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Abstract. In general, a comparison Lemma for the solutions of Forward-
Backward Stochastic Di¤erential Equations (FBSDE) does not hold. Here we
prove one for the backward component at the initial time, relying on certain
monotonicity conditions on the coe‰cients of both components. Such a result
is useful in applications. Indeed, one can use FBSDE’s to define a utility func-
tional able to capture the disappointment-anticipation e¤ect for an agent in an
intertemporal setting under risk. Exploiting our comparison result, we prove
some ‘‘desirable’’ properties for the utility functional, such as continuity, con-
cavity, monotonicity and risk aversion. Finally, for completeness, in a Marko-
vian setting, we characterize the utility process by means of a degenerate para-
bolic partial di¤erential equation.
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1 Introduction

In recent years the interest for the Forward-Backward SDE’s (FBSDE’s) of
the type

Xt ¼ xþ
ð t
0

bðs;Xs;YsÞ dsþ
ð t
0

sðs;Xs;YsÞ � dWs; X A Rn
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Yt ¼ E

 
G þ

ðT
t

f ðs;Xs;YsÞ ds jFt

!
; Z A Rm;

has been steadily growing, due to the mathematical questions they pose, their
relation to quasilinear parabolic PDE’s and their applications to Finance.
Applications often clash against two intrinsic di‰culties of these equations:

. the solution does not necessarily exist over arbitrary time intervals;. there is no explicit representation formula of the solution ðX ;YÞ for the
linear case and, consequently, no general comparison lemma.

The first problem has been addressed in several papers since 1993 ([A], [Ha],
[HP], [MPY], [PT], [Hu]). In [A] existence and uniqueness is given for ‘‘small’’
time intervals, in the others over arbitrary ones. Three of them are based on
some monotonicity conditions of the coe‰cients, which unfortunately may
limit the models one wants to consider, [MPY] and [Hu] rely instead on the
correspondence between FBSDE’s and quasilinear parabolic PDE’s. To em-
ploy this technique e‰ciently, a nondegeneracy condition of the di¤usion co-
e‰cient is needed and this is not always verified in applications.
The second problem, to our knowledge, was addressed only in [MY] and in

[Wu]. In the first, the authors prove a comparison result in a very particular
setting and give a counterexample in the general one. In the second, the author
proves a comparison result for the backward component at time 0, exploiting
monotonicity conditions very similar to those of [HP] and allowing only for
increments of the initial and the final conditions of the FBSDE. Here we prove
a slightly more general result, when n ¼ m ¼ 1, that allows also increments in
the coe‰cients, based on monotonicity conditions di¤erent fromWu’s. Indeed,
this result is motivated by the Forward Backward Stochastic Di¤erential Utility
(FBSDU) introduced in [ABM] to represent agent’s preferences under risk. The
FBSDU, associated with a consumption process c, is defined as the initial so-
lution (UðG ; cÞ ¼ V0) of the forward-backward system:

Ht ¼ y0 þ
ð t
0

½gðs; cs;VsÞ � asHs	 ds; ð1Þ

Vt ¼ E

 
G þ

ðT
t

½uðs; cs;HsÞ � bsVs	 ds jFt

!
; ð2Þ

where u denotes the istantaneous utility function and cs the consumption
process. In order to establish some useful properties of this functional, as in
[DuE] for the pure backward case, a fairly general comparison result is
needed. The interest in such a functional lies in the fact that it may model the
disappointment-anticipation e¤ect well documented and theorized in the de-
cision theory literature (see [B], [LS], [Lo], [LoP]), due to the fact that agent’s
tastes are a¤ected by what s/he expects for the future, creating either disap-
pointment or anticipation. High expectation in the past in terms of utility may
induce disappointment towards the current outcome, viewed as not as good as
expected, or an ‘‘optimistic’’ anticipation of future utility and therefore a high
satisfaction from past consumption. We will extensively discuss the economic
interpretation of the above utility functional below.
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In the next section we prove the comparison theorem, in section 3 we intro-
duce the FBSDU and, after showing the existence and uniqueness of the solu-
tion for (1)–(2), we employ the result with appropriate hypotheses on u and g to
explore some ‘‘desirable’’ properties of the utility functional, such as continuity,
monotonicity and concavity w.r.t. consumption and the final condition and risk
aversion. Finally, in Section 4 employing a by now classical technique, we
construct a degenerate parabolic Partial Di¤erential Equation (PDE), whose
viscosity solution characterizes the utility process.

2 A comparison result

Let ½0;T 	 be a finite time interval and ðW;F;PÞ a complete probability space,
on which a standard Brownian motionW is defined. We endow the probability
space with the filtration fFt : tb 0g, generated by W, made right continuous
and augmented of the P-null sets, so to verify the ‘‘usual hypotheses’’. Besides
we assume F0 to be trivial.
Let us consider the following Forward-Backward system in R � R

Xt ¼ xþ
ð t
0

bðs;Xs;YsÞ dsþ
ð t
0

sðs;Xs;YsÞ dWs ð3Þ

Yt ¼ E

 
G þ

ðT
t

f ðs;Xs;YsÞ ds jFt

!
; where ð4Þ

(H) x A R, G A L2ðPÞ is an FT -measurable random variable, b; s; f : W�
½0;T 	 � R2 ! R are adapted, progressively measurable processes glob-
ally Lipschitz in the spatial variables with constant k (uniformly in s;o)
and such that

E

 ðT
0

½j f ðs; 0; 0Þj2 þ jbðs; 0; 0Þj2 þ jsðs; 0; 0Þj2	 ds
!

