called upper semicontinuous on X if it is upper semicontinuous at all $x \in X$. (ii) T is said to be closed if the graph of T, i.e., $G_r(T) := \{(x, y) : x \in X, y \in T(x)\}$, is a closed subset of $X \times Y$.

Lemma 1. (*i*) *T* is closed if and only if for any net $\{x_{\lambda}\}, x_{\lambda} \to x$ and any net $\{y_{\lambda}\}, y_{\lambda} \in T(x_{\lambda}), y_{\lambda} \to y$, one has $y \in T(x)$. (*ii*) If *T* is compact valued, then *T* is upper semicontinuous at *x* if and only if for any net $\{x_{\lambda}\}, x_{\lambda} \to x$ and any net $\{y_{\lambda}\}, y_{\lambda} \in T(x_{\lambda})$, there exist $y \in T(x)$ and a subnet $\{y_{\lambda'}\}$ of $\{y_{\lambda}\}$, such that $y_{\lambda'} \to y$.

Lemma 2. (i) If y is a solution of (GVEP 3), then it is a solution of (GVEP 1). (ii) If f(x, y, t) is weakly C_y -pseudomonotone with respect to T and y is a solution of (GVEP 1), then it is a solution of (GVEP 2).

(iii) If f(x, y, t) is C_y -concave in x and u-hemicontinuous with respect to T, and y is a solution of (GVEP 2), then it is a solution of (GVEP 1).

Proof. (i) and (ii) are obvious. We need only to show (iii). Let $y \in K$ be a solution of (GVEP 2). Then, $\forall x \in K$, there is a $u \in T(x)$,

$$f(x, y, u) \neq \operatorname{int} C(y).$$
 (1)

If y is not a solution of (GVEP 1), then there is an $\bar{x} \in K$ such that $\forall v \in T(y), f(\bar{x}, y, v) \subset \operatorname{int} C(y)$, i.e., $f(\bar{x}, y, T(y)) \subset \operatorname{int} C(y)$. Since f is uhemicontinuous with respect to T, there is a $\delta \in (0, 1)$ such that for all $\alpha \in (0, \delta), x_{\alpha} = y + \alpha(\bar{x} - y) \in K, f(\bar{x}, y, T(x_{\alpha})) \subset \operatorname{int} C(y)$, i.e., $\forall t \in T(x_{\alpha})$,

$$f(\bar{x}, y, t) \subset \operatorname{int} C(y). \tag{2}$$

Since f(x, y, t) is C_y -concave in x and $f(y, y, t) \subset C(y)$, by (2), we have $f(x_{\alpha}, y, t) \subset \alpha f(\bar{x}, y, t) + (1 - \alpha)f(y, y, t) + C(y) \subset \text{int } C(y) + C(y) \subset \text{int } C(y)$, a contradiction to (1).

Let $C_+ := \operatorname{Co}\{C(x) : x \in K\}$ and $C_+^* := \{s \in Z^* : (s, x) \ge 0, \forall x \in C_+\},$ where $\operatorname{Co}(A)$ is the convex hull of a set A. **Lemma 3** ([11]). Let $s \in C_+^* \setminus \{0\}$ and $H(s) = \{x \in Z : (s, x) \ge 0\}$. Then

- (i) H(s) is a closed convex cone in Z.
- (ii) If $H(s) \neq Z$, then int $H(s) = s^{\dashv}((0, +\infty))$.

Proof. We need only to show (ii). If $x \in s^{-1}((0, +\infty))$, then s(x) = (s, x) > 0. Since *s* is continuous, there is a neighbourhood *V* of the origin in *Z* such that, $\forall z \in x + V, s(z) > 0$. Hence, $x \in int H(s)$. On the other hand, if $x \in int H(s)$, then there is a neighbourhood *V* of the origin in *Z* such that $x + V \subset int H(s)$. We shall show s(x) > 0. If it is false, then s(x) = 0. Since *V* is absorbing, $\forall z \in Z$, there is an r > 0 such that $rz \in V$. We have $0 \le s(x + rz) = rs(z)$. Hence $s(z) \ge 0$, i.e., $z \in H(s)$. Thus $z \subset H(s)$, a contradiction.

