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Abstract. We consider a class of time-varying stochastic control systems, with
Borel state and action spaces, and possibly unbounded costs. The processes
evolve according to a discrete-time equation xnþ1 ¼ Gnðxn; an; xnÞ, n ¼ 0; 1; . . . ;
where the xn are i.i.d. <k-valued random vectors whose common density is un-
known, and the Gn are given functions converging, in a restricted way, to some
function Gy as n ! y. Assuming observability of xn, we construct an adap-
tive policy which is asymptotically discounted cost optimal for the limiting con-
trol system xnþ1 ¼ Gyðxn; an; xnÞ.
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1 Introduction

This paper deals with discrete-time, time-varying stochastic control systems of
the form

xnþ1 ¼ Gnðxn; an; xnÞ; n A N0 :¼ f0; 1; . . .g; ð1Þ

where xn and an denote the state and control variables respectively, and fxng,
the so-called ‘‘disturbance’’ or ‘‘driving’’ process, is a sequence of independent
and identically distributed (i.i.d.) random vectors in <k having an unknown
density r. In addition, fGng is a sequence of given functions such that
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E1B½Gnðx; a; x0Þ
 ! E1B½Gyðx; a; x0Þ
 for all ðx; aÞ and Borel set B; ð2Þ

where 1Bð:Þ denotes the indicator function of the set B (See Assumption 2.2
for more details on this condition).
Our main objective in this paper is to introduce asymptotically discounted

optimal adaptive policies for the general limiting system

xtþ1 ¼ Gyðxt; at; xtÞ; t A N0; ð3Þ

considering possibly unbounded one-stage costs.
Systems of the type (1) appear, for instance, in some time-varying controlled

biotechnological processes ([1, 12]), taking the particular form

xnþ1 ¼ ðHðxnÞgnðxnÞ þ Gðxn; anÞ þ xnÞþ; n A N0:

This model represents, for example, the real time evolution of biomasses (mi-
croorganisms) and substrates concentrations in bioreactions. Such bioreactions
are very common in depollution and in the agro-food industry. This example
will be analyzed below (Section 5) to illustrate the main results of this paper.
Our work extends recent results in [4] and [11]. In the former, the adaptive

control problem in the discounted case is studied for general time-invariant
systems of the type (3). The construction of optimal policies is done by first
estimating the density r with suitable statistical methods, and then applying
the ‘‘principle of estimation and control’’ proposed in [13, 14]. On the other
hand, [11] studies time-varying additive-noise systems of the form

xnþ1 ¼ Gnðxn; anÞ þ xn; n A N0;

where the density of the random disturbance fxng is supposed to be known,
and fGng is a sequence of given functions converging pointwise to some func-
tion Gy. Conditions are given for the existence of a-discounted optimal sta-
tionary policies for the limiting system

xtþ1 ¼ Gyðxt; atÞ þ xt; t A N0: ð4Þ

The same approach is applied to system (1); that is, we consider the a-
discounted problem for the time-invariant system

xtþ1 ¼ Gnðxt; at; xtÞ; t A N0; ð5Þ

for each fixed n A N0, and then we let n ! y to obtain the corresponding re-
sult for the limiting system (3). Put in this form, our main result, Theorem 4.5,
can also be seen as a further result of [4] on system (3) where the function Gy

is unknown and estimated by some consistent functional estimator Gn.
The paper is organized as follows. In Section 2 we introduce the Markov

control models we are concerned with and the assumptions required. Some
preliminary results are given in Section 3. The adaptive policies are introduced
in Section 4 together with the main result, Theorem 4.5. Finally, a generic ex-
ample of a biotechnological process satisfying all the hypotheses of the paper
is described in Section 5.
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2 Markov control models

For each fixed n ¼ 0; 1; . . . ;y, we consider the Markov control model

Mn :¼ ðX ;A; fAðxÞ j x A Xg;Qn; cÞ ð6Þ

associated to the system (5), satisfying the following conditions. The state space
X and the action space A are Borel spaces. They are endowed with their Borel
s-algebras BðX Þ and BðAÞ. For each state x A X , AðxÞ is a nonempty Borel
subset of A denoting the set of admissible controls when the system is in state
x. The set

K ¼ fðx; aÞ : x A X ; a A AðxÞg

of admissible state-action pairs is assumed to be a Borel subset of the Carte-
sian product of X and A. In addition, Qn is a stochastic kernel denoting the
transition law corresponding to (5), that is, for all t A N0, ðx; aÞ A K and B A
BðXÞ,

