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Abstract. This paper is the second part of our study of Blackwell optimal
policies in Markov decision chains with a Borel state space and unbounded
rewards. We prove that a stationary policy is Blackwell optimal in the class
of all history-dependent policies if it is Blackwell optimal in the class of
stationary policies.

We also develop recurrence and drift conditions which ensure ergodicity
and integrability assumptions made in the previous paper, and which are more
suitable for applications. As an example we study a cash-balance model.
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1. Introduction

In the preceding paper Hordijk and Yushkevich (1999), further on referred
to as HY, we proved the existence of Blackwell optimal policies in the class
of stationary policies in Markov decision chains (MDC) with a Borel state
space, unbounded rewards, and transition densities (with respect to a reference
measure) satisfying compactness-continuity, uniform ergodicity and uniform
integrability conditions (the full list of assumptions is presented in Section 2).
Our first goal in this paper is to prove under the same assumptions that a
policy Blackwell optimal in the class of stationary policies is at the same time
Blackwell optimal in the class of all history-dependent policies (Theorem 4.1),
and thus to establish the existence of Blackwell optimal policies in that broader
sense (Theorem 2.2). The proof follows the main patterns of a similar proof
for countable models developed in Dekker and Hordijk (1988), with the addi-
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tional use of the weak-strong topology in the class of stationary policies, as it
is done in the case of Borel models with bounded rewards in Yushkevich
(1997). However, it is more technical and requires additional results on this
topology.

The uniform geometric ergodicity condition for Markov chains generated
by stationary policies, and the uniform integrability condition for nonsta-
tionary Markov policies assumed in HY, are nonpractical for a straightfor-
ward verification in specific MDCs with a noncompact Borel state space and
an unbounded reward function. Our second goal is to substitute these two
conditions by simpler recurrence and drift (Lyapunov-type) assumptions more
suitable for applications (Theorems 5.1 and 5.2). This part of the paper is
based on the ideas developed in Hordijk and Spieksma (1992) and Hordijk,
Spieksma and Tweedie (1995).

Our third goal is to apply the obtained results to a cash-balance control
model (Theorem 6.1).

In Section 2 we recall the model, definitions and assumptions from HY. In
Section 3 we prove additional properties of the weak-strong topology in the
space of stationary policies needed for our goals. In Section 4 we extend the
Blackwell optimality from stationary to all policies. In Section 5 we replace
the uniform integrability and ergodicity assumptions by simpler recurrence
and drift conditions. The cash-balance model is treated in Section 6.

2. Model and assumptions

In this section we give a brief review of the model, notations and assumptions
from HY, refering to that paper for more details. For convenience, we pre-
serve the numeration of assumptions given in HY.

A Markov decision chain (MDC) is defined by a state space X, an action
space A, action sets A, = A(x), a transition probability function P(x,a, B)
and a reward function r(x, a). Let

K={(x,a): ae A, xe X}.

Everywhere below measurability means Borel measurability, and %g
denotes the Borel g-algebra in a Borel space E.

Assumption 2.1. The state space X is a Borel space, the action space A is a
topological Borel space, the action sets A, are nonempty compact x-sections of
a Borel measurable set K in X x A. The reward function r(x,a) and the transi-
tion probability P(x,a, B), B € By are measurable functions of (x,a) on K

By @ < X < M < II we denote, respectively, the sets of deterministic sta-
tionary, all stationary, Markov, arbitrary history-dependent policies. A policy
from @ is determined by (and identified with) a selector, i.e. a measurable
mapping ¢ : X — A with its graph in K. A policy g € 2 is a (measurable)
stochastic kernel o(x, da) from X to 4 with the property a(x, 4,) = 1. A policy
€ M is a sequence {g},02,...},0,€ 2.

To every initial state xe€ X and policy ne Il there corresponds a
probability distribution P7 in the space of all infinite-horizon trajectories
Xoaixaay ... (we follow here the enumeration of states and actions used in
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Dynkin and Yushkevich (1979)). Let E7 be the corresponding expectation.
For any discount factor f € (0, 1), the expected discounted reward vg(x,7),
x € X, n e Il is defined by

o} o0
vp(x,m) = EF > Br(xnans) =Y BEIr(x,ai). (2.1)
t=0 =0

The convergence of (2.1) is guaranteed by the bounding Assumption 2.2
below. To formulate this assumption, we introduce the following notations.