The following is a result of Chowdhury and Tan [6] which is a generalization of the well-known Fan-Browder fixed point theorem.

Theorem 1. Let $A, B : K \rightrightarrows K \cup \{\emptyset\}$ be two set-valued mappings such that

- (i) $\forall z \in K, A(z) \subset B(z);$
- (ii) $\forall z \in K, B(z) \text{ is convex};$
- (iii) $\forall z \in K, A^{\dashv}(z)$ is compactly open (i.e., $A^{\dashv}(z) \cap L$ is open in L for each nonempty and compact subset L of K);
- (iv) there exist a nonempty, closed and compact subset M of K and $\overline{z} \in M$, such that $K \setminus M \subset B^{\dashv}(\overline{z})$;
- (v) $\forall z \in M, A(z) \neq \emptyset$.

Then there an $x \in K$ such that $x \in B(x)$.

The following is the well-known Fan lemma in [10].

Theorem 2. Let X be a Hausdorff topological vector space, and K be a nonempty convex subset of X. For each $x \in K$, let F(x) be a closed subset of K such that the convex hull of every finite subset $\{x_1, \ldots, x_n\}$ of K is contained in the corresponding union $\bigcup_{x \in K}^n F(x_i)$. If there is an $\overline{x} \in K$ such that $F(\overline{x})$ is compact, then $\bigcap_{x \in K} F(x) \neq \emptyset$. $^{i=1}$

Definition 3 ([12]). A set-valued mapping $F : K \rightrightarrows K$ is called KKM-map if $Co(x_1, \ldots, x_n) \subset \bigcup_{i=1}^n F(x_i)$ for any finite subset $\{x_1, \ldots, x_n\}$ of K.

For properties of set-valued mappings and cones, we refer to Berge [4] and Jahn [9], respectively.

3 Solutions of (GVEP) with monotonicity

In this section, we use the technique of [2], [6] and [11] to get some existence results for (GVEP).

Theorem 3. Let X, Y, Z, K, D, C and T be as in section 1. Let $f: K \times K \times$

 $D \rightrightarrows Z$ be such that, $\forall x, y \in K$, $t \in D$, f(x, y, t) is a nonempty compact subset of Z. Assume that the following conditions hold:

- (i) $\forall x \in K, t \in D, 0 \in f(x, x, t) \subset C(x);$
- (ii) f(x, y, t) is C_v -pseudomonotone with respect to T and C_v -concave in x;
- (iii) f(x, y, t) is u-hemicontinuous with respect to T and upper semicontinuous in y;
- (iv) the set-valued mapping $W : K \rightrightarrows Z$ defined by $W(x) := Z \setminus \text{int } C(x), \forall x \in K,$ is closed;
- (v) there are a nonempty, closed and compact subset M of K and $a \overline{z} \in M$ such that for each $z \in K \setminus M$, $f(\overline{z}, z, t) \subset int C(z)$, $\forall t \in T(z)$;

Then (GVEP 1) has a solution $y \in M$.

Proof. Define $A, B : K \rightrightarrows K \cup \{\emptyset\}$ by

$$A(z) := \{ x \in K : \exists u \in T(x), f(x, z, u) \subset \text{int } C(z) \}$$

and

$$B(z) := \{ x \in K : \forall w \in T(z), f(x, z, w) \subset \text{int } C(z) \}, \quad \forall z \in K.$$

The proof is divided into the following steps.

(i) $\forall z \in K, A(z) \subset B(z);$

In fact, if $x \notin B(z)$, then there is a $w \in T(z)$ such that $f(x, z, w) \notin$ int C(z). Since f(x, z, t) is C_z -pseudomonotone with respect to T, we have $f(x, z, u) \notin$ int C(z), $\forall u \in T(x)$. Thus $x \notin A(z)$.

