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Abstract. This paper is concerned with the asymptotic behavior of a time
dependent Markov model in a stochastic environment, with special relevance
to manpower systems. The stochastic concept is established through the notion
of optional scenarios applied on the transition process. A theorem is provided
for the existence and determination of the limiting structure of the means, var-
iances and covariances of numbers in the classes of the system. It is also proved
that, under certain conditions, the rate of convergence is geometric.
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1 Introduction

We consider systems of the following structure: at any time ¢ the members of
the system can be classified into k classes on the basis of whatever attributes
are relevant for the problem at hand. The classes are assumed to be exclusive
and exhaustive while the time scale is discrete. A mobility pattern (model) is
sought in order to describe the flows between internal classes and external
environment over the course of time.

Several examples of such systems can be found in Manpower Planning, i.e.
the discipline of Operations Research concerned with the description and fore-
casting of the behavior of groups of people. If this is the case, the classes of the
system may be formed according to attributes such as grades, length of service,
age, economic or social status, occupations, etc. The flows mentioned above
are now interpreted as the recruitment of new members (input flows), promo-
tion or demotion (internal flows) and retirement (wastage flows). Researchers
used extensively the so called embedded or associated Markov chain model to
describe the changing pattern of a manpower planning system [5], [6], [27],
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[28]; this is due to the fact that there is an obvious correspondence between the
classes of the system and the states of the chain.

Despite the stochastic nature of the process, its analysis has been mainly
deterministic in the sense that average values are used in place of random varia-
bles. Bartholomew [2], [3], [4], [5] introduced some viewpoints about the conse-
quences of the stochastic environment and his analysis was followed by Abdal-
laoui [1], Guerry [15] and Gerontidis [13]. More recently, Tsantas and Vassiliou
[24], Tsantas [23], Vassiliou [26] and McClean [19] succeeded in constructing
a general modelling framework with an inherent stochastic mechanism. Since
their motivation came from a series of papers utilizing the well-known non
homogeneous Markov system (NHMS), established by Vassiliou [25], the new
model was called the non homogeneous Markov system in a stochastic environ-
ment (S-NHMS)”.

The problem addressed in this paper is concerned with the asymptotic
behavior of the S-INHMS. In Section 2 we give a brief review of the model used.
In Section 3 we develop an asymptotic analysis for the expectations and the
variances-covariances of the class sizes for the S-NHMS under the assumption
that the parameters of the system converge to some fixed values. Section 4
examines the rate of convergence to the ergodic distribution and conditions are
provided for the convergence to be geometrically fast. In Section 5 our interest
is in finding the set of the asymptotic expectations which are possible, provided
that we control the limiting recruitment flow to the system. Finally, in Section
6, some numerical examples highlight the practical aspects of the theoretical
results. The results proved to be useful from the practical point of view since
they provide valuable information about the inherent tendencies in the studied
system.

2 The non homogeneous Markov system in a stochastic environment

In this section we define the parameters of the time dependent Markov model
using to study a manpower system and we provide the basic recurrence equa-
tions describing the progress of its expected structures during the course of
time.

Consider a manpower system and let G = {1,2,...,k} be the set of its
exclusive and exhaustive internal classes. Establish a discrete time scale ¢ =
0,1,2,..., and let the size of the j-th class at time ¢ be N;(¢). For t > 0 the
class sizes are random variables and we shall be concerned mainly with their
expectations. Following Bartholomew ([5] p. 51), these will be denoted by
placing a bar over the symbol representing the random variable. Thus, at any
time 7, the row vector of the class expected levels N(¢) = [N(z), Na(2), . . .,
Ni(2)] provides a ““snapshot” of the system’s expected structure ([6] p. 3).
Assume an interval of unit length from ¢ to ¢+ 1; the #-th time interval. It
is important to observe that flows relate to an interval and not a point. The
internal dynamics of the system regulates a non homogeneous Markov chain
with transition probability matrix P(z), where the element p;(¢) is the prob-
ability that a member in class i at the start of the #-th time interval is in class
j at the end. Apart from internal mobility, outflows take place towards the
external environment denoted by the hypothetical k + 1 class. The associated
vector of the wastage probabilities is py.;(f) = (P1,k+1s P2,k+1-- - Dk k+1)s
Di k+1 being the probability that a member of class i at the start has left by the
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end of the interval. At each time point ¢ the expected total size of the system
T(t) = N(2)1' (prime denotes transposition) is determined in advance; a full
discussion of Markov models with given size (expanding or not expanding) is
cited on [5] p. 72 and [6] p. 103. Thus, the new members of the system during the
t-th time interval, fill vacancies that are created by the wastage rates p,(7)
and by the new posts which are represented by AT (t) = T(t + 1) — T(¢). These
new members are allocated to the various classes according to the distribution
po(?) = [po.1(2), po,2(2), - .., po.x(?)] called the recruitment distribution.

