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Abstract. In general, a comparison Lemma for the solutions of Forward-
Backward Stochastic Differential Equations (FBSDE) does not hold. Here we
prove one for the backward component at the initial time, relying on certain
monotonicity conditions on the coefficients of both components. Such a result
is useful in applications. Indeed, one can use FBSDE’s to define a utility func-
tional able to capture the disappointment-anticipation effect for an agent in an
intertemporal setting under risk. Exploiting our comparison result, we prove
some ‘“‘desirable’ properties for the utility functional, such as continuity, con-
cavity, monotonicity and risk aversion. Finally, for completeness, in a Marko-
vian setting, we characterize the utility process by means of a degenerate para-
bolic partial differential equation.
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1 Introduction

In recent years the interest for the Forward-Backward SDE’s (FBSDE’s) of
the type

t t
X, =x+J b(s, X, V) ds+J o(s, X,, V) -dW, X eR"
0
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T
Yt:E<F+J f(s,XS,YS)ds|37,>, ZeR"
t

has been steadily growing, due to the mathematical questions they pose, their
relation to quasilinear parabolic PDE’s and their applications to Finance.
Applications often clash against two intrinsic difficulties of these equations:

* the solution does not necessarily exist over arbitrary time intervals;
* there is no explicit representation formula of the solution (X, Y) for the
linear case and, consequently, no general comparison lemma.

The first problem has been addressed in several papers since 1993 ([A], [Ha],
[HP], [MPY], [PT], [Hu]). In [A] existence and uniqueness is given for “small”
time intervals, in the others over arbitrary ones. Three of them are based on
some monotonicity conditions of the coefficients, which unfortunately may
limit the models one wants to consider, [MPY] and [Hu] rely instead on the
correspondence between FBSDE’s and quasilinear parabolic PDE’s. To em-
ploy this technique efficiently, a nondegeneracy condition of the diffusion co-
efficient is needed and this is not always verified in applications.

The second problem, to our knowledge, was addressed only in [MY] and in
[Wu]. In the first, the authors prove a comparison result in a very particular
setting and give a counterexample in the general one. In the second, the author
proves a comparison result for the backward component at time 0, exploiting
monotonicity conditions very similar to those of [HP] and allowing only for
increments of the initial and the final conditions of the FBSDE. Here we prove
a slightly more general result, when n = m = 1, that allows also increments in
the coefficients, based on monotonicity conditions different from Wu’s. Indeed,
this result is motivated by the Forward Backward Stochastic Differential Utility
(FBSDU ) introduced in [ABM] to represent agent’s preferences under risk. The
FBSDU, associated with a consumption process ¢, is defined as the initial so-
lution (U(I, ¢) = Vp) of the forward-backward system:

t

H; =y +J [g(S, Cs, Vs) - OCA'HS] ds, (1)
0

T
V= E(F + J (s, co, Hy) — V) ds | z) , 2)
t

where u denotes the istantaneous utility function and ¢, the consumption
process. In order to establish some useful properties of this functional, as in
[DuE] for the pure backward case, a fairly general comparison result is
needed. The interest in such a functional lies in the fact that it may model the
disappointment-anticipation effect well documented and theorized in the de-
cision theory literature (see [B], [LS], [Lo], [LoP]), due to the fact that agent’s
tastes are affected by what s/he expects for the future, creating either disap-
pointment or anticipation. High expectation in the past in terms of utility may
induce disappointment towards the current outcome, viewed as not as good as
expected, or an “optimistic’’ anticipation of future utility and therefore a high
satisfaction from past consumption. We will extensively discuss the economic
interpretation of the above utility functional below.
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In the next section we prove the comparison theorem, in section 3 we intro-
duce the FBSDU and, after showing the existence and uniqueness of the solu-
tion for (1)—(2), we employ the result with appropriate hypotheses on u and g to
explore some “desirable” properties of the utility functional, such as continuity,
monotonicity and concavity w.r.t. consumption and the final condition and risk
aversion. Finally, in Section 4 employing a by now classical technique, we
construct a degenerate parabolic Partial Differential Equation (PDE), whose
viscosity solution characterizes the utility process.

