Adaptive policies for time-varying stochastic systems under discounted criterion*

Nadine Hilgert¹ and J. Adolfo Minjárez-Sosa²

¹Laboratoire de Biométrie, INRA-ENSA.M, 2 place Viala, 34060 Montpellier CEDEX 1, France. (hilgert@ensam.inra.fr). The research of this author was performed while she was visiting the Departamento de Matemáticas, CINVESTAV-IPN, México, DF. ² Departamento de Matemáticas, Universidad de Sonora, Rosales s/n, Col. Centro, 83000, Hermosillo, Sonora, México. (aminjare@gauss.mat.uson.mx)

Abstract. We consider a class of time-varying stochastic control systems, with Borel state and action spaces, and possibly unbounded costs. The processes evolve according to a discrete-time equation $x_{n+1} = G_n(x_n, a_n, \xi_n)$, $n = 0, 1, \ldots$, where the ξ_n are i.i.d. \Re^k -valued random vectors whose common density is unknown, and the G_n are given functions converging, in a restricted way, to some function G_{∞} as $n \to \infty$. Assuming observability of ξ_n , we construct an adaptive policy which is asymptotically discounted cost optimal for the limiting control system $x_{n+1} = G_{\infty}(x_n, a_n, \xi_n)$.

AMS 1991 subject classifications: 93E20, 90C40.

Key words: Non-homogeneous Markov control processes; discrete-time stochastic systems; discounted cost criterion; optimal adaptive policy

1 Introduction

This paper deals with discrete-time, time-varying stochastic control systems of the form

$$
x_{n+1} = G_n(x_n, a_n, \xi_n), \quad n \in \mathbb{N}_0 := \{0, 1, \ldots\},\tag{1}
$$

where x_n and a_n denote the state and control variables respectively, and $\{\xi_n\}$, the so-called ''disturbance'' or ''driving'' process, is a sequence of independent and identically distributed (i.i.d.) random vectors in \mathbb{R}^k having an unknown density ρ . In addition, $\{G_n\}$ is a sequence of given functions such that

^{*} Work supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) under Grant 28309E.

$$
E1_B[G_n(x, a, \xi_0)] \to E1_B[G_\infty(x, a, \xi_0)] \text{ for all } (x, a) \text{ and Borel set } B,
$$
 (2)

where $1_B(.)$ denotes the indicator function of the set B (See Assumption 2.2) for more details on this condition).

Our main objective in this paper is to introduce asymptotically discounted optimal adaptive policies for the general limiting system

$$
x_{t+1} = G_{\infty}(x_t, a_t, \xi_t), \quad t \in \mathbb{N}_0,
$$
\n
$$
(3)
$$

considering possibly unbounded one-stage costs.

Systems of the type (1) appear, for instance, in some time-varying controlled biotechnological processes ([1, 12]), taking the particular form

$$
x_{n+1} = (H(x_n)g_n(x_n) + G(x_n, a_n) + \xi_n)^+, \quad n \in \mathbb{N}_0.
$$

This model represents, for example, the real time evolution of biomasses (microorganisms) and substrates concentrations in bioreactions. Such bioreactions are very common in depollution and in the agro-food industry. This example will be analyzed below (Section 5) to illustrate the main results of this paper.

Our work extends recent results in [4] and [11]. In the former, the adaptive control problem in the discounted case is studied for general time-invariant systems of the type (3) . The construction of optimal policies is done by first estimating the density ρ with suitable statistical methods, and then applying the ''principle of estimation and control'' proposed in [13, 14]. On the other hand, [11] studies time-varying additive-noise systems of the form

$$
x_{n+1}=G_n(x_n,a_n)+\xi_n,\quad n\in\mathbb{N}_0,
$$

where the density of the random disturbance $\{\xi_n\}$ is supposed to be known, and $\{G_n\}$ is a sequence of given functions converging pointwise to some function G_{∞} . Conditions are given for the existence of α -discounted optimal stationary policies for the limiting system

$$
x_{t+1} = G_{\infty}(x_t, a_t) + \xi_t, \quad t \in \mathbb{N}_0.
$$

The same approach is applied to system (1); that is, we consider the α discounted problem for the time-invariant system

$$
x_{t+1} = G_n(x_t, a_t, \xi_t), \quad t \in \mathbb{N}_0,
$$
\n
$$
(5)
$$

for each fixed $n \in \mathbb{N}_0$, and then we let $n \to \infty$ to obtain the corresponding result for the limiting system (3). Put in this form, our main result, Theorem 4.5, can also be seen as a further result of [4] on system (3) where the function G_{∞} is unknown and estimated by some consistent functional estimator G_n .

The paper is organized as follows. In Section 2 we introduce the Markov control models we are concerned with and the assumptions required. Some preliminary results are given in Section 3. The adaptive policies are introduced in Section 4 together with the main result, Theorem 4.5. Finally, a generic example of a biotechnological process satisfying all the hypotheses of the paper is described in Section 5.

2 Markov control models

For each fixed $n = 0, 1, \ldots, \infty$, we consider the Markov control model

$$
M_n := (X, A, \{A(x) \mid x \in X\}, Q_n, c) \tag{6}
$$

associated to the system (5), satisfying the following conditions. The state space X and the action space \vec{A} are Borel spaces. They are endowed with their Borel σ -algebras $\mathbb{B}(X)$ and $\mathbb{B}(A)$. For each state $x \in X$, $A(x)$ is a nonempty Borel subset of A denoting the set of admissible controls when the system is in state x. The set

$$
\mathbb{K} = \{(x, a) : x \in X, a \in A(x)\}
$$

of admissible state-action pairs is assumed to be a Borel subset of the Cartesian product of X and A. In addition, Q_n is a stochastic kernel denoting the transition law corresponding to (5), that is, for all $t \in \mathbb{N}_0$, $(x, a) \in \mathbb{K}$ and $B \in$ $\mathbb{B}(X),$

$$
Q_n(B|x, a) := \text{Prob}[G_n(x_t, a_t, \xi_t) \in B | x_t = x, a_t = a]
$$

$$
= E1_B[G_n(x, a, \xi_t)]
$$

$$
= \int_{\Re^k} 1_B[G_n(x, a, s)] \rho(s) ds,
$$
(7)

where $\{\xi_t\}$ is a sequence of i.i.d. random vectors (r.v.'s) on a probability space (Ω, \mathcal{F}, P) , with values in \mathbb{R}^k and a common unknown distribution with a density ρ . Moreover, we assume that the realizations ξ_0, ξ_1, \ldots of the driving process and the states x_0, x_1, \ldots are completely observable. Finally, the cost-perstage $c(x, a)$ is a nonnegative measurable real-valued function on K, possibly unbounded.