A system like the one just described has been referred to in [25] as the
non homogeneous Markov system (NHMS) and is uniquely determined by the
sequences {P(7)},%0, {Prs1(?)} 20, {T()}, 0, {Po(?)},~y and the initial struc-
ture N(0). The difference equation

N(t+1) = N(O)P(1) + [N()pi1 (1) + AT (1)]po (1)

N(Q(1) + AT (1)py(1) (1)

where Q(7) = P(¢) + p;_;(£)po(2), gives the expected structure of the system at
the time 7 + 1 as a function of its structure at time ¢.

The embedded non homogeneous Markov chain is defined by the sequence
of the stochastic matrices {Q(#)},2,. The element g;;(¢)= p; () + pi k+1(£)po (1)
represents the total probability of transition in the z-th time interval from class
i to class j; it can either take place within the system or by loss from class i and
replacement to class j ([5] p. 73).

Now, for an NHMS define by £ the set of all possible transition matrices
{P(1)} ., and let Zs(1) = {P1(1),P2(7),...,P(¢)} be a finite subset such that
[I-P,(n)]1" =p;,(¢) forevery he S={1,2,...,Z} and r = 1,2,. .. The exis-
tence of the same number, Z, of transition matrices in every time interval it is
not actually a restricted constraint; it does not imply that the pool %(¢) should
be the same for every 7. This number can be easily extended to be a function of
time. Assume that at every time interval the NHMS selects a transition matrix
from the pool Z(t) in the following stochastic way. Let

chm(t) = Prob{P(t) = P, (1) |P(t — 1) = Py(t — 1)} )

(h,m € S), be the probability that the transition matrix for the time interval
[t,t+1) is P, (?), given that for the [t— 1, f) one was Pj(¢z — 1), while P(0) =P
(a known matrix) with probability one. Collect the probabilities (2) in the sto-
chastic matrix C(7) = {cum (1)}, nes- We call the sequence {C(7)},2, the com-
promise non homogeneous Markov chain, in the sense that is the outcome of
the choice of strategy under the various pressures in the environment.

Then, the sequences {#5(1)}7y, (CIO}o0 AT} 0 (et (D)0,
{po(1)},=y, the initial transition matrix P(0) =P and the structure N(0)
uniquely determine a NHMS namely the non-homogeneous Markov system in
a stochastic environment (S-NHMS) [24].

Numerous cases in real life may imply the existence of a pool of transition
matrices such as, situations like public opinion variations on various subjects,
consumers behavior, desires about the system structure and, mostly, miscella-
neous scenarios on the promotion (or any other similar) policy of a company,
e.t.c. Then, management or more generally the public sector decision-maker



104 N. Tsantas

may be interested not only in separate behavior, but may also seek an average
description of the aggregate mobility in the system. The realization process of
the alternative scenarios is implied by the compromise Markov chain.

Since, in a Markov chain model like this, the transition matrix will be
selected from the pool % (1) by the stochastic mechanism imposed by the com-
promise non-homogeneous Markov chain C(¢), we can no longer speak for a
specific transition matrix P(¢) for the #-th time interval. This led Tsantas and
Vassiliou [24] to introduce the expected transition matrix E[P(¢)], all over the
set (1) = {P (1), Pa(?), ..., Pz (1)} of the t-th time interval [z, £ 4 1). They also
gave the form of this matrix:

Pi(r) t=1,2.3,... (3)

Zeh[eIHC

heS

where e, is a 1 x Z row vector with 1 in the /4th entry and zero elsewhere. In
the S-NHMS model, we can not assume in general, that the matrix E[P(¢)]
belongs to the pool Zs(f), t = 1,2,3,... In fact, it should be considered as a
measure of tendency for the transition policies available for the system at the
t-th time interval.