2 A comparison result

Let [0, T'] be a finite time interval and (Q, &, P) a complete probability space,
on which a standard Brownian motion W is defined. We endow the probability
space with the filtration {Z, : t > 0}, generated by W, made right continuous
and augmented of the P-null sets, so to verify the “usual hypotheses”. Besides
we assume % to be trivial.

Let us consider the following Forward-Backward system in R x R

t t

b(s, X, Yy) ds+J o(s, Xo, Yy) dW, 3)

Xt:x+J
0

0

T
Y, = E<F + J (s, X, Yy) ds| %) ,  where (4)

t

(H) xe R, I'e L*(P) is an Fr-measurable random variable, b,a, f : Q x
[0,7] x R?> — R are adapted, progressively measurable processes glob-
ally Lipschitz in the spatial variables with constant k (uniformly in s, )
and such that

E(JTHJ’(S,O,O)I2 + [b(s,0,0)|* + |a(s,0,0)|%] ds> < +oo.
0

In the following, S> denotes the space of semimartingales such that
E( sup X,|2> < +00. We assume that on [0, T'], for any given x,I,b, f, o

tel0,T]
satisfying (H), there exists a unique pair of adapted processes in S? x §? (or
L?(dt x dP) x L*(dt x dP)) solution of (3)—(4). -

As mentioned in the introduction, in the literature no explicit representation
formula for solutions of linear FBSDE’s is given, differently from what hap-
pens in either the forward or the backward case. In [MY], the authors charac-
terized those by means of a Riccati type equation, but this is unfortunately still
far from an explicit formula. The problem lies in the fact that, when it exists,
at each ¢ the solution depends upon its whole trajectory. Therefore any iterative
procedure fails and it is hard to derive a version of Gronwall’s inequality to
employ for a general comparison lemma. In [MY, pag. 24] an example where
the comparison result does not hold is provided. Nonetheless, in applications
(option pricing, utility theory) it is often the initial value of Y to be of interest.
For this, under some conditions, a comparison result can be maintained, as also
shown in [Wu]. As we explained before, this result, even though in this line,
lacks some flexibility desirable for applications. Hence we prove
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Theorem 2.1: Let I, x1,b', f', 0 and I, x>, b>, f%, 0 satisfy (H) and be such
that

FISFL fl(s,x,y)ﬁfz(s,x,y) a's'allsvx7y'

Besides a.s. all s, x, y, one of the following holds

(a) x1 < xa, bl(s,x,y) < b*(s,x, ), f! is increasing in x, b is decreasing in y
and o increasing (decreasing) in x and y;

(b) x1 = x2, b'(s,x,y) = b%(s,x, ), £ is decreasing in x, b is increasing in y
and o increasing (decreasing) in x and decreasing (increasing) in y.

If we denote by X', Y and X?, Y? the corresponding solutions of (3)—(4),
then Y} < Y.

Proof: Let X = X2 — X!, Y = Y2 — Y, then we have
t

13
>%+J [Bs + o, X +ﬂsYs]ds+J (P Xs + 4, Yy) dW;
0 0

X

T
Yf=E<F+J [E+ysXs+mYs]ds|%>,
t

where

BS = bz(sa nga Y;Z) - bl(s7 Xyza )/SZ) = 07

F=f*s, X}, Y2) — (s, X}, Y7) >0

CbM(s, X2, Y2 —b(s, X}, Y?)

o 1 X2#£X1}
S st _Xsl {X; i
,B :bl(SaXslasz)_bl(s’Xslesl)l R ]
s Y2 - Y] {r2#x'}
f.l(s’ Xx'27 }732) _fVI(S’ Xs‘17 }/:2)1
Vs = - - 3 X&.Z#X‘.] 3
s X2 — X (X2 #x}
7f1(sa Xsla Ysz) 7f1(sa Xsla Ysl) 1
ny = Y2 _ vyl {x2=#x'"}
¢ 0(57 sta Ys2) — 0-<Sv Xsl’ Ys2> 1
= X2#X]}
s X2 —X] { o)
lﬁ _ O-(Sa Xsla Y;Z) B 0-(37 Xslv Ysl) 1rvs ]
s sz _ le {2 #Y'}

The last six terms are well defined, because of the global Lipschitz property of
the coefficients. .