(ii) $\forall z \in K, B(z)$ is a convex subset of K;

Let $x_1, x_2 \in B(z)$ and $\alpha \in (0, 1)$. Then, $\forall t \in T(z)$,

$$f(x_i, z, t) \subset \operatorname{int} C(z), \quad i = 1, 2.$$
(3)

By the condition (ii) and (3), we have $\forall t \in T(z)$,

$$f(\alpha x_1 + (1 - \alpha)x_2, z, t) \subset \alpha f(x_1, z, t) + (1 - \alpha)f(x_2, z, t) + C(z)$$
$$\subset \operatorname{int} C(z) + \operatorname{int} C(z) + C(z) \subset \operatorname{int} C(z).$$

Therefore $\alpha x_1 + (1 - \alpha) x_2 \in B(z)$.

(iii) $\forall x \in K, A^{\neg}(x)$ is compactly open;

Indeed, Let *L* be a nonempty compact subset of *K*, and $Q := A^{\neg}(x) \cap L = \{z \in L : x \in A(z)\}$. We need to show that $L \setminus Q$ is closed in *L*. Let a net $\{z_{\lambda}\} \subset L \setminus Q$ be such that $z_{\lambda} \to z$. Then $x \notin A(z_{\lambda})$. By the definition of *A*, $\forall u \in T(x)$, $f(x, z_{\lambda}, u) \notin \operatorname{int} C(z_{\lambda})$. Hence, there is $t_{\lambda} \in f(x, z_{\lambda}, u)$ such that $t_{\lambda} \notin \operatorname{int} C(z_{\lambda})$. Since f(x, y, u) is upper semicontinuous in *y*, by Lemma 1, there exist a point $t \in f(x, z, u)$ and a subset $\{t_{\lambda'}\} \subset \{t_{\lambda}\}$ such that $t_{\lambda'} \to t$. Since the net $\{(z_{\lambda'}, t_{\lambda'})\} \subset G_r(W)$ and $(z_{\lambda'}, t_{\lambda'}) \to (z, t)$, and $G_r(W)$ is closed in $K \times Z$, we have $(z, t) \in G_r(W)$, i.e., $t \notin \operatorname{int} C(z)$. Hence, $\forall u \in T(x), f(x, z, u) \notin \operatorname{int} C(z)$, i.e., $x \notin A(z)$. Thus $z \in L \setminus Q$.

(iv) By the condition (v), $K \setminus M \subset B^{\dashv}(\overline{z})$;

(v) We claim that there is a point $\overline{y} \in M$ such that $A(\overline{y}) = \emptyset$.

Suppose to the contrary that, $\forall y \in M$, $A(y) \neq \emptyset$. Then, by Theorem 1, *B* has a fixed point $x \in K$, i.e., $x \in B(x)$. Then, $\forall t \in T(x)$, $f(x, x, t) \subset \text{int } C(x)$. But, by the condition (i), $0 \in f(x, x, t)$. Hence $0 \in \text{int } C(x)$, a contradiction to $C(x) \neq Z$.

If $\overline{y} \in M$ and $A(\overline{y}) = \emptyset$, then for each $x \in K$, $\exists u \in T(x)$ such that $f(x, \overline{y}, u) \neq \text{int } C(\overline{y})$. This means \overline{y} is a solution of (GVEP 2). By Lemma 2, \overline{y} is a solution of (GVEP 1).

Corollary 1. Let X, Y, K, D and T be as in Theorem 3. Let $Z = \mathbb{R}$ and for each $x \in K$, $C(x) = \mathbb{R}_+ = [0, +\infty)$, and $f : K \times K \times D \rightrightarrows \mathbb{R}$ be such that $\forall x, y \in K$, $t \in D$, f(x, y, t) is a nonempty, closed and bounded subset of \mathbb{R} . Assume that all conditions in Theorem 3 hold. Then there is a $\overline{y} \in M$ such that, $\forall x \in K$, $\exists v \in T(\overline{y}), f(x, \overline{y}, v) \notin \text{int } \mathbb{R}_+$.

Corollary 2. Let X, Y, Z, K, D, C and T be as in Theorem 3, and $f : K \times K \times D \rightarrow Z$ be a single valued mapping. Assume that Conditions (ii), (iv) and (v) in Theorem 3 hold. The conditions (i) and (iii) in Theorem 3 are replaced with the following

(i)' $\forall x \in K, t \in D, f(x, x, t) = 0;$

(iii)' f(x, y, t) is u-hemicontinuous with respect to T and continuous in y.

