Math Meth Oper Res (2001) 53:173-203)
Mathematical Methods

of Operations Research
© Springer-Verlag 2001

Classical cuts for mixed-integer programming and
branch-and-cut*

Manfred Padberg

17, rue Vendome, 13007 Marseille, France

Manuscript received: February 2000/Final version received: November 2000

Abstract. We review classical valid linear inequalities for mixed-integer pro-
gramming, i.e., Gomory’s fractional and mixed-integer cuts, and discuss their
use in branch-and-cut. In particular, a generalization of the recent mixed-
integer rounding (MIR) inequality and a sufficient condition for the global
validity of classical cuts after branching has occurred are derived.

Key words: Mixed-integer programming, cutting planes, Gomory cuts, branch-
and-cut

We consider mixed-integer programming problems of the form

max{cx +dy : Ax + Dy < b,x > 0 and integer, y > 0}, (MIP)
where A is a m x n and D a m x p matrix and all data are assumed to be
rational. x € Z'! are the integer variables, y € R, the flow or continuous vari-
ables of (MIP). We denote by

P(A,D,b) ={(x,y) e R” x R’ : Ax+ Dy <b,x >0,y > 0}
the polyhedron of the linear programming (LP) relaxation

max{cx +dy: Ax+Dy <bx >0,y >0} (MIP.p)
of (MIP). The convex hull of the discrete-mixed set DM

DM = P(A,D,b) ~ (Z" x R?)

* Work supported in part by a grant from the Office of Naval Research (N00014-96-0327).

174 M. Padberg

over which we wish to optimize is a polyhedron P;(A,D,b) in R"” because
the data are by assumption rational, see e.g. [65], point 10.2(a), for a proof.
P;(A,D,b) thus possesses a(n ideal) linear description and the existence of
finite solution methods for (MIP) follows. The traditional “cutting plane”
methods of the 1950’s and 1960’s largely ignored these mathematical under-
pinnings (e.g. the polyhedrality of conv(DM) was established by R. R. Meyer
[55] in full generality only in 1974). Rather they addressed the question of
solving (MIP) by way of “valid inequalities”” and “cutting planes” in a fairly
direct, algorithmic way.

Definition 1. (i) An inequality £x + gy < fo is a valid inequality for (MIP) if
fx + gy < fo for all (x,y) € DM.

(i) A valid inequality £x + gy < fo for (MIP) is a cut (or cutting plane) for
(MIP) if

P(A,D,b) n{(x,y) e R""7 : fx + gy < fo} = P(A,D,b),
where the containment is proper.

Let for simplicity Prp, = P(A,D,b), ex’ +dy’ = max{cx+dy (x,y) €
Prp,} and / be a family of cuts for (MIP) such that fx° + gy° > £, for all
(f gmfo) 7. Then

Prp, = Prp, n{(x,y)eR"7: fx 4+ gy < f; forall (f,g, fo)e 7} = Pprp,,

unless Prp, = &, i.e., unless zg = ex’ +dy’ = —o0, or zg = +c0. In those
two cases we can stop: (MIP) either has no feasible solution or an unbounded
optimal solution. Otherwise,

zi =max{ex+dy: (X,y) € Prp, } < zo =max{ex+dy: (X,y) € Prp}.
Moreover, since every (f, g, fo) € # defines a valid inequality for (MIP)
DM < Prp, = Prp,,
and we can iterate. Doing so generates a sequence of polyhedra satisfying
Prp, > Prp, > - D Prp, > - > Prp 2 - 2 DM

such that z/, = ex’*! +dy’*' <z, = ex’ +dy’ for the optimal solutions
(x’,y’) to the linear program

max{cx +dy : (X,y) € Prp, }, (LPy)

where / > 0 and we stop if x’ € Z" or z;, = — o0, i.e., Prp, = . Two basic
questions ensue:

1. Is it always possible to find one or several cuts with the desired property
of cutting off the LP optimum (x’,y’) if x’ ¢ Z"?

2. Does there exist a cut generatzon mechamsm which guarantees finite con-
vergence of the algorithm, i.e., does there exist a finite £ such that the opti-
mal solution (x’,y’) to the linear program (LP;) satisfies x’ € Z"?

Classical cuts for mixed-integer programming and branch-and-cut 175

[t eei]

YE
<€ z ; @

NO

I Find cuts for (MIP) s.t. fxf + gyt > fo I

IAdd the cuts to (LP) to form (LPHI)I

Fig. 1. Classical cutting plane algorithm A for MIP.

The answer to the purely existential question of a finite cutting plane
algorithm for (MIP) along the lines of the flowchart of Figure 1 is positive
and follows from the polyhedrality of the convex hull of DM since P;(A, D,b)
is a polyhedron in R"'” it possesses a linear description by way of finitely
many linear inequalities. It thus suffices to look for valid equations and
facet-defining inequalities of P;(A,D,b) that are violated by the current LP
optimum (x’,y’) if x” ¢ Z". Of course, such a linear description may not be
known, which leaves the algorithmics of numerical computation, i.e., the pre-
scription of a cut generation mechanism, wide open.

1 Rules for deriving valid inequalities for MIP

We list next a number of well-known rules that can be used to derive a valid
inequality (VI) for (MIP) from the original formulation of the problem. We
write & = (x,y) where x € Z", x > 0 and y € R?, y > 0 and thus & > 0. Any
combination of the following rules in arbitrary order of execution “works”,
i.e., produces a VI for (MIP) from other VIs of (MIP). Below we assume
throughout that all variables must be nonnegative.

Rule I. Nonnegative combinations of VIs give Vls:

If f& < fo and hé < hg are VIs, then (f 4+ uh)é < Afo + pho is a VI for all
A>0and u>0.

Example 1. If the inequalities

176 M. Padberg

2x; —xp + 12x3 —y; < -2 (1)
Axi+ x4+ <7 (2)

are valid inequalities for some (MIP), then so is the inequality (use A = u=1)
6x1 + 12x3 < 5. (3)

Rule II. “Weakening™ a VI gives a VI:

Iffé < fo is a VI, then £~ & < fy is a VI where f~ = min{0,f}. Likewise, if
f& > fois a VI, then so is f7& > fy where f© = max{0,f}.

Example 2. From (1) we get that the inequality

—X -y <=2 4)
is a valid inequality for the mixed-integer solutions to (1) and (2).
Rule III. “Strengthening” a VI by Euclidean reduction gives a VI

Iffé = Z;;lfjxj < foisa VIwithfie Z" forj = 1,...,n and greatest common

divisor o« = g.c.d(fi,..., 1), then S (fife)x; < Lfo/ocj isa VI, where | fo/o]
is the biggest integer less than or equal to fy/o.

Example 3. From (3) we get o = 6 and hence that

X1 +2x3<(5/6] =0
and consequently, x; = x3 = 0 in every feasible solution to (1) and (2).
Rule IV. “Strengthening” a VI by rotation gives a VI:

If f&=327/ix;=fo with ;=0 for 0<j<n is a VI, then so is
> mind fo, fi}x; = fo.

Example 4. The inequality 5x; + 7x; + x3 > 3 in nonnegative integer vari-
ables can be replaced by the stronger inequality 3x; + 3x; + x3 > 3 (see the
figure). Consider next the inequality

4xy + 8x5 + 3x3 — 500x4 < 12 (5)

in zero-one variables x; € {0,1} for 1 <i <4. Complementing x; =1 — x;
for 1 <i <3 we get 4x{ + 8x; + 3x3 + 500x4 > 3 which by Rule IV can be
replaced by

3x7 + 3x5 + 3x5 + 3x4 > 3.

We simplify using Rule III and thus by reversing the complementation we get
that

X1 +X2+x3—Xx4 <2

Classical cuts for mixed-integer programming and branch-and-cut 177

Fig. 3. Using disjunctions.

is a valid inequality for all zero-one solutions to (5) and (5) becomes re-
dundant.

For f € R""” we denote by supp(f) the support of f, i.c.,

supp(f) ={¢e{l,...,n+p}: f; #0}.
Rule V. “Valid disjunctions” give Vls:

a.) Let f,g € R"™? be such that

supp(f) nsupp(g) = &, f&=0and g&é=>0

for all feasible &€ R™™. If the disjunction “‘either £& > a or g& > b for all
feasible & is valid for some a > 0 and b > 0, then (bf + ag)é > ab isa VI
b.) Let f,ge R"*? be such that f; >0 and g; >0 for all j and H =
{je{l,....n+p}: fi+9g, >0} # . If the disjunction “either £&>a or
gé>b for all feasible &’ is true for some a>0 and b >0, then
a

-1
ZjeH<min{J7,§}> izlisaVl
J i

178 M. Padberg

c) Let f,ge R"?. If the disjunction “‘either f& < fy or g& < gy for all
Seasible & is true, then Z ! min{ f;, g;}¢; < max{fo,go} isa VI

Example 5. Given the disjunction 4x; + 5y; > 3 or 2x, + 4y, > 5 both Rule
Va.) and Vb.) apply and yield the valid inequality

%)q +%X2 +%y1 +§y2 > 1.
Rule Vc.) — which applies generally — gives the valid inequality

%Xl +%x2 +%y1 +%y2 > 1,
which is weaker than the one obtained by the application of Rules Va.)
and Vb.). Given the disjunction 4x; + 2x; + 5y; > 3 or 2x2 +4y, > 5 Rule
Va.) does not apply, Rule Vb.) gives the valid inequality $x; +2x, + 3y +
% y2» =1 and the application of Rule Vc.) gives the same weaker valid in-

equality as before. In the presence of negative coefficients and support
overlap in the disjunction only Rule Vc.) applies.