We want to show that Yy > 0. By contradiction, let us assume the opposite
and define the stopping time 7 = inf{s > 0: ¥, > 0} A T. We supposed Z is
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trivial, thus P(z > 0) is either 0 or 1. Since the underlying filtration is gener-
ated by the Brownian motion, Y is a continuous process with Yy < 0 and this
implies that a.s. 7 > 0. Again by the continuity of paths, we may conclude that
Y; <0 on [0 7) and Y, = 0. The processes are all adapted and square inte-

grable, so ¥ may be written as

t

T
YIE<F+J F+ 97.%, + 1,7 1ds|f,> —j (F + 9%, + 1,7 ds
0

t
— M, J IF,+ 9, X, + 1,13 ds,
0

where M is a square integrable martingale. Evaluating at the stopping time ,
taking the conditional expectation and recalling Y; = 0, we have

T
0> Ytl{t<r} =K <J [Fy + 7y, X + 75 Ys]l{s<‘r} ds | %) 1{t<‘r}7
t

which gives (for instance by iterations)

T 5
Yoy =E (J o) T+ 9, X1 (yery ds | %) .
t

On the other hand, the forward component verifies

t t
X, J (B, + X, + B, 1] ds + j 6.5+ v, V] dW,
0 0

= o)+ [ 69118+ (8, b Vs || 80) T}
0 0
=6(S){x+4,+ N}
dS; = o, dt + ¢, dW,,

where & denotes the stochastic exponential of a process and 4 and N denote
the finite variation part and the martingale part (with zero mean) of the pro-

cess between braces. Substituting in ¥ and applying the optional sampling

theorem to the finite variation process dCs = ef I dry 6(S), ds, we obtain

T
Ytl{l<r}_E<J e [F+Vs (S ){x+A +N}]1{Y<T}ds,/t>
t
:E<J fﬂ,drF + 7 ( ){x—l—A }]dsl{KT}dSLf})
t

T 5
+ NE (J e"r’ mdryséa(s)sl{sa} ds | 37t> Lieqy
1
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If condition (a) holds, then we have that x >0, B; >0, y, >0, , <0 and
s = 0 a.s. all s, because of the monotonicity of the various coefficients. This
implies that on [0, 7), By + (f, — ¢4f,) Y5 > 0 a.s. and the same happens for A
because of the positivity of the exponential.

In conclusion, on [0, 7) the first conditional expectation in the expression
of Y gives a positive contribution. When considering Yy, we have Ny =0,
hence

T
0> Y= E(J efo ”"d"[FS + 7,6 (S) X + As}] dslpy ds) >0
0

and we arrive at a contradiction on the set of positive probability {r < 7}. We
can argue similarly if (b) holds and reach the same contradiction.

3 Forward-backward stochastic differential utility

Let %2 ={X:X isa predictable process such that E (IOT | X, ds) < +o0},

and Qf the space of .#? processes with values in R, = [0, 400). Given a con-
sumption process ¢ € $+2, we consider the system:

t

H =y+ Jo[g(s, s, Vi) — o Hy) ds (5)

V;=E<F+JT[U(S7C55HY) _ﬂsVs] ds|%>7 (6)

t

otherwise written

1 t t
Ht _ eiJ(.) ou,duy +J ei[\- otuzz’ug(s7 ¢s, V;) ds
0

T d T i .
Vi=E[e ) P ”F+J efﬁﬂ“'"u(&cs,Hs)dSI«% .

t
The following Assumption holds.
Assumption 3.1:
A. o and f are continuous adapted processes, bounded by a constant M > 0;
B. u,9: 2x[0,T] x Ry x R — R are adapted processes, so that for some
constant k > 0
|g(S, ¢, UZ) - g(sa c, Ul)| < k|UZ — U |a

lu(s, c,ha) —u(s,c, )| < klhy — hy|

for a.e. w and for all (s,c) € [0, T] x Ry, hy,hy,v2,v; € R;
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C. E(fOT(|g(s, cs, 0)|2 + |u(s, s, O)\z) ds) < +o0, for any c € L2,
D. u is increasing in c.