Then there is a $y \in M$ such that $\forall x \in K, \exists v \in T(y), f(x, y, v) \notin \text{int } C(y)$.

Corollary 3. Let X, Y, Z, K, D, C and T be as in Theorem 3. Assume that the following conditions hold:

- (i) the single valued mapping $\eta : K \times K \to X$ is affine in the first argument and continuou in the second argument; $\forall x \in K, \eta(x, x) = 0$;
- (ii) the single valued mapping $\theta : K \times D \to L(X, Z)$ is continuous in the first argument and $(\theta(y, t), \eta(x, y))$ is C_y -pseudomonotone with respect to T;
- (iii) the bilinear form (\cdot, \cdot) between L(X, Z) and X is continuous;
- (iv) $T: K \rightrightarrows D$ is u-hemicontinuous with respect to θ , i.e., $\forall x, y \in K, \alpha \in [0, 1]$, $x_{\alpha} = \alpha x + (1 - \alpha)y$, the mapping $\alpha \rightarrow (\theta(y, T(x_{\alpha})), \eta(x, y))$ is upper semicontinuous at $\alpha = 0$;
- (v) the set-valued mapping $W: K \rightrightarrows Z$ defined by $W(x) := Z \setminus int C(x)$ is closed;
- (vi) there exist a nonempty, closed and compact subset M of K and $\overline{z} \in M$ such that for each $z \in K \setminus M$, $(\theta(z, t), \eta(\overline{z}, z)) \in \text{int } C(z)$, $\forall t \in T(z)$;

Then there is a $y \in M$ such that $\forall x \in K, \exists v \in T(y)$,

 $(\theta(y, v), \eta(x, y)) \notin \text{int } C(y).$

Proof. Let $f(x, y, t) = (\theta(y, t), \eta(x, y)), \forall x, y \in K \text{ and } t \in D$. Then it is easy to check that all the conditions in Corollary 2 hold. Corollary 2 yields the conclusion.

Remark 2. Theorem 3.1 in [2] is similar to the above corollary.

Corollary 4. Let X and Z be real Banach spaces, and K be a nonempty convex subset of X. Let $C : K \rightrightarrows Z$ be as in section 1. Let $T : K \rightrightarrows L(X, Z)$ be a set-

valued mapping with $T(x) \neq \emptyset$, $\forall x \in K$. Assume that the following conditions hold:

- (i) *T* is C_x -pseudomonotone, i.e., $\forall x, y \in K, \forall t' \in T(x), t'' \in T(y), (t', x y) \notin int C(x) implies <math>(t'', x y) \notin int C(x);$
- (ii) *T* is *u*-hemicontinuous, i.e., $\forall x, y \in K$, $\alpha \in [0, 1]$, the mapping $\alpha \rightarrow (T(\alpha x + (1 \alpha)y), y x)$ is upper semicontinuous at $\alpha = 0$.
- (iii) the set-valued mapping $W : K \rightrightarrows Z$, $W(x) := Z \setminus int C(x)$, $\forall x \in K$, has a weakly closed graph $G_r(W)$ in $X \times Z$;
- (iv) there exist a nonempty, and weakly compact subset M of K and $a \overline{z} \in M$ such that, $\forall z \in K \setminus M$, $(t, z \overline{z}) \subset \text{int } C(z)$, $\forall t \in T(z)$.

Then there is $y \in M$ such that, $\forall x \in K$, $\exists v \in T(y)$, $(v, y - x) \notin \text{int } C(y)$.

Proof. In Corollary 2, let *X* and *Z* be endowed with their weak topologies, and let D = Y = L(X, Z) and f(x, y, t) = (t, y - x), $\forall x, y \in K, t \in D$. We need to show that f(x, y, t) is weakly continuous in *y*. Let a net $\{y_{\lambda}\} \subset K$ be such that $y_{\lambda} \rightharpoonup y$, where " \rightharpoonup " denotes "converges weakly to". Since $t \in L(X, Z)$, *t* is continuous from the weak topology of *X* to the weak topology of *Z* ([7, Chap. 6, Thm 1.1]). We have $f(x, y_{\lambda}, t) = (t, y_{\lambda} - x) \rightharpoonup (t, y - x) = f(x, y, t)$. Corollary 2 yields the conclusion.