2 C(lassical valid inequalities for MIP

For pe R” let p" = max{0, u} = (1),
min{0, u},

where yf = max{y;, 0}, = =

i=1,...m>

LeA] = (Leaj))jen. 1 = (S5 f)f) = rA = [pA] and

%ﬂ = :ub - L”bj)
where N = {1,...,n} and a; is column j of A. Note that 0 < f” < 1 for all
0<j<n. The derlvatlon of the following valid inequality (FC) for (MIP)
follows, besides Gomory’s original reasoning [28], the spirit of proof argu-

ments due to Fleischmann [19].

Proposition 1. For every ue R" and S = N the following inequality is a VI
for (MIP):

(1= fg) LwA] = - A+ (S = f3")x; + min{u "D, —u D}y
jes

< (1 —f¢) L ub] — u™b. (FC)
Proof. Introducing slack variables s € R, s > 0 it follows that
#AX + uDy + pus = ub

for all (x,y) € DM and all x € R”. Consequently,

Classical cuts for mixed-integer programming and branch-and-cut 179

(#A — [pA])x = > x; + uDy + ps — fi'
JjeS

= |ub| — [#A|x =D xeZ (6)
Jjes

for all (x,y) e DM. Since every integer number is either greater than or equal
to 0 or less than or equal to —1 we get the valid disjunction

cither (uA — | pA])x = > x;+ uDy+ps — fi' > 0 (i)
jes
or (puA— |pA] x—Zx,Jr,uDer,us— < -1 (ii)
jeS

for all (x,y) e DM. Consequently from Rule II by weakening (i) and (ii) it
follows that

either > f/x;+ (uD)'y +u's = ff (i*)
jeEN-S

or =Y (1—f")xi+ (D) y+us< —(1-f" (ii*)
JjeS

for all (x,y) € DM. Since 1 — £ > 0 we can rewrite (ii*) as
1 _ _ .
| > (=% —(uD) y—u's| = 1. (ii**)
1 _f(‘) jes

It follows that Rule Va.) applies to the valid disjunction (i*) and (ii**) and
hence

u
> x4+ (D) y +u S+1f (Z(l _f/#)xj_(ﬂD)y—ﬂS>

jeEN-S fo jesS

> il (7)
is a VI for (MIP). To eliminate u*s and u~s from (7) we use the identities
uts=pu'b—pu"AXx—pu"Dy and p s=u"b—pu Ax — u Dy.

Since e.g. (#A)" + (#A)” = wA = uFA +u~A, all (x,y) € DM satisfy the
inequality

"
— LrA]x+ f/t,“ AX+Z = e/)xj_l_lfoﬂ((ﬂD)—ﬂD)y
jeS

1
> —-7Fpu b— .
=1 _foﬂ #b— | ub)

180 M. Padberg

From (#D)” — ¢ D = min{g™D, —x D} it follows that (FC) is valid for
(MIP). |

It is clear that an enormous variety of valid inequalities for (MIP) results

from the application of Proposition 1. For instance, choosing x# = u’ e R",
i.e., the i-¢h unit vector, and

S={jeN:f>f},

we get from (FC) the recent mixed-integer rounding (MIR) inequality, see [49],

as a special case, i.e., for i € {1,...,m} the inequality
i piyt
. ;= 1 .
Z la;] + Ui fol) Xj+ -min{d’, 0}y < |b;] (MIR)
jeN 1=/ 1 =7

is valid for (MIP), where a/ = u'a;, f;' = f*', d' =u'D and b; = u’b. The
question is how to find a “cut”, i.e., a valid inequality that cuts off e.g. the
optimum solution to the linear programming relaxation (MIP.p). To answer
the question let us first assume that all slack variables of the constraint set
of (MIP) have been included into the flow variables of the problem and study
the problem in equality form:

max{cx + dy : Ax + Dy = b, x > 0 and integer, y > 0}, (MIP™)

where we assume again that D is a m x p matrix and that all data are rational
numbers.

Proposition 2. For every p e R" and S = N the following inequality is a VI for
(MIP=):

" Jo =7 —fo - -

Z fjlxj‘—FZ 01_—fﬂxj +max{,uD f/l'uD}nyO/ (FC_)
jeN-S jes 70

Moreover, a best possible choice for S for fixed p € R™ with f' > 0 gives the VI

Zmin{fﬂ ;Z}XJ +maX{f1u.uD ; ;ﬂﬂD}y > 1. (FC*)

jeN

Proof. We argue for arbitrary S < N like in the proof of Proposition 1. Here
(7) becomes

> S+ (wD)Ty + lf (Z(l = 1% = (ﬂD)Y> > fy'

jeN-S fO jes

Simplifying essentially as before shows the validity of (FC~) for (MIP~). Since
all coefficients of the left-hand side of inequality (FP~) are nonnegative, we
choose for fixed x € R” with foﬂ > 0 the set S = N such that the intersec-

Classical cuts for mixed-integer programming and branch-and-cut 181

tion with the coordinate axis of x; is as large as possible, i.e., we select S =
{jeN:f">f} to obtain (FC#). []

2.1 Gomory’s mixed-integer cut

Let now B be any basis for the linear programming relaxation (MIP;,) of
(MIP~), e.g. an optimal basis found by the simplex algorithm when applied
to solve

max{cx +dy: Ax+ Dy =b,x >0,y > 0}. (MIP;,)

Denote by b = B~'b the transformed right-hand side and let r e {1,...,m}
be such that the associated basic variable k(r) is an integer variable, but
b, ¢ Z. If no such r exists and B is an optimal basis, then the solution to
(MIP;;) solves (MIP=) and we are done. So suppose such re {1,...,m}
exists and choose

u=ou,B! (8)
where u, € R™ is the r-th unit vector and o € Z is any integer. We denote by
a;=B'a, and d;=B7'd,

the transformed columns of A and D, respectively. Denote for the choice (8)
of u

fi(a) = oa — [ea]| and fo(o) = ab, — |ob,]. 9)

For o = 1 we have fy(«)
o € Z is such that fy(o) >

Z fila xj+zfo

> 0 by the choice of r. More generally, assume that
0. The valid inequality (FC™) becomes

]—i— Zocdyj

jeN=S 1 7f0 jidr>0
f()() gr =

By the choice (8) of x and « € Z, fj(o) =0 and c?j" = 0 for all basic integer
and flow variables. Hence the left-hand side of (GM~) for the optimal lin-
ear programming solution of (MIP;;) equals zero. Since fy(x) > 0, (GM™)
is thus a cut for (MIP;,). Evidently, the choice of x in (8) is only one
of many possibilities to generate cuts of the general form (FC~). Choosing
for gxed aeZ, >0, the set S={jeN:fj(«) > fo(x)}, we obtain from
(FC#)

182 M. Padberg

N1 1-f() 4 a4
2 {f0<°<>’1—fo<o<>}"’+z°‘rna {fo() 1—fo<a>}y"21'
(GM?)

This is Gomory’s classical “mixed-integer cut” [28], which is “basis-
dependent”’; see (8).

In terms of the two questions raised in the introduction it follows that the
answer to the first one is positive. The answer to the second one is, however,
negative if we use the cut (GM?*). The following is a simplification of the
original example by White [81].

Example 5. (Infinite convergence of (GM#) cuts [59], [74], [81]). Consider the
program (MIP)

max V1
such that X1 +x7 +y; < 2
—X] +y1 < 0

—X2 +y < 0

X120 x>0 y; >0

where x; and x, are the integer variables. We shall use the algorithm A of
Figure 1 with the following cut generation mechanism: we select « = 1 and
at every iteration we derive the cuts (GM?) for the two integer variables x;
and x, whenever possible. We then express the cuts in terms of the original
variables and drop constraints that become redundant in the process. We
claim that after / > 0 iterations the current linear program (LP/) is

max g
such that X1 +x7 +y1 < 2
—X] +({/+1)y, < 0
-x2 +({/+1)y, < 0
x1>0 x>0 y1 =0
and that the optimal solution (x’,y’) to (LP/) is given by
2042 2
[of _ ‘_
SRV R R Vo)
To prove it, we consider the basis and its inverse
1 1 1 1 (+1 —(/+2) /41
B=| — -l__ - _
1 0 /41|, 73 (+1 (+1 (¢+2)
0 -1 /41 1 1 1
1 .
Calculating the dual solution v/ = cgB™! = =%/13 (1 1 1) it follows that the

above solution (x”,y’) is indeed an optimal solution to (LP,) for all # > 0.