We define the spaces of admissible histories up to time t by $\mathbb{H}_0 := X$ and $\mathbb{H}_t := (\mathbb{K} \times \Re^k)^t \times X, t \geq 1$. A generic element of \mathbb{H}_t is written as $h_t =$ $(x_0, a_0, \xi_0, \ldots, x_{t-1}, a_{t-1}, \xi_{t-1}, x_t)$. A control policy $\pi = {\pi_t}$ is a sequence of measurable functions $\pi_t : \mathbb{H}_t \to A$ such that $\pi_t(h_t) \in A(x_t)$, $h_t \in \mathbb{H}_t$, $t \in \mathbb{N}_0$. Let Π be the set of all control policies and $\mathbb{F} \subset \Pi$ the subset of stationary policies. If necessary, see for example [3, 4, 5, 7, 8, 9, 10, 11] for further information on those policies. As usual, each stationary policy $\pi \in \mathbb{F}$ is identified with a measurable function $f : X \to A$ such that $f(x) \in A(x)$ for every $x \in X$, so that π is of the form $\pi = \{f, f, f, \ldots\}$. In this case we use the notation f for π and we write

 $c(x, f) := c(x, f(x))$ and $G_n(x, f, s) := G_n(x, f(x), s)$

for all $x \in X$, $s \in \mathbb{R}^k$ and $n = 0, 1, \ldots, \infty$.

For a fixed $n = 0, 1, \ldots, \infty$, let $V_n(\pi, x)$ be the *x*-discounted cost using the policy $\pi \in \Pi$, given the initial state $x_0 = x$, when the control model is M_n [see (6)]. That is,

494 **N. Hilgert, J. A. Minjárez-Sosa**

$$
V_n(\pi, x) := E_x^{(n)\pi} \left[\sum_{t=0}^{\infty} \alpha^t c(x_t, a_t) \right],
$$
\n(8)

where $\alpha \in (0, 1)$ is the so-called discount factor, and $E_x^{(n)\pi}$ denotes the expectation operator with respect to the probability measure $P_{x}^{(n)\pi}$ induced by the policy π , given the initial state $x_0 = x$ and the model M_n (see, e.g., [3]). The corresponding value (or optimal cost) function is

$$
V_n(x) := \inf_{\pi \in \Pi} V_n(\pi, x), \quad x \in X.
$$
\n⁽⁹⁾

A policy $\pi^* \in \Pi$ is said to be *x*-discounted optimal (or simply *x*-optimal) for the control model M_n $(n = 0, 1, \ldots, \infty)$ if

$$
V_n(x) = V_n(\pi^*, x) \quad \text{for all } x \in X. \tag{10}
$$

Throughout the paper, we will use the following assumptions on the Markov control model. Note that Assumption 2.1 allows an unbounded costper-stage function $c(x, a)$ provided that it is upper bounded by some function $W(x)$. Next, Assumption 2.2 refers to system (1). Assumptions 2.4 and 2.6 are technical requirements on the unknown density ρ and the function W.

Assumption 2.1 (Bounds and semicontinuity.).

a) For all $x \in X$ the function $a \to c(x,a)$ is lower semicontinuous (l.s.c.) on $A(x)$. Moreover, there exists a measurable function $W : X \to [1, \infty)$ such that $\sup_{A(x)} c(x,a) \leq \overline{c}W(x), x \in X$, for some constant $\overline{c} > 0$.

b) For each $x \in X$, $A(x)$ is a σ -compact set.

Assumption 2.2 (On the dynamics of the system.). For each $n \in \mathbb{N}_0$, the function $G_n : \mathbb{K} \times \mathbb{R}^k \to X$ is continuous, and furthermore, there exists a continuous function $G_{\infty} : \mathbb{K} \times \mathbb{R}^k \to X$ such that the transition law $Q_n(B|x, a) = E1_B$. $[G_n(x, a, \xi_t)]$ converges (setwise) to $Q_{\infty}(B|x, a) = E1_B[G_{\infty}(x, a, \xi_t)]$ as $n \to \infty$, for each $B \in B(X)$.

Remark 2.3. Suppose that model (1) is noise additive, i.e. that $x_{n+1} =$ $G_n(x_n, a_n) + \xi_n$ for all n, and that the density ρ of ξ_n is bounded and continuous. Assumption 2.2 then trivially holds if G_n converges pointwise to G_{∞} . See [11].

In the remainder, we fix an arbitrary $\varepsilon \in (0, 1/2)$ and denote L_q the space $L_q(\mathbb{R}^k)$ where $q := 1 + 2\varepsilon$. Also we choose and fix a nonnegative and measurable function $\bar{\rho} : \mathbb{R}^k \to \mathbb{R}$ which is used as a known majorant of the unknown density ρ of the r.v.'s ξ_n in (1).

We define the set $\tilde{D} = \tilde{D}(\bar{p}, L, \beta_0, b_0, p, q)$ as the set consisting of all densities μ on \mathbb{R}^k for which the following conditions hold.

a) $\mu \in L_q$;

b) there exists a constant L such that for each $z \in \Re^k$

$$
||\Delta_z \mu||_q \le L|z|^{1/q},\tag{11}
$$

where $\Delta_z \mu(x) := \mu(x+z) - \mu(x)$, $x \in \mathbb{R}^k$ and $|\cdot|$ is the Euclidean norm in \mathbb{R}^k ;

c) $\mu(s) \leq \bar{\rho}(s)$ almost everywhere with respect to the Lebesgue measure; d) for all $x \in X$, $n \in \mathbb{N}_0$

$$
\sup_{A(x)} \int_{\Re^k} W^p[G_n(x, a, s)] \mu(s) ds \le \beta_0 W^p(x) + b_0,
$$
\n(12)

for some $p > 1$, $\beta_0 < 1$, $b_0 < \infty$.