< þy:

In the following, S2 denotes the space of semimartingales such that

E
�
sup
t A ½0;T 	

jXtj2
�

< þy. We assume that on ½0;T 	, for any given x;G ; b; f ; s

satisfying (H), there exists a unique pair of adapted processes in S2 � S2 (or
L2ðdt� dPÞ � L2ðdt� dPÞ) solution of (3)–(4).
As mentioned in the introduction, in the literature no explicit representation

formula for solutions of linear FBSDE’s is given, di¤erently from what hap-
pens in either the forward or the backward case. In [MY], the authors charac-
terized those by means of a Riccati type equation, but this is unfortunately still
far from an explicit formula. The problem lies in the fact that, when it exists,
at each t the solution depends upon its whole trajectory. Therefore any iterative
procedure fails and it is hard to derive a version of Gronwall’s inequality to
employ for a general comparison lemma. In [MY, pag. 24] an example where
the comparison result does not hold is provided. Nonetheless, in applications
(option pricing, utility theory) it is often the initial value of Y to be of interest.
For this, under some conditions, a comparison result can be maintained, as also
shown in [Wu]. As we explained before, this result, even though in this line,
lacks some flexibility desirable for applications. Hence we prove
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Theorem 2.1: Let G1; x1; b
1; f 1; s and G2; x2; b

2; f 2; s satisfy (H) and be such
that

G1aG2; f 1ðs; x; yÞa f 2ðs; x; yÞ a:s: all s; x; y:

Besides a.s. all s; x; y, one of the following holds

(a) x1a x2, b
1ðs; x; yÞa b2ðs; x; yÞ, f 1 is increasing in x, b1 is decreasing in y

and s increasing (decreasing) in x and y;
(b) x1b x2, b

1ðs; x; yÞb b2ðs; x; yÞ, f 1 is decreasing in x, b1 is increasing in y
and s increasing (decreasing) in x and decreasing (increasing) in y.

If we denote by X 1;Y 1 and X 2;Y 2 the corresponding solutions of (3)–(4),
then Y 10 aY 20 .

Proof: Let X̂X ¼ X 2 � X 1; ŶY ¼ Y 2 � Y 1, then we have

X̂Xt ¼ x̂xþ
ð t
0

½Bs þ asX̂Xs þ bsŶYs	 dsþ
ð t
0

ðfsX̂Xs þ csŶYsÞ dWs

ŶYt ¼ E

 
ĜG þ

ðT
t

½Fs þ gsX̂Xs þ hsŶYs	 ds jFt

!
;

where

Bs ¼ b2ðs;X 2s ;Y 2s Þ � b1ðs;X 2s ;Y 2s Þb 0;

Fs ¼ f 2ðs;X 2s ;Y 2s Þ � f 1ðs;X 2s ;Y 2s Þb 0

as ¼
b1ðs;X 2s ;Y 2s Þ � b1ðs;X 1s ;Y 2s Þ

X 2s � X 1s
1fX 2s 0X 1s g;

bs ¼
b1ðs;X 1s ;Y 2s Þ � b1ðs;X 1s ;Y 1s Þ

Y 2s � Y 1s
1fY 2s 0Y 1s g

gs ¼
f 1ðs;X 2s ;Y 2s Þ � f 1ðs;X 1s ;Y 2s Þ

X 2s � X 1s
1fX 2s 0X 1s g;

hs ¼
f 1ðs;X 1s ;Y 2s Þ � f 1ðs;X 1s ;Y 1s Þ

Y 2s � Y 1s
1fY 2s 0Y 1s g

fs ¼
sðs;X 2s ;Y 2s Þ � sðs;X 1s ;Y 2s Þ

X 2s � X 1s
1fX 2s 0X 1s g;

cs ¼
sðs;X 1s ;Y 2s Þ � sðs;X 1s ;Y 1s Þ

Y 2s � Y 1s
1fY 2s 0Y 1s g:

The last six terms are well defined, because of the global Lipschitz property of
the coe‰cients.
We want to show that ŶY0b 0. By contradiction, let us assume the opposite

and define the stopping time t ¼ infft > 0 : ŶYtb 0g5T . We supposed F0 is
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trivial, thus Pðt > 0Þ is either 0 or 1. Since the underlying filtration is gener-
ated by the Brownian motion, ŶY is a continuous process with ŶY0 < 0 and this
implies that a.s. t > 0. Again by the continuity of paths, we may conclude that
ŶYt < 0 on ½0; tÞ and ŶYt ¼ 0. The processes are all adapted and square inte-
grable, so ŶY may be written as