Under these considerations, the relation

N(t+1) = N()E[Q(1)] + AT (1)py (1) 4)

where E[Q(7)] = E[P()] + py. 1 (t)po(), not only provides the expected numbers
in the classes at the time point ¢ + 1, but mainly describes the inside of the aver-
age aggregate behavior of the system The sequence of the stochastic matrices
{E[Q(0)]},2, defines what, by analogy with NHMS, we called the expected
embedded non homogeneous Markov chain for the S-NHMS.

Notice also here that equation (4) is illustrative similar in form to the re-
spective equation of an NHMS (1). However, they are radically different since
E[Q(?)], as a function of C(7) and Zs(z) for t = 1,2,...,¢ is not directly esti-
mated from the data.

In a model like this, besides the expected numbers, it is of obvious interest
to determine the variances and covariances of our predictions. The form of the
variance-covariance matrix V() for the S-NHMS has been given by Tsantas
[23]:

1 ! —1
V(1) = diag{N(1)} — | [ EIQ(9)]| diag{N(0)} HE[Q(S)]]
5s=0 s=0
—1 !
S{| I o o[l ze]} s
s=0 t=s+1 T=5+1

where for a vector x = {x;},.q, dzaJ{x} denotes the matrix {0;x;};cq»
E[Q(0)] = Q(0) and the product []!_, +1{ } is defined to be the unit matrix
I for = > (¢ —1). This is a recurrence relation; since the covariances at ¢t = 0
are zero, the complete set can be computed from (5).
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3 Asymptotic behavior of the non-homogeneous Markov system in a stochastic
environment

One of the most useful things to know in manpower planning models is the
direction in which the structure is changing. In this respect, Vassiliou and his
associates studied the limiting relative structure [25], [29], [9], [11] and the lim-
iting behavior of variance and covariance [31], [21], [30], [11], [12], [14] of the
NHMS model. In the present study our interest concerns the behavior of the
structure (4) and of the variance-covariance matrix (5) when ¢ tends to infinity,
provided that we control the sequence of vectors of recruitment probabilities
(in fact the limit of the sequence).

In what follows we use as norm of a real matrix U = {u;} the sup; > |uy|
and as a norm of a real vector x = {x;} the max;|x;|. Hence, convergence of
matrices and vectors is assumed with respect to these norms. The norms have
the additional following properties:

L. [[AB|| < [|A] [IB];
2. [juAf < fluf] [|Afl;
3. ||P|| = 1 for any stochastic matrix P.

To have a common basis we give some definitions and propositions.

Definition 3.1. If k and m are two positive integers (k < m) and {U(t)}2, is
a sequence of matrices we define U(k,m) to be the product of the matrices
Uk)U(k+1)---U(m).

Definition 3.2. We call a stochastic matrix U regular if and only if it has no
eigenvalue (#1) of modules 1; and 1 is a simple root of the characteristic equa-
tion [7].

Proposition 3.1 [17]. Ler {U(2)} 2, be a sequence of stochastic matrices and
let also lim,_,., U(¢) = U with U being a regular stochastic matrix. Then
limy ., U(m, k) = U” for every m € N, where U* = lim,_, U".

Proposition 3.2 [18]. Let U be a regular stochastic matrix. Then, the matrix
U® = lim,_,,, U’ is a stable stochastic matrix (identical rows).

Definition 3.3. Consider a S-NHMS defined by the sequences {Ps(1)},-,,
{COYEL AT (O} {Prsr (D)} 20, an arbitrarily chosen family of input vectors

Po(t)}, 2o, as well as, the initial transition matrix P(0) and the starting struc-
ture N(0). Let S ={1,2,...,Z} be the set of indices of the elements in Ps(t)
and G ={1,2,... .k} the set of the classes of the S-NHMS. The following
conditions will be called the limiting conditions of a S-NHMS:

i) lim Py(r) = P, Vhe S;

— o0

lim C(¢) = C, C is a regular stochastic matrix;

— 0

)

ii)

ii) lirn Pk+1(f) = Prs1s Py a vector such that [1—Py]1" =p,,, VheS;
)
)

—

iv 11m po(t) = py; and

t— 00

v) lim T(¢t) = T < oo, while AT(t) = 0Vt (the system is always expanding).