Assumption 2.4 (On the density ρ .). The density ρ belongs to \tilde{D} .

Remark 2.5. When $k = 1$ it is not difficult (see [4]) to show that a sufficient condition for (11) is the following. There are a finite set $H \subset \mathbb{R}$ (possibly empty) and a constant $M \geq 0$ such that:

i) ρ has a bounded derivative ρ' on $\Re\$ which belongs to L_q ;

ii) the function $|\rho'(x)|$ is nonincreasing for $x \geq M$ and nondecreasing for $x \leq -M$.

Note that H might include points of discontinuity of ρ if such points exist. Moreover, from i) and ii) $\rho'(x) \ge 0$ for $x \le -M$ and $\rho'(x) \le 0$ for $x \ge M$.

Assumption 2.6.

a) For all $s \in \mathbb{R}^k$ the function φ defined by

$$
\varphi(s) := \sup_{X} [W(x)]^{-1} \sup_{a \in A(x), n \in \mathbb{N}_0} W[G_n(x, a, s)] \tag{13}
$$

is finite, and verifies
b) $\int \varphi^2(s)|\bar{\rho}(s)|$ \Re^k $\varphi^2(s)|\bar{\rho}(s)|^{1-2\varepsilon} ds < \infty.$

The function φ in (13) may be nonmeasurable. In this case we suppose the existence of a measurable upper bound $\bar{\varphi}$ of φ for which Assumption 2.6(b) holds. Besides, from (13), note that, for each $n = 0, 1, \ldots, \infty$, Assumption 2.6 holds with φ_n instead of φ , where

$$
\varphi_n(s) := \sup_X [W(x)]^{-1} \sup_{a \in A(x)} W[G_n(x, a, s)].
$$

In Section 5 we give an example of a controlled process for which all assumptions presented in this section hold.

3 Preliminary results

Let W be the function in Assumption 2.1(a). We denote by L_W^{∞} the normed linear space of all measurable functions $u: X \to \mathbb{R}$ with

$$
||u||_{W} := \sup_{x \in X} \frac{|u(x)|}{W(x)} < \infty.
$$
 (14)

Now we state some results that will be useful in the next section. Each of these results is provided with references for its proof.

Lemma 3.1. Suppose that Assumption 2.1(a) holds and the density ρ satisfies the condition (12). Then, for all $\pi \in \Pi$, $x \in X$ and $n \in \mathbb{N}_0$: a) [4] denoting $\beta = \beta_0^{1/p}$ and $b = b_0^{1/p}$,

$$
\sup_{A(x)} \int_{\Re^k} W[G_n(x, a, s)] \rho(s) ds \le \beta W(x) + b; \tag{15}
$$

b) [4] $\sup_{t\ge1} E_x^{(n)\pi}[W^p(x_t)] < \infty$ and $\sup_{t\ge1} E_x^{(n)\pi}[W(x_t)] < \infty$. If moreover Assumption 2.2 holds, then c) [11] for all $x \in X$,

$$
\sup_{A(x)} \int_{\Re^k} W^p[G_\infty(x, a, s)] \rho(s) ds \le \beta_0 W^p(x) + b_0
$$

and (from (15))

$$
\sup_{A(x)} \int_{\Re^k} W[G_\infty(x, a, s)] \rho(s) ds \le \beta W(x) + b,\tag{16}
$$

which implies that $\sup_{t\ge1} E_x^{(\infty)\pi}[W^p(x_t)] < \infty$ and $\sup_{t\ge1} E_x^{(\infty)\pi}[W(x_t)] < \infty$ for each $\pi \in \Pi$, $x \in X$;

d) [11] for each $n = 0, 1, \ldots, \infty$, the value function V_n in (9) and the functions

$$
V^*(x) := \limsup_{n \to \infty} V_n(x) \quad \text{and} \quad V_*(x) := \liminf_{n \to \infty} V_n(x) \quad (x \in X) \tag{17}
$$

are in L_W^{∞} . In fact,

$$
0 \le V_n(x) \le \bar{c}W(x)/(1-\alpha), \quad x \in X. \tag{18}
$$

From the fact that, for each $n = 0, 1, \ldots, \infty$, $Q_n(\cdot | \cdot)$ is a stochastic kernel [see (7)], it is easy to prove that for every nonnegative function $u \in L^{\infty}_W$, and every $r \in \Re$, the set

$$
\left\{ (x, a) : \int_{\Re^k} u[G_n(x, a, s)] \rho(s) ds \le r \right\}
$$

is Borel in K. Using this fact, the following result is a consequence of Corollary 4.3 in [15].

Lemma 3.2. Let $\alpha \in (0, 1)$ be an arbitrary but fixed discount factor, and u a nonnegative function in \hat{L}_W^∞ . Under Assumptions 2.1 and 2.2, if ρ satisfies (15), then for any $\delta > 0$ and $n = 0, 1, ..., \infty$, there exists a policy $f_{\delta, n} \in \mathbb{F}$ such that

$$
c(x, f_{\delta,n}) + \alpha \int_{\Re^k} u[G_n(x, f_{\delta,n}, s)] \rho(s) ds \le u(x) + \delta \quad \forall x \in X.
$$
 (19)

The selector $f_{\delta,n}$ is also called a δ -minimizer of the function $a \mapsto c(x, a) + \alpha \int u$ $[G_n(x, a, s)] \rho(s) ds.$

Throughout the paper we will repeatedly use the following inequalities. Let μ be a density satisfying (15) and (16), then

$$
|u(x)| \le ||u||_W W(x) \tag{20}
$$

and
$$
\int_{\Re^k} u[G_n(x, a, s)] \mu(s) ds \le ||u||_W [\beta W(x) + b],
$$
 (21)

for all $n = 0, 1, \ldots, \infty$, $u \in L_{W_1}^{\infty}$, $x \in X$, $a \in A(x)$. The relation (20) is a consequence of the definition of $\|\cdot\|_W$ in (14), and (21) holds thanks to (20).

