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Abstract. We consider a class of time-varying stochastic control systems, with
Borel state and action spaces, and possibly unbounded costs. The processes
evolve according to a discrete-time equation x,,; = G,,(x,,a,,&,), n=0,1,...,
where the &, are i.i.d. R*-valued random vectors whose common density is un-
known, and the G, are given functions converging, in a restricted way, to some
function G, as n — c0. Assuming observability of &,, we construct an adap-
tive policy which is asymptotically discounted cost optimal for the limiting con-
trol system Xp 11 = Goo (Xp, Gy, &)
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1 Introduction

This paper deals with discrete-time, time-varying stochastic control systems of
the form

Xnyl = Gn(xman>fn)7 nelNg:= {0717-“}; (1)

where x, and g, denote the state and control variables respectively, and {¢,},
the so-called “disturbance” or “driving” process, is a sequence of independent
and identically distributed (i.i.d.) random vectors in R* having an unknown
density p. In addition, {G,} is a sequence of given functions such that
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El[Gu(x,a,&y)] — E1p[G(x,a,&)] forall (x,a) and Borel set B, (2)

where 1p(.) denotes the indicator function of the set B (See Assumption 2.2
for more details on this condition).

Our main objective in this paper is to introduce asymptotically discounted
optimal adaptive policies for the general limiting system

X4l = Goo(xt;atvét)a t € No, (3)

considering possibly unbounded one-stage costs.
Systems of the type (1) appear, for instance, in some time-varying controlled
biotechnological processes ([1, 12]), taking the particular form

Xn+l = (H(xn)gn(xn) + G(xnaan) + én)+a n e Ny.

This model represents, for example, the real time evolution of biomasses (mi-
croorganisms) and substrates concentrations in bioreactions. Such bioreactions
are very common in depollution and in the agro-food industry. This example
will be analyzed below (Section 5) to illustrate the main results of this paper.

Our work extends recent results in [4] and [11]. In the former, the adaptive
control problem in the discounted case is studied for general time-invariant
systems of the type (3). The construction of optimal policies is done by first
estimating the density p with suitable statistical methods, and then applying
the “principle of estimation and control” proposed in [13, 14]. On the other
hand, [11] studies time-varying additive-noise systems of the form

Xn+l = Gn(xnaan) + én7 n € Ny,

where the density of the random disturbance {&,} is supposed to be known,
and {G,} is a sequence of given functions converging pointwise to some func-
tion G, . Conditions are given for the existence of a-discounted optimal sta-
tionary policies for the limiting system

X1 = Goo(xt;at) +¢;, teN. (4)

The same approach is applied to system (1); that is, we consider the o-
discounted problem for the time-invariant system

Xyl = Gn(xt7ataét)> Z‘GH\I(% (5)

for each fixed n € Ny, and then we let n — oo to obtain the corresponding re-
sult for the limiting system (3). Put in this form, our main result, Theorem 4.5,
can also be seen as a further result of [4] on system (3) where the function G,
is unknown and estimated by some consistent functional estimator G,.

The paper is organized as follows. In Section 2 we introduce the Markov
control models we are concerned with and the assumptions required. Some
preliminary results are given in Section 3. The adaptive policies are introduced
in Section 4 together with the main result, Theorem 4.5. Finally, a generic ex-
ample of a biotechnological process satisfying all the hypotheses of the paper
is described in Section 5.
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2 Markov control models

For each fixed n =0, 1, ..., o0, we consider the Markov control model
M, = (X,A,{A(X) |XEX}3QH76) (6)

associated to the system (5), satisfying the following conditions. The state space
X and the action space A are Borel spaces. They are endowed with their Borel
o-algebras B(X) and B(A). For each state x € X, A(x) is a nonempty Borel
subset of 4 denoting the set of admissible controls when the system is in state
x. The set

K= {(x,a):xeX,ae A(x)}

of admissible state-action pairs is assumed to be a Borel subset of the Carte-
sian product of X and 4. In addition, Q, is a stochastic kernel denoting the
transition law corresponding to (5), that is, for all # € Ny, (x,a) e K and B e
B(X),

0,(B|x,a) := Prob|G,(x;,a;,&,) € B| x = x,a, = d

= EIB[Gn(xa a, ét)]
— JW 15[Gu(x, a,s)]p(s) ds, (7)

where {&,} is a sequence of i.i.d. random vectors (r.v.’s) on a probability space
(Q, 7, P), with values in R and a common unknown distribution with a den-
sity p. Moreover, we assume that the realizations &, &y, .. . of the driving pro-
cess and the states xg, x1, ... are completely observable. Finally, the cost-per-
stage c¢(x,a) is a nonnegative measurable real-valued function on K, possibly
unbounded.