The component H, is the agent’s habit process, with y as the initial stan-
dard of living, while ¥; is the utility process, with I” representing utility at time
T. We refer to U(I', c) = Vy as the Forward-Backward Stochastic Differential
Utility. If the above utility functional represents the agent’s preferences over
consumption streams, then U can be interpreted as a measure of the level of
satisfaction for the agent.

The representation of agents’ preferences under risk is an active field of
research in economic theory. The reference framework is provided by the ad-
ditive expected utility: if the agent’s tastes do not change over time and they
satisfy some axioms, then preferences can be represented as the expectation of
a (utility) functional of consumption. This approach was challenged by other
theories of decision making under risk, as some experimental results showed
that agents do not behave according to the above hypothesis (e.g. the Allais
and the Ellsberg paradoxes). For a survey on these topics we refer the reader
to [E, C].

In an intertemporal setting, one of the key points is that history affects
agent’s tastes. This fact was modeled in many ways; among them we recall the
habit persistence effect analyzed in [Con, DZ1]. In this case (which means ¢
independent of / in (5)—(6)), istantaneous utility is increasing in consumption
and decreasing in a process (the habit) often described as a time average of
past consumption. As a consequence, the higher the standard of living is, the
lower the istantaneous utility from consumption results. In some works it was
recognized that agent’s tastes are affected also by what s/he expects for the
future in two different and opposite directions: disappointment or anticipation.
In [B, LS], the authors point out that an agent may experience disappointment-
elation comparing an outcome with his past expectation on it: if the expecta-
tion was high, then s/he will be disappointed when the outcome is not as good
as expected, the opposite happens when the outcome is better than expected.
In [Lo, LoP], the authors remark that agents may instead anticipate future
consumption-utility: the expectation of future utility positively affects current
utility. The FBSDU captures these features in a setting well suited for asset
pricing applications (continuous time with a flow of information described by
a Brownian motion).

We remark that our functional does not belong to the class of the stochastic
differential utility, introduced in [DuE]. The coefficient ¢ represents the contri-
bution of consumption and expected utility on the habit. If g is independent of
V' and increasing in ¢, then the system is decoupled and H reduces to the clas-
sical habit process (see [Con], [DZ1]). Allowing the habit to depend on the
utility process implies that the standard of living is influenced by the past ex-
perienced expected utility. If g is increasing in v and u is decreasing in /4, then
the agent’s instantaneous utility is negatively affected by what s/he expected
in the past about the future, capturing a disappointment effect. Instead, u in-
creasing in y models anticipation. High expected utility in the past generates a
“positive” expectation for the future and the agent is inclined to appreciate the
actual consumption rate. This interpretation is made clear by the following
example.

ExalTnple 3.2: Consider the Additive Expected Utility (AEU) U(c) =
E(J, e Pu(cy)ds) with instantaneous utility u and the following binary choice
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0 s<t
! =cVse0,T], c’=<¢ t<s<T withprobability n
0 t<s < T with probability 1 — =«

for some fixed t and constants ¢ and c. We assume u(0) = 0 and we define ¢ and
¢ so that ¢ and c” are ordinally equivalent under the AEU, that is

JOT e Pu(c)ds=n J,T e Pu(c) ds. (7)

A disappointment effect would imply ¢ is better than c®, anticipation the oppo-
site. One can represent these rankings by considering a linear FBSDU with the
same u and y = 0:

t

T
Vt:E<J [u(c.r)_yHr_K]dS|%>a ye(_lal)

t
H, :J [V — Hy] ds.
0

We can show that y > 0 models a disappointment effect and y < 0 an anticipa-
tion effect.
One can show (see [ABM]) that when the solution exists, then

T oAsgAT _ o AT o As T
Ul)=Vy=E J T2 T2 e ds | = E J Asu(es)ds |, (8)

AT
0 € 0

-1 -
) 1}1) with real eigenvalues ++/1+7vy and el-j‘-"Y is the

ij-th element of the exponential of A Consequently A=

VT +ycosh(y/T+p(T —s)) + sinh(y/T+ y(T — s)).