Theorem 3.3. Suppose that Assumptions 2.1 and 2.2 hold, and that the density ρ satisfies the condition (12). Then, $V_n(x) \to V_\infty(x)$, as $n \to \infty$, for all $x \in X$, and the value function $V_{\infty}(x) \in L_W^{\infty}$ satisfies the α -discounted cost optimality equation

$$
V_{\infty}(x) = \inf_{a \in A(x)} \left[c(x, a) + \alpha \int_{\Re^k} V_{\infty}[G_{\infty}(x, a, s)] \rho(s) ds \right], \quad x \in X.
$$
 (22)

Theorem 3.3 was proved in [11] supposing, in addition, continuity and boundedness of the density ρ . These stronger assertions are necessary to get a unique solution V_{∞} to the optimality equation (22). In the present context, the uniqueness is not required, which allows weaker assumptions. Here we give a sketch of the proof without these conditions, which is a slight modification of [11].

Proof. Let us first fix an arbitrary $n \in \mathbb{N}_0$. Then (see [9, Chapter 8]), Assumptions 2.1 and 2.2, and (12), together with Lemma 3.1(a,d), ensure that the value function V_n in (9) satisfies

$$
V_n(x) = \inf_{a \in A(x)} \left[c(x, a) + \alpha \int_{\Re^k} V_n[G_n(x, a, s)] \rho(s) ds \right], \quad x \in X.
$$
 (23)

Now, take the limit infimum in (23) as $n \to \infty$. Then, from (18), applying an extension of Fatou's Lemma [8] and a general result on the interchange of limits and minima [10], we get

$$
V_*(x) \ge \inf_{a \in A(x)} \left[c(x, a) + \alpha \int_{\Re^k} V_*[G_\infty(x, a, s)] \rho(s) ds \right], \quad x \in X. \tag{24}
$$

where V_* is as in (17). From Lemma 3.1(b), $V_* \in L_W^{\infty}$. Let $\varepsilon > 0$ be an arbitrary number. According to Lemma 3.2, there exists an ε -minimizer, $f_{\varepsilon} \in \mathbb{F}$, of the right hand side of (24), that is

$$
c(x, f_{\varepsilon}) + \alpha \int_{\Re^k} V_*[G_{\infty}(x, f_{\varepsilon}, s)] \rho(s) ds \leq V_* (x) + \varepsilon, \quad x \in X.
$$

Iteration of the latter inequality yields

498 N. Hilgert, J. A. Minjárez-Sosa

$$
V_*(x) \ge \sum_{t=0}^{N-1} \alpha^t E_x^{(\infty)f_{\varepsilon}} c(x_t, f_{\varepsilon}) + \alpha^N E_x^{(\infty)f_{\varepsilon}} V_*(x_N) - \varepsilon \sum_{t=0}^{N-1} \alpha^t.
$$
 (25)

Letting $N \to \infty$ in (25), observe that from (20) and Lemma 3.1(b,d), we have $\alpha^N E_x^{(\infty)}$ $V_*(x_N) \to 0$, which, together with (8), implies $V_*(x) \ge V_\infty(f_\varepsilon, x) \varepsilon/(1-\alpha) \ge V_{\infty}(x) - \varepsilon/(1-\alpha)$. As $\varepsilon > 0$ was arbitrary, we conclude that

$$
V_*(x) \ge V_\infty(x), \quad x \in X. \tag{26}
$$

The remainder of the proof is as in [11], which consists, mainly, in showing that $V^*(x) \leq V_\infty(x)$, for all $x \in X$, which, together with (26) yields that $V_*(x) =$ $V^*(x) = V_{\infty}(x)$ for all $x \in X$. \square

Remark 3.4. Since $V_n \to V_\infty$, it is important to have in mind that $f_{\delta,\infty}$, defined in Lemma 3.2, can be obtained as an "accumulation point" of the δ minimizers $\{f_{\delta,n}\}$ for the control models M_n with *finite n*. Indeed, by a result of [16], there is a policy $f_{\delta,\infty} \in \mathbb{F}$ such that, for each $x \in X$, $f_{\delta,\infty}(x) \in A(x)$ is an accumulation point of $\{f_{\delta,n}(x)\}\)$. That is to say, for each $x \in X$, there exists a subsequence $\{n_i(x)\}\$ of $\{n\}$ such that

 $f_{\delta n}(x) \to f_{\delta \infty}(x)$ as $i \to \infty$.

Now fix an arbitrary $x \in X$ and in (19) replace u with V_n and n with $n_i(x)$. Then letting $i \to \infty$, as c is l.s.c., from Theorem 3.3 we obtain

$$
c(x, f_{\delta,\infty}) + \alpha \int_{\Re^k} V_{\infty}[G_{\infty}(x, f_{\delta,\infty}, s)] \rho(s) ds \leq V_{\infty}(x) + \delta \quad \forall x \in X,
$$

which implies that $f_{\delta,\infty}$ is a δ -minimizer of V_{∞} thanks to (22).

4 Adaptive policies

To construct an adaptive policy, we first present a statistical method to estimate ρ . It is based on a density estimation scheme that was originally proposed in [4] to obtain an asymptotically discount optimal adaptive policy for the time-invariant model M_{∞} , see also [5]. We slightly modify this estimation scheme to make it independent of M_{∞} .

Let $\xi_0, \xi_1, \ldots, \xi_{t-1}$ be independent realizations (observed up to time $t - 1$), of r.v.'s with the unknown density ρ . We suppose that Assumptions 2.4 and 2.6 hold.

Let $\hat{\rho}_t(s) := \hat{\rho}_t(s; \xi_0, \xi_1, \dots, \xi_{t-1}),$ for $s \in \mathbb{R}^k$, be an arbitrary sequence of estimators of ρ belonging to L_q , and such that for some $\gamma > 0$

$$
E\|\rho - \hat{\rho}_t\|_q^{qp'/2} = \mathbf{O}(t^{-\gamma}) \quad \text{as } t \to \infty,
$$
\n(27)

where p' is given by the relation $1/p + 1/p' = 1$. Examples of estimators satisfying (27) are given in [6].