We define the spaces of admissible histories up to time ¢ by Hy := X and
H, := (K x R)"' x X, t>1. A generic element of H, is written as s, =
(x0,a0, &0y - -, Xi—1,ar-1, &1, X1). A control policy = = {x,} is a sequence of
measurable functions 7, : H, — A4 such that n,(h) € A(x;), h, € H,, t € Ny.
Let 17 be the set of all control policies and IF < IT the subset of stationary
policies. If necessary, see for example [3, 4, 5, 7, 8, 9, 10, 11] for further in-
formation on those policies. As usual, each stationary policy z € TF is identified
with a measurable function /' : X — A such that f(x) € A(x) for every x € X,
so that 7 is of the form = = {f, f, f,...}. In this case we use the notation f
for 7 and we write

C(X, f) = C(x7f<x)) and Gn(x7 /s S) = Gn(xvf(x)vs)

forallxe X,seR*andn=0,1,..., 0.

Fora fixedn=20,1,..., 00, let ¥,(n,x) be the a-discounted cost using the
policy n € II, given the initial state xo = x, when the control model is M, [see
(6)]. That is,
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VH(TE, X) =

()7 i: a'e(x;, a,)] , (8)
=0

where o € (0, 1) is the so-called discount factor, and EY denotes the expec-
tation operator with respect to the probability measure P< induced by the
policy =z, given the initial state xo = x and the model M, (see, e.g., [3]). The
corresponding value (or optimal cost) function is

Vi(x) == in}f7 Vo(m,x), xeX. 9)

A policy n* € I is said to be a-discounted optimal (or simply a-optimal) for
the control model M, (n=0,1,...,00) if

Vi(x) = Vy(n*,x) forall xe X. (10)

Throughout the paper, we will use the following assumptions on the Mar-
kov control model. Note that Assumption 2.1 allows an unbounded cost-
per-stage function ¢(x, a) provided that it is upper bounded by some function
W (x). Next, Assumption 2.2 refers to system (1). Assumptions 2.4 and 2.6 are
technical requirements on the unknown density p and the function W.

Assumption 2.1 (Bounds and semicontinuity.).

a) For all x € X the function a — ¢(x,a) is lower semicontinuous (1.s.c.)
on A(x). Moreover, there exists a measurable function W : X — [1, c0) such
that sup 4, c(x,a) < ¢W(x), x € X, for some constant ¢ > 0.

b) For each x € X, A(x) is a o-compact set.

Assumption 2.2 (On the dynamics of the system.). For each n € Ny, the function
G, : K x R¥ — X is continuous, and furthermore, there exists a continuous
function G, : K x ®F — X such that the transition law Q,(B|x,a) = Elp -
[Gu(x,a,&,)] converges (setwise) to Qo (B|x,a) = Elp[Gy(x,a,&,)] as n — oo,
for each B € B(X).

Remark 2.3. Suppose that model (1) is noise additive, i.e. that x,.; =
Gy (xy,a,) + &, for all n, and that the density p of &, is bounded and continu-
ous. Assumption 2.2 then trivially holds if G, converges pointwise to G,. See
[11].

In the remainder, we fix an arbitrary ¢ € (0,1/2) and denote L, the space

L,(R¥) where ¢ := 1 + 2¢. Also we choose and fix a nonnegatlve and mea-
surable function p : R — R which is used as a known majorant of the un-
known density p of the r.v.’s &, in (1).

We define the set D = D(p, L, f, bo, p, q) as the set consisting of all den-
sities « on R¥ for which the following conditions hold.

) lu € qu
b) there exists a constant L such that for each z € R¥

14:4dl, < LIz|", (11)

where A.u(x) := u(x + z) — u(x), x € R* and | - | is the Euclidean norm in R*;
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c) u(s) < p(s) almost everywhere with respect to the Lebesgue measure;
d) forall xe X, ne Ny

supJ WP(Gu(x,a,s)|u(s)ds < By WP(x) + bo, (12)
A(x) I

for some p > 1, f, < 1, by < 0.
Assumption 2.4 (On the density p.). The density p belongs to D.