ŶYt ¼ E

 
ĜG þ

ðT
0

½Fs þ gsX̂Xs þ hsŶYs	 ds jFt

!
�
ð t
0

½Fs þ gsX̂Xs þ hsŶYs	 ds

¼Mt �
ð t
0

½Fs þ gsX̂Xs þ hsŶYs	 ds;

where M is a square integrable martingale. Evaluating at the stopping time t,
taking the conditional expectation and recalling ŶYt ¼ 0, we have

0 > ŶYt1ft<tg ¼ E

 ðT
t

½Fs þ gsX̂Xs þ hsŶYs	1fs<tg ds jFt

!
1ft<tg;

which gives (for instance by iterations)

ŶYt1ft<tg ¼ E

 ðT
t

e

Ð s
t
hrdr½Fs þ gsX̂Xs	1fs<tg ds jFt

!
:

On the other hand, the forward component verifies

X̂Xt ¼ x̂xþ
ð t
0

½Bs þ asX̂Xs þ bsŶYs	 dsþ
ð t
0

½fsX̂Xs þ csŶYs	 dWs

¼ EðSÞt
�
x̂xþ

ð t
0

EðSÞ�1s ½Bs þ ðbs � fscsÞŶYs	 dsþ
ð t
0

EðSÞ�1s csŶYs dWs

�

¼ EðSÞtfx̂xþ At þNtg

dSt ¼ at dtþ ft dWt;

where E denotes the stochastic exponential of a process and A and N denote
the finite variation part and the martingale part (with zero mean) of the pro-

cess between braces. Substituting in ŶY and applying the optional sampling

theorem to the finite variation process dCs ¼ e
Ð s
t
hrdrgsEðSÞs ds, we obtain

ŶYt1ft<tg ¼ E

 ðT
t

e

Ð s
0
hrdr½Fs þ gsEðSÞsfx̂xþ As þNsg	1fs<tg ds jFt

!

¼ E

 ðT
t

e

Ð s
t
hrdr½Fs þ gsEðSÞsfx̂xþ Asg	 ds1fs<tg ds jFt

!

þNtE
 ðT

t

e

Ð s
t
hrdrgsEðSÞs1fs<tg ds jFt

!
1ft<tg:
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If condition (a) holds, then we have that x̂xb 0, Bsb 0, gsb 0, bsa 0 and
fscsb 0 a.s. all s, because of the monotonicity of the various coe‰cients. This
implies that on ½0; tÞ, Bs þ ðbs � fscsÞŶYsb 0 a.s. and the same happens for As
because of the positivity of the exponential.
In conclusion, on ½0; tÞ the first conditional expectation in the expression

of ŶY gives a positive contribution. When considering ŶY0, we have N0 ¼ 0,
hence

0 > ŶY0 ¼ E

 ðT
0

e

Ð s
0
hrdr½Fs þ gsEðSÞsfx̂xþ Asg	 ds1fs<tg ds

!
b 0

and we arrive at a contradiction on the set of positive probability ft < tg. We
can argue similarly if (b) holds and reach the same contradiction. r

3 Forward-backward stochastic di¤erential utility

Let L2 ¼ fX : X is a predictable process such that Eð
Ð T
0 jXsj2 dsÞ < þyg,

andL2
þ the space ofL

2 processes with values in Rþ ¼ ½0;þyÞ. Given a con-
sumption process c A L2

þ , we consider the system:

Ht ¼ yþ
ð t
0

½gðs; cs;VsÞ � asHs	 ds ð5Þ

Vt ¼ E

 
G þ

ðT
t

½uðs; cs;HsÞ � bsVs	 ds jFt

!
; ð6Þ

otherwise written

Ht ¼ e�
Ð t
0
audu yþ

ð t
0

e
�
Ð t
s
audugðs; cs;VsÞ ds

Vt ¼ E

 
e
�
Ð T
t

buduG þ
ðT
t

e
�
Ð t
s
buduuðs; cs;HsÞ ds jFt

!
:

The following Assumption holds.

Assumption 3.1:

A. a and b are continuous adapted processes, bounded by a constant M > 0;
B. u; g : W� ½0;T 	 � Rþ � R ! R are adapted processes, so that for some

constant k > 0

jgðs; c; v2Þ � gðs; c; v1Þja kjv2 � v1j;

juðs; c; h2Þ � uðs; c; h1Þja kjh2 � h1j

for a.e. o and for all ðs; cÞ A ½0;T 	 � Rþ, h1; h2; v2; v1 A R;

412 F. Antonelli et al.



C. Eð
Ð T
0 ðjgðs; cs; 0Þj2 þ juðs; cs; 0Þj2Þ dsÞ < þy, for any c A L2

þ ;
D. u is increasing in c.