Remark 3. Theorem 3.1 in [11] is the special case of M = K in the above corollary 4.

Theorem 4. Let X, Y, Z, K, D, C and T be as in Theorem 3, and $s \in C_+^* \setminus \{0\}$, $H(s) \neq Z$. Assume that the conditions (i), (iii), (iv) and (v) in Theorem 3 hold, the condition (ii) is replaced with the following

(ii)' f(x, y, t) is C_y -concave in x and H(s)-pseudomonotone with respect to T, i.e., $\forall x, y \in K$, $\forall u \in T(x)$, $v \in T(y)$, $f(x, y, v) \not\subset int H(s)$ implies $f(x, y, u) \not\subset int H(s)$. Then (GVEP 1) is solvable.

Proof. Define $\tilde{f}: K \times K \times D \rightrightarrows \mathbb{R}$ by

 $\tilde{f}(x, y, t) = (s, f(x, y, t)), \quad \forall x, y \in K, t \in D.$

Since f is H(s)-pseudomonotone with respect to T, by Lemma 3, $\forall x, y \in K$, $\forall u \in T(x), v \in T(y), \tilde{f}(x, y, v) \notin \text{int } \mathbb{R}_+ \text{ implies } \tilde{f}(x, y, u) \notin \text{int } \mathbb{R}_+.$ By Corollary 1, $\exists y \in M$ such that $\forall x \in K, \exists v \in T(y),$

 $(s, f(x, y, v)) = \tilde{f}(x, y, v) \not\subset \operatorname{int} \mathbb{R}_+.$

Hence,

 $f(x, y, v) \not\subset \operatorname{int} H(s).$

Since $s \in C_+^* \setminus \{0\}$ and int $H(s) \supset \text{int } C_+ \supset \text{int } C(y)$, we have

 $f(x, y, v) \not\subset \text{int } C(y).$

Thus *y* is a solution of (GVEP 1).

Remark 4. In a like manner, as in Corollaries 3 and 4, we can obtain some results similar to Theorem 6 in [2] and Theorem 4.1 in [11] from the above theorem.

4 Solutions of (GVEP) without monotonicity

Theorem 5. Let X be a Hausdorff topological vector space, and let Y, Z, K, D, C and T as in Theorem 3. Assume that the following conditions hold:

- (i) $f: K \times K \times D \rightrightarrows Z, \forall x, y \in K, t \in D, f(x, y, t)$ is a nonempty compact subset of Z, and $0 \in f(x, x, t)$;
- (ii) for any fixed $y \in K$ and $t \in D$, f(x, y, t) is C_v -concave in x; for any fixed $x \in K$, f(x, y, t) is upper semicontinuous in (y, t);
- (iii) T is upper semicontinuous and for each $x \in K$, T(x) is a nonempty compact subset of D;
- (iv) the set-valued mapping $W: K \rightrightarrows Z$ defined by $W(x) := Z \setminus int C(x), \forall x \in K$, is closed;
- (v) there exist a nonempty compact subset M of K and an $\bar{x} \in M$ such that, $\forall x \in K \setminus M, f(\overline{x}, x, T(x)) \subset \text{int } C(x).$

Then (GVEP 1) is solvable.

Proof. Define $F : K \rightrightarrows K$ by

 $F(x) = \{ v \in K : f(x, v, T(v)) \cap (Z \setminus int C(v)) \neq \emptyset \}, \quad \forall x \in K.$

(i) $\forall x \in K, F(x)$ is closed in K;

In fact, let a net $\{y_{\lambda}\} \subset F(x)$ be such that $y_{\lambda} \to y \in K$. We need to show $y \in F(x)$. Since $y_{\lambda} \in F(x)$, we have

 $f(x, y_{\lambda}, T(y_{\lambda})) \cap (Z \setminus \operatorname{int} C(y_{\lambda})) \neq \emptyset.$

Then for each λ , $\exists v_{\lambda} \in T(y_{\lambda})$ such that

 $f(x, v_1, v_2) \cap (Z \setminus \operatorname{int} C(v_2)) \neq \emptyset$.