Remark 2.5. When k£ =1 it is not difficult (see [4]) to show that a sufficient
condition for (11) is the following. There are a finite set H < R (possibly
empty) and a constant M > 0 such that:

i) p has a bounded derivative p’ on R\ H which belongs to L,;

ii) the function |p’(x)| is nonincreasing for x > M and nondecreasing for
x<-M.

Note that H might include points of discontinuity of p if such points exist.
Moreover, from i) and ii) p’(x) > 0 for x < —M and p’(x) <0 for x > M.

Assumption 2.6.
a) For all s e R¥ the function ¢ defined by

o(s) ==sup[W(x)]""  sup  W[Gu(x,a,s5)] (13)
X aeA(x),neNy

is finite, and verifies
b) [ ¢3(s)p(s)]' " ds < co.
SRk

The function ¢ in (13) may be nonmeasurable. In this case we suppose the
existence of a measurable upper bound ¢ of ¢ for which Assumption 2.6(b)
holds. Besides, from (13), note that, for each n =0, 1,..., co, Assumption 2.6
holds with ¢, instead of ¢, where

0,(s) = sup[W(x)]"" sup WI[G.(x,a,s)].
X aeA(x)

In Section 5 we give an example of a controlled process for which all as-
sumptions presented in this section hold.
3 Preliminary results

Let W be the function in Assumption 2.1(a). We denote by L}, the normed
linear space of all measurable functions u : X — R with

ju()| 14

u = Su < 0.
l[ull U )

Now we state some results that will be useful in the next section. Each of
these results is provided with references for its proof.
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Lemma 3.1. Suppose that Assumption 2.1(a) holds and the density p satisfies
the condition (12). Then, for all m e Il, x € X and n € Ny:

a) [4] denoting B = B/ and b = b},
i J W(Gn(x, a,s)p(s) ds < fW (x) + b; (15)
A(x) JRk

b) /4] sup,~, Eﬁn)n[Wp(x,)] < oo and Supt21E§">”[W(x,)] .

If moreover Assumption 2.2 holds, then
c) [11] forall xe X,

ij WPIGoy (x,a,5)|p(s) ds < o WP(x) + by
A(x) JRK

and (from (15))

supJ WGy (x,a,s)|p(s)ds < fW(x) + b, (16)
A(x) JRK

which implies that sup,~, EX”"[W?(x,)] < o0 and sup,~, EX""[W(x,)] < o
foreachmell, xe X;

d) /11] for eachn=0,1,..., o0, the value function V, in (9) and the func-
tions

V*(x) := limsup V,(x) and V.(x):=liminf V,(x) (xeX) (17)

n—oo n—0
are in LY. In fact,
0<V(x)<eW(x)/(1 —a), xeX. (18)
From the fact that, for each n =0,1,..., 00, Q,(-|-) is a stochastic kernel

[see (7)], it is easy to prove that for every nonnegative function u € L}, and
every r € ), the set

{a | uGitvasipts)as <}

is Borel in K. Using this fact, the following result is a consequence of Corol-
lary 4.3 in [15].

Lemma 3.2. Let o € (0, 1) be an arbitrary but fixed discount factor, and u a non-

negative function in L}, Under Assumptions 2.1 and 2.2, if p satisfies (15), then
forany o >0andn=20,1,..., 0, there exists a policy fs, € IF such that

c(x, fs.n) + aLRk u[Gy(x, fo.n,8)]p(s)ds <u(x)+9J VYxeX. (19)

The selector f; , is also called a 6-minimizer of the function a — c(x,a) + o [u -
(G (x, @, )]p(s) ds.
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Throughout the paper we will repeatedly use the following inequalities. Let
1 be a density satisfying (15) and (16), then

()] < el W () (20)
and J u[Gu(x, a, 5)|pu(s) ds < |lull y [BW (x) + b], (21)

§Rk
foralln=0,1,...,00, ue L}, xe X, a € A(x). The relation (20) is a conse-

quence of the definition of || - ||, in (14), and (21) holds thanks to (20).