QnðBjx; aÞ :¼ Prob½Gnðxt; at; xtÞ A B j xt ¼ x; at ¼ a


¼ E1B½Gnðx; a; xtÞ


¼
ð
<k

1B½Gnðx; a; sÞ
rðsÞ ds; ð7Þ

where fxtg is a sequence of i.i.d. random vectors (r.v.’s) on a probability space
ðW;F;PÞ, with values in <k and a common unknown distribution with a den-
sity r. Moreover, we assume that the realizations x0; x1; . . . of the driving pro-
cess and the states x0; x1; . . . are completely observable. Finally, the cost-per-
stage cðx; aÞ is a nonnegative measurable real-valued function on K, possibly
unbounded.
We define the spaces of admissible histories up to time t by H0 :¼ X and

Ht :¼ ðK � <kÞ t � X , tb 1. A generic element of Ht is written as ht ¼
ðx0; a0; x0; . . . ; xt
1; at
1; xt
1; xtÞ. A control policy p ¼ fptg is a sequence of
measurable functions pt : Ht ! A such that ptðhtÞ A AðxtÞ, ht A Ht, t A N0.
Let P be the set of all control policies and FHP the subset of stationary
policies. If necessary, see for example [3, 4, 5, 7, 8, 9, 10, 11] for further in-
formation on those policies. As usual, each stationary policy p A F is identified
with a measurable function f : X ! A such that f ðxÞ A AðxÞ for every x A X ,
so that p is of the form p ¼ f f ; f ; f ; . . .g. In this case we use the notation f
for p and we write

cðx; f Þ :¼ cðx; f ðxÞÞ and Gnðx; f ; sÞ :¼ Gnðx; f ðxÞ; sÞ

for all x A X , s A <k and n ¼ 0; 1; . . . ;y.
For a fixed n ¼ 0; 1; . . . ;y, let Vnðp; xÞ be the a-discounted cost using the

policy p A P, given the initial state x0 ¼ x, when the control model is Mn [see
(6)]. That is,
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Vnðp; xÞ :¼ EðnÞp
x

Xy
t¼0

a tcðxt; atÞ
" #

; ð8Þ

where a A ð0; 1Þ is the so-called discount factor, and E
ðnÞp
x denotes the expec-

tation operator with respect to the probability measure P
ðnÞp
x induced by the

policy p, given the initial state x0 ¼ x and the model Mn (see, e.g., [3]). The
corresponding value (or optimal cost) function is

VnðxÞ :¼ inf
p AP

Vnðp; xÞ; x A X : ð9Þ

A policy p� A P is said to be a-discounted optimal (or simply a-optimal) for
the control model Mn ðn ¼ 0; 1; . . . ;yÞ if

VnðxÞ ¼ Vnðp�; xÞ for all x A X : ð10Þ

Throughout the paper, we will use the following assumptions on the Mar-
kov control model. Note that Assumption 2.1 allows an unbounded cost-
per-stage function cðx; aÞ provided that it is upper bounded by some function
WðxÞ. Next, Assumption 2.2 refers to system (1). Assumptions 2.4 and 2.6 are
technical requirements on the unknown density r and the function W.

Assumption 2.1 (Bounds and semicontinuity.).
a) For all x A X the function a ! cðx; aÞ is lower semicontinuous (l.s.c.)

on AðxÞ. Moreover, there exists a measurable function W : X ! ½1;yÞ such
that supAðxÞ cðx; aÞa cW ðxÞ, x A X , for some constant c > 0.
b) For each x A X , AðxÞ is a s-compact set.

Assumption 2.2 (On the dynamics of the system.). For each n A N0, the function
Gn : K � <k ! X is continuous, and furthermore, there exists a continuous
function Gy : K � <k ! X such that the transition law QnðBjx; aÞ ¼ E1B �
½Gnðx; a; xtÞ
 converges (setwise) to QyðBjx; aÞ ¼ E1B½Gyðx; a; xtÞ
 as n ! y,
for each B A BðX Þ.

Remark 2.3. Suppose that model (1) is noise additive, i.e. that xnþ1 ¼
Gnðxn; anÞ þ xn for all n, and that the density r of xn is bounded and continu-
ous. Assumption 2.2 then trivially holds if Gn converges pointwise to Gy. See
[11].