Then, we estimate ρ by the projection ρ_t of $\hat{\rho}_t$ on the set D of densities in L_q defined as follows:

Adaptive policies for time-varying stochastic systems under discounted criterion 499

$$
D := \left\{ \mu \in L_q : \mu \text{ is a density function on } \mathbb{R}^k, \ \mu(s) \le \overline{\rho}(s) \ a.e. \text{ and}
$$

$$
\int W[G_n(x, a, s)] \mu(s) \, ds \le \beta W(x) + b, \ \forall n \in \mathbb{N}_0, \ (x, a) \in \mathbb{K} \right\}.
$$

See Lemma 3.1(a) for the constants β and β .

From Assumption 2.4 and Lemma 3.1(a), we have that $\rho \in \tilde{D} \subset D$, and so D is nonempty. Moreover, the existence (and uniqueness) of the estimator ρ_t is guaranteed because D is convex and closed in L_q [4]. Note also that if Assumption 2.2 holds, Lemma 3.1(c) yields that ρ belongs to the following set D_{∞} , used in [4]:

$$
D_{\infty} := \left\{ \mu \in L_q : \mu \text{ is a density function on } \mathbb{R}^k, \ \mu(s) \le \bar{\rho}(s) \ a.e. \text{ and}
$$

$$
\int W[G_{\infty}(x, a, s)] \mu(s) \, ds \le \beta W(x) + b, \ \forall (x, a) \in \mathbb{K} \right\}.
$$
 (28)

Hence, D is a subset of D_{∞} , which yields that the following Lemma 4.1 still holds.

Lemma 4.1. [4,5] Suppose that Assumptions 2.4 and 2.6 hold. Then

$$
E\|\rho_t - \rho\|^{p'} = O(t^{-\gamma}) \quad \text{as } t \to \infty,
$$
\n⁽²⁹⁾

where $\|\cdot\|$ is the pseudo-norm on the space of all densities μ on \mathbb{R}^k defined as:

$$
\|\mu\| := \sup_{X} [W(x)]^{-1} \sup_{A(x)} \int_{\Re^k} W[G_{\infty}(x, a, s)] \mu(s) ds.
$$
 (30)

For arbitrary density μ in \mathbb{R}^k , the pseudo-norm $\|\mu\|$ may be infinite. However, by (28), $\|\mu\| < \infty$ for μ in D.

In the remainder of the paper, we fix an arbitrary discount factor $\alpha \in (0, 1)$. The optimality of the adaptive policy is studied in the sense of the following definition.

Definition 4.2. a) [17] A policy $\pi \in \Pi$ is said to be asymptotically discount optimal for the control model M_n $(n = 0, 1, \ldots, \infty)$ if

$$
|V_n^{(k)}(\pi, x) - E_x^{(n)\pi}[V_n(x_k)]| \to 0 \quad \text{as } k \to \infty, \quad \text{for all } x \in X,
$$

where

$$
V_n^{(k)}(\pi, x) := E_x^{(n)\pi} \left[\sum_{t=k}^{\infty} \alpha^{t-k} c(x_t, a_t) \right],
$$

is the expected total discounted cost for the control model M_n from stage k onward and $a_t = \pi_t(h_t)$.

b) Let $\delta \geq 0$. A policy π is δ -asymptotically discount optimal for the control model M_n $(n = 0, 1, \ldots, \infty)$ if

$$
\limsup_{k \to \infty} |V_n^{(k)}(\pi, x) - E_x^{(n)\pi}[V_n(x_k)]| \le \delta, \quad x \in X.
$$

From Definition 4.2(a) and (10) we have that discount optimality implies asymptotic discount optimality, and this one in turn implies δ -asymptotic discount optimality.

For any $\mu \in D$ and $n = 0, 1, \dots, \infty$, let us define the operator $T_{\mu}^{(n)} : L_W^{\infty} \to$ L_W^{∞} as

$$
T_{\mu}^{(n)}u(x) := \inf_{A(x)} \left\{ c(x,a) + \alpha \int_{\Re^k} u[G_n(x,a,s)]\mu(s) ds \right\}, \qquad x \in X, \quad u \in L_W^{\infty}.
$$
\n(31)

Observe in particular that, from (23), $T_{\rho}^{(n)} V_n = V_n$.

For the construction of the adaptive policy we replace the unknown density ρ by its estimate ρ_t and exploit the corresponding discounted optimality equation for the model M_{∞} (see (22)), or more generally for model M_n , $n =$ $0, 1, \ldots, \infty$. As $\rho_t \in D$ for all $t \geq 1$, the following Proposition 4.3 is a direct consequence of Lemmas 3.1, 3.2, Theorem 3.3 and Remark 3.4.

Proposition 4.3.

a) Suppose that Assumptions 2.1(a) and 2.2 hold. Then, for each $t \geq 1$ and $n = 0, 1, \ldots, \infty$, there exists a function $V_n^{(t)} \in L_W^{\infty}$ such that $T_{p_t}^{(n)} V_n^{(t)} = V_n^{(t)}$. Moreover,

$$
V_n^{(t)}(x) \le \frac{\bar{c}}{1-\alpha} W(x), \quad x \in X. \tag{32}
$$

b) Under Assumptions 2.1 and 2.2, for each $t \geq 1$, $n \in \mathbb{N}$ and $\delta_t^* > 0$, there exists a stationary policy $f_{t,n}^* \in \mathbb{F}$ such that

$$
c(x, f_{t,n}^*) + \alpha \int_{\Re^k} V_n^{(t)} [G_n(x, f_{t,n}^*, s)] \rho_t(s) \, ds \le V_n^{(t)}(x) + \delta_t^*, \quad x \in X. \tag{33}
$$

c) It follows from part (b) and Remark 3.4 that, for any $t \geq 1$, there exists a stationary policy $f_{t,\infty}^* \in \mathbb{F}$ such that, for all $x \in X$, $f_{t,\infty}^*(x) \in A(x)$ is an accumulation point of $\{f_{t,n}^{*}(x)\}$, and we have

$$
c(x, f_{t,\infty}^*) + \alpha \int_{\Re^k} V_{\infty}^{(t)} [G_{\infty}(x, f_{t,\infty}^*, s)] \rho_t(s) ds \le V_{\infty}^{(t)}(x) + \delta_t^*, \quad x \in X. \tag{34}
$$

The minimization in (31), with ρ_t instead of μ , is done for every $\omega \in \Omega$. Similarly, in the following, we suppose that the minimization of a term including the estimator ρ_t is done for every $\omega \in \Omega$.