— o0
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As a consequence of all our considerations and definitions we can obtain
now the form of the limiting structures in a S-NHMS. The corresponding
results for the NHMS are scattered in various papers, see for example [31],
(291, [30], [11].

Lemma 3.1. Consider a S-SNHMS for which the limiting conditions hold. Then
the expected limiting embedded Markov chain matrix has the following form

E[Q] =) ex[eiC™]'Py +pj 1Py (6)
heS

where C* is the stable stochastic matrix defined as the lim,_,,, C' = C*.

Proof. According to propositions 3.1 and 3.2 we have that

Now, defining

E[Q] =Y ex[eiC*)'Py+pj 1P
heS

yields

!

IEIQ(1)] - E[Q]]l =

Z eh{ [el l_I[ C(r)
heS r=1

Ph([) — [eIC"C] ,Ph}

+ P 1 (OPo (1) = Pry1Po}

/
Ph(l) - [e1C°°] /Ph

< Znem{‘

heS

[61 HC(V)

+ I 1 ()P (2) — Py y1Poll

e

heS

}

/

—le | [Pl

s ICTSaR D AGES Phl}

+ 151 () = P [HIPo (DI + 119z 1 [P0 (2) = Pol-

Since C* is a stochastic matrix while the Pj(¢) are sub-stochastic ones, the
above inequality leads to
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IEIQ(1)] - E[Q]] < —[eCT ||+ IPu(r) — Pyl

heS

[eIHC

+ 1Pt () = Prt I+ [P0 () — Poll-

Combining this with (7) we get that

lim [[E[Q(#)] — E[Q]|| = 0,

— o0

which completes the proof. \Y

In what remains we will assume that the stochastic matrix E[Q] defined in
(6) is a regular one.

Lemma 3.2. Consider a S-NHMS for which the limiting conditions hold. Assume
that the stochastic matrix E[Q)] defined in (6) is a regular one. Then, the matrix
(E[Q))” =lim, .. (E[Q])" is a stable stochastic matrix whose identical rows are
given by the following expression:

(Elq)" = Po[1—> s eh[elcoc]lph]fl

-1
Po[1— Y csen[eC?)'Py] 1
Proof. Indeed, according to proposition 3.2, the matrix (E[Q])” is a stable

stochastic matrix. Moreover, its row (E[q]) " is the left eigenvector of the matrix
E[Q] which corresponds to the eigenvalue 1 [17]. Thus

(Ela))"E[Q] = (Elq])” ©)

which are the stationary equations of a Markov chain with transition proba-
bility matrix E[Q)].
Then, from the equation (9) and lemma 3.1 we obtain

E[q))" ) eleiC*]'Py + (Elq)) ‘pry 1P = (Elq])”
heS

(8)

or

I—Zeh elC Ph
heS

= (E[q])" Pk+1l’0

Since the matrices Py, & € S are sub-stochastic, the same holds for the matrix
> hesen[e1C”]'Py too, as a convex combination of them. Hence, the matrix
[1—Y",.senle1C*]'Py] is nonnegatively invertible [20] and thus

-1

(10)

(Ela])” = (Elq)) pkﬂpo[ — > el C”)'Py
hesS
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Multiplying both sides of the above equation by a vector of 1’s we get

1
(Eld]) "Prs1 = Fe——
L plI— s enlerCF)P T
which in combination with (10) leads to (8). \v

Here is our first main result in this paper.

Theorem 3.1. Consider a S-NHMS for which the limiting conditions are true.
Then the limiting expected structure and the limiting variance-covariance matrix
exist and are of the following form

N(o0) = lim N(1) = T{(E[q])’} (1)
V(o) = lim V(1) = T{diag{ (Efa))"} ~ [(Ela))"] [(Ela]) ]} (12)

Proof. Using (4) recursively we obtain
t—1 t -1
N() =N©O) [T E[Q(] + > 4T (= — py(z — 1) [ [ E[Q(A)] (13)

r=0 =1 h=t

where the product [];_'{-} is defined to be the unit matrix I for 7 > (r — 1).
Let further be