V1 +ycosh(y/1T+yT) + sinh(y/T+yT)
y > 0. It can be shown that

where A = (

Note that i;< e &

T T
J Asu(c) ds > nJ Asu(¢)ds < y >0 (equality for y = 0), 9)
0 ‘

by dividing (9) by (7) and proving analitically that fOT Jsds(e™" —e 1) >
T -T
[ Asds(1 —e7T).
Even though ¢ and c" are equivalent under the AEU, they no longer are
under the FBSDU: ¢ is better than c® if and only if y > 0. Note that this pref-
erences order cannot be obtained with the classical habit formation process.

As well known, Lipschitz coefficients are not sufficient to have the existence
and uniqueness of the solution of FBSDE’s, unless the system is decoupled (g
independent of v). To ensure these for (5)—(6), we use the results in [A], based
on a restriction of the time interval.
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Proposition 3.3: Let Assumption 3.1 hold and set K = max{k, M }.
If V8KT < 1, then there exists a unique pair (H, V) in §* x S* satisfying
(5)-(6). -

Proof: Under Assumption 3.1, the operator

t
Yo+ j (g5, e, Vi) — aHy) d
0

1(%) o

T
F+J [u(s, c5, Hy) — V] ds|%>
t

goes from S? x S? into itself. If VKT < 1, L acts as a contraction on S> x S2,

which is a Banach space and hence it identifies a unique fixed point. For more
details we refer the reader to [A]. O

Remark 3.4: The time restriction invoked in Proposition 3.3 is certainly an un-
desirable feature, but it does not seem possible to circumvent it at least in this
context. For examples explaining the necessity of this, we refer the reader to
[A]. Methods to avoid this restriction have been devised in [MPY ], [Hu],
[HP], [Ha] and [ PT], that are either based on the degeneracy of the diffusion
coefficient of the forward components or on various monotonicity conditions of
all the coefficients. Unfortunately the nondegeneracy condition is not fulfilled in
our model and the monotonicity conditions required for the existence of the solu-
tion and for the comparison result in [ Wu | do not match ours and, for instance,
exclude some linear cases that may be interesting in our setting.

Once established the existence of the utility process, we want to show some
“desirable” properties for U(I", c) = V}. Following [DuE], we focus on

* continuity with respect to I" and ¢;
* concavity with respect to c;

* monotonicity in I” and ¢;

* risk aversion.

We complete Assumption 3.1 with the following

Assumption 3.5:

(i) u and g are continuous in ¢ and such that for a.e. w and all s,h,v
lu(s, ¢, )], 1g(s, ¢, v)] < k(1 + [c]).

(i) Ome of the following holds:
a. u is increasing in h and concave in the couple, while g is decreasing in v
and concave in the couple, a.s. for all ¢ and s,
b. u is decreasing in h and concave in the couple, while g is increasing in v
and convex in the couple, a.s. for all ¢ and s.

We remark that also in the proof of the first proposition, the restriction of
the time interval plays a fundamental role. The other propositions are proved
by using the result of the previous section.
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Proposition 3.6: Let Assumptions 3.1 and 3.5 (i) hold. The Forward-Backward
Utility functional U : L> x ID — R, where D denotes the space of cadlag pro-
cesses, LS COntinuous.

Proof: Consider the two solutions (H U V1 and (H?, V?) of (5)-(6) associated

respectively with (77, ¢!) and (I3, ¢?) € L? x #2. Evaluating the differences,
we obtain

t
[H? — H}| < J llg(s, 3, 1) = gls, e, WO+ o] [H] — H|) ds
0

T
72— < E<|rz =Dl | s 1) el 1)

t

FIBIY - I{'l]ds|%>.
The Lipschitz hypotheses on the coefficients and the definition of K imply

‘Hrz_Htll""thz_ Vzl|

T
£E<|Fz—ﬂ|+KJ (|H2 = HY| + |V* = ¥")) ds
0
r 2 1
+JO {|g(s,Cs,K)fg(, s )|+|M(S,CS,HS)

—u(s, ¢, H, )l}dS|9’r>-

By Cauchy-Schwarz inequality and Doob’s martingale inequality we may
conclude

E( sup ([H? — H)|+ |V - V,‘|>2)

0<t<T

< 8K2T2E( sup (|H? — H!'|+ V>~ Vzll)z)

0<t<T

T
—1_8E‘<[|I—'2 _F1| +J0 (|g(S,CSZ, Kl) _g(s7csl7 K1)| + |u(S7CS7H5)

— u(s,c;, H )I)dS]2>

and recalling that v/8KT < 1 we have
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24 24T
Tskere 12~ Dl t g £

2 2 1 1\)12
I V) = (H V) e < T

" (J (lu(s, 2, H}) — u(s, ¢}, H)?