Theorem 3.3. Suppose that Assumptions 2.1 and 2.2 hold, and that the density p
satisfies the condition (12). Then, V,(x) — V,(x), as n — oo, for all xe€ X,
and the value function V. (x) € LY, satisfies the a-discounted cost optimality
equation

Veo(x) = aeirjt(“)() {c(x, a) + o J}Rk Vo |G (x,a, 8)|p(s)ds|, xeX. (22)

Theorem 3.3 was proved in [11] supposing, in addition, continuity and
boundedness of the density p. These stronger assertions are necessary to get a
unique solution ¥, to the optimality equation (22). In the present context, the
uniqueness is not required, which allows weaker assumptions. Here we give a
sketch of the proof without these conditions, which is a slight modification of
[11].

Proof. Let us first fix an arbitrary n € Ny. Then (see [9, Chapter 8]), Assump-
tions 2.1 and 2.2, and (12), together with Lemma 3.1(a,d), ensure that the value
function ¥, in (9) satisfies

aeA(x)

Vy(x) = inf [c(x, a) + o L}%k

ValGn(x, a,s)]p(s) ds} , xeX. (23)

Now, take the limit infimum in (23) as n — oo. Then, from (18), applying an
extension of Fatou’s Lemma [8] and a general result on the interchange of
limits and minima [10], we get

Vi(x) > inf : [c(x, a)+ ocJ » VG (x,a,8)]p(s) ds], xeX. (24)
R

aeA(x

where V; is asin (17). From Lemma 3.1(b), V; € L};. Let ¢ > 0 be an arbitrary
number. According to Lemma 3.2, there exists an e-minimizer, f; € IF, of the
right hand side of (24), that is

c(x, f) + ocjw VilGoo (X, f2,8)]p(8) ds < Vi(x) +& xeX.

Iteration of the latter inequality yields
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N-1 N-1
Va(x) 2 > a'Eee(x, fi) + oV ES YV (xy) — & Yo, (25)
=0 =0

Letting N — oo in (25), observe that from (20) and Lemma 3.1(b,d), we have
aNEVY Y, (xy) — 0, which, together with (8), implies Vi(x) > V. (f;, x) —
e/(1 —a) = Vy(x) —e/(1 —a). As ¢ > 0 was arbitrary, we conclude that

Vilx) = Vyo(x), xeX. (26)

The remainder of the proof is as in [11], which consists, mainly, in showing
that V*(x) < V,,(x), for all x € X, which, together with (26) yields that V,(x) =
V*(x) = Vy(x) forall xe X. [

Remark 3.4. Since V, — V,,, it is important to have in mind that f; .,
defined in Lemma 3.2, can be obtained as an “accumulation point” of the J-
minimizers {f5 ,} for the control models M, with finite n. Indeed, by a result
of [16], there is a policy f5 ., € IF such that, for each x € X, f5.(x) € A(x) is
an accumulation point of {f5 ,(x)}. That is to say, for each x € X, there exists
a subsequence {n;(x)} of {n} such that

Somn) (%) = fo.0(x) asi— oo.

Now fix an arbitrary x € X and in (19) replace u with ¥, and n with n;(x). Then
letting i — oo, as c is L.s.c., from Theorem 3.3 we obtain

c(x, fo.00) + och Vo |Goo (X, f5.00,8)]p(s) ds < Voo (x) +0 Vxe X,

which implies that f; ., is a J-minimizer of V,, thanks to (22).

4 Adaptive policies

To construct an adaptive policy, we first present a statistical method to esti-
mate p. It is based on a density estimation scheme that was originally pro-
posed in [4] to obtain an asymptotically discount optimal adaptive policy for
the time-invariant model M, see also [5]. We slightly modify this estimation
scheme to make it independent of M.

Let &y, &y, ..., &, be independent realizations (observed up to time # — 1),
of r.v.’s with the unknown density p. We suppose that Assumptions 2.4 and
2.6 hold.

Let p,(s) := p,(s;&0, &1y -, &), for s € RE, be an arbitrary sequence of
estimators of p belonging to L,, and such that for some y > 0

Elp=p & =0(7) ast— oo, (27)

where p’ is given by the relation 1/p + 1/p’ = 1. Examples of estimators sat-
isfying (27) are given in [6].