Definition 4.4. For each fixed $n = 0, 1, \ldots, \infty$ and any arbitrary sequence $\{\delta_i^*\}$ of positive numbers, let $\{f_{t,n}^*\}$ be a sequence of functions satisfying (33) for each integer $t \in \mathbb{N}_0$. We define the adaptive policy $\pi_n^* = {\pi_{t,n}^*}$ as follows:

$$
\pi^*_{t,n}(h_t) = \pi^*_{t,n}(h_t; \rho_t) := f^*_{t,n}(x_t), \quad h_t \in \mathbb{H}_t, \quad t = 1, 2, \dots
$$

while $\pi_{0,n}^*(x)$ is any fixed action in $A(x)$.

Note that, from Proposition 4.3(c), π_{∞}^{*} is the sequence $\{\pi_{t,\infty}^{*}\}\)$, where each component $\pi_{t,\infty}^*$, $t = 1, 2, \ldots$, can be obtained as an accumulation point of the sequence $\{f_{t,n}^*(x_t)\}\,$ indexed by *n*.

As $\{\delta_t^*\}$ is arbitrary, we choose it convergent and denote $\delta^* := \lim_{t \to \infty} \delta_t^*$. We are now ready to state our main result.

Theorem 4.5. Suppose that Assumptions 2.1, 2.2, 2.4 and 2.6 hold. Then the adaptive policy π_{∞}^{*} is δ^{*} -asymptotically discount optimal for the model M_{∞} . In particular, if $\delta^* = 0$ then the policy π^*_{∞} is asymptotically discount optimal.

Remark 4.6. (a) Since Assumptions 2.4 and 2.6 are stated for each *finite* $n \in \mathbb{N}_0$, we have (see [4]) that the adaptive policy π_n^* introduced in Definition 4.4 is δ^* . asymptotically discount optimal for the model M_n , for each *finite n*. The whole point of Theorem 4.5 is that this result also holds for $n = \infty$.

b) The notion of asymptotic optimality introduced in Definition 4.2 can be characterized in terms of the so-called discounted discrepancy function, defined for each $n = 0, 1, \ldots, \infty$, as:

$$
\Phi_n(x, a) := c(x, a) + \alpha \int_{\Re^k} V_n[G_n(x, a, s)] \rho(s) \, ds - V_n(x), \quad (x, a) \in \mathbb{K}, \quad (35)
$$

which is nonnegative in view of (22) and (23) . That is (see e.g. $[7, 10]$), a policy $\pi \in \Pi$ is asymptotically discount optimal for the control model M_n $(n = 0,$ $1, \ldots, \infty$ if

$$
E_x^{(n)\pi}[\Phi_n(x_t, a_t)] \to 0 \quad as \ t \to \infty, \quad \text{for all } x \in X.
$$

Moreover, for $\delta \geq 0$, it is easy to see that a policy $\pi \in \Pi$ is δ -asymptotically discount optimal for the control model M_n $(n = 0, 1, \ldots, \infty)$ if

$$
\limsup_{t \to \infty} E_x^{(n)\pi} [\Phi_n(x_t, a_t)] \le \delta, \quad x \in X. \tag{36}
$$

Thus, Theorem 4.5 will be proved if we show that the adaptive policy π_{∞}^{*} satisfies (36).

Proof of Theorem 4.5. Let us fix an arbitrary number $\theta \in (\alpha, 1)$ and define $\overline{W}(x) := W(x) + d, x \in X$, where $d := b(\theta/\alpha - 1)^{-1}$. Let $L^{\infty}_{\overline{W}}$ be the space of measurable functions $u : X \to \mathbb{R}$ with the norm

$$
||u||_{\overline{W}} := \sup_{x \in X} \frac{|u(x)|}{\overline{W}(x)} < \infty.
$$

It is easy to see that

$$
||u||_{\overline{W}} \le ||u||_{W} \le ||u||_{\overline{W}}(1+d'), \tag{37}
$$

where $d' := d / \inf_X W(x)$. Hence $L_W^{\infty} = L_W^{\infty}$ and the norms $\| \cdot \|_W$ and $\| \cdot \|_{\overline{W}}$ are equivalent.

On the other hand, a consequence of [18, Lemma 2] is that, for each $\mu \in D$, the inequality (16) in Lemma 3.1 implies that the operator $T_{\mu} := T_{\mu}^{\infty}$ defined in (31) is a contraction of modulus θ with respect to the norm $\|\cdot\|_{\overline{W}}$, that is,

$$
||T_{\mu}v - T_{\mu}u||_{\overline{W}} \le \theta ||v - u||_{\overline{W}}, \quad \forall v, u \in L^{\infty}_{W}.
$$
\n(38)

Hence, from Proposition 4.3(a) we can see that

$$
||V_{\infty}-V_{\infty}^{(t)}||_{\overline{W}} \leq ||T_{\rho}V_{\infty}-T_{\rho_t}V_{\infty}||_{\overline{W}} + \theta||V_{\infty}-V_{\infty}^{(t)}||_{\overline{W}},
$$

which implies

$$
||V_{\infty} - V_{\infty}^{(t)}||_{\overline{W}} \le \frac{1}{1-\theta} ||T_{\rho}V_{\infty} - T_{\rho_t}V_{\infty}||_{\overline{W}}, \quad t \in \mathbb{N}_0.
$$
 (39)

Now, from (18), (30) and the fact that $[\overline{W}(\cdot)]^{-1} < [W(\cdot)]^{-1}$, we obtain

$$
\|T_{\rho}V_{\infty} - T_{\rho_t}V_{\infty}\|_{\overline{W}} \leq \alpha \sup_X [\overline{W}(x)]^{-1} \sup_{A(x)} \int_{\Re^k} V_{\infty}[G_{\infty}(x, a, s)] |\rho(s) - \rho_t(s)| ds
$$

$$
\leq \frac{\alpha \bar{c}}{1 - \alpha} \sup_X [W(x)]^{-1} \sup_{A(x)} \int_{\Re^k} W[G_{\infty}(x, a, s)]
$$

$$
\times |\rho(s) - \rho_t(s)| ds \leq \frac{\bar{c}}{1 - \alpha} ||\rho - \rho_t||, \quad t \in \mathbb{N}_0. \tag{40}
$$