The component Ht is the agent’s habit process, with y as the initial stan-
dard of living, while Vt is the utility process, with G representing utility at time
T. We refer to UðG ; cÞ ¼ V0 as the Forward-Backward Stochastic Di¤erential
Utility. If the above utility functional represents the agent’s preferences over
consumption streams, then U can be interpreted as a measure of the level of
satisfaction for the agent.
The representation of agents’ preferences under risk is an active field of

research in economic theory. The reference framework is provided by the ad-
ditive expected utility: if the agent’s tastes do not change over time and they
satisfy some axioms, then preferences can be represented as the expectation of
a (utility) functional of consumption. This approach was challenged by other
theories of decision making under risk, as some experimental results showed
that agents do not behave according to the above hypothesis (e.g. the Allais
and the Ellsberg paradoxes). For a survey on these topics we refer the reader
to [E, C].
In an intertemporal setting, one of the key points is that history a¤ects

agent’s tastes. This fact was modeled in many ways; among them we recall the
habit persistence e¤ect analyzed in [Con, DZ1]. In this case (which means g
independent of h in (5)–(6)), istantaneous utility is increasing in consumption
and decreasing in a process (the habit) often described as a time average of
past consumption. As a consequence, the higher the standard of living is, the
lower the istantaneous utility from consumption results. In some works it was
recognized that agent’s tastes are a¤ected also by what s/he expects for the
future in two di¤erent and opposite directions: disappointment or anticipation.
In [B, LS], the authors point out that an agent may experience disappointment-
elation comparing an outcome with his past expectation on it: if the expecta-
tion was high, then s/he will be disappointed when the outcome is not as good
as expected, the opposite happens when the outcome is better than expected.
In [Lo, LoP], the authors remark that agents may instead anticipate future
consumption-utility: the expectation of future utility positively a¤ects current
utility. The FBSDU captures these features in a setting well suited for asset
pricing applications (continuous time with a flow of information described by
a Brownian motion).
We remark that our functional does not belong to the class of the stochastic

di¤erential utility, introduced in [DuE]. The coe‰cient g represents the contri-
bution of consumption and expected utility on the habit. If g is independent of
V and increasing in c, then the system is decoupled and H reduces to the clas-
sical habit process (see [Con], [DZ1]). Allowing the habit to depend on the
utility process implies that the standard of living is influenced by the past ex-
perienced expected utility. If g is increasing in v and u is decreasing in h, then
the agent’s instantaneous utility is negatively a¤ected by what s/he expected
in the past about the future, capturing a disappointment e¤ect. Instead, u in-
creasing in y models anticipation. High expected utility in the past generates a
‘‘positive’’ expectation for the future and the agent is inclined to appreciate the
actual consumption rate. This interpretation is made clear by the following
example.

Example 3.2: Consider the Additive Expected Utility (AEU) ÛUðcÞ ¼
Eð
Ð T
0 e

�bsuðcsÞ dsÞ with instantaneous utility u and the following binary choice
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cas ¼ c Es A ½0;T 	; cbs ¼
0 s < t

c ta saT with probability p

0 ta saT with probability 1� p

8><
>:

for some fixed t and constants c and c. We assume uð0Þ ¼ 0 and we define c and
c so that ca and cb are ordinally equivalent under the AEU, that is

ðT
0

e�bsuðcÞ ds ¼ p

ðT
t

e�bsuðcÞ ds: ð7Þ

A disappointment e¤ect would imply ca is better than cb, anticipation the oppo-
site. One can represent these rankings by considering a linear FBSDU with the
same u and y ¼ 0:

Vt ¼ E

 ðT
t

½uðcsÞ � gHs � Vs	 ds jFt

!
; g A ð�1; 1Þ

Ht ¼
ð t
0

½Vs �Hs	 ds:

We can show that g > 0 models a disappointment e¤ect and g < 0 an anticipa-
tion e¤ect.
One can show (see [ABM]) that when the solution exists, then

UðcÞ ¼ V0 ¼ E

 ðT
0

eAs11 e
AT
22 � eAT12 eAs21
eAT22

uðcsÞ ds
!

¼ E

 ðT
0

lsuðcsÞ ds
!
; ð8Þ

where A ¼ �1 �g

�1 1

� �
with real eigenvalues G

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
and eAsij is the

i j-th element of the exponential of A. Consequently ls ¼ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
coshð

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
ðT � sÞÞ þ sinhð

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
ðT � sÞÞffiffiffiffiffiffiffiffiffiffiffi

1þ g
p

coshð
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
TÞ þ sinhð

ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
TÞ

. Note that ls < e�s ,

g > 0. It can be shown that

ðT
0

lsuðcÞ ds > p

ðT
t

lsuðcÞ ds, g > 0 ðequality for g ¼ 0Þ; ð9Þ

by dividing (9) by (7) and proving analitically that
Ð T
0 ls dsðe�t � e�TÞ >Ð T

t
ls dsð1� e�TÞ.
Even though ca and cb are equivalent under the AEU, they no longer are

under the FBSDU: ca is better than cb if and only if g > 0. Note that this pref-
erences order cannot be obtained with the classical habit formation process.