It follows that

14 () = [T (1) = T(0)lpo(E[QD) |

— > AT(z— py(E[Q])”
=1

t—1
< ZAT r—1)|lpo(z = 1) J] E[Q( [Q])“H (14)
=1 h=t

where the matrix (E[Q])” was defined in lemma 3.2 as the lim, .., (E[Q])".
This matrix is a stable one and its identical rows is represented by (E|q])".
Hence

Po(z — D(EQ])™ = po(E[Q])” = (E[q))” (15)
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and (14) gives
14 () = [T (1) = T(0)lpo(E[QD) |

< zt:AT(T— 1)

mﬁ—U{HEMW%%HmW}
h=t

—

1
[T EQM)] - (E[Q)*|.

h=t

< Xt:AT(T—l)

(16)

Since lim,_,, T(¢) = T, applying proposition 3.1 to (16), yields immediately

lim A(1) = [T — T(0)]py(EQ))”.

— o0

Then, from equation (13) and proposition 3.1 we obtain the desired result

N(o0) = lim N(r) = N(0)(E[Q])” + [T — T(0)]py (E[Q]) "

=N(O)1'(E[q))" + T(E[q])" — T(0)(E[q])"

= T(Elq))". (17)

Part 2 of the theorem is proved similarly. Since the stochastic matrix E[Q)]
is regular, by proposition 3.1 we get that

t—1

lim N(0) [T £[Q(v)] = N(0)(E[Q])” = T(0)(E[q))"

1— o0
=0

and thus
—1 ! —1
lim HE[Q(T)]l diag{N(0)} HE[Q(T)]l
=0 =0

On the other hand,

t—1

—1
lim >~ AT()po(s) [] EQ(D] = [T~ T(0)](Ela))”
s=0

=5+1
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and hence
lim Y { [ Q| a7@rim(s) | I] E[Q(r)]”
s=0 T=s5+1 t=s+1
= [T —T(0)][(Ela])"]'[(Elq])’] (19)

Then (5), together with (17), (18) and (19) leads to

V(o0) = lim V(1) = diag{T((E[q])"]} — T(0)[(Elq)) "] [(E[a]) "]

t— o0

— [T =TO)(El) ] [(E[a)]
= Tldiag{(Ela))"} — [(Ela))"] [(Ela]) "] v

Remark 3.1. Taking into account that (E[q])" is the left eigenvector of the
matrix E[Q] which corresponds to the eigenvalue 1, equation (17) can be re-
written equivalently in the form

N(o0) = T(Elq))" = T(E[q]) " E[Q] = N(0) E[Q]. (20)

These are the stationary equations of a homogeneous S-NHMS with transition
matrix E[Q].

Remark 3.2. Due to equation (17) the asymptotic structure of a S-NHMS is
of multinomial type with size 7" and probabilities (E[q])" (see also [11], [30]).

4 Rate of convergence of a non-homogeneous Markov system in a stochastic
environment to its asymptotic structure

In this section we will investigate the rate at which the S-INHMS converges to
its limit. Rates of convergence for the first and second central moments of the
class sizes in a NHMS has been studied extensively in [22] and [29].

Following [16], we say that a sequence of matrices {U,},-, converges with
geometrical rate to a matrix U, if there exist constants ¢ > 0 and 0 < b < 1
such that

U, —U| <cb" n=0,1,2,...

We now state our second main result in this paper.

Theorem 4.1. Consider a S-NHMS for which the limiting conditions are true. If
the rate of convergence in all of these conditions is geometric, then

1. the sequence of the S-NHMS’ expected structures {N(t)},2, converges to
its limit geometrically fast.
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2. the sequence of the S-NHMS’ variance-covariance matrices {V(t)}, 2, con-
verges to its limit geometrically fast.

Proof. Tt is sufficient to prove that there are constants ¢ >0 and 0 < b < 1
such that

IN(7) = N(c0)|| < ¢b" fort=0,1,2,... (21)

where N(o0) = Tp,(E[Q])” (see equations 15 and 17).
From the recurrence relation (13) we have

t—1 t t—1
IN()~N(e0)|| = H{ HE[Q(T)HZAT(T—I)po(T—l)HE[Q(h)]}
=0 =1 h=t
— Tpy(E[Q])”

‘ —1
>_AT(x=Dpo(e—1) [T E[QA)]
=1 h=t

—{T-T(0)}po(E[Q])”||. (22)

The matrix (E[Q]) is regular and thus, the sequence of matrices
{I[12" E[Q(2)]}=, converges to (E[Q])” geometrically fast, uniformly in ¢
[16]. Hence there are constants ¢; > 0 and 0 < b; < 1 such that

+n

HE[Q(T)] - (E[Q)”

<c1b} foreveryt,n=0,1,2,...