! C+1 —(0+2) £+1)

Consequently, from (8) we get u' =u B~ =3 3(

Classical cuts for mixed-integer programming and branch-and-cut 183

and thus from (GM~) or (GM#) the cut

(4l @424 [2\ L 242
243 1= 20+2)/20+3)\ 24+3)7 24437 2043

. . . 1
Likewise with g> =w,B ™' = ———(/+1 /+1 —(/ +2)) we get the cut

2043
41 ‘+1 (20 +2)/(2¢0 +3) {42 20+ 2
S+ § — - §3 >
2043 2/+3 1—-(2/+2)/(2¢+3) 243 2/ +3

where in both cases
s1=2—=-x1—x—-y120, so=x1—(/+ 1)y =0,
S3:x27(/+1)y1 >0

are the respective slack variables of (LP,), which are flow variables for the
corresponding (MIP=). Simplifying and clearing common divisors we get the
two cuts

X1+ ([+2)1 <0, —x2+4(/+2)y <0.

But —x; + (/+2)y; <0 and —y; <0 imply that—x; + (/4 1)y; <0 and
thus the inequality —x; + (£ 4 1)y; < 0 becomes redundant once we add the
new cut. Likewise the inequality —x; + (/ + 1)y; <0 becomes redundant.
After / > 0 iterations the application of the above cut generation mechanism
thus produces (LP,) and

. / _ . —
jm vy = fim 573 =0
shows the infinite convergence of Algorithm A. |

In the example the linear programming relaxation is a 3-dimensional poly-
tope, whereas the convex hull of the discrete-mixed set DM is 2-dimensional
because y; = 0 for all feasible mixed-integer solutions in this case. This may
explain why infinite convergence is obtained. Under certain technical assump-
tions, however, convergence of Algorithm A has been established.

Theorem 1 (Gomory [28]): The cutting plane algorithm for (MIP=) with the
cut (GM=) for o = 1 converges in a finite number of steps if

(i) one chooses a single integer variable x; for cut generation by a “least
index” rule, i.e., the first integer that is non-integer valued in the current
linear programming solution.

(i) one requires that the optimum objective function value of (MIP~) is an
integer number, i.e., xo — ¢x — dy = 0 is used in the cut generation with the
requirement that x is an integer variable.

(iii) one uses the “‘lexicographic” version of the simplex algorithm.

184 M. Padberg

Of the technical assumptions of the theorem (ii) is the most restrictive
one. In the above example this assumption is tantamount to requiring that
all variables are integers.

2.2 Gomory’s fractional cut

We consider now the case of a pure integer program with integer data sepa-
rately, i.e., we consider the problem in equality form

max{cx : Ax = b,x > 0 and integer}, (IP7)

where we assume that A is a m x n matrix of integers and that the right-hand
side b is a vector of m integer numbers.

Proposition 3. For every u € R the inequality
(uA — [uAJ)x > ub — | ub) (GP™)

is valid for (IP=). Moreover, the surplus variable in (GP=) is an integer vari-

able.

Proof. We proceed like in the proof of Proposition 1. Equation (6) becomes
forS=g

(A — [wA])x —f§" = | wb] — [pA]x e Z (10)

forallx e Z". But uA > | pA |, x > 0and 0 < f* < 1. Consequently, since the

right-hand side of (10) must be integer and the left-hand side of (10) is greater
than —1 for all x > 0 it follows that

(uA — [#A])X — f§' = X411 20

for all x e Z", x > 0 and the surplus variable x,. is a nonnegative integer.
|

If we add the valid inequality (GP~) in equation form to (IP<), then the
augmented problem is again of the general form (IP=) which permits the
iterative application of the basic idea. Let B be any basis of the associated
relaxed linear program

max{ex : Ax = b, x > 0}, (IP)
e.g. an optimal basis for (IP;;). Like in the case of (8) we set # = ou, B!

where o € Z and choose r € {1,...,m} such that b, ¢ Z where b = B~'b. Then
using the same notation as in (9) the valid inequality (GP~) becomes

> fil@)x; = fol@). (GP™)

jeN

Classical cuts for mixed-integer programming and branch-and-cut 185

Like in the case of (GM~) fi(a) = 0 for all basic variables. Thus (GP~) is a
cut because we can assume that fy(a) > 0. This is Gomory’s classical “frac-
tional cut” [26], which like (GM~) and (GM#) is basis-dependent.

Theorem 2 (Gomory [26]). Under mild technical assumptions about the cut
generation mechanism and for integer data (A,b) the cutting plane algorithm
converges in finitely many steps when (GP=) with o = 1 is used as a cut.

Example 6. (Speed of convergence of (GP=) cuts [59]). Consider the integer
program (IP)

max X1 +X2
such that —Kx; +x, < 1
Kx; +x;, < K+1

x1=>0 x>0

where both x; and x; are integer variables and K > 2 is any integer number.
Let us agree to select « = 1 and to generate cuts by a least index rule, i.e., we
will choose variable x; as long as it is possible. Note that the slacks in the
two constraints of (IP) are integer because of the integrality of the data. Thus
adding slack variables we bring (IP) into the form (IP=). As we did in the
previous example we express the cut in the original variables x; and x;, clear
common divisors and drop redundant constraints. We leave to the reader to
show that after / > 0 applications of (GP~) we get the linear program (LP/)

max X1 +X7
such that —(K —/)x +x, <
Kxq +x; < K+1

x>0 x>0
the optimal solution x’ to which is given by

K ’

K(K - /)
K7 2T

¢
*1 2K —7

Thus K cuts (GP~) must be applied to find the optimal integer solution
(x1,x2) = (1,1). Now choose e.g. K = 10! and draw your own conclusions.
By contrast, in this example the application of (GM#) to (LPy), in spite of its
potential for infinite convergence, gives the cut x, < 1 which suffices to obtain
the optimal integer solution. |

The cut (GM?*) for p =0 is, in general, “stronger” than (GM~) and
(GP~7), but the corresponding surplus variable is, a priori, a flow variable.

2.3 Summary

Work on cutting planes begins with [8], [18], [26], [27], [28] and [51]. The
1950’s, 1960’s and early 1970’s were characterized by attempts to solve pure
and mixed integer programming problems using valid inequalities and “cuts”
of the variety as outlined here and other ones as well, c.f. [3], [39], [40], [87]

186 M. Padberg

&Ira

Intersection cut : 0.5366x, + 0.3904z, < 1

_——————— -

Intersection points:

1

vn/2 |
| (z1, 72) = (0.7935, 1.4710)
1

1
] ==l — - - - ——— — j -

| (z1,33) = (1.2550,0.8367)

[R,
[SR

I

Fig. 4. Intersection cuts from the sphere.

and [22], [57], [74], [77], [85], [88] for more. (The “intersection cuts’ of [3], [87]
are illustrated in Figure 4.) Suffice it to say that — to the best of the author’s
knowledge — no commercial problem solver has implemented the pertinent
research work in any detail until the mid 1990’s. Indeed, general ‘“‘cutting
planes” for integer programming were largely forgotten — until the recent
revival of (GM#), see below. The reason for this — in our humble view — is
twofold: first, a theoretically exact implementation of the cutting plane theory
reviewed here requires LP solvers that work in exact arithmetic, i.c., that carry
out their calculations over the field of rational numbers. We shall come back
to this issue below. Secondly, there were plenty of early attempts to implement
cutting plane theory numerically nevertheless, c.f. [19], [20], [35], [42], [43],
[54], [56], [76], [78], [80] and probably more. Most of the pertaining com-
putational studies used the fractional cut (GP~) or its “all-integer’” variant
[25], [27], [29], [82], [86], whereas the stronger mixed-integer cut (GM#) was
studied to a lesser degree; probably because it makes a “mixed” integer pro-
gram even more “mixed” as the surplus variable in (GM?) is in general a flow
variable. The derivation of (GM#) and (GP<), respectively, uses substantially
different reasoning, see (7) and (10).