As well known, Lipschitz coe‰cients are not su‰cient to have the existence
and uniqueness of the solution of FBSDE’s, unless the system is decoupled (g
independent of v). To ensure these for (5)–(6), we use the results in [A], based
on a restriction of the time interval.
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Proposition 3.3: Let Assumption 3.1 hold and set K ¼ maxfk;Mg.
If

ffiffiffi
8

p
KT < 1, then there exists a unique pair ðH;VÞ in S2 � S2 satisfying

(5)–(6).

Proof: Under Assumption 3.1, the operator

L
Ht

Vt

� �
¼

0
BBBB@

y0 þ
ð t
0

½gðs; cs;VsÞ � asHs	 ds

E

 
G þ

ðT
t

½uðs; cs;HsÞ � bsVs	 ds jFt

!
1
CCCCA

goes from S2 � S2 into itself. If
ffiffiffi
8

p
KT < 1, L acts as a contraction on S2 � S2,

which is a Banach space and hence it identifies a unique fixed point. For more
details we refer the reader to [A]. r

Remark 3.4: The time restriction invoked in Proposition 3.3 is certainly an un-
desirable feature, but it does not seem possible to circumvent it at least in this
context. For examples explaining the necessity of this, we refer the reader to
[A]. Methods to avoid this restriction have been devised in [MPY], [Hu],
[HP], [Ha] and [PT], that are either based on the degeneracy of the di¤usion
coe‰cient of the forward components or on various monotonicity conditions of
all the coe‰cients. Unfortunately the nondegeneracy condition is not fulfilled in
our model and the monotonicity conditions required for the existence of the solu-
tion and for the comparison result in [Wu] do not match ours and, for instance,
exclude some linear cases that may be interesting in our setting.

Once established the existence of the utility process, we want to show some
‘‘desirable’’ properties for UðG ; cÞ ¼ V0. Following [DuE], we focus on

. continuity with respect to G and c;. concavity with respect to c;. monotonicity in G and c;. risk aversion.

We complete Assumption 3.1 with the following

Assumption 3.5:

(i) u and g are continuous in c and such that for a.e. o and all s; h; v

juðs; c; hÞj; jgðs; c; vÞja kð1þ jcjÞ:

(ii) One of the following holds:
a. u is increasing in h and concave in the couple, while g is decreasing in v
and concave in the couple, a.s. for all c and s,

b. u is decreasing in h and concave in the couple, while g is increasing in v
and convex in the couple, a.s. for all c and s.

We remark that also in the proof of the first proposition, the restriction of
the time interval plays a fundamental role. The other propositions are proved
by using the result of the previous section.
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Proposition 3.6: Let Assumptions 3.1 and 3.5 (i) hold. The Forward-Backward
Utility functional U : L2 � D ! R, where D denotes the space of càdlàg pro-
cesses, is continuous.

Proof: Consider the two solutions ðH 1;V 1Þ and ðH 2;V 2Þ of (5)–(6) associated
respectively with (G1; c

1) and (G2; c
2Þ A L2 �L2

þ . Evaluating the di¤erences,
we obtain

jH 2
t �H 1

t ja
ð t
0

½jgðs; c2s ;V 2s Þ � gðs; c1s ;V 1s Þj þ jasj jH 2
s �H 1

s j	 ds

jV 2t � V 1t jaE

 
jG2 � G1j þ

ðT
t

½juðs; c2s ;H 2
s Þ � uðs; c1s ;H 1

s Þj

þ jbsj jV 2s � V 1s j	 ds jFt

!
:

The Lipschitz hypotheses on the coe‰cients and the definition of K imply

jH 2
t �H 1

t j þ jV 2t � V 1t j

aE

 
jG2 � G1j þ K

ðT
0

ðjH 2
s �H 1

s j þ jV 2s � V 1s jÞ ds

þ
ðT
0

fjgðs; c2s ;V 1s Þ � gðs; c1s ;V 1s Þj þ juðs; c2s ;H 1
s Þ

� uðs; c1s ;H 1
s Þjg ds jFt

!
:

By Cauchy-Schwarz inequality and Doob’s martingale inequality we may
conclude

E sup
0ataT

ðjH 2
t �H 1

t j þ jV 2t � V 1t jÞ2
� �

a 8K 2T 2E sup
0ataT

ðjH 2
t �H 1

t j þ jV 2t � V 1t jÞ2
� �

þ 8E
 
½jG2 � G1j þ

ðT
0

ðjgðs; c2s ;V 1s Þ � gðs; c1s ;V 1s Þj þ juðs; c2s ;H 1
s Þ

� uðs; c1s ;H 1
s ÞjÞ ds	

2

!

and recalling that
ffiffiffi
8

p
KT < 1 we have
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kðH 2;V 2Þ � ðH 1;V 1Þk2S 2�S 2 a
24

1� 8K 2T 2 kG2 � G1kL2 þ
24T

1� 8K 2T 2 E

�
 ðT

0

½juðs; c2s ;H 1
s Þ � uðs; c1s ;H 1

s Þj
2

þ jgðs; c2s ;V 1s Þ � gðs; c1s ;V 1s Þj2	 ds
!
:

Of course, the above inequality holds also for jV 20 � V 10 j. Chosen a sequence
of FT -measurable random variables fGngn converging to G in L2 and a se-
quence of processes fcngn converging to c inL2