Therefore, for each λ , $\exists w_{\lambda} \in f(x, y_{\lambda}, v_{\lambda})$ such that $w_{\lambda} \in Z \setminus int C(y_{\lambda})$. Since T is upper semicontinuous and $v_{\lambda} \in T(y_{\lambda})$, by Lemma 2, there exist $v \in T(y)$ and a subnet $\{v_{\lambda'}\}$ of $\{v_{\lambda}\}$ such that $v_{\lambda'} \to v$. Since f(x, y, v) is upper semicontinuous in (y, v), by Lemma 2, there exist $w \in f(x, y, v)$ and a subnet $\{w_{\lambda''}\}$ of $\{w_{\lambda'}\}$ such that $w_{\lambda''} \to w$. Hence $w \in f(x, y, T(y))$. Since $G_r(W)$ is closed and $(y_{1''}, w_{1''}) \rightarrow (y, w)$, we have $w \in Z \setminus int C(y)$, i.e., $f(x, y, T(y)) \cap$ $(Z \setminus \text{int } C(y)) \neq \emptyset$. Thus $y \in F(x)$.

(ii) F is a KKM-map;

If it is false, then there exist $x_1, \ldots, x_n \in K$ and $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1$, $\hat{x} = \sum_{i=1}^n \alpha_i x_i$ such that $\hat{x} \notin \bigcup_{i=1}^n F(x_i)$. Then, $\forall i, \hat{x} \notin F(x_i)$, i.e.,

$$f(x_i, \hat{x}, T(\hat{x})) \subset \operatorname{int} C(\hat{x}), \quad i = 1, 2, \dots, n.$$

For each $t \in T(\hat{x})$,

$$f(x_i, \hat{x}, t) \subset \operatorname{int} C(\hat{x}), \quad i = 1, \dots, n.$$
(4)

Since f(x, y, t) is C_y -concave in x and int C(x) is convex, by (4),

$$0 \in f(\hat{x}, \hat{x}, t) \subset \sum_{i=1}^{n} \alpha_i f(x_i, \hat{x}, t) + C(\hat{x}) \subset \operatorname{int} C(\hat{x}) + C(\hat{x}) \subset \operatorname{int} C(\hat{x}),$$

a contradiction to $C(\hat{x}) \neq Z$.

(iii) By the condition (v), $F(\bar{x}) \subset M$. Since $F(\bar{x})$ is closed and M is compact, $F(\bar{x})$ is compact. It follows from Theorem 2 that $\bigcap_{x \in K} F(x) \neq \emptyset$. If $\bar{y} \in \bigcap_{x \in K} F(x)$, then $\bar{y} \in K$ such that, $\forall x \in K$, $f(x, \bar{y}, T(\bar{y})) \cap (Z \setminus \operatorname{int} C(\bar{y})) \neq \emptyset$. Therefore, $\exists v \in T(\bar{y})$ such that $f(x, \bar{y}, v) \neq \operatorname{int} C(\bar{y})$, i.e., \bar{y} is a solution of (GVEP 1).

Corollary 5. Let $f : K \times K \times D \rightarrow Z$ be a gingle valued mapping in Theorem 5. Assume that conditions (iii), (iv) and (v) in Theorem 5 hold. The conditions (i) and (ii) in Theorem 5 are replaced with the following

- (i)' $\forall x \in K, t \in D, f(x, x, t) = 0;$
- (ii)' for any fixed $y \in K$ and $t \in D$, f(x, y, t) is C_y -concave in x; for any fixed $x \in K$, f(x, y, t) is continuous in (y, t);

Then there is a $y \in K$ such that, $\forall x \in K$, $\exists v \in T(y)$, $f(x, y, v) \notin \text{int } C(y)$.