0

+ |g(S, Cf, I{l) - g(S, C;a K1)|2] dS) .

Of course, the above inequality holds also for |V§ — V}|. Chosen a sequence
of Fr- measurable random variables {Fn} convergmg to I in L? and a se-

quence of processes {¢"}, converging to ¢ in ¥ from the above inequality we
get
24 24T
n n 2
‘U (Fn,C ) - U(F,C)| < WHF" _F”LZ +WE

0

T
X (J [lu(s, ¢, Hy) — u(s, s, Hy)|*

+ |g(s, csr'lv I/S) - g(s, Cs, Vs)lz] dS) .

Convergence in ID implies, along some subsequence of every subsequence,
pointwise convergence a.e. on £ x [0, T'], hence by the continuity of u# and
g with respect to I" and ¢, we have the thesis, applying the dominated con-
vergence theorem. O

To address optimal consumption problems and to carry out an equilibrium
analysis with a FBSDU, it is useful to check the concavity of U(I,¢), with
respect to the consumption process ¢. When considering the Backward SDU,
this is readily obtained by assuming that u is concave in ¢ (see [DuE]), the
situation is more complex for a FBSDU and the second part of Assumption
3.5 allows us to employ Theorem 2.1.

2
and any constant A€0,1], we have U(-,ic' + (1 —)c )ZAU( 1)1
(1= AU, ).

Proof- For (I',c"), (I',c?) e L*(P) x %2, let (H', V'), i = 1,2, be the corre-
sponding solutions given by Proposition 3.3 and let us set

Proposition 3.7: Let assumptions 3.1 and 3.5 hold. Then for any cl.le?

¢t =del+(1=2)e?, H}=IH'+ (1 -)H?,
Vi=av'+ (1 —W,
fl(say, )—)M(S,Cs,(lfi)( Hs2)+y)

+ (1 - j’)u(sa (’52’)“<H2 - Hyl) +y) _ﬂsv7

S
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bl(say7 )*)g(a sa(lii)(l{;lil/syz)‘kv)
+(1_l) (‘Sacm)< Kl)+v)_“sy7

fz(s,y,v):u(s,cj7y)—ﬁsv, b(S »,v ) (S,CV,U) &s Y-

With this notation, the couple (H*, V'*) verifies the system

t
Hl =y +J b'(s, H, V") ds
0

T
Vi = E<F+J (s, HYE, Vf)ds|.%>.

t

On the other hand, for 7" small enough, associated with (I, %), there exists a
unique pair of processes (X*, U") solution of

t t
Xﬁ:y—f—J[(, \>U/1)_°‘s }dS_Y+Jb2(S7Xv)'7UYA)dS
0

T
U = E<F+J u(s, e}, X} — pUM ds | 55)
t

T
= E<F+ J (s, X2 UM ds | 9«;) .
!

We want to show that Vj < Ug. We have that (s, y,v) < f2(s, y,v) a.s. all
s, y, v, because of the concavity hypotheses on u. If part (ii) a. of assumption
3.5 holds, it is easy to verify that the processes b (s, y,v), b%(s, y,v) respond to
assumption (a) of theorem 2.1. If instead part (ii) b. is valid then the above
processes verify (b). O

At this point we can easily get the monotonicity in /" and, with an extra
hypotheses, in ¢ and the risk aversion property (in the case of deterministic
coefficients).

Proposition 3.8: Let assumptions 3.1 and 3.5 hold. Then for any I, I> € L? such
that Iy > I a.e., we have U(I5,-) = U(I1,-). Moreover if g is decreasing in ¢
when u is decreasing in h or g is increasing in ¢ when u is increasing in h then U
is increasing w.r.t. the process c.

Proof: We remark that here concavity/convexity of the coefficients is not
needed, but it is only their monotonicity that is important.