Then, we estimate p by the projection p, of g, on the set D of densities in L,
defined as follows:
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D= {u € L, : puis a density function on R, u(s) < p(s) a.e. and

J W[G,(x,a,s)|u(s)ds < fW(x)+ b, Vne Ny, (x,a) € ]K}.

See Lemma 3.1(a) for the constants f and b. ~

From Assumption 2.4 and Lemma 3.1(a), we have that p € D = D, and so
D is nonempty. Moreover, the existence (and uniqueness) of the estimator p,
is guaranteed because D is convex and closed in L, [4]. Note also that if
Assumption 2.2 holds, Lemma 3.1(c) yields that p belongs to the following
set D, used in [4]:

D, = {,u € L, : uis a density function on R, u(s) < p(s) a.e. and

J WG (x,a,s)|u(s)ds < W (x) + b, Y(x,a) € ]K}. (28)

Hence, D is a subset of D.,, which yields that the following Lemma 4.1 still
holds.

Lemma 4.1. /4, 5] Suppose that Assumptions 2.4 and 2.6 hold. Then

Ellp, = pll” =0O(r7) ast— o, (29)
where || - || is the pseudo-norm on the space of all densities u on R* defined as:
= supl¥ ()] sup | (G (.t s (30)

X A(x) SR

For arbitrary density x in ¥, the pseudo-norm ||| may be infinite. How-
ever, by (28), |ju|| < oo for uin D.

In the remainder of the paper, we fix an arbitrary discount factor o € (0, 1).
The optimality of the adaptive policy is studied in the sense of the following
definition.

Definition 4.2. a) [17] A policy = € IT is said to be asymptotically discount
optimal for the control model M, (n=0,1,..., ) if

VO (7, x) — EM*[V,(x)]| = 0 ask — oo, forallxeX,

where

0 (x,

n

o0
E xn az

t=k

is the expected total discounted cost for the control model M, from stage k
onward and a, = 7,(h;).
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b) Let 0 > 0. A policy = is J-asymptotically discount optimal for the con-
trol model M, (n=0,1,...,00) if

limsup | V" (z, x) = EV"[Va(x)]| <6, xeX.

k—o0

From Definition 4.2(a) and (10) we have that discount optimality implies
asymptotic discount optimality, and this one in turn implies d-asymptotic dis-
count optimality.

Foranyue Dandn=0,1,..., o0, let us define the operator T,g") Ly —
Ly, as

u[Gy(x,a,s)|u(s) ds}, xeX, uelj.

(31)

(n) — i .
T, u(x) : L?\g{c(x, a) + ocJW

Observe in particular that, from (23), TSV, = V.

For the construction of the adaptive policy we replace the unknown den-
sity p by its estimate p, and exploit the corresponding discounted optimality
equation for the model M, (see (22)), or more generally for model M,, n =
0,1,...,00. As p, e D for all ¢t > 1, the following Proposition 4.3 is a direct
consequence of Lemmas 3.1, 3.2, Theorem 3.3 and Remark 3.4.

Proposition 4.3.
a) Suppose that Assumptions 2.1(a) and 2.2 hold. Then, for each t > 1 and

n=0,1,...,00, there exists a function V,,m e Ly, such that Tlgf) V,,(’) = Vn(t).
Moreover,
KO < 2 C W), xeX. (32)
—a

b) Under Assumptions 2.1 and 2.2, for each t > 1, n € N and 6, > 0, there
exists a stationary policy f;", € IF such that

c(x,f;:,>+aj VOLGH(x, [, 8)lp(s)ds < VI (x) +6, xeX. (33

c) It follows from part (b) and Remark 3.4 that, for any t > 1, there exists
a stationary policy f;*, € IF such that, for all x e X, 1", (x) € A(x) is an accu-
mulation point of {f",(x)}, and we have

c(x, fi7,) + ocj

VG (x, £ s)p(s) ds < VD (x) +6;, xeX. (34)
Rk ’
The minimization in (31), with p, instead of g, is done for every w € Q.
Similarly, in the following, we suppose that the minimization of a term in-
cluding the estimator p, is done for every w € Q.
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Definition 4.4. For each fixed n = 0,1, ..., o0 and any arbitrary sequence {J; }

of positive numbers, let {f,*,} be a sequence of functions satisfying (33) for

each integer # € Ny. We define the adaptive policy 7, = {x;,} as follows:
n,(h) =7 (b p) =11 (x), heH, 1=12,...

tn
while 7§ ,(x) is any fixed action in A(x).