Corollary 6. Let X and Z be real Banach spaces, and K be a nonempty convex subset of X. Let $C : K \rightrightarrows Z$ be as in Theorem 5, and $T : K \rightrightarrows L(X,Z)$ be a setvalued mapping with nonempty compact values. Assume that the following conditions hold:

- (i) *T* is upper semicontinuous;
- (ii) the set-valued mapping $W: K \rightrightarrows Z$ defined by $W(x) := Z \setminus int C(x)$, $\forall x \in K$, has a weakly closed graph $G_r(W)$ in $X \times Z$;
- (iii) there exist a nonempty, weakly compact subset M of K and an $\overline{x} \in M$ such that, $\forall x \in K \setminus M$, $\bigcup_{t \in T(x)} (t, x \overline{x}) = (T(x), x \overline{x}) \subset \text{int } C(x)$.

Then there is $y \in K$ such that, $\forall x \in K$, $\exists t \in T(y)$, $(t, y - x) \notin int C(y)$.

Proof. In Corollary 5, let Y = D = L(X, Z) and f(x, y, t) = (t, y - x), $\forall x, y \in K, t \in D$. Let X and Z be endowed with their weak topologies. We shall show that f(x, y, t) is weakly continuous in (y, t).

Indeed, let a net $\{y_{\lambda}\} \subset K$ and a net $\{t_{\lambda}\} \subset D$ be such that $y_{\lambda} \to y \in K$ and $t_{\lambda} \to t \in D$. We need to show $f(x, y_{\lambda}, t_{\lambda}) \to f(x, y, t)$. Since $f(x, y_{\lambda}, t_{\lambda}) = (t_{\lambda}, y_{\lambda} - x) = (t_{\lambda} - t, y_{\lambda} - x) + (t, y_{\lambda} - x)$ and $\{y_{\lambda}\}$ is bounded in the norm topoloty of X, we have

$$\|(t_{\lambda} - t, y_{\lambda} - x)\| \le \|t_{\lambda} - t\| \cdot \|y_{\lambda} - x\| \to 0,$$

i.e., $(t_{\lambda} - t, y_{\lambda} - x) \to 0.$

Since $t \in L(X, Z)$ and t is continuous from the weak topology of X to the weak topology of Z, we have

$$(t, y_{\lambda} - x) \rightharpoonup (t, y - x).$$

Hence,

$$f(x, y_{\lambda}, t_{\lambda}) = (t_{\lambda} - t, y_{\lambda} - x) + (t, y_{\lambda} - x) \rightharpoonup (t, y - x) = f(x, y, t).$$

Corollary 5 yields the desired result.

Acknowledgment: This work was supported by the Natural Science Foundation of Jiang-Xi Province, P.R. China.

References

- Ansari QH (2000) Vector equilibrium problems and vector variational inequalities. In: Giannessi F (ed.) Vector variational inequalities and vector equilibria. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 1–15
- [2] Ansari QH, Siddiqi AH, Yao JC (2000) Generalized vector variational-like inequalities and their scalarizations. ibid. pp. 17–37
- [3] Aubin JP (1993) Optima and equilibria. Springer-Verlag, Berlin
- [4] Berge C (1963) Topological spaces. Oliver & Boyd LTD, Edinburgh and London
- [5] Blum E, Oettli W (1994) From optimization and variational inequalities to equilibrium problems. The Math. Student. 63: 123–145
- [6] Chowdhury MSR, Tan KK (1997) Generalized variational inequalities for quasi-monotone operators and applications. Bull. Polish Acad. Sci. Math. 45:25–54
- [7] Conway JB (1990) A course in functional analysis. Springer-Verlag, New York
- [8] Ding XP, Tarafdar E (2000) Generalized vector variational-like inequalities with $C_x \eta$ pseudomonotone set-valued mappings. In: Giannessi F (ed.) Vector variational inequalities and vector equilibria. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 125–140
- [9] Jahn J (1986) Mathematical vector optimization in partially ordered linear spaces. Verlag Peter Lang, Frankfurt am Main, Bern, New York
- [10] Fan K (1961) A generalization of Tychonoff's fixed point theorem. Math. Ann. 142:305–310
- [11] Konnov IV, Yao JC (1997) On the generalized vector variational inequality problem. J. Math. Anal. Appl. 206:42–58
- [12] Konnov IV, Yao JC (1999) Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233:328–335
- [13] Oettli W, Schläger S (1997) Generalized vectorial equilibria and generalized monotonicity. In: Brokate, Siddiqi (eds.) Functional analysis with current applications. Longman, London, pp. 145–154