Hence, from (37) and combining (39) and (40), we get

$$
||V_{\infty} - V_{\infty}^{(t)}||_{W} \le (1 + d')||V_{\infty} - V_{\infty}^{(t)}||_{\overline{W}}
$$

$$
\le \frac{\bar{c}(1 + d')}{(1 - \theta)(1 - \alpha)}||\rho - \rho_{t}||, \quad t \in \mathbb{N}.
$$
 (41)

On the other hand, for each $t \in \mathbb{N}_0$, we define the function $\Phi_{\infty}^{(t)} : \mathbb{K} \to \Re$ as:

$$
\Phi_{\infty}^{(t)}(x,a) := c(x,a) + \alpha \int_{\Re^k} V_{\infty}^{(t)} [G_{\infty}(x,a,s)] \rho_t(s) ds - V_{\infty}^{(t)}(x), \quad (x,a) \in \mathbb{K}.
$$

By the definition (35) of Φ_{∞} , we get (by adding and subtracting the term $\alpha \int_{\Re^k} V_{\infty}^{(t)} [G_{\infty}(x, a, s)] \rho(s) ds$

Adaptive policies for time-varying stochastic systems under discounted criterion 503

$$
\begin{aligned} |\Phi_{\infty}^{(t)}(x,a) - \Phi_{\infty}(x,a)| \\ &\leq |V_{\infty}(x) - V_{\infty}^{(t)}(x)| + \alpha \int_{\Re^k} V_{\infty}^{(t)} [G_{\infty}(x,a,s)] |\rho_t(s) - \rho(s)| \, ds \\ &+ \alpha \int_{\Re^k} |V_{\infty}^{(t)} [G_{\infty}(x,a,s)] - V_{\infty} [G_{\infty}(x,a,s)] |\rho(s) \, ds \\ &\leq \|V_{\infty} - V_{\infty}^{(t)}\|_{W} W(x) + \frac{\alpha \bar{c}}{1 - \alpha} \int_{\Re^k} W[G_{\infty}(x,a,s)] |\rho_t(s) - \rho(s)| \, ds \\ &+ \alpha [\beta W(x) + b] \|V_{\infty}^{(t)} - V_{\infty}\|_{W}, \end{aligned}
$$

for each $(x, a) \in \mathbb{K}$, $t \in \mathbb{N}_0$ [see also (32)]. Hence, from (30) and (41), as $W(\cdot) \geq 1$ and α < 1, it follows

$$
\sup_{X} [W(x)]^{-1} \sup_{A(x)} |\Phi_{\infty}^{(t)}(x, a) - \Phi_{\infty}(x, a)| \le C' ||\rho_t - \rho||, \tag{42}
$$

where $C' = \frac{\bar{c}}{1 - \alpha} \left[1 + \frac{(1 + \beta + b)(1 + d')}{1 - \theta} \right]$ $1-\theta$ $\begin{bmatrix} (1 + R + b)(1 + d') \end{bmatrix}$. Moreover, by definition of the adaptive policy π_{∞}^{*} in Definition 4.4 and (34), we have $\Phi_{\infty}^{(t)}(\cdot, \pi_{t,\infty}^{*}(\cdot)) \leq \delta_{t}^{*}$, $t \in \mathbb{N}_0$. Thus

$$
\Phi_{\infty}(x_t, \pi_{t,\infty}^*(h_t)) \leq |\Phi_{\infty}(x_t, \pi_{t,\infty}^*(h_t)) - \Phi_{\infty}^{(t)}(x_t, \pi_{t,\infty}^*(h_t)) + \delta_t^*|
$$
\n
$$
\leq \sup_{A(x_t)} |\Phi_{\infty}(x_t, a) - \Phi_{\infty}^{(t)}(x_t, a)| + \delta_t^*
$$
\n
$$
\leq W(x_t) \sup_X[W(x)]^{-1} \sup_{A(x)} |\Phi_{\infty}(x_t, a) - \Phi_{\infty}^{(t)}(x_t, a)| + \delta_t^*
$$
\n
$$
\leq C'W(x_t) ||\rho_t - \rho|| + \delta_t^*, \quad t \in \mathbb{N}_0.
$$
\n(43)

The latter inequality implies

$$
E_{\mathcal{X}}^{(\infty)\pi_{\infty}^*}[\Phi_{\infty}(x_t,a_t)] \leq C' E_{\mathcal{X}}^{(\infty)\pi_{\infty}^*}[W(x_t)\|\rho_t-\rho\|]+\delta_t^*,
$$

and, therefore, to prove that π_{∞}^{*} is δ^{*} -asymptotically discount optimal [see (36)], it is enough to show that $E_x^{(\infty)\pi_{\infty}^*}[W(x_t)||\rho_t - \rho||] \to 0$ as $t \to \infty$. Define $\overline{C} := (E_x^{(\infty)\pi^*_{\infty}}[W^p(x_t)])^{1/p}$. By Lemma 3.1(c), $\overline{C} < \infty$. Applying Hölder's inequality, we deduce

$$
E_{x}^{(\infty)\pi_{\infty}^{*}}[W(x_{t})\|\rho_{t}-\rho\|]\leq \overline{C}(E_{x}^{(\infty)\pi_{\infty}^{*}}[\|\rho_{t}-\rho\|^{p'}])^{1/p'}.
$$

Then, observing that $E_x^{(\infty)\pi^*_{\infty}}[\|\rho_t-\rho\|^{p'}] = E[\|\rho_t-\rho\|^{p'}]$ (since ρ_t does not depend on x and π_{∞}^{*}), Lemma 4.1 yields the desired results. \square

5 Example

We now discuss an example in biotechnological processes to illustrate how to verify our assumptions. Consider the following system

$$
x_{n+1} = (H(x_n)g_n(x_n) + G(x_n, a_n) + \xi_n)^+ \quad (n \in \mathbb{N}_0),
$$
\n(44)

 $x_0 = x$ given, with state space $X = [0, \infty) \times [0, \infty)$ and actions sets $A(x) = A$ for all $x \in X$, where A is a compact subset of \Re^2 . The functions H, g_n and G are continuous, and $\{\xi_n\}$ is an i.i.d. sequence of r.v.'s with bounded and continuous density ρ .