þ , from the above inequality we
get

jU nðGn; cnÞ �UðG ; cÞj2a 24

1� 8K 2T 2 kGn � GkL2 þ
24T

1� 8K 2T 2 E

�
 ðT

0

½juðs; cns ;HsÞ � uðs; cs;HsÞj2

þ jgðs; cns ;VsÞ � gðs; cs;VsÞj
2	 ds

!
:

Convergence in D implies, along some subsequence of every subsequence,
pointwise convergence a.e. on W� ½0;T 	, hence by the continuity of u and
g with respect to G and c, we have the thesis, applying the dominated con-
vergence theorem. r

To address optimal consumption problems and to carry out an equilibrium
analysis with a FBSDU, it is useful to check the concavity of UðG; cÞ, with
respect to the consumption process c. When considering the Backward SDU,
this is readily obtained by assuming that u is concave in c (see [DuE]), the
situation is more complex for a FBSDU and the second part of Assumption
3.5 allows us to employ Theorem 2.1.

Proposition 3.7: Let assumptions 3.1 and 3.5 hold. Then for any c1; c2 A L2
þ

and any constant l A ½0; 1	, we have Uð�; lc1 þ ð1� lÞc2Þb lUð�; c1Þþ
ð1� lÞUð�; c2Þ.

Proof: For ðG ; c1Þ; ðG ; c2Þ A L2ðPÞ �L2, let ðHi;V iÞ, i ¼ 1; 2, be the corre-
sponding solutions given by Proposition 3.3 and let us set

clt ¼ lc1t þ ð1� lÞc2t ; H l
t ¼ lH 1

t þ ð1� lÞH 2
t ;

V l
t ¼ lV 1t þ ð1� lÞV 2t ;

f 1ðs; y; vÞ ¼ luðs; c1s ; ð1� lÞðH 1
s �H 2

s Þ þ yÞ

þ ð1� lÞuðs; c2s ; lðH 2
s �H 1

s Þ þ yÞ � bsv;
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b1ðs; y; vÞ ¼ lgðs; c1s ; ð1� lÞðV 1s � V 2s Þ þ vÞ

þ ð1� lÞgðs; c2s ; lðV 2s � V 1s Þ þ vÞ � as y;

f 2ðs; y; vÞ ¼ uðs; cls ; yÞ � bsv; b2ðs; y; vÞ ¼ gðs; cls ; vÞ � as y:

With this notation, the couple ðH l;V lÞ verifies the system

H l
t ¼ yþ

ð t
0

b1ðs;H l
s ;V

l
s Þ ds

V l
t ¼ E

 
G þ

ðT
t

f 1ðs;H l
s ;V

l
s Þ ds jFt

!
:

On the other hand, for T small enough, associated with ðG ; clÞ, there exists a
unique pair of processes ðX l;U lÞ solution of

X l
t ¼ yþ

ð t
0

½gðs; cls ;U l
s Þ � asX

l
s 	 ds ¼ yþ

ð t
0

b2ðs;X l
s ;U

l
s Þ ds

U l
t ¼ E

 
G þ

ðT
t

½uðs; cls ;X l
s Þ � bU l

s 	 ds jFt

!

¼ E

 
G þ

ðT
t

f 2ðs;X l
s ;U

l
s Þ ds jFt

!
:

We want to show that V l
0 aU l

0 . We have that f
1ðs; y; vÞa f 2ðs; y; vÞ a.s. all

s; y; v, because of the concavity hypotheses on u. If part (ii) a. of assumption
3.5 holds, it is easy to verify that the processes b1ðs; y; vÞ; b2ðs; y; vÞ respond to
assumption (a) of theorem 2.1. If instead part (ii) b. is valid then the above
processes verify (b). r

At this point we can easily get the monotonicity in G and, with an extra
hypotheses, in c and the risk aversion property (in the case of deterministic
coe‰cients).

Proposition 3.8: Let assumptions 3.1 and 3.5 hold. Then for any G1;G2 A L2 such
that G2bG1 a.e., we have UðG2; �ÞbUðG1; �Þ. Moreover if g is decreasing in c
when u is decreasing in h or g is increasing in c when u is increasing in h then U
is increasing w.r.t. the process c.

Proof: We remark that here concavity/convexity of the coe‰cients is not
needed, but it is only their monotonicity that is important.
Chosen G1;G2 A L2 and c1; c2 A L2

þ such that G1aG2, c
2
s a c2s a.s. all s, it

su‰ces to apply theorem 2.1 to the random coe‰cients

f 1ðs; y; vÞ ¼ uðs; c1s ; yÞ � bsv; f 2ðs; y; vÞ ¼ uðs; c2s ; yÞ � bsv;

b1ðs; y; vÞ ¼ gðs; c1s ; vÞ � as y; b2ðs; y; vÞ ¼ gðs; c2s ; vÞ � as y: r
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We follow [DuE] defining an agent to be risk averse if s/he prefers to con-
sume the expectation of a consumption process rather than the process. The
following Proposition holds.