None of the studies reported in the early literature on the subject showed
significant numerical success, indeed some reported outright disastrous results,
c.f. [42], [43], [76] and Chapter 13 (written by R. Woolsey) in [74]. The only
known exception to the rule was G. Martin’s work [54] on set covering and
traveling salesman problems of small to medium size; see also [56] where a
discussion of implementational difficulties of Gomory’s fractional cuts can
be found. Luckily, branch-and-bound [18], [44] and implicit enumeration [2],
[23], [75] sufficed to solve most problems of its time, see e.g. the surveys [6],
[9], [24]. Rightly or wrongly — classical cutting plane theory fell into oblivion
by the end of the 1970’s, see e.g. [21], [45] and also the extensive treatment of

Classical cuts for mixed-integer programming and branch-and-cut 187

cutting planes in e.g. [22] or [74] as opposed to their treatment in more recent
texts such as [57] and [85].

3 Branch-and-cut

The early 1970’s were the start of a mathematically different approach to
mixed-integer programming, one that continues to be pursued actively to
date. The polyhedrality of the convex hull of the discrete-mixed set DM of
bounded (mixed-) integer programs being a trivial consequence of bounded-
ness, the facial structure of many problem-specific polytopes, such as those
associated with set packing, traveling salesman, knapsack, simple plant loca-
tion, linear ordering, acyclic subgraph, quadratic zero-one and many other
combinatorial optimization problems, was studied in depth, c.f. [4], [13], [14],
[31], [33], [58], [60], [61], [62], [63], [64], [83] and many, many more. These
studies were extended to the mixed-integer case already in the early 1980’s,
c.f. [46], [47], [48], [71], [72], [73], [84] and more. As a result, partial linear
descriptions by way of facet-defining inequalities of many pure and mixed
integer programming problems are known to date. The facet-defining in-
equalities of the associated polytopes and polyhedra are strongest possible
cutting-planes for the respective problems. The basic hypothesis to be tested
was thus: do such cuts “work” in numerical practice or not? A useful corol-
lary to the outcome of such experimentation is, of course, that

if strongest possible cuts for (MIP) do not work, then the whole
cutting plane approach to (MIP) can safely be put to rest.

As the computational record has shown, the use of facet-defining inequalities
and/or their various approximations as cuts has pushed the limits of numeri-
cal computability in mixed-integer programming far beyond those that are
attainable by branch-and-bound, c.f. [1], [16], [17], [30], [31], [34], [36], [37],
[38], [41], [48], [67], [68], [69], [79] and not only many more, but the pertaining
literature seems to keep growing year by year. See [50] for an excellent, recent
survey.

The trouble with this approach — which became evident in the 1970’s as
well — is that, perhaps because of the NP-hard characteristic of all of the
problems mentioned above, it is unlikely that complete (minimal and ideal)
linear descriptions of the associated polytopes and polyhedra can be obtained.
Indeed, the “pure” cutting-plane approach of Figure 1 using as cuts only
facet-defining inequalities (rather than arbitrary valid inequalities) assumes
that such a description is available and that it is algorithmically ““identifiable’,
i.e., that we know how to solve the corresponding ‘“‘separation” problem as
well. (One of the theoretically most interesting by-products of this line of re-
search is the polynomial-time equivalence of optimization and separation, see
e.g. [32] and [65], Remark 9.20 and point 10.2(f), for a precise statement
and proof of this fundamental theorem.) Perhaps as a result of the NP-hard
characteristic, the pure approach has been successful (so far) for only a few
classes of integer programs, c.f. [30], [66], [70] and perhaps some others as
well.

188 M. Padberg

I Find cuts for (MIP) s.t. fx¢ 4+ gyt > fo |
NO - - :
Cuts found Branching variable selection l

YES

|Add the cuts to (LPg) to form (LP[+1)|
|

Fig. 5. Branch-and-Cut algorithm B for MIP.

The way out of this dilemma was to combine cutting planes based on facet-
defining inequalities with the oldest and simplest approach to integer and
mixed-integer programming problems, namely branch-and-bound. Branch-
and-bound (see Figures 5 and 6) tries to locate the (mixed-) integer optimum
by successively splitting the “current” problem into two or more smaller
subproblems while organizing the search for a global optimum by way of
a (binary) search tree that keeps track of all (active) subproblems that are
generated. To be able to “marry” such an enumerative approach with
cutting planes efficiently one needs cuts that are valid across the entire search
tree, i.e., cuts that are valid “globally’ across all subproblems that may be
generated during the search for a global optimum. Facet-defining inequalities
of the overall polytope or polyhedron have this property automatically and
are thus ideally suited to be adapted to search tree methods. Indeed, the nu-
merical success on the academic research side of things that resulted from the
actual application of this basic idea has been such that most of the producers
of (serious) commercial software for the solution of (MIP) like CPLEX,
LINGO, OSL and XPRESS-MP have incorporated — since the late 1990’s —
some (or most) of the elements of branch-and-cut into their products; see [10],
[15].

In Figure 5 we give the outline of a “branch-and-cut” (B&C) algorithm
for (MIP) that combines the “pure” cutting-plane algorithm of Figure 1 with
branch-and-bound. The left half of the flow-chart is more or less like Figure
1 except that the possibility that no cuts are found (or are discarded for some

Classical cuts for mixed-integer programming and branch-and-cut 189

reason or another) is allowed for explicitly. In the latter case we proceed
like in branch-and-bound: using some clever heuristic for selecting a basic
integer variable x; with noninteger value b,, say, we create two new problems
by requiring that x; < |b,] on the “down” branch and that x; > [b,] on the
“up” branch. The corresponding two new problems are put on a “problem
stack”. The algorithm proceeds by selecting — again by some clever heuristic
selection mechanism — some problem from the stack for further processing. If
no more problem is “available” the problem stack is empty and the original
problem (MIP) is solved. z* in the Figure 5 is initially set to —co and updated
in the box “Fathom” whenever a (better) feasible (mixed-) integer solution has
been obtained, i.e., the deletion of subproblems on the stack that do not need
to be processed any further is done like in basic branch-and-bound.

The traditional school of thought in (mixed-) integer programming, i.e.,
the one that tried to get away with arbitrary “cuts” and valid inequalities in
the solution of (MIP), having lost steam long time ago, it remained to revive
these classical ideas, suitably adapted, in a “‘branch-and-cut” framework. This
was done recently by Balas et al. [5] who show that the cut (GM#) for mixed
zero-one programs can be integrated into a branch-and-cut algorithm; see also
[10], [11], [15], [49], [50].

3.1 Invalidity of classical cuts in B&C

The fact that classical cuts are basis-dependent prohibits a priori their use
in branch-and-cut where “global” validity, i.e., validity of the cuts across all
branches of the search tree, is desirable. The obvious alternative of storing the
cuts that are specific to each node of the search tree (“local” cuts) separately is
generally ruled out as being too costly in terms of storage (and computational)
requirements. (As two referees pointed out, there is currently some experi-
mentation with the generation of local cuts, see [15], [41], [52], but in our view
its effect on truly large-scale optimization remains to be seen.)

Global invalidity of e.g. Gomory’s classical cuts (GM#) and (GP~) for
branch-and-cut has been known for many years, i.e., the raw application of
such cuts in branch-and-cut is, in general, mathematically incorrect. The fol-
lowing example from [5] illustrates this point for (GM#), but similar examples
for (GP~) are easily constructed as well.

Example 7. (Global invalidity of (GM*) in B&C). Consider the pure integer
program

min xo= 7x;1 + 3x + 4dx3
subject to X1 + 2x + 3x3 > 8
3x; + Xy + x3 = 5
where xj, x, and x3 are nonnegative integer variables. Optimizing by the
simplex algorithm gives the reduced equation format:

3 2 11 1

X0 — §X3 — §X4 — ?XS 14§
1 1 2 2

X1 — §X3 + §X4 — gXS = 3

X + %X3 — %X4 + %X5 3%

190 M. Padberg

where x4 and xs are the (integer) surplus variables. Applying (GM#) to the
second and third row, respectively, we find the cuts

%X3+%X4+%X521, %X3+%X4+%X52],
or when expressed in the original variables (after clearing common divisors)
3x1 +2x +3x3 > 10, Xx; +x2+2x3 > 5.