This model represents, for example, the real time evolution of the concentrations x_n of a biomass and a substrate in a bioreaction, directed by two control actions a_n . Such reactions are very common in depollution and in the agrofood industry [1]. The function $g_n(x)$ then characterizes the microbial growth rate, which is a time-varying quantity, influenced by many factors (biomass and substrate concentrations, temperature, pH, etc). However, under suitable conditions, the growth rate $g_n(x)$ tends to a "stable" growth rate $g_\infty(x)$ (in the sense of Assumption 2.2 for example), and so the time-varying system (44) "tends" to a time-homogeneous system such as (3) .

To assure that the system (44) has a nice stable behavior, we make the following assumption on its dynamic:

Assumption 5.1. There exist a positive constant $v < 1$ and a norm $\|\cdot\|_{\mathbb{R}^2}$ on X such that

lim sup $||x||_{\Re^2} \rightarrow \infty$ sup $i \in \overline{\mathbb{N}}_0$ sup $a \in A(x)$ $||(H(x)g_i(x) + G(x,a))^+||_{\Re^2}$ $\frac{\|x\|_{\Re^2}}{\|x\|_{\Re^2}} = v.$

See for example [2] for further details on this kind of hypotheses.

The control objective is defined as the regulation of $\{x_n\}$ around a fixed reference point $x^* \in X$. To that aim, we choose the following cost function

$$
c(x) := \|x - x^*\|_{\mathbb{R}^2}^{1/2}, \quad x \in X.
$$

 \mathbf{r}

The r.v.'s ξ_0, ξ_1, \ldots are supposed to be i.i.d. with unknown density $\rho \in L_q$ satisfying the inequality

$$
\|A_z \rho\|_q \le L|z|^{1/q},
$$

for some given constants $L < \infty$ and $q > 1$.

In addition, we assume that $E(||\xi_0||_{\mathbb{R}^2}) < \infty$ and that there exists a constant $M < \infty$ such that $\rho(s) \le M \min\{1, 1/\|s\|_{\mathbb{R}^2}^{1+r}\}\,$, for all $s \in \mathbb{R}^2$.

Clearly, Assumptions 2.1, 2.2 and the conditions (a) – (c) in the definition of the set \tilde{D} are satisfied defining, for $x \in X$ and $s \in \mathbb{R}^2$, $\hat{W}(x) := (\Vert x \Vert_{\mathbb{R}^2} + \delta)^{1/2}$ and $\bar{\rho}(s) := M \min\{1, 1/\|s\|_{\mathbb{R}^2}^{1+r}\},\$ where $\delta \geq \max(1, \|x^*\|_{\mathbb{R}^2})$.

On the other hand, a straightforward calculation shows that the density ρ satisfies the inequality (12) with $\beta_0 = v < 1$ and $b_0 = 2\delta + E ||\xi_0||_{\mathfrak{P}^2} < \infty$. Therefore, Assumption 2.4 holds.

To conclude, it is easy to see that $\varphi(s) \leq 1 + \delta^{1/2} + ||s||_{\mathcal{R}^2}^{1/2} / \inf_{x \in \mathcal{R}} W(x) < \infty$, $s \in \mathbb{R}^2$. Thus, choosing appropriate $r > 0$ in the definition of $\overline{\rho}$, Assumption 2.6 is satisfied and Theorem 4.5 holds.

References

- [1] Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam
- [2] Duflo M (1997) Random iterative models. Springer-Verlag, Berlin
- [3] Dynkin EB, Yushkevich AA (1979) Controlled Markov processes. Springer-Verlag, New York
- [4] Gordienko EI, Minjárez-Sosa JA (1998) Adaptive control for discrete-time Markov processes with unbounded costs: discounted criterion. Kybernetika 34:217–234
- [5] Gordienko EI, Minja´rez-Sosa JA (1998) Adaptive control for discrete-time Markov processes with unbounded costs: average criterion. Math. Meth. of Oper. Res. 48:37–55
- [6] Hasminskii R, Ibragimov I (1990) On density estimation in the view of Kolmogorov's ideas in approximation theory. Ann. of Statist. 18:999–1010
- [7] Hernández-Lerma O (1989) Adaptive Markov control processes. Springer-Verlag, New York
- [8] Hernández-Lerma O, Lasserre JB (1997) Policy iteration for average cost Markov control processes on Borel spaces. Acta Appl. Math. 47:125–154
- [9] Hernández-Lerma O, Lasserre JB (1999) Further topics on discrete-time Markov control processes. Springer-Verlag, New York
- [10] Hernández-Lerma O, Muñoz-de-Ozak M (1992) Discrete-time MCPs with discounted unbounded costs: optimality criteria. Kybernetika 28:191–212
- [11] Hilgert N, Hernández-Lerma O (2000) Limiting optimal discounted-cost control of a class of time-varying stochastic systems. Syst. Control Lett. 40(1):37–42
- [12] Hilgert N, Senoussi R, Vila JP (1996) Nonparametric estimation of time-varying autoregressive nonlinear processes. C. R. Acad. Sci. Paris Série 1, 323:1085–1090
- [13] Kurano M (1972) Discrete-time markovian decision processes with an unknown parameter average return criterion. J. Oper. Res. Soc. Japan 15:67–76
- [14] Mandl P (1974) Estimation and control in Markov chains. Adv. Appl. Probab. 6:40–60
- [15] Rieder U (1978) Measurable selection theorems for optimization problems. Manuscripta Math. 24:115–131
- [16] Schal M (1975) Conditions for optimality and for the limit on *n*-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32:179–196
- [17] Schäl M (1987) Estimation and control in discounted stochastic dynamic programming. Stochastics 20:51–71
- [18] Van Nunen JAEE, Wessels J (1978) A note on dynamic programming with unbounded rewards. Manag. Sci. 24:576–580