*

Note that, from Proposition 4.3(c), 7}, is the sequence {r; }, where each
component 7, £ =1,2,..., can be obtained as an accumulation point of the
sequence { f,,(x;)}, indexed by n.

As {6} is arbitrary, we choose it convergent and denote 6* := lim,_., ;"

t
We are now ready to state our main result.

Theorem 4.5. Suppose that Assumptions 2.1, 2.2, 2.4 and 2.6 hold. Then the
adaptive policy n’ is 0" -asymptotically discount optimal for the model M .,. In
particular, if 6" = 0 then the policy n’, is asymptotically discount optimal.

Remark 4.6. (a) Since Assumptions 2.4 and 2.6 are stated for each finite n € Ny,
we have (see [4]) that the adaptive policy 7, introduced in Definition 4.4 is 0*-
asymptotically discount optimal for the model M, for each finite n. The whole
point of Theorem 4.5 is that this result also holds for n = 0.

b) The notion of asymptotic optimality introduced in Definition 4.2 can be
characterized in terms of the so-called discounted discrepancy function, defined
foreachn=20,1,..., o0, as:

D, (x,a) :=c(x,a) + otJ VailGu(x,a,s)|p(s)ds — V,(x), (x,a)eK, (395)
Rk
which is nonnegative in view of (22) and (23). That is (see e.g. [7, 10]), a policy
n € IT is asymptotically discount optimal for the control model M, (n =0,
l,...,00)if

E" @, (x;,a)] — 0 ast— oo, forall xeX.

Moreover, for ¢ > 0, it is easy to see that a policy n € I is d-asymptotically

discount optimal for the control model M, (n =0,1,...,00) if
limsup E"7[®,(x,,a,)] <3, xeX. (36)
1— 00

Thus, Theorem 4.5 will be proved if we show that the adaptive policy n}, sat-
isfies (36).

Proof of Theorem 4.5. Let us fix an arbitrary number ¢ € («,1) and define
W(x):= W(x)+d, xe X, where d := b(0/a— 1)"". Let L% be the space of
measurable functions u : X — R with the norm




502 N. Hilgert, J. A. Minjarez-Sosa
It is easy to see that
ull < llully < llullm(1 +d"), (37)

where d' := d/infy W(x). Hence Ljj, = L and the norms || - ||, and || - ||
are equivalent.

On the other hand, a consequence of [18, Lemma 2] is that, for each x € D,
the 1nequa11ty (16) in Lemma 3.1 implies that the operator T,, =T deﬁned
in (31) is a contraction of modulus ¢ with respect to the norm || - ||, that is,

| T — Tyull < 0llo —ullz, Yv,ue Ly, (38)
Hence, from Proposition 4.3(a) we can see that

Ve = VOl < 1Ty Vee = Ty Vol + 01 Ve = V2l

which implies

1
1V = VOllg < 75TV = Ty Vil 1€ No. (39)

« !

Now, from (18), (30) and the fact that [¥(-)] ™" < [W(-)] ", we obtain
1T,V =T, Vellp < 2 suplW (0] sup [ V.G (. 9)lp(s) = p )]
X A(x) JRK

oc
<

sl ) sup | (G (. a.)
D ¢ A(x) JRr

c
xIp() = plds < ——lp=pll, teNo.  (40)
Hence, from (37) and combining (39) and (40), we get
1Voe = Vi2llw < (L4 d)[Ves = VIl

c(1+d')
SWHP pil, 1eN. (41)

On the other hand, for each 7 € Ny, we define the function (DEQ : K — R as:

@Y (x,a) := c(x,a) + ch VDG (x,a,9)|p,(s)ds — VI (x), (x,a)eK.

oe]
Rk

By the deﬁnltlon (35) of @, we get (by adding and subtracting the term
o fi V- 16, (x,a,5)]p(s) ds)
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|25 (x,a) — @es(x, a)