In the remainder, we fix an arbitrary e A ð0; 1=2Þ and denote Lq the space
Lqð<kÞ where q :¼ 1þ 2e. Also we choose and fix a nonnegative and mea-
surable function r : <k ! < which is used as a known majorant of the un-
known density r of the r.v.’s xn in (1).
We define the set ~DD ¼ ~DDðr;L; b0; b0; p; qÞ as the set consisting of all den-

sities m on <k for which the following conditions hold.
a) m A Lq;
b) there exists a constant L such that for each z A <k

kDzmkq aLjzj1=q; ð11Þ

where DzmðxÞ :¼ mðx þ zÞ 
 mðxÞ, x A <k and j � j is the Euclidean norm in <k;
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c) mðsÞa rðsÞ almost everywhere with respect to the Lebesgue measure;
d) for all x A X , n A N0

sup
AðxÞ

ð
<k

W p½Gnðx; a; sÞ
mðsÞ dsa b0W
pðxÞ þ b0; ð12Þ

for some p > 1, b0 < 1, b0 < y.

Assumption 2.4 (On the density r.). The density r belongs to ~DD.

Remark 2.5. When k ¼ 1 it is not di‰cult (see [4]) to show that a su‰cient
condition for (11) is the following. There are a finite set H H< (possibly
empty) and a constant M b 0 such that:
i) r has a bounded derivative r 0 on <nH which belongs to Lq;
ii) the function jr 0ðxÞj is nonincreasing for xbM and nondecreasing for

xa
M.
Note that H might include points of discontinuity of r if such points exist.

Moreover, from i) and ii) r 0ðxÞb 0 for xa
M and r 0ðxÞa 0 for xbM.

Assumption 2.6.
a) For all s A <k the function j defined by

jðsÞ :¼ sup
X

½WðxÞ

1 sup
a AAðxÞ;n AN0

W ½Gnðx; a; sÞ
 ð13Þ

is finite, and verifies
b)

Ð
<k

j2ðsÞjrðsÞj1
2e ds <y.

The function j in (13) may be nonmeasurable. In this case we suppose the
existence of a measurable upper bound j of j for which Assumption 2.6(b)
holds. Besides, from (13), note that, for each n ¼ 0; 1; . . . ;y, Assumption 2.6
holds with jn instead of j, where

jnðsÞ :¼ sup
X

½WðxÞ

1 sup
a AAðxÞ

W ½Gnðx; a; sÞ
:

In Section 5 we give an example of a controlled process for which all as-
sumptions presented in this section hold.

3 Preliminary results

Let W be the function in Assumption 2.1(a). We denote by Ly
W the normed

linear space of all measurable functions u : X ! < with

kukW :¼ sup
x AX

juðxÞj
WðxÞ <y: ð14Þ

Now we state some results that will be useful in the next section. Each of
these results is provided with references for its proof.
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Lemma 3.1. Suppose that Assumption 2.1(a) holds and the density r satisfies
the condition (12). Then, for all p A P, x A X and n A N0:

a) [4] denoting b ¼ b
1=p
0 and b ¼ b

1=p
0 ,

sup
AðxÞ

ð
<k

W ½Gnðx; a; sÞ
rðsÞ dsa bWðxÞ þ b; ð15Þ

b) [4] suptb1 E
ðnÞp
x ½W pðxtÞ
 < y and suptb1 E

ðnÞp
x ½WðxtÞ
 <y.

If moreover Assumption 2.2 holds, then
c) [11] for all x A X,

sup
AðxÞ

ð
<k

W p½Gyðx; a; sÞ
rðsÞ dsa b0W
pðxÞ þ b0

and (from (15))

sup
AðxÞ

ð
<k

W ½Gyðx; a; sÞ
rðsÞ dsa bWðxÞ þ b; ð16Þ

which implies that suptb1 E
ðyÞp
x ½W pðxtÞ
 < y and suptb1 E

ðyÞp
x ½WðxtÞ
 < y

for each p A P, x A X;
d) [11] for each n ¼ 0; 1; . . . ;y, the value function Vn in (9) and the func-

tions

V �ðxÞ :¼ lim sup
n!y

VnðxÞ and V�ðxÞ :¼ lim inf
n!y

VnðxÞ ðx A X Þ ð17Þ

are in Ly
W . In fact,

0aVnðxÞa cW ðxÞ=ð1
 aÞ; x A X : ð18Þ

From the fact that, for each n ¼ 0; 1; . . . ;y, Qnð� j �Þ is a stochastic kernel
[see (7)], it is easy to prove that for every nonnegative function u A Ly

W , and
every r A <, the set

ðx; aÞ :
ð
<k

u½Gnðx; a; sÞ
rðsÞ dsa r

� �

is Borel in K. Using this fact, the following result is a consequence of Corol-
lary 4.3 in [15].