Chosen I, I; € L? and ¢!, ¢* € #? such that I < I3, ¢2 < c? as. all s, it
suffices to apply theorem 2.1 to the random coefficients

fl(sv ) l)) = H(S, Cslvy) —ﬂSU, fz(sv ) U) = H(S, C?vy) —ﬂsl),

bl (s, p,v) = g(s,cl,v) — oy, b (s, y,0) = g(s, c2,v) — . O
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We follow [DuE] defining an agent to be risk averse if s/he prefers to con-
sume the expectation of a consumption process rather than the process. The
following Proposition holds.

Proposition 3.9: Lel U, g, , B be deterministic and let assumptions 3.1 and 3.5
hold. For any ce &7, let us denote by ¢, = E(c,), then we have U(I',c) <
U(E(I),?).

Proof: We set ¢, = E(c,), and denote by (H,, V;) the solution associated with
¢ and E(I'). This turns out to be deterministic, since no source of randomness
occurs (another way to realize it is by the PDE representation we prove in
Section 4). Taking the expectation of (H, V') we have

BH) =+ [ 1B ¥ B + EOR) - ()] d

E(V))=EI) + J [E(u(s, s, Hs — E(Hy) + E(Hy)) — B,E(V)] ds
Thus applying the main theorem to the functions
FH(s, y,0) = Euls, s, Hy — E(H;) + 7)) = o,
[2(s,p,0) = u(s, &, y) = By
b'(s, y,v) = E(g(s, 5, Vi = E(V;) +0)) — oy,

bz(sa Vs U) = g(s, Cy, U) — sy

we obtain the statement. O

4 A partial differential equation characterization

As mentioned before, the literature does not provide any explicit formula for
the solution of FBSDE’s, but one can obtain a representation of the utility
process by means of the viscosity solution of a PDE associated to the FBSDE,
following the by now classical approach developed by [CM], [MPY], [PT] and
others for the FBSDE case, and by [DuL] or [EIPQ] for the Backward case.
For completeness we sketch it here in our case.

We assume /" = 0 and that the consumption process ¢ has dynamics

de, = u(t,e;)dt +o(t,c;) dWr,  co=yy >0, (10)

with u and ¢ deterministic, continuous in ¢ and globally Lipschitz in x with
constant k. By Picard’s iterations it is standard to prove the existence of a
unique solution ¢ € §? < ¥

We need to specify a little further our hypotheses, so in place of Assump-

tion 3.1 we use

Assumption 4.1:

(i) B, o are deterministic, positive functions uniformly bounded by M.
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(i) The functions u,o : [0, T] x R — IR are differentiable, with derivatives uni-
formly bounded by a constant k,,

(iii) u, g are deterministic and Lipschitz with constant k; in the first variable and
with constant k in the second, uniformly in s.

As before, K denotes the max(k, M). First we show that the solution of
(10), (5) and (6) exhibits continuous dependence on the parameters. To do
so, we extend u and ¢ to all [0, 7] x R x R by continuity and we take 7, x, y
varying in [0, 7] x R x R. We consider the following flows associated with
our equations

S t
Y =y —|—J u(ryeb)dr+ J a(r,cl ) dW,, ¥ =x (11)
‘ 0
1w =yt [lotre v a1 =y (12)
t
T
B = E( i, H}) BV | 7). (13)

For any fixed #1,%, € [0, T], x1,x2, y;,»2 € R, we denote

[ i 1 ti, Xi, Vi i ti, Xi, Vi .
cl=cly H = H9", vi=vVi" i=1,2, svi=max(s1).

Proposition 4.2: Under Assumption 4.1, the above flows are continuous in t, x, y.
More specifically, for given t| and x), there exists a constant C) depending only
onky, T, t,x1, u(r,0), a(r,0), such that

E( sup |C‘3—C‘3|2> < C1(|X2—X1|2+|lz—11‘). (14)
s€l0,T]

Moreover, for given t,x) and yy, provided that \/gK(K + )T < 1, there exists
a constant Cy, depending only on k, ki, ky, T, ty,x1,y, such that

2
E( sup [[H2 — H)|+ 1> = 1'[ )
s€l0,7]

Co(jx2 —x1” + [y2 = m> + |2 — 11])
1—V8(K2+K)T

. (15)

Proof: Assume 1, < tp, by the Lipschitz property of u,a(r,c!), taking expec-
tations and exploiting Doob’s inequality we get

tvip
||c2 — cl||§z < 5|xy— x1|2 + 5k12(|l — b+ I)J E( sup |c‘2 — c‘3|2) dr
=1[0,1

2 0<s<r

+ 5|t —ul|(l+ |2 — 1))

(It o+ g (O + ot 0)F) .