Adding the cuts and reoptimizing using e.g. the dual simplex algorithm we
find the (unique) optimal integer solution x; = 0, x; = 5, x3 = 0 with an ob-
jective function value of xo = 15. Suppose now that, after having obtained
the first optimal equation format, we decide to branch on variable x, prior
to adding any cuts, i.e., we shall create two new problems corresponding to
x2 < |3%] =3 and x, > [3%] =4, respectively, from the original one. Letting
xd =3 = x; >0 be the slack variable on the “down” branch we obtain by
reoptimizing the equation format

1 3 1od _ 1

X1 T o§X — 3%~ §% = 3
X2 + xg = 3

_ 3 1 _ 3yd _ 1

X3 g4+ X5 8% = 2

Applying (GM#) to the first and third row, respectively, we find the cuts
Ixg+3xs+ixd =1, 3xa+ixs+3xd > 1,

or when expressed in the original variables (after clearing common divisors)
Sx1+2x4+3x3 > 12, 3x1 4+ 2x + 5x3 > 12,

both of which cut off the optimal solution x; = x3 =0,x; =5. Letting

Xx¢ = xp —4 > 0 be the surplus variable on the “‘up” branch we obtain by re-
optimizing the equation format

1 1 1 1

X1 =+ §X3 — §XS —+ ixg = 3
Xy - xf = 4

- 8 o+ o - Ixs - X = 4

33 4 35 37 3

Applying (GM#) to the first and third row, respectively, we find the cut
X3 +3Xs5 4+ x¢ > 1, or when expressed in the original variables (after clearing
common divisors)

X1+ x3+x3 =5,

which cuts off the suboptimal, but feasible solution x; = x3 = 2,x, = 0. Thus
along both the down branch and the up branch the application of (GM?*)
produces cuts that are globally not valid, i.e., that are simply not valid for the
original integer program.]

Classical cuts for mixed-integer programming and branch-and-cut 191

3.2 Validity of post-branching cuts in B&C

To discuss the question of when classical cuts are valid in branch-and-cut
more generally, we note first that all cuts that are generated prior to
branching are by definition globally valid cuts for (MIP) or global cuts, for
short. So suppose that branching occurs, call the first node of the search tree
when branching occurs the “root” of the tree and any cut that is generated
after branching has occurred a post-branching cut. To analyze the validity of
post-branching cuts for (MIP), we assume that branching is done as discussed
above by imposing upper and lower bounds on single variables only.

To keep track of the search tree we assign to every edge of the tree some
unique labeling and denote by . the set of all (current) labels (see Figure 6).
It follows that every node in the search tree is characterized by a unique path
P to the root node of the form

Xi(j) <u; forall jeFy, xi; =¢ forall jeF, (11)
where F; = % and F, < % are the labels of the respective “down’ and “
branches of the path P = F; U F,. x;;) is the branching variable, u; > 0 the
upper bound for a down branch and /; > 0 the lower bound for an up branch
for any edge j € F; U F, of the path. Any integer variable x; with j € N may
occur repeatedly along the path P. For j € N we denote by

B; = set of branches of the path P containing variable x;.

It follows that the linear program that is solved at the current node of the
search tree is

max{cx +dy : AX + Dy = b, x;(;) < u; for

JjeF,xij = for je Fiyx >0,y > 0}, (LP/(F;, Fy))

Current node

Fig. 6. The Branch-and-Bound path P = F; U F,,.

192 M. Padberg

where (A, D,b) is the matrix consisting of the original constraints of (MIP)
plus all global cuts that have been generated (and retained) so far. The slack
or surplus variables of those cuts must (normally) be included into the set of
flow variables. In actual computation a bounded variable version of the sim-
plex algorithm is used to solve (LP,(Fy, F,)). For the purpose of our analysis,
we may assume instead that all inequalities (11) are converted to equations,
i.e., we add to Ax + Dy = b the equations

Xi(j)+ 8 =u; for jekly, xip;—tj=1¢ for jek, (12)

where s; > 0 and #; > 0. We call the resulting linear program (LP(F;, F,,)).

In terms of the inequalities (FC™) and (FC#) it is easy to state a sufficient
condition for a post-branching inequality to be globally valid. Assume for
notational simplicity that A in (LP;(F;, F,)) has m rows and let s = |F;| + |F,|
be the number of equations (12).

Proposition 4. For every u= (u*, uPY) e R™™ with u* e R" and pPUV =
0 € R® the post-branching inequalities (FC=) and (FC#) are globally valid.

Proof. If uPY = 0 then from the derivation of (FC~) and (FC?#) it follows
that both are valid inequalities for all mixed-integer solutions to Ax + Dy = b,
X > 0 and y > 0. By assumption Ax + Dy = b consists only of the original
equations of (MIP) plus some global cuts. |

To translate the condition of the proposition to the basis-dependent cuts
(GM~) and (GM#) let B, be any basis and h be the right-hand side vector
of (LP;"(Fy, F,)). Denote by h =B, 'h the transformed right-hand side and
let re {1,...,m} be such that the associated basic variable x;, is an integer
variable, but /, ¢ Z. The corresponding row in the reduced equation format
then reads

o)+ D @i+ Y divi Y g+ Y gl =h, (13)

jed jeB jeC jeD

where A is the index set of the nonbasic x variables, B the set of nonbasic
y variables, C and D the ones for the nonbasic variables s; and ¢; from (12),
respectively.

Proposition 5. If B, is a basis for (LE~(Fy, F,)) such thatin (13) CuD = &
or g =0 for all j€ C U D, then the post-branching cuts (GM =) and (GM?*)
derived from (13) are global cuts.

Proof. Let p=u,B,; ' where u, e R”* is the r-th unit vector. It suffices
to show that the condition of Proposition 4 is satisfied. Let Np = N be the
indices of the integer variables along the path P from the root to the
current node and I be index set of variables in the basis B,. Then I =
Iyulyulyul Ul where

Iy ={jeN— Np:xjisbasic}, Iy ={je{l,..., p} : yjis basic}

Iy = {j € Np : x; is basic, s, and #; are basic for all k € B;}

Classical cuts for mixed-integer programming and branch-and-cut 193

Iy = {j € Np : x; is basic, sx or # is nonbasic for some k € B}
I, = {j e Np: x; is nonbasic, s, and ¢ are basic for all k € B;} (14)
and we have assumed that the total number of flow variables (including the

slack or surplus variables for the global cuts already added) equals p. Conse-
quently,

B, By, Bp B O (0] o

O O O I (0 (0] o
B.=| 0 0 O F +I (0] (0])

O O O O (0] +I; O

O O F O (0 (0] +14

where By, By and B; are submatrices of A with columns in Iy, Iy and I,
respectively and By is the submatrix of D with columns in /y. I; is an identity
matrix corresponding to ;. The +1; for ie{2,...,4} are signed identity
matrices corresponding to the slack/surplus variables in (12). E.g. in +1I, a
plus sign is used if the corresponding basic variable is a s; variable and the
minus sign is used if it is a ¢; variable. The F; for i € {0, 1,3} are matrices
having exactly one entry equal to 1 per row. O are compatibly dimensioned
matrices of zeros only. Let

By =(Bx By By), Go=(0 O F).

It follows that By, is m x m and detB, = +detB,y. Consequently, B, and
its inverse are

B, B O O O
O 1, O O O
B.=| 0o F, +, 0 O |
O O O +I; O
GG, O O O +I,
B, -ByB O O O
o) I O O o
B.'=1 0o kK, +L O O |
o) o) O +I; O
K1 K3 (0] (0] _I4

where K; = FLiGoByy, Ky = TI,F and K3 = +1,GoB;B;. Let Ry and R,
be the submatrices of A of the nonbasic x; with je N — Np and je I,
respectively, Ry be the submatrix of D of the nonbasic flow variables
and denote by R, the matrix of all nonbasic columns of (LP;(F;, F,)). We

calculate

194 M. Padberg

R, R, R, O
0O 0 O +I

R,-=| 0 O O O |,
O F;, 0 O
O 0 0 O

BJR. B R, BR, B B(FI)

(0) (0) (0] +1
B,'R, = o o o K> (1)
(0] +15F; (0] (0]

K Ry KiR; KlRy K3(i11)
Let v, € R” be the r-th unit vector. Thus

p=uB'= (B -vB B O 0)=(* #"Y).
Thus if CuD = then PV =0. Otherwise, from the calculation of
B, 'R, and the assumption that g; =0 for all je CuD it follows that

v,,B;lel(ill) = 0. Hence again ﬂDU =0 and the assertion follows from
Proposition 4.]

3.3 The mixed zero-one case

Let us now consider the important special case of (MIP) where the integer
variables are all zero-one variables. For the analysis of this case we may as-
sume that we have ¢ “original” zero-one variables x; and that the formulation
of (MIP) contains the equations

Xj+x4;=1 forj=1,...,q. (15)

Since the “complement” variables x,;; must be zero-one valued as well we
thus have n = 2¢ integer variables. Like in the general case we denote by
P the path from the root of the search tree to the current node. Thus (11)
becomes

xp(;) <0 forall jeFy, xi;>1 foralljeF,

where F; € ¥ and F, < ¥ are the down and the up branches of the path
P = F; U F,. In a mixed zero-one program we can rule out “contradictory’’ as
well as “repeated” branching on the same variable. It follows that, by choos-
ing an appropriate labeling, we can assume without loss of generality that
the set Np of integer variables along the path P satisfies Np = P and B; = {}
for all j e P. Like in the general case, we assume for our analysis that all
branching equations (12) have been added explicitly to form (LP/(Fy, F,))
and that branching is done on the original variables x; rather than on their
complements x ;.