Lemma 3.2. Let a A ð0; 1Þ be an arbitrary but fixed discount factor, and u a non-
negative function in Ly

W . Under Assumptions 2.1 and 2.2, if r satisfies (15), then
for any d > 0 and n ¼ 0; 1; . . . ;y, there exists a policy fd;n A F such that

cðx; fd;nÞ þ a

ð
<k

u½Gnðx; fd;n; sÞ
rðsÞ dsa uðxÞ þ d Ex A X : ð19Þ

The selector fd;n is also called a d-minimizer of the function a 7! cðx; aÞ þ a
Ð

u �
½Gnðx; a; sÞ
rðsÞ ds.
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Throughout the paper we will repeatedly use the following inequalities. Let
m be a density satisfying (15) and (16), then

juðxÞja kukW WðxÞ ð20Þ

and

ð
<k

u½Gnðx; a; sÞ
mðsÞ dsa kukW ½bWðxÞ þ b
; ð21Þ

for all n ¼ 0; 1; . . . ;y, u A Ly
W , x A X , a A AðxÞ. The relation (20) is a conse-

quence of the definition of k � kW in (14), and (21) holds thanks to (20).

Theorem 3.3. Suppose that Assumptions 2.1 and 2.2 hold, and that the density r
satisfies the condition (12). Then, VnðxÞ ! VyðxÞ, as n ! y, for all x A X,
and the value function VyðxÞ A Ly

W satisfies the a-discounted cost optimality
equation

VyðxÞ ¼ inf
a AAðxÞ

cðx; aÞ þ a

ð
<k

Vy½Gyðx; a; sÞ
rðsÞ ds

� 	
; x A X : ð22Þ

Theorem 3.3 was proved in [11] supposing, in addition, continuity and
boundedness of the density r. These stronger assertions are necessary to get a
unique solution Vy to the optimality equation (22). In the present context, the
uniqueness is not required, which allows weaker assumptions. Here we give a
sketch of the proof without these conditions, which is a slight modification of
[11].

Proof. Let us first fix an arbitrary n A N0. Then (see [9, Chapter 8]), Assump-
tions 2.1 and 2.2, and (12), together with Lemma 3.1(a,d), ensure that the value
function Vn in (9) satisfies

VnðxÞ ¼ inf
a AAðxÞ

cðx; aÞ þ a

ð
<k

Vn½Gnðx; a; sÞ
rðsÞ ds

� 	
; x A X : ð23Þ

Now, take the limit infimum in (23) as n ! y. Then, from (18), applying an
extension of Fatou’s Lemma [8] and a general result on the interchange of
limits and minima [10], we get

V�ðxÞb inf
a AAðxÞ

cðx; aÞ þ a

ð
<k

V�½Gyðx; a; sÞ
rðsÞ ds

� 	
; x A X : ð24Þ

where V� is as in (17). From Lemma 3.1(b), V� A Ly
W . Let e > 0 be an arbitrary

number. According to Lemma 3.2, there exists an e-minimizer, fe A F, of the
right hand side of (24), that is

cðx; feÞ þ a

ð
<k

V�½Gyðx; fe; sÞ
rðsÞ dsaV�ðxÞ þ e; x A X :

Iteration of the latter inequality yields
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V�ðxÞb
XN
1

t¼0
a tEðyÞ fe

x cðxt; feÞ þ aNEðyÞfe
x V�ðxNÞ 
 e

XN
1

t¼0
a t: ð25Þ

Letting N ! y in (25), observe that from (20) and Lemma 3.1(b,d), we have

aNE
ðyÞfe
x V�ðxNÞ ! 0, which, together with (8), implies V�ðxÞbVyð fe; xÞ 


e=ð1
 aÞbVyðxÞ 
 e=ð1
 aÞ. As e > 0 was arbitrary, we conclude that

V�ðxÞbVyðxÞ; x A X : ð26Þ

The remainder of the proof is as in [11], which consists, mainly, in showing
that V �ðxÞaVyðxÞ, for all x A X , which, together with (26) yields that V�ðxÞ ¼
V �ðxÞ ¼ VyðxÞ for all x A X : r

Remark 3.4. Since Vn ! Vy, it is important to have in mind that fd;y,
defined in Lemma 3.2, can be obtained as an ‘‘accumulation point’’ of the d-
minimizers f fd;ng for the control models Mn with finite n. Indeed, by a result
of [16], there is a policy fd;y A F such that, for each x A X , fd;yðxÞ A AðxÞ is
an accumulation point of f fd;nðxÞg. That is to say, for each x A X , there exists
a subsequence fniðxÞg of fng such that

fd;niðxÞðxÞ ! fd;yðxÞ as i ! y:

Now fix an arbitrary x A X and in (19) replace u with Vn and n with niðxÞ. Then
letting i ! y, as c is l.s.c., from Theorem 3.3 we obtain

cðx; fd;yÞ þ a

ð
<k

Vy½Gyðx; fd;y; sÞ
rðsÞ dsaVyðxÞ þ d Ex A X ;

which implies that fd;y is a d-minimizer of Vy thanks to (22).