< Vo (x) = VO ()| + j VOG0 (x,a,9)]pi(s) = pls)] ds

b VG (xas)) = V(G5 lp(o)
Rk

oc

<1V = VOl W) + 125 | WG (a9l = (o)l ds

+al BW () + BV — Vel

for each (x,a) € K, te Ny [see also (32)]. Hence, from (30) and (41), as W(-) > 1
and o < 1, it follows

sup[ ()] sup |2 (x,a) = Do (x,a)| < C'llp, = pl, (42)
C by (1 +d’ ..
where C’ =1 ¢ {1 + (1 +/3Y )é +d) . Moreover, by definition of the
— _

adaptive policy 7} in Definition 4.4 and (34), we have oY (-, n /() <6/,
t € Ny. Thus

Do (0,17, (1) < | Poc (5017, (1) = @) (30, 7y, (o)) + 0

IA

Sup|@ (X,, )_¢( (xlv )|+5*
A(xq)

< W(x) sup[W(x)]f sup | @, (x;,a) — <15’ (xp,a)| + 9,
X A(x)

< C'W(x)lp,—pll +9;, teN. (43)
The latter inequality implies

E (@ (i, ar)] < CTES™[W(x) I, = pll) +9,
and, therefore, to prove that z is J"-asymptotically discount optimal [see
(36)], it is enough to show that EX™™ [W(x,)||p, — pll] — 0 as ¢ — oo. Define
C = (EX™ WP (x,)])"?. By Lemma 3.1(c), C < o0. Applying Holder’s in-
equahty, we deduce

E W (xi)llp, = pll) < C(E™ DR

Then, observing that EX™ [||p, — p||”'] = E[|lp, — p||”'] (since p, does not de-
pend on x and #} ), Lemma 4.1 yields the desired results. [
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5 Example

We now discuss an example in biotechnological processes to illustrate how to
verify our assumptions. Consider the following system

Xntl = (H(xn)gn(xn) + G(X,,,an) + én)+ (n € ]N0)7 (44)

Xo = x given, with state space X = [0, c0) x [0, c0) and actions sets A(x) = 4
for all x € X, where A4 is a compact subset of ®2. The functions H, g, and G
are continuous, and {&,} is an i.i.d. sequence of r.v.’s with bounded and con-
tinuous density p.

This model represents, for example, the real time evolution of the concen-
trations x, of a biomass and a substrate in a bioreaction, directed by two con-
trol actions «,. Such reactions are very common in depollution and in the agro-
food industry [1]. The function g,(x) then characterizes the microbial growth
rate, which is a time-varying quantity, influenced by many factors (biomass
and substrate concentrations, temperature, pH, etc). However, under suitable
conditions, the growth rate g, (x) tends to a “stable” growth rate g., (x) (in the
sense of Assumption 2.2 for example), and so the time-varying system (44)
“tends” to a time-homogeneous system such as (3).

To assure that the system (44) has a nice stable behavior, we make the fol-
lowing assumption on its dynamic:

Assumption 5.1. There exist a positive constant v < 1 and a norm || - || on X
such that

. +
s sup sup 900 + ) e

[[¥]lg2—c0 i€No aeA(x) (|

See for example [2] for further details on this kind of hypotheses.
The control objective is defined as the regulation of {x,} around a fixed
reference point x* € X. To that aim, we choose the following cost function

1/2 xeX.

c(x) = [lx = X7l
The r.v.’s &), &), ... are supposed to be i.i.d. with unknown density p € L,
satisfying the inequality

l4:plly < LIz,

for some given constants L < oo and g > 1.
In addition, we assume that £ (H£0||3Rz) < o0 and that there exists a constant
M < oo such that p(s) < M min{1, 1/Hs|| ", for all s € R2.

Clearly, Assumptions 2.1, 2.2 and the conditions (a)—(c) in the definition of
the set D are satisfied deﬁmng, for xe X and s e R2, W(x) := (||x]|52 +0)!1/?
and j(s) := M min{1,1/||s||st"}, where § > max(1, ||x*||52).

On the other hand, a straightforward calculation shows that the density
p satisfies the inequality (12) with Sy =v <1 and by = 20 + E||&]|p < 0.
Therefore, Assumption 2.4 holds.
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To conclude, it is easy to see that p(s) < 1 +6'/% + Hs||;%/22/infx W (x) < oo,
s € R2. Thus, choosing appropriate » > 0 in the definition of p, Assumption
2.6 is satisfied and Theorem 4.5 holds.
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