Classical cuts for mixed-integer programming and branch-and-cut 195

Corollary 1 (Balas et al. [5]). If the integer variables of (MIP) are all zero-one
variables and By is any basis for (LP; (Fy, F,)) such that either x; or x4, see
(15), for je P is in the basis (but not both), then all post-branching cuts
(GM =) and (GM*#*) are global cuts.

Proof. 1f the set I;, see (14), is empty, then Proposition 5 applies and the
assertion follows. So suppose that I} # ¢J. Since by assumption either x; or
X4+; With j € P is in the basis, B, contains a unit row corresponding to the
equation (15). Since I; # J, B, contains another unit row identical to the first
one (corresponding to the up or down branch equation (12)), which contra-
dicts the nonsingularity of B,.

If e.g. a bounded variable simplex algorithm is used to optimize the linear
program (LP~(F;, F,)), then the “‘complementarity’”” condition of the corol-
lary is automatically satisfied, because neither (12) nor (15) is needed to form
the basis. In the mixed zero-one case, the “current” basis, e.g. an optimal
basis of (LP;(Fy, F,)), is simply a feasible, but nonoptimal basis to the origi-
nal linear program augmented by some global cuts (where xy ;) for j € F; and
Xg+k(j) for j e F, are nonbasic at value zero). Any basis of that constraint
set works for the derivation of global cuts (GM~) and(GM?) and thus their
designation as “lifted cuts” [5] is a misnomer. However, as the following ex-
ample shows, the condition of the corollary is necessary when (12) and (15)
are added explicitly to the linear program even in the zero-one case.

Example 8. Consider the mixed zero-one linear program (MIPy;) from [5]

min 3x; + x» + 3x3 + 4y
subject to 2xp + 3x + x3 + y = 4

where x; € {0,1} for i =1,2,3, i.e., ¢ =3, and y; > 0. An optimal solution
to the linear programming relaxation of (MIPy;) is given by x; = %, x; =1
and x3 = y; = 0. Suppose that we branch on x; and consider the problem
on the up branch x; > 1. Introducing the equations (12) and (15) like we did

in the above analysis
X1+x4=1, xo+xs5=1, x3+x=1, x—1t,=1

one calculates that the matrix corresponding to xj, X, x4, x5 and xg is an
optimal basis B, to the resulting relaxed linear program which violates the
condition of the corollary, because both x; and x4 are basic. The corre-
sponding reduced equation format is given by

8 11 7 2

X0 —3X3 —3)1 —3h 33
X1 —N = 1

X2 33 +in +3in = 3

X4 “+1 = 0

— 33 +Xs - —in o= 3

X3 “+Xe 1

196 M. Padberg

Consequently, the application of (GM#) to x, gives the cut 1x;3+1y +
H>1,1e.,

2x1+x3+y1 =4

which is globally invalid because it cuts off the feasible solution x, = x3 =1,
x1 =y1 =0 to (MIPy;). This is independent upon whether or not #, is con-
sidered an integer variable and demonstrates again the basis dependency of
the cut (GM?#). Indeed, the example shows that the application of (GM?*)
may produce globally invalid cuts depending upon the way the linear relax-
ation of (MIPy;) and its subproblems in branch-and-cut are formulated and
solved algorithmically. Moreover, in this case x=u,B,;' = (1 00 0 —2)
shows that the condition of Proposition 4 is violated. |

Combining Proposition 5 and Corollary 1 gives an evident sufficient con-
dition for post-branching cuts to be globally valid whenever (MIP) has zero-
one as well as general integer variables.

3.4 Using post-branching cuts in B&C

The condition of Proposition 5 is easy to verify in actual computation and
thus the generation of global cuts using e.g. (GM#) becomes possible even after
branching has occurred. Moreover, if the condition of the proposition
is “nearly” satisfied, e.g. if |[C U D| =1 in (13), then it may be possible to
move from the current basis to a “nearby” infeasible basis for (LP~(Fy, F,))
which satisfies the condition. Denote e.g. by g; the transformed column of some
slack s; or surplus #; variable with g/ # 0 in (13). Let s be the row for which

N
min{ —=: g/ < 0,1 <i#r<m
|gj| '

is attained. Then pivoting the s; or #; variable into the basis from row s pro-
duces typically an infeasible basis and a basic solution “near” to the original
one from which a global cut may be derived. Note that the derivation of
e.g. (GM?#) requires neither that the basis be feasible nor that it be optimal.
Evidently, this opens up many strategic plays for experimentation. Rather
than discussing such heuristic choices in detail we illustrate the principle by
three examples.

Example 9. Consider the problem from Example 7 along the down branch
x; <3, 1.e.,

1 3 1.d 1

X1 + §X4 — §X5 — §X6 = 3
X2 + xg’ = 3

x; — 3 lys — 3xd — 1

3 gXa + X5 8% = 2

which produced globally invalid cuts. In row 1 the condition of Proposition 5
is violated. Pivoting the variable x¢ into the basis from row 3 we obtain the
equation format

Classical cuts for mixed-integer programming and branch-and-cut 197

1 1 2 2
X1 - 5¥ F 3X4 — 5% 5
+ — 1 4
X2 %X}, %X4 5X5 = 33
8 3 1 d _ 4
— 5X3 + X4 — 3Xs5 + X -3

which — in this simple demonstration of the principle — is the first equation
format amended by the violated upper bound equation. Now row 1 satisfies
the condition of Proposition 5 and we can use it to generate a global cut. Note
also that row 3 can be used to generate a global cut since the nonnegativity
of the basic variables is not used in the derivation of (GM#). On the other
hand, consider (MIPy;) of Example 8. Pivoting the variables x4 out of and ¢
into the basis, the optimality of the basis is lost. However, now the condition
of the corollary is satisfied and applying (GM#) to the changed row corre-
sponding to x; one gets the global cut

X1 +x3+y =1
for (MIPy;). Another simple trick that may sometimes work to get globally

valid inequalities goes as follows. Using the equations (12) for je Cu D we
rewrite (13) as

X + Y a7+ Y diy Y (=) + Y 4

JjeA jeB jeC jeD
~h =X g+ Y 19
jeC jeD

and apply (GM*) to (16). This operation corresponds to pivoting all x; with

j € CuD out of the basis and the corresponding s; and ¢; into the basis. Row
r in the new basis satisfies the condition of Proposition 5, see (16), and thus
global validity of (GM#) follows. However, the inequality will typically cease
to be a cut. If e.g. along the down branch of the problem of Example 7 we
eliminate xg = 3 — x, from the equation format, then from the x; row we find
2x1 + x3 + x3 > 5 which is a global cut, while from the x; row we find 3x; +
4x; + 4x3 > 14 which is globally valid, but not cutting. In large-scale mixed-
integer programs it is very likely that the application of heuristic arguments
of this kind will in general help to find additional global cuts for the problem
even in the post-branching phase. Moreover, the necessary calculations can
evidently be streamlined to make them efficient. |

Post-branching cuts that violate the condition of Proposition 4 are in gen-
eral globally invalid and have to be “lifted” or modified in some fashion to
make them globally valid for (MIP). There are several ways of how that can
be done, see e.g. [52], [53], [58], [60], [61], [62], [63] for related ideas, but at
the expense of additional computations and without a guarantee that a “cut”
be obtained in all cases. Here is one way of doing so. Suppose for simplicity
that C = {j} and D = (J in (13) and denote by 7; (p;) for j € A (for j € B) the
coefficients of the inequality obtained from (GM#) by assuming that s; = 0.
The corresponding inequality then is valid for (MIP) with the additional con-
straints that x;(; = u; for all j € F; and x;(;) = ¢; for all j € F,. Define

198 M. Padberg

1 (Xk(j) = min{ Dot e T Y @

jed jeB jed

+ Y dyy=he = glu; + gixig),
jeB

Xk, Xj € Zy for je A,y; e R, for je B},

which is a one-rowed parametric mixed integer program. Let f >0, y, 6 € R
be such that

Br(Xk(j) + vXi(j) =0

for all x;(; € Z. In this construction one chooses f > 0, y and J such that

equality is obtained for at least two different points (x4, x(xk(;)) with
Xk(j) € Z . Since f > 0 it follows that the inequality

B (S omxi+ Y Pjy_/> + PXr(j) 20

jed jeB

is globally valid for (MIP) and a cut if yu; < 0.

If |Cu D|> 1, anyone (or all) of the inequalities thus obtained for the
single variable s; (and that is violated by the present solution) is modified
likewise to include the remaining branching variables corresponding to k €
CuD—j with g/ #0 one by one. If the problem is sparse, i.e., if the
number of nonzero elements in (13) is small, then the necessary calculations
can be carried out efficiently, but any measure of the mathematical “quality”
of the possible cuts obtained this way cannot be guaranteed.