4 Adaptive policies

To construct an adaptive policy, we first present a statistical method to esti-
mate r. It is based on a density estimation scheme that was originally pro-
posed in [4] to obtain an asymptotically discount optimal adaptive policy for
the time-invariant model My, see also [5]. We slightly modify this estimation
scheme to make it independent of My.
Let x0; x1; . . . ; xt
1 be independent realizations (observed up to time t 
 1),

of r.v.’s with the unknown density r. We suppose that Assumptions 2.4 and
2.6 hold.
Let r̂rtðsÞ :¼ r̂rtðs; x0; x1; . . . ; xt
1Þ, for s A <k, be an arbitrary sequence of

estimators of r belonging to Lq, and such that for some g > 0

Ekr
 r̂rtk
qp 0=2
q ¼ Oðt
gÞ as t !y; ð27Þ

where p 0 is given by the relation 1=p þ 1=p 0 ¼ 1. Examples of estimators sat-
isfying (27) are given in [6].
Then, we estimate r by the projection rt of r̂rt on the set D of densities in Lq

defined as follows:
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D :¼
�
m A Lq : m is a density function on <k; mðsÞa rðsÞ a:e: and

ð
W ½Gnðx; a; sÞ
mðsÞ dsa bWðxÞ þ b; En A N0; ðx; aÞ A K

�
:

See Lemma 3.1(a) for the constants b and b.
From Assumption 2.4 and Lemma 3.1(a), we have that r A ~DDHD, and so

D is nonempty. Moreover, the existence (and uniqueness) of the estimator rt

is guaranteed because D is convex and closed in Lq [4]. Note also that if
Assumption 2.2 holds, Lemma 3.1(c) yields that r belongs to the following
set Dy, used in [4]:

Dy :¼
�
m A Lq : m is a density function on <k; mðsÞa rðsÞ a:e: and

ð
W ½Gyðx; a; sÞ
mðsÞ dsa bWðxÞ þ b; Eðx; aÞ A K

�
: ð28Þ

Hence, D is a subset of Dy, which yields that the following Lemma 4.1 still
holds.

Lemma 4.1. [4, 5] Suppose that Assumptions 2.4 and 2.6 hold. Then

Ekrt 
 rkp 0
¼ Oðt
gÞ as t ! y; ð29Þ

where k � k is the pseudo-norm on the space of all densities m on <k defined as:

kmk :¼ sup
X

½WðxÞ

1 sup
AðxÞ

ð
<k

W ½Gyðx; a; sÞ
mðsÞ ds: ð30Þ

For arbitrary density m in <k, the pseudo-norm kmk may be infinite. How-
ever, by (28), kmk < y for m in D.
In the remainder of the paper, we fix an arbitrary discount factor a A ð0; 1Þ.

The optimality of the adaptive policy is studied in the sense of the following
definition.

Definition 4.2. a) [17] A policy p A P is said to be asymptotically discount
optimal for the control model Mn ðn ¼ 0; 1; . . . ;yÞ if

jV ðkÞ
n ðp; xÞ 
 EðnÞp

x ½VnðxkÞ
j ! 0 as k ! y; for all x A X ;

where

V ðkÞ
n ðp; xÞ :¼ EðnÞp

x

Xy
t¼k

a t
kcðxt; atÞ
" #

;

is the expected total discounted cost for the control model Mn from stage k
onward and at ¼ ptðhtÞ.
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b) Let db 0. A policy p is d-asymptotically discount optimal for the con-
trol model Mn ðn ¼ 0; 1; . . . ;yÞ if

lim sup
k!y

jV ðkÞ
n ðp; xÞ 
 EðnÞp

x ½VnðxkÞ
ja d; x A X :

From Definition 4.2(a) and (10) we have that discount optimality implies
asymptotic discount optimality, and this one in turn implies d-asymptotic dis-
count optimality.
For any m A D and n ¼ 0; 1; . . . ;y, let us define the operator T

ðnÞ
m : Ly

W !
Ly

W as

T ðnÞ
m uðxÞ :¼ inf

AðxÞ
cðx; aÞ þ a

ð
<k

u½Gnðx; a; sÞ
mðsÞ ds

� �
; x A X ; u A Ly

W :

ð31Þ

Observe in particular that, from (23), T
ðnÞ
r Vn ¼ Vn.

For the construction of the adaptive policy we replace the unknown den-
sity r by its estimate rt and exploit the corresponding discounted optimality
equation for the model My (see (22)), or more generally for model Mn, n ¼
0; 1; . . . ;y. As rt A D for all tb 1, the following Proposition 4.3 is a direct
consequence of Lemmas 3.1, 3.2, Theorem 3.3 and Remark 3.4.