Proposition 3.9: Let u; g; a; b be deterministic and let assumptions 3.1 and 3.5
hold. For any c A L2

þ , let us denote by ct ¼ EðctÞ, then we have UðG ; cÞa
UðEðGÞ; cÞ.

Proof: We set ct ¼ EðctÞ, and denote by ðHt;VtÞ the solution associated with
c and EðGÞ. This turns out to be deterministic, since no source of randomness
occurs (another way to realize it is by the PDE representation we prove in
Section 4). Taking the expectation of ðH;VÞ we have

EðHtÞ ¼ yþ
ð t
0

½Eðgðs; cs;Vs � EðVsÞ þ EðVsÞÞ � asEðHsÞ	 ds

EðVtÞ ¼ EðGÞ þ
ðT
t

½Eðuðs; cs;Hs � EðHsÞ þ EðHsÞÞ � bsEðVsÞ	 ds:

Thus applying the main theorem to the functions

f 1ðs; y; vÞ ¼ Eðuðs; cs;Hs � EðHsÞ þ yÞÞ � bsv;

f 2ðs; y; vÞ ¼ uðs; cs; yÞ � bsv

b1ðs; y; vÞ ¼ Eðgðs; cs;Vs � EðVsÞ þ vÞÞ � as y;

b2ðs; y; vÞ ¼ gðs; cs; vÞ � as y

we obtain the statement. r

4 A partial di¤erential equation characterization

As mentioned before, the literature does not provide any explicit formula for
the solution of FBSDE’s, but one can obtain a representation of the utility
process by means of the viscosity solution of a PDE associated to the FBSDE,
following the by now classical approach developed by [CM], [MPY], [PT] and
others for the FBSDE case, and by [DuL] or [ElPQ] for the Backward case.
For completeness we sketch it here in our case.
We assume G ¼ 0 and that the consumption process c has dynamics

dct ¼ mðt; ctÞ dtþ sðt; ctÞ dWt; c0 ¼ g0 > 0; ð10Þ

with m and s deterministic, continuous in t and globally Lipschitz in x with
constant k1. By Picard’s iterations it is standard to prove the existence of a
unique solution c A S2JL2.

We need to specify a little further our hypotheses, so in place of Assump-
tion 3.1 we use

Assumption 4.1:

(i) b; a are deterministic, positive functions uniformly bounded by M.

A comparison result for FBSDE with applications to decisions theory 419



(ii) The functions m; s : ½0;T 	 � R ! R are di¤erentiable, with derivatives uni-
formly bounded by a constant k1;

(iii) u; g are deterministic and Lipschitz with constant k2 in the first variable and
with constant k in the second, uniformly in s.

As before, K denotes the maxðk;MÞ. First we show that the solution of
(10), (5) and (6) exhibits continuous dependence on the parameters. To do
so, we extend u and g to all ½0;T 	 � R � R by continuity and we take t; x; y
varying in ½0;T 	 � R � R. We consider the following flows associated with
our equations

ct;xs ¼ xþ
ð s
t

mðr; ct;xr Þ drþ
ð t
0

sðr; ct;xr Þ dWr; ct;xt ¼ x ð11Þ

Ht;x;y
s ¼ yþ

ð s
t

½gðr; ct;xr ;V t;x;y
r Þ � arH

t;x;y
r 	 dr; H

t;x;y
t ¼ y ð12Þ

V t;x;y
s ¼ E

 ðT
s

½uðr; ct;xr ;Ht;x;y
r

!
� brV

t;x;y
r 	 drþ jFsÞ: ð13Þ

For any fixed t1; t2 A ½0;T 	, x1; x2; y1; y2 A R, we denote

ci� ¼ cti ;xi�4ti ; H
i
� ¼ H

ti ;xi ;yi
�4ti ; V i

� ¼ V
ti ;xi ;yi
�4ti ; i ¼ 1; 2; s4 t ¼ maxðs; tÞ:

Proposition 4.2: Under Assumption 4.1, the above flows are continuous in t; x; y.
More specifically, for given t1 and x1, there exists a constant C1 depending only
on k1;T ; t1; x1, mðr; 0Þ, sðr; 0Þ, such that

E
�
sup
s A ½0;T 	

jc2s � c1s j
2
�
aC1ðjx2 � x1j2 þ jt2 � t1jÞ: ð14Þ

Moreover, for given t1; x1 and y1, provided that
ffiffiffi
8

p
KðK þ 1ÞT < 1, there exists

a constant C2, depending only on k; k1; k2;T ; t1; x1; y1 such that

E
�
sup
s A ½0;T 	

½jH 2
s �H 1

s j þ jV 2s � V 1s j	2
�

a
C2ðjx2 � x1j2 þ jy2 � y1j2 þ jt2 � t1jÞ

1�
ffiffiffi
8

p
ðK 2 þ KÞT

: ð15Þ

Proof: Assume t1 < t2, by the Lipschitz property of m; sðr; c1r Þ, taking expec-
tations and exploiting Doob’s inequality we get