Similar, there are constants ¢; > 0 and 0 < b, < 1 such that || T(¢) — T|| < ¢2b}
forevery t=0,1,2,...

Choose now 0 < b <1 such that b > max{b;,b,}. Then for every t=
1,2,... we have

< T(O)Clbll < c3b', (23)

with some suitable constant c3.
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On the other hand

t—1

ZAT(T — Dpo(r = ) JTEQM] — {T — T(0)}po(E[Q])*

= h=t

t—1

S AT(x = Dpole — 1) [T EQUA) — {T(2) — T(0)}polE1Q))”
=1 h=t

<

+IT-T()

t—1
[TEQM) - (E[Q)”

h=t

< ZIAT(I—I) (T - T()|
=1

t—1

<Y AT = T(x = D)}arb{™' " + b}

=1

t—1
< Z Czbg_lclbl_]_f + bt

=1

t—1 b 7—1
= (] Czbt_2 Z <32> —l—Czbt
=1
< C4bt (24)

where ¢4 1s some suitable constant.
Applying the results (23) and (24) to (22) we obtain

IN(1) = N(o0)|| < b’ fort=0,1,2,... (25)

where ¢ = ¢3 + ¢4. Thus, the sequence {N(7)},2, converges geometrically fast
to N(o0).
Part 2 of the theorem is proved similarly. \Y

5 Asymptotically attainable structures in non-homogeneous Markov system in
a stochastic environment

The control of structures, i.e. the way to attain and/or maintain a desired struc-
ture, has been a major area of research in manpower systems; list of refer-
ences as well as an extended discussion on related material can be found in [5]
and [6]. Vassiliou and his associates obtain results for the expected numbers in
the classes of a NHMS under recruitment control (see for example [32], [33],
[29], [30], [10], [8]). In the present section we will study the problem of finding
which expected structures are possible as limiting/attaining ones provided that
we control the sequence of recruitment probabilities (in fact the limit of the
sequence).



Ergodic behavior of a Markov chain model in a stochastic environment 113

Definition 5.1. We say that an S-NHMS has an asymptotically attainable
expected structure N(t) under asymptotic recruitment control, if there exists
a sequence of recruitment vectors {p,(t)},2, with lim,_,. py(¢) = p, such that
lim,_.,, N(#) = N(o0).

Theorem 5.1. Consider a S-NHMS for which the limiting conditions are true.
Then the set o/~ of the asymptotically attainable expected structures under
asymptotic recruitment control is the convex hull of the points
-1
z,-:T/ll.’1 e,»[l—zeh[elcw]’Ph i=1,2,...,k (26)
heS

where 2; is the sum 1of the elements of the i-th row of the matrix
17 —
[I - ZheSeh[elC%] Ph] .

Proof. Taking into account lemma 3.2, equation (17) can be re-written in the
form

k -1
N(o0) = TZA,})OI%/IFI [ [I - Zeh[elC@]'Ph] ,
i=1 > j=1 Aipoj hesS
from which the proof of the theorem follows directly. \Y

Remark 5.1. Inherently, it is proved that it is the limit vector p, of the se-
quence of input probabilities that controls the asymptotic structure and not
the corresponding sequence; this determines the stationary distribution of the
expected embedded non homogeneous Markov chain E[Q)].

Remark 5.2. Tsantas and Vassiliou [24] proved that if for a structure N(7)
holds

Ni(t+1)>> e [61 ﬁC(r)
r=1

heS

T

S N0 (1)

i=1

the probability to maintain it tends to 1. Because of (20) this seems to be true
for all the structures of the set .. Clearly this is an expected result.

6 Illustration

In this section we illustrate the previous results with an example typical in the
literature on manpower planning.