Proposition 4.3.
a) Suppose that Assumptions 2.1(a) and 2.2 hold. Then, for each tb 1 and

n ¼ 0; 1; . . . ;y, there exists a function V
ðtÞ

n A Ly
W such that T

ðnÞ
rt

V
ðtÞ

n ¼ V
ðtÞ

n .
Moreover,

V ðtÞ
n ðxÞa c

1
 a
WðxÞ; x A X : ð32Þ

b) Under Assumptions 2.1 and 2.2, for each tb 1, n A N and d�t > 0, there
exists a stationary policy f �

t;n A F such that

cðx; f �
t;nÞ þ a

ð
<k

V ðtÞ
n ½Gnðx; f �

t;n; sÞ
rtðsÞ dsaV ðtÞ
n ðxÞ þ d�t ; x A X : ð33Þ

c) It follows from part (b) and Remark 3.4 that, for any tb 1, there exists
a stationary policy f �

t;y A F such that, for all x A X, f �
t;yðxÞ A AðxÞ is an accu-

mulation point of f f �
t;nðxÞg, and we have

cðx; f �
t;yÞ þ a

ð
<k

V ðtÞ
y ½Gyðx; f �

t;y; sÞ
rtðsÞ dsaV ðtÞ
y ðxÞ þ d�t ; x A X : ð34Þ

The minimization in (31), with rt instead of m, is done for every o A W.
Similarly, in the following, we suppose that the minimization of a term in-
cluding the estimator rt is done for every o A W.
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Definition 4.4. For each fixed n ¼ 0; 1; . . . ;y and any arbitrary sequence fd�t g
of positive numbers, let f f �

t;ng be a sequence of functions satisfying (33) for
each integer t A N0. We define the adaptive policy p

�
n ¼ fp�

t;ng as follows:

p�
t;nðhtÞ ¼ p�

t;nðht; rtÞ :¼ f �
t;nðxtÞ; ht A Ht; t ¼ 1; 2; . . .

while p�
0;nðxÞ is any fixed action in AðxÞ.

Note that, from Proposition 4.3(c), p�
y is the sequence fp�

t;yg, where each
component p�

t;y, t ¼ 1; 2; . . . ; can be obtained as an accumulation point of the
sequence f f �

t;nðxtÞg, indexed by n.
As fd�t g is arbitrary, we choose it convergent and denote d

� :¼ limt!y d�t .
We are now ready to state our main result.

Theorem 4.5. Suppose that Assumptions 2.1, 2.2, 2.4 and 2.6 hold. Then the
adaptive policy p�

y is d�-asymptotically discount optimal for the model My. In
particular, if d� ¼ 0 then the policy p�

y is asymptotically discount optimal.

Remark 4.6. (a) Since Assumptions 2.4 and 2.6 are stated for each finite n A N0,
we have (see [4]) that the adaptive policy p�

n introduced in Definition 4.4 is d
�-

asymptotically discount optimal for the modelMn, for each finite n. The whole
point of Theorem 4.5 is that this result also holds for n ¼ y.
b) The notion of asymptotic optimality introduced in Definition 4.2 can be

characterized in terms of the so-called discounted discrepancy function, defined
for each n ¼ 0; 1; . . . ;y, as:

Fnðx; aÞ :¼ cðx; aÞ þ a

ð
<k

Vn½Gnðx; a; sÞ
rðsÞ ds 
 VnðxÞ; ðx; aÞ A K; ð35Þ

which is nonnegative in view of (22) and (23). That is (see e.g. [7, 10]), a policy
p A P is asymptotically discount optimal for the control model Mn ðn ¼ 0;
1; . . . ;yÞ if

EðnÞp
x ½Fnðxt; atÞ
 ! 0 as t ! y; for all x A X :

Moreover, for db 0, it is easy to see that a policy p A P is d-asymptotically
discount optimal for the control model Mn ðn ¼ 0; 1; . . . ;yÞ if

lim sup
t!y

EðnÞp
x ½Fnðxt; atÞ
a d; x A X : ð36Þ

Thus, Theorem 4.5 will be proved if we show that the adaptive policy p�
y sat-

isfies (36).