kc2 � c1k2S 2
½0; t	

a 5jx2 � x1j2 þ 5k21 ðjt� t2j þ 1Þ
ð t4t2
t2

E sup
0asar

jc2s � c1s j
2

� �
dr

þ 5jt2 � t1jð1þ jt2 � t1jÞ

� kc1k2S 2
½t1 ; t2 	

þ max
0araT

ðjmðr; 0Þj2 þ jsðr; 0Þj2Þ
� �

:
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Finally Gronwall’s inequality gives (14). Using the martingale representation
theorem and conditional expectation, similarly we can show, by means of
Cauchy-Schwarz and Doob’s inequalities, that for some constant C depending
only on T ;K; k2,

k jH 2 �H 1j þ jV 2 � V 1j k2S 2

a
C2

1� 8T 2K 2

(
jy2 � y1j2 þ E

 ðT
t2

jc2r � c1r j
2
dr

!
þ jt2 � t1jE

�
 ð t2

t1

½jH 1
r j
2 þ jV 1r j

2 þ jc1r j
2 þ juðr; 0; 0Þj2 þ jgðr; 0; 0Þj2	 dr

!)

which gives our thesis, by virtue of (14). r

The coe‰cients occurring in the previous equations are deterministic and
di¤erentiable. By the standard technique of time shift and Blumenthal’s 0-1
law, one can show that

gðt; xÞ ¼ ct;xt ; fðt; x; yÞ ¼ H
t;x;y
t ; yðt; x; yÞ ¼ V

t;x;y
t

are all deterministic functions. Proposition 4.2 implies that these functions are
locally Lipschitz in x; y and Hölder of order 12 in t, consequently their deriva-
tives are defined a.s. and bounded on compacts.
The solution of (5)–(6) may be characterized through the solution of a

nonlinear degenerate parabolic PDE associated with the FBSDE (for instance
see [MPY]).
We need to consider viscosity solutions instead of the classical ones, since

the PDE is degenerate and we have no a-priori information on the regularity
of the solution. For the definition of viscosity solution we refer the reader to
[FL].

Theorem 4.3:Under Assumptions 4.1, yðt; x; yÞ is a viscosity solution of the PDE
problem in ½0;T 	 � R � R,8>>>>>><
>>>>>>:

qy

qt
þ s2ðt; xÞ

2

q2y

qx2
þ mðt; xÞ qy

qx
þ ðgðt; x; yÞ � atyÞ

qy

qy

� uðt; x; yÞ þ bty ¼ 0

yðT ; x; yÞ ¼ 0:

ð16Þ

Proof: By construction, the processes ct;xs ;Ht;x;y
s and V t;x;y

s have continuous
paths and are adapted with respect to the filtration generated by the Brownian
motion. Therefore by the Markov property and the pathwise uniqueness of the
solution, it is possible to show that actually V t;x;y

s ¼ yðs; ct;xs ;Ht;x;y
s Þ a.s..

We need to show that y is both a sub and a super-solution of (16). We show
only the sub-solution inequality, since the proof of the other follows same lines.
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Consider a point ðt; x; yÞ A ½0;T 	 � R2 ¼ O and j A C1;2ðOÞ such that 0 ¼
yðt; x; yÞ � jðt; x; yÞ is a global maximum for y� j (without loss of generality
we can assume this maximum to be zero). This means that for any stopping
time, necessarily

yðt; ct;xt ;Ht;x;y
t Þ � jðt; ct;xt ;Ht;x;y

t Þa 0: ð17Þ

Following the same lines as in [MY] we arrive at the inequality

E

ð t
t

Sðr; cr;HrÞ dr
� �

a 0;

where Sð�; �; �Þ ¼ � qj

qt
þ Lð�; �; �; yð�; �; �Þ; jð�; �; �ÞÞ; ð18Þ

Lðt; x; y; yðt; x; yÞ; jðt; x; yÞÞ ¼ 1
2
s2ðt; xÞ q

2j

qx2
ðt; x; yÞ þ mðt; xÞ qj

qx
ðt; x; yÞ

þ ðgðt; x; yðt; x; yÞÞ � at yÞ
qj

qy
ðt; x; yÞ

� uðt; x; yÞ þ btyðt; x; yÞ:

To a‰rm that y is a subsolution of (16) we must verify that Sðt; x; yÞa 0.
By contradiction, we assume there exists an e0 > 0 such that Sðt; x; yÞ > e0

and we define the stopping time t1 ¼ inf s > t : Sðs; cs;HsÞa
e0

2

� �
5T . Since

Sðt; x; yÞ > e0, we have t1 > t a.s. Inequality (18) holds for any stopping time,
therefore also for t1 and we have

0 <
e0

2
ðt1 � tÞ < E

ð t1
t

Sðs; cs;HsÞ ds
� �

a 0

which is a clear contradiction, hence we proved that y is a subsolution of (16).
It is interesting to remark that this generalized Feynman-Kaĉ formula per-

mits to a‰rm the existence of the viscosity solution of quasilinear parabolic
PDE’s of the type (16), at least for small time intervals.
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