Evidently the choice of the multipliers g, see (8), in the derivation of
(GM#) is only one of many possibilities and leaves lot of room for experi-
mentation. In Ceria et al. [12] cuts using multipliers of the form x = uB~! with
ue Z"™ are discussed, which is in the spirit of earlier works on improving
Gomory’s fractional and all-integer cuts, see e.g. [29], [54], [82] and others.

4 Further remarks

The above discussion has shown that classical valid inequalities for mixed-
integer programming can, but must be used with caution in branch-and-cut.
However, one aspect that we have not stressed so far is the precision of cal-
culation. Like most other authors we have used in our small examples exact
arithmetic and thus avoided the difficulties that arise from the use of float-
ing point operations. To illustrate the point we wish to make consider the
problem

max 4x; + Txo + 6x;3
subject to 3x1 + Tx» + Tx3 = 14

Classical cuts for mixed-integer programming and branch-and-cut 199

where x; > 0 are integer variables for i = 1,2,3. The optimum solution of
the linear programming relaxation is x| = 4%, x; = x3 = 0. Suppose that we

carry out all calculations with a precision of three positions after the decimal
point. We get the equation

X1+ 2.333x; + 2.333x3 = 4.667
from which we derive e.g. the cut (GM#) in the same precision to be
0.499x; 4+ 0.499x; > 1

which cuts off the feasible solution x; = 0, x, = x3 = 1. This is due to the finite
precision of the calculations. All (commercial) LP solvers to date use
floating point calculations with finite precision. As a result errors occur in the
calculation of a “solution”: integrality in floating point calculations is checked
via tolerances. The calculation of the coefficients that are subsequently used
to derive the cuts is also prone to errors. With respect to cut generation the
precision-related errors have two possible effects:

1. one may lose the optimum by simply cutting it off with an invalid cut and
2. the search tree may become “short”or even “very short” for the same reason.

Undeniably, invalid cuts may be produced as a result of the finite precision of
the calculations. Given the derivation of e.g. (GM?#) we do not see how
numerical analysis might help to set “tolerances” in a mathematical correct
way to avoid the generation of invalid cuts. “Rounding up”, like we could
always do in (GM?), e.g. above by replacing 0.499 by 0.5 because x, > 0 and
x3 = 0, may do the job sometimes, but at the expense of making a possibly
weak (and dense) cut even weaker (and denser). It appears that the only sat-
isfactory way to resolve this problem of precision is to build LP solvers that
use exact arithmetic because the classical cuts use the properties of the field of
rational numbers in their derivation in a decisive way.

The recent literature sweeps these precision related problems under the rug
using cavalier statements like LP solvers “are more robust” [5] and, in the
same vein, “Times have changed” [10]. In [15] no mention to this effect is to
be found at all. By contrast, in the earlier applications exact arithmetic was
used, see e.g. [19] and [76]. Moreover, part of the recently reported success
with (GM#)is attributed to the fact that cuts are generated in “rounds” rather
than one at a time. The latter is computationally the most unattractive stra-
tegic choice (and used only to prove convergence theorems.) Indeed, many
of the strategic choices reported in e.g. [5] were tried e.g. in [76] — with
reportedly very bad results for problem sizes that we consider “small” by
today’s standards.

For classical cuts a handy formula is available that — given a basis for the
associated linear program — permits one to find the cut easily, i.e., here the
separation problem poses no specific problems, at least prior to branching.
This is different from cuts based on facet-defining inequalities where problem
specific separation algorithms must be invoked. While the latter cuts are best
possible cuts, not much is known about the mathematical properties of clas-
sical cuts. This should, however, not discourage a problem solver from using

200 M. Padberg

them — provided they are used in a mathematical correct way — since in
branch-and-cut one can always default to branching when ‘“‘tailing off”” oc-
curs, see e.g. [68], [69]. The use of classical cuts does in no way preclude the
use of facet-defining cuts in the solution process — if they are known for the
particular problem to be optimized (or substructures of it). In other words,
classical cuts and cuts obtained from facet-defining inequalities can perfectly
co-exist; see [10] and [15] — modulo our reservations about precision.

References

(1] Applegate D, Bixby R, Chvatal V, Cook W (1998) On the solution of traveling salesman
problems. Documenta Mathematica: Extra Vol. ICM, I1I 645-656
(2] Balas E (1963) Programare liniara cu variabile bivalente. Proceedings Third Scientific Session
on Statistics, Bucharest. French translation (1964) Un algorithme additive pour la résolution
des programmes linéaires en variables bivalentes. Comptes Rendus Hebdomadaires des
Séances de I’Académie des Sciences 258:3817-3820. English translation (1965) An additive
algorithm for solving linear programs with zero-one variables. Operations Research 13:517—
546
[3] Balas E (1971) Intersection cuts — a new type of cutting planes for integer programming.
Operations Research 19:19-39
(4] Balas E (1975) Facets of the knapsack polytope. Mathematical Programming 8:146—-164
(5] Balas E, Ceria S, Cornugjols G, Natraj N (1996) Gomory cuts revisited. Operations Research
Letters 19:1-9
(6] Balinski M, Spielberg K (1969) Methods for integer programming: algebraic, combinatorial
and enumerative. in Aronofsky (ed), Progress in Operations Research: Relationship between
Operations Research and the Computer, Vol. III, Wiley, New York 195-292
[7] Barany I, Van Roy T, Wolsey L (1984) Strong formulations for multi-item capacitated lot-
sizing. Management Science 30:1255-1261
(8] Beale M (1958) A method of solving linear programming problems when some but not all of
the variables must take integral values. Statistical Research Group, Technical Report No. 9,
Princeton U, Princeton, N.J.
(9] Beale M (1965) Survey of integer programming. Operational Research Quarterly 16:219-228
[10] Bixby R, Fenelon M, Gu Z, Rothberg E, Wunderling R (1999) MIP: theory and practice
closing the gap. Research Report, ILOG Inc., Lake Tahoe, Incline Village, Nevada
[11] Ceria S, Cordier C, Marchand H, Wolsey L (1998) Cutting planes for integer programs with
general integer variables. Mathematical Programming 81:201-214
[12] Ceria S, Cornuéjols G, Dawande M (1995) Combining and strengthenig Gomory cuts. in
Balas and Clausen (eds), Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science No. 920, Springer-Verlag, Berlin 438-451
[13] Cho D, Johnson E, Padberg M, Rao MR (1983) On the uncapacitated plant location prob-
lem I: valid inequalities and facets. Mathematics of Operations Research 8:579-589
[14] Cho D, Padberg M, Rao MR (1983) On the uncapacitated plant problem II: lifting theorems
and facets. Mathematics of Operations Research 8:590-612
[15] Cordier C, Marchand H, Laundy R, Wolsey L (1999) bc-opt: a branch-and-cut code for
mixed integer programs. Mathematical Programming 86:335-353
[16] Crowder H, Padberg M (1980) Solving large-scale symmetric traveling salesman problems to
optimality. Management Science 26:495-509
[17] Crowder H, Johnson E, Padberg M (1983) Solving large-scale zero-one linear programming
problems. Operations Research 31:803-834
[18] Dantzig G, Fulkerson DR, Johnson S (1954) Solution of a large-scale traveling salesman
problem. Operations Research 2:393-410
[19] Fleischmann B (1970) Duale und Primale Schnitthyperebenenverfahren in der ganzzahligen
linearen Optimierung, Doctoral Dissertation, Mathematik, Universitdit Hamburg
[20] FiorotJ, Gondran M (1969) Résolution des systémes linéaires en nombres entiers. Bulletin de
la Direction des Etudes et Recherches E.D.F., Series C 2:65-116

Classical cuts for mixed-integer programming and branch-and-cut 201

[21] Forrest J (1979) Current state of computer codes for discrete optimization. in Hammer,
Johnson and Korte (eds), Discrete Optimization II, Annals of Discrete Mathematics 5:271—
274

[22] Garfinkel R, Nemhauser G (1972) Integer Programming. Wiley & Sons, New York

[23] Geoffrion A (1969) An improved implicit enumeration approach for integer programming.
Operations Research 17:437-454

[24] Geoffrion A, Marsten R (1972) Integer programming algorithms: a framework and state-of-
the-art survey. Management Science 18:465-491

[25] Glover F (1968) A new foundation for a simplified primal integer programming algorithm.
Operations Research 16:727-740

[26] Gomory R (1958) An algorithm for integer solutions to linear programs. Princeton-IBM
TR No. 1, Nov. 1958; abstracted in Outline of an algorithm for integer solutions to linear
programs. Bull. Amer. Math. Soc. 64:275-278; published in Graves and Wolfe (eds), Recent
Advances in Mathematical Programming, McGraw-Hill, New York 1963:269-302