Proof of Theorem 4.5. Let us fix an arbitrary number y A ða; 1Þ and define
WðxÞ :¼ WðxÞ þ d, x A X , where d :¼ bðy=a
 1Þ
1. Let Ly

W
be the space of

measurable functions u : X ! < with the norm

kukW :¼ sup
x AX

juðxÞj
WðxÞ

<y:
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It is easy to see that

kukW a kukW a kukW ð1þ d 0Þ; ð37Þ

where d 0 :¼ d=infX WðxÞ. Hence Ly
W ¼ Ly

W
and the norms k � kW and k � kW

are equivalent.
On the other hand, a consequence of [18, Lemma 2] is that, for each m A D,

the inequality (16) in Lemma 3.1 implies that the operator Tm :¼ Ty
m defined

in (31) is a contraction of modulus y with respect to the norm k � kW , that is,

kTmv 
 TmukW a ykv 
 ukW ; Ev; u A Ly
W : ð38Þ

Hence, from Proposition 4.3(a) we can see that

kVy 
 V ðtÞ
y kW a kTrVy 
 Trt

VykW þ ykVy 
 V ðtÞ
y kW ;

which implies

kVy 
 V ðtÞ
y kW a

1

1
 y
kTrVy 
 Trt

VykW ; t A N0: ð39Þ

Now, from (18), (30) and the fact that ½Wð�Þ

1 < ½Wð�Þ

1, we obtain

kTrVy
Trt
VykW a a sup

X

½WðxÞ

1 sup
AðxÞ

ð
<k

Vy½Gyðx; a; sÞ
jrðsÞ
rtðsÞj ds

a
ac

1
 a
sup

X

½WðxÞ

1 sup
AðxÞ

ð
<k

W ½Gyðx; a; sÞ


� jrðsÞ 
 rtðsÞj dsa
c

1
 a
kr
 rtk; t A N0: ð40Þ

Hence, from (37) and combining (39) and (40), we get

kVy 
 V ðtÞ
y kW a ð1þ d 0ÞkVy 
 V ðtÞ

y kW

a
cð1þ d 0Þ

ð1
 yÞð1
 aÞ kr
 rtk; t A N: ð41Þ

On the other hand, for each t A N0, we define the function F
ðtÞ
y : K ! < as:

FðtÞ
y ðx; aÞ :¼ cðx; aÞ þ a

ð
<k

V ðtÞ
y ½Gyðx; a; sÞ
rtðsÞ ds 
 V ðtÞ

y ðxÞ; ðx; aÞ A K:

By the definition (35) of Fy, we get (by adding and subtracting the term
a
Ð
<k V

ðtÞ
y ½Gyðx; a; sÞ
rðsÞ ds)
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jFðtÞ
y ðx; aÞ 
Fyðx; aÞj

a jVyðxÞ 
 V ðtÞ
y ðxÞj þ a

ð
<k

V ðtÞ
y ½Gyðx; a; sÞ
jrtðsÞ 
 rðsÞj ds

þ a

ð
<k

jV ðtÞ
y ½Gyðx; a; sÞ
 
 Vy½Gyðx; a; sÞ
jrðsÞ ds

a kVy 
 V ðtÞ
y kW WðxÞ þ ac

1
 a

ð
<k

W ½Gyðx; a; sÞ
jrtðsÞ 
 rðsÞj ds

þ a½bWðxÞ þ b
kV ðtÞ
y 
 VykW ;

for each ðx; aÞ AK, t AN0 [see also (32)]. Hence, from (30) and (41), asWð�Þb1
and a < 1, it follows

sup
X

½WðxÞ

1 sup
AðxÞ

jFðtÞ
y ðx; aÞ 
Fyðx; aÞjaC 0krt 
 rk; ð42Þ

where C 0 ¼ c

1
 a
1þ ð1þ b þ bÞð1þ d 0Þ

1
 y

� 	
. Moreover, by definition of the

adaptive policy p�
y in Definition 4.4 and (34), we have F

ðtÞ
y ð� ; p�

t;yð�ÞÞa d�t ,
t A N0. Thus

Fyðxt; p
�
t;yðhtÞÞa jFyðxt; p

�
t;yðhtÞÞ 
FðtÞ

yðxt; p
�
t;yðhtÞÞ þ d�t j

a sup
AðxtÞ

jFyðxt; aÞ 
FðtÞ
y ðxt; aÞj þ d�t

aWðxtÞ sup
X

½WðxÞ

1 sup
AðxÞ

jFyðxt; aÞ 
FðtÞ
y ðxt; aÞj þ d�t

aC 0WðxtÞkrt 
 rk þ d�t ; t A N0: ð43Þ

The latter inequality implies

EðyÞp �
y

x ½Fyðxt; atÞ
aC 0EðyÞp �
y

x ½WðxtÞkrt 
 rk
 þ d�t ;

and, therefore, to prove that p�
y is d�-asymptotically discount optimal [see

(36)], it is enough to show that E
ðyÞp �

y
x ½WðxtÞkrt 
 rk
 ! 0 as t ! y. Define

C :¼ ðEðyÞp �
y

x ½W pðxtÞ
Þ1=p. By Lemma 3.1(c), C < y. Applying Hölder’s in-
equality, we deduce