Consider a firm with three grades. Let ¢ = 0 for the last year of records and
suppose that

0.80314 0.08836 0.00000
P(0) = | 0.00000 0.90670 0.03700
0.00000 0.00000 0.78942
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Assume that the sets %s(¢) for t = 1,2, ... consist of the following transition
matrices:

0.77120 — ! 5 0.12818 — ! = 0.00000
(t+1) (t+1)
1
P, (1) = 0.00000 0.78766 — — 0.08232 — ———
(1) (1+1) (t+1)°
0.00000 0.00000 0.88406 — %
(t+1)
1 1
0.66295 — — 0.23643 — — 0.00000
(t+1) (t+1)
1 1
P,(t) = 0.00000 0.71888 — 0.15110 —
(1) (t+1) (t+1)°
0.00000 0.00000 0.88406 — —
(t+1)
1 1
0.69619 — — 0.20319 — — 0.00000
(t+1) (t+1)
1
P:(f) = 0.00000 0.75768 — — 0.11230 — ——
3() (t+1) t+1)° |
1
0.00000 0.00000 0.88406 — s
(t+1)

ie. Zs(t) = {P1(1),Pa2(z),P3(¢)}; the figures in these matrices reflect the kind
of condition which one might find in a typical management hierarchy.

The sequence of the total members of the system was supposed to be
T(0) = 1066 while the expansion sequence determined by corresponding to
AT (1) =43 % (0.6)".

Obviously in our data, there exists a time point 7, such that for ¢ > ¢, the
sets Zs(t) converge to the set Zs(c0) = {Py, Py, P53} where

P, = lim Pl([) =

— o0

0.00000 0.78766 0.08232

(().77120 0.12818 0.00000)
0.00000 0.00000 0.88406

0.00000 0.71888 0.15110
0.00000 0.00000 0.88406

P, = lim Pz(l‘) =

t— o0

(0.66295 0.23643 0.00000)

0.69619 0.20319 0.0()000)
0.00000 0.00000 0.88406

P; = tlirn P;(1) = (0.00000 0.75768 0.11230
— 0
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Assume that after this 7 > #y, a simulation program generates a sequence of
1000 instants of these P;, (k2 € S = {1,2,3}) transition matrices:

P1—>P2—>P2—>P1—>P1—>P1—>P2—>P3—>P2—>P3—>P3—>~--
(27)

Observing the succession we were able to estimate the (limiting) elements for
the compromise non homogeneous Markov chain:

0.31493 0.31514 0.36993

0.33693 0.23693 0.42614
0.34714 0.40493 0.24793

(= lim,_ o, C(#)). We have also that T(o0) = lim,,., T(z) = 1131. Then, for
asymptotic recruitment vector equal to p, = (1/3,1/3,1/3) (equal recruit-
ment), it follows from Lemma 3.1 that the expected limiting embedded
Markov chain matrix will be

0.04334 0.80193 0.15473

0.74713  0.21933 0.03354
- |
0.03865 0.03865 0.92271

which gives

0.13689 0.26776 0.59536)
0.13689 0.26776 0.59536

(E[Q))* = (0.13689 0.26776 0.59536

Whatever the initial distribution is, the limiting numbers in the classes of
our system are of multinomial type (Remark 3.2) with size 1131 and proba-
bilities (0.13689,0.26776,0.59536). To be more precise, we apply Theorem 3.1.
Then

N(o0) = (154.754,302.703, 673.054)

and
133.56858  —41.09367 —92.13575
V(o) = (—41.09367 221.64583 —180.21300) )
—92.13575 —180.21300 272.34876

In order to find the set .o/ of all the asymptotically attainable expected

structures we employ Theorem 5.1. Since Z?:l Ni(0) = 1131, all the N(c0)’s
lies on the hyper-plane defined by the points 1131(1,0,0), 1131(0,1,0) and
1131(0,0, 1). The convex region ./ is a subset of this hyper-plane; equations
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(0,0, 1131)

3. 11310, 0.510, 0.489)

1131(0.398, 0.307, 0.295)

(1131, 0, 0) (0, 1131,0) \.

(26) determine its vertices:
1131(0.3985644  0.3067367 0.2946989),
1131(0.0000000 0.5100075 0.4899925),

1131(0.0000000 0.0000000 1.0000000).
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