[27] Gomory R (1960) All-integer integer programming algorithm. IBM Research Center, York-
town Heights, RC-189, January 1960 ; published in Muth and Thompson (eds), Industrial
Scheduling, Prentice-Hall, Englewoods Cliffs, NJ 1963:193-206

[28] Gomory R (1960) An algorithm for the mixed integer problem. TR RM-2597, The Rand
Corporation, 1960

[29] Gondran M (1973) Un outil pour la programmation en nombres entiers: la méthode des
congruences decroissantes. RAIRO V-3:35-54

[30] Grotschel M, Holland O (1987) A cutting-plane algorithm for minimum perfect 2-matching.
Computing 39:327-344

[31] Grotschel M, Jinger M, Reinelt G (1984) A cutting plane algorithm for the linear ordering
problem. Operations Research 32:1195-1220

[32] Grotschel M, Lovasz L, Schrjiver A (1988) Geometric algorithms and combinatorial opti-
mization. Springer Verlag, Berlin

[33] Grotschel M, Padberg M (1979) On the symmetric traveling salesman problem I: inequalities,
II: lifting theorems and facets. Mathematical Programming 16:265-302

[34] Grotschel M, Padberg M (1999) Die optimierte Odyssee. Spektrum der Wissenschaft, April
1999; reprinted in special issue Wissenschafliches Rechnen (Scientific Computing), October
1999; translated into French L’Odyssée abregée. Pour la Science, August 1999

[35] Haldi J, Isaacson L (1965) A computer code for integer solutions to linear programs. Oper-
ations Research 13:946-959

[36] Hoffman K, Padberg M (1985) LP-based combinatorial problem solving. Annals of
Operations Research 4:145-194

[37] Hoffman K, Padberg M (1991) Improving the LP-representation of zero-one linear
programming problems for branch-and-cut. ORSA Journal on Computing 3:121-134

[38] Hoffman K, Padberg M (1993) Solving airline crew scheduling problems by branch-
and-cut. Management Science 39:657-682

[39] Jeroslow R (1979) An introduction to the theory of cutting planes. Annals of Discrete
Mathematics 5:71-95

[40] Johnson E (1974) The group problem for mixed integer programming. Mathematical Pro-
gramming Study 2:137-179

[41] Junger M, Reinelt G, Thienel S (1995) Practical problem solving with cutting plane
algorithms in combinatorial optimization. in Cook, Lovasz and Seymour (eds), Combinato-
rial Optimization, DIMACS Series in Discrete Mathematics and Computer Science, AMS

[42] Krolak P (1969) Computational results of an integer programming algorithm. Operations
Research 17:743-749

[43] Knuth D (1961) Minimizing drum latency time. JACM 8:119-150

[44] Land A, Doig A (1960) An automatic method for solving discrete programming problems.
Econometrica 28:497-520

[45] Land A, Powell S (1979) Computer codes for problems of integer programming. in Hammer,
Johnson and Korte (eds), Discrete Optimization II, Annals of Discrete Mathematics 5:221—
269

[46] Leung J, Magnanti T (1989) Valid inequalities and facets of the capacitated plant location
problem. Mathematical Programming 44:271-291

[47] Leung J, Magnanti T, Vachani R (1989) Facets and algorithms for capacitated lot sizing.
Mathematical Programming 45:331-359

202 M. Padberg

[48] Magnanti T, Vachani R (1990) A strong cutting plane algorithm for production scheduling
with changeover costs. Operations Research 38:456-473

[49] Marchand H, Wolsey L (1998) Aggregation and mixed-integer programming rounding to
solve MIPs. CORE Discussion Paper No. 9839, Université Catholique, Louvain-la-Neuve

[50] Marchand H, Martin A, Weismantel R, Wolsey L (1999) Cutting planes in integer and
mixed-integer programming. CORE Discussion Paper No. 9953, Universit¢ Catholique,
Louvain-la-Neuve

[51] Markowitz H, Manne A (1957) On the solution of discrete programming problems. Econo-
metrica 25:84-110

[52] Martin A (1998) Integer Programs with Block Structure. Habilitations-Schrift, Technical
University, Berlin

[53] Martin A, Weismantel R (1998) The intersection of knapsack polyhedra and extensions. in
Bixby, Boyd and Rios-Mercado (eds), Integer Programming and Combinatorial Opti-
mization, Proceedings of the 64 IPCO Conference 243-256

[54] Martin G (1963) An accelerated Euclidean algorithm for integer linear programming. in
Graves and Wolfe (eds), Recent Advances in Mathematical Programming, McGraw-Hill,
New York 311-318

[55] Meyer R (1974) On the existence of optimal solutions to integer and mixed integer pro-
gramming problems. Mathematical Programming 7:223-235

[56] Miliotis P (1978) Using cutting planes to solve symmetric traveling salesman problems.
Mathematical Programming 15:177-188

[57] Nemhauser G, Wolsey L (1988) Integer and Combinatorial Optimization, Wiley & Sons,
New York

[58] Padberg M (1973) On the facial structure of set packing polyhedra. Mathematical Program-
ming 5:199-251

[59] Padberg M (1974) Unpublished lecture notes, 1974; see also A note on the convergence of
integer programming algorithms using intersection cuts. Working paper, GSIA, Carnegie-
Mellon U., 1970

[60] Padberg M (1975) A note on zero-one programming. Operations Research 23:833-837

[61] Padberg M (1977) On the complexity of set packing polyhedra. Annals of Discrete Mathe-
matics 1:421-434

[62] Padberg M (1979) Covering, packing and knapsack problems. Annals of Discrete Mathe-
matics 4:265-281

[63] Padberg M (1980) (1,k)-configurations and facets for packing problems. Mathematical
Programming 18:94-99

[64] Padberg M (1989) The Boolean polytope: some characteristics, facets and relatives. Mathe-
matical Programming 45:139-172

[65] Padberg M (1999) Linear Optimization and Extensions, 2"/ ed., Springer Verlag, Heidelberg

[66] Padberg M, Rao MR (1982) Odd minimum cut sets and b-matchings. Mathematics of
Operations Research 7:67-80

[67] Padberg M, Rijal M (1996) Location, Scheduling, Design and Integer Programming, Kluwer
Academic Publishers, Boston

[68] Padberg M, Rinaldi G (1987) Optimization of a 532-city symmetric traveling salesman
problem by branch-and-cut. Operations Research Letters 6:1-7

[69] Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review 33:60—100

[70] Padberg M, Wolsey L (1983) Trees and cuts. Annals of Discrete Mathematics 17:511-517

[71] Padberg M, Van Roy T, Wolsey L (1985) Valid linear inequalities for fixed charge problems.
Operations Research 33:842-861

[72] Pochet Y (1988) Valid inequalities and separation for economic lot sizing. Operations
Research Letters 7:109-116

[73] Pochet Y, Wolsey L (1988) Lot-size models with backlogging: Strong formulations and cut-
ting planes. Mathematical Programming 40:317-335

[74] Salkin H (1975) Integer Programming, Addison-Wesley, Reading, MA

[75] Spielberg K (1979) Enumerative methods in integer programming. in Hammer, Johnson and
Korte (eds), Discrete Optimization II, Annals of Discrete Mathematics 5:139-183

[76] Story A, Wagner H (1963) Computational experience with integer programming for job-shop
scheduling. in Muth and Thompson (eds), Industrial Scheduling, Prentice-Hall, Englewoods
Cliffs, NJ 207-219

Classical cuts for mixed-integer programming and branch-and-cut 203

[77] Taha H (1975) Integer Programming: Theory, Applications and Computations, Academic
Press, New York

[78] Trauth Jr C, Woolsey R (1969) Integer linear programming: a study in computational effi-
ciency. Management Science 15:481-493

[79] Van Roy T, Wolsey L (1987) Solving mixed 0-1 problems by automatic reformulation.
Operations Research 35:45-57

[80] Wagner H, Giglio R, Glaser R (1964) Preventive maintenance scheduling by mathematical
programming. Management Science 10:316-334

[81] White W (1961) On Gomory’s mixed integer algorithm. Senior Thesis, Princeton University

[82] Wilson R (1967) Stronger cuts in Gomory’s all-integer integer programming algorithm.
Operations Research 15:155-157

[83] Wolsey L (1976) Facets and strong valid inequalities for integer programs. Operations
Research 24:367-372

[84] Wolsey L (1989) Strong formulations for mixed integer programming: a survey. Mathemati-
cal Programming 45:173-191

[85] Wolsey L (1998) Integer Programming, Wiley, New York

[86] Young R (1968) A simplified primal (all-integer) integer programming algorithm. Operations
Research 16:750-782

[87] Young R (1971) Hypercylindrically-deduced cuts in zero-one integer programs. Operations
Research 19:1393-1405

[88] Zionts S (1974) Linear and Integer Programming, Prentice-Hall, Englewood Cliffs