EðyÞp �
y

x ½WðxtÞkrt 
 rk
aCðEðyÞp �
y

x ½krt 
 rkp 0

Þ1=p 0

:

Then, observing that E
ðyÞp �

y
x ½krt 
 rkp 0


 ¼ E½krt 
 rkp 0

 (since rt does not de-

pend on x and p�
y), Lemma 4.1 yields the desired results. r
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5 Example

We now discuss an example in biotechnological processes to illustrate how to
verify our assumptions. Consider the following system

xnþ1 ¼ ðHðxnÞgnðxnÞ þ Gðxn; anÞ þ xnÞþ ðn A N0Þ; ð44Þ

x0 ¼ x given, with state space X ¼ ½0;yÞ � ½0;yÞ and actions sets AðxÞ ¼ A
for all x A X , where A is a compact subset of <2. The functions H, gn and G
are continuous, and fxng is an i.i.d. sequence of r.v.’s with bounded and con-
tinuous density r.
This model represents, for example, the real time evolution of the concen-

trations xn of a biomass and a substrate in a bioreaction, directed by two con-
trol actions an. Such reactions are very common in depollution and in the agro-
food industry [1]. The function gnðxÞ then characterizes the microbial growth
rate, which is a time-varying quantity, influenced by many factors (biomass
and substrate concentrations, temperature, pH, etc). However, under suitable
conditions, the growth rate gnðxÞ tends to a ‘‘stable’’ growth rate gyðxÞ (in the
sense of Assumption 2.2 for example), and so the time-varying system (44)
‘‘tends’’ to a time-homogeneous system such as (3).
To assure that the system (44) has a nice stable behavior, we make the fol-

lowing assumption on its dynamic:

Assumption 5.1. There exist a positive constant n < 1 and a norm k � k<2 on X
such that

lim sup
kxk<2!y

sup
i AN0

sup
a AAðxÞ

kðHðxÞgiðxÞ þ Gðx; aÞÞþk<2
kxk<2

¼ n:

See for example [2] for further details on this kind of hypotheses.
The control objective is defined as the regulation of fxng around a fixed

reference point x� A X . To that aim, we choose the following cost function

cðxÞ :¼ kx 
 x�k1=2<2 ; x A X :

The r.v.’s x0; x1; . . . are supposed to be i.i.d. with unknown density r A Lq

satisfying the inequality

kDzrkq aLjzj1=q;

for some given constants L <y and q > 1.
In addition, we assume that Eðkx0k<2Þ < y and that there exists a constant

M < y such that rðsÞaMminf1; 1=ksk1þr
<2 g, for all s A <2.

Clearly, Assumptions 2.1, 2.2 and the conditions (a)–(c) in the definition of
the set ~DD are satisfied defining, for x A X and s A <2, WðxÞ :¼ ðkxk<2 þ dÞ1=2
and rðsÞ :¼ Mminf1; 1=ksk1þr

<2 g, where dbmaxð1; kx�k<2Þ.
On the other hand, a straightforward calculation shows that the density

r satisfies the inequality (12) with b0 ¼ n < 1 and b0 ¼ 2dþ Ekx0k<2 < y.
Therefore, Assumption 2.4 holds.
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To conclude, it is easy to see that jðsÞa 1þ d1=2 þ ksk1=2<2 =infX WðxÞ < y,
s A <2. Thus, choosing appropriate r > 0 in the definition of r, Assumption
2.6 is satisfied and Theorem 4.5 holds.
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[4] Gordienko EI, Minjárez-Sosa JA (1998) Adaptive control for discrete-time Markov processes
with unbounded costs: discounted criterion. Kybernetika 34:217–234

[5] Gordienko EI, Minjárez-Sosa JA (1998) Adaptive control for discrete-time Markov processes
with unbounded costs: average criterion. Math. Meth. of Oper. Res. 48:37–55

[6] Hasminskii R, Ibragimov I (1990) On density estimation in the view of Kolmogorov’s ideas
in approximation theory. Ann. of Statist. 18:999–1010

[7] Hernández-Lerma O (1989) Adaptive Markov control processes. Springer-Verlag, New York
[8] Hernández-Lerma O, Lasserre JB (1997) Policy iteration for average cost Markov control
processes on Borel spaces. Acta Appl. Math. 47:125–154

[9] Hernández-Lerma O, Lasserre JB (1999) Further topics on discrete-time Markov control
processes. Springer-Verlag, New York
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