=ln
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Finally Gronwall’s inequality gives (14). Using the martingale representation
theorem and conditional expectation, similarly we can show, by means of
Cauchy-Schwarz and Doob’s inequalities, that for some constant C depending
only on T, K, ky,

N = H' |+ V2 = V||

c? 2 ! 2 12
= [y2=nl"+E J ez —c,|7dr | + |t — h|E
1 —8T2K? ,

2

15)
x (J HH 1+ VP + el + Ju(r,0,0) 7 + |g(r, 0,0)°] dr)}
a1

which gives our thesis, by virtue of (14). O

The coefficients occurring in the previous equations are deterministic and
differentiable. By the standard technique of time shift and Blumenthal’s 0-1
law, one can show that

y(l, x) = C;'X’ ¢(l X, y) Ht xy’ ()(Z, X, y) _ V;t‘x,y

are all deterministic functions. Proposition 4.2 implies that these functions are
locally Lipschitz in x, y and Hoélder of order % in ¢, consequently their deriva-
tives are defined a.s. and bounded on compacts.

The solution of (5)—(6) may be characterized through the solution of a
nonlinear degenerate parabolic PDE associated with the FBSDE (for instance
see [MPY)).

We need to consider viscosity solutions instead of the classical ones, since
the PDE is degenerate and we have no a-priori information on the regularity
of the solution. For the definition of viscosity solution we refer the reader to
[FL].

Theorem 4.3: Under Assumptions 4.1, 0(t, x, y) is a viscosity solution of the PDE
problem in [0, T] x R x R,

00  a*(t,x) %0 o0 a0
TR ﬁ+u(1,x)$+(g(t,x,0)—oc,y)@

—u(t,x,y)+p0=0 (16)

0(T,x,y)=0.

Proof: By construction, the processes ¢, H>*Y and V,**7 have continuous
paths and are adapted w1th respect to the ﬁltratlon generated by the Brownian
motion. Therefore by the Markov property and the pathwise uniqueness of the
solution, it is possible to show that actually V,"*? = 0(s, ¢~ H'*7) a.s..

We need to show that @ is both a sub and a super- solution of (16) We show
only the sub-solution inequality, since the proof of the other follows same lines.
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Consider a point (z,x, y) € [0, T] x R? = ¢ and ¢ € €"*(0) such that 0 =
0(t,x, y) — p(t, x, y) is a global maximum for 6 — ¢ (without loss of generality
we can assume this maximum to be zero). This means that for any stopping
time, necessarily

O(t,cx™ HE™) = g(t,c0™, HpY) < 0. (17)

Following the same lines as in [MY] we arrive at the inequality

E(J X(r, e, Hy) dr) <0,

where 2(, N ) = —0_ + L(7 ) 9(7 K ')7 (ﬂ(7 ) ))7 (18)

1 o’ 0
L(t,%,,00t,x, ), 9(t,x. ) = 507 (1,3) 525 (1,5, ) + (1, ) 52 (1,3, )

0
+ (g(t,x,0(1,x, y)) — a,y) a—‘y”(z, X, y)

- u(lv X, y) +ﬂt9([’ X, y)

To affirm that 6 is a subsolution of (16) we must verify that 2 (¢,x, y) < 0.
By contradiction, we assume there exists an g > 0 such that X(¢,x, y) > ¢

and we define the stopping time 7; = inf {s >t:2(s, ¢, Hy) < %O A T. Since

2(t,x,y) > &, we have 7; > ¢ a.s. Inequality (18) holds for any stopping time,
therefore also for 7; and we have

71

0< %O(Tl 1)< E(J Z(S,CS,HY)dS) <0
t

which is a clear contradiction, hence we proved that 6 is a subsolution of (16).

It is interesting to remark that this generalized Feynman-Kac formula per-
mits to affirm the existence of the viscosity solution of quasilinear parabolic
PDE’s of the type (16), at least for small time intervals.
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