Given a possibly unbounded strictly positive function x# on X, we denote
by V, the Banach space of measurable real-valued functions f'on X with the
finite y-norm

o /)]
11, = SUpT )

eX

for an operator 7: V,, — V,, we set

IT|l,:== sup [ Tf],
s, =t g

Also, for any real-valued function f on K, let

F(x):= sup | f(x,a)], xeX. (2.2)

ae A,

Assumption 2.2. A measurable bounding function u > 1 on X is given, and the
reward function r and the transition operator P satisfy the conditions:

(@) (|7, =1
(b) for some constant C > 0

Pu(x,a) < Cu(x), (x,a) € K.

where the operator P transforms functions f on X into functions Pf on K by the
Sformula

Pf(x.a) = JXf(y)P(x,a,dy), (x.a) € K

(the bound 1 in (a) is taken to simplify formulas; all results are trivially
extended to any finite constant instead of 1).

Next is the continuity assumption.

Assumption 2.3. (a) The reward function r(x,a), (x,a) € K is continuous in a.
(b) Pf(x,a) is continuous in a for every f € V.

In the uniform ergodicity assumption we consider all Markov chains on
the space X generated by stationary policies g € 2. For such policies, formula
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(2.1) reduces to

o0

v/;(x,a):Z/?le,rJ(x), xeX, oeX, PBe(0,1) (2.3)
=0

where
Pof(x) = j Pf(x,a)0(x, da),

re(X) = L r(x,a)o(x,da), xeX, oel. (2.4)

Another form of the operator P, defined in (2.4) is given in terms of the
transition function P,(x, B), B € #x of the considered Markov chain:

Pof(x) = JX S)Po(x.dy),
(2.5)

P,(x,B) := J P(x,a,B)o(x,da), xeX.
4

Assumption 2.4. For every ¢ € X, the t-th convolution PL(x, B) of the transition
function P;(x, B) defined in (2.5) converges to a stochastic transition function
P,(x,B) from X to X in the following sense: there exist positive numbers C and
y < 1 such that

IPL— P, <C), oceX, 1=0,12,...

where Py is the operator in V, defined by a formula similar to (2.5).

The next assumption is about the existence of a transition density and its
properties. Mention that it covers Assumptions 2.2(b) and 2.3(b) (see HY).

Assumption 2.5. A o-finite reference measure m on the space X is given, and

(@) the transition probabilities are defined by means of a given transition density
Sfunction p(x,a, y) ((x,a) e K,y e X) so that

P(x,a,B):J p(-xaaay)m(dy)a (X,Cl)GK, BEQX;
B

where p is measurable, nonnegative and its integral over X is identically 1,
(b) p(x,a,y) is continuous in a;
(c) the transition density p is related to the bounding function u by the condition

szs<x, Wuly)dy < Cu(x), xeX (2.6)
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where, similar to (2.2)

p(x, y) =max p(x,a,y), (x,y)eX xX. (2.7

aeAy

Where it is not confusing, we write dx in place of m(dx).

In the last, uniform integrability condition we consider all Markov policies
n ={01,02,...} € M. For such a policy, the definition (2.1) of the discounted
reward takes on the following form similar to (2.3):

vg(x,m) = ZB’Q;WUM(X), xeX, neM, Be(0,1) (2.8)
=0
where

oV .=1, QW.=p,P, .. .P,

T

if 1> 1. (2.9)

t

We need some uniquely determined densities corresponding to the operators
defined in (2.5) and (2.9) (except Q*) = I). We set

Po(x, ) = L p(x,a, y)o(x,da), ¢V (x,y) = p, (x, ),

(2.10)
q;’“)(x, y) - JX 6],@ (X, Z)pUH,] (27 y) dZ7 (X, y) eX xX.

Assumption 2.6. The part (a) of Assumption 2.5 holds, and for every initial
state xo € X and every Markov policy m e M, the t-step transition densities
defined in (2.10) satisfy together with the bounding function u the following
condition. for every ¢ > 0 there exists a set X' = X with m(X') < co and a
constant B > 0 such that simultaneously for all t =1,2,3, ...

JX\X/ 1(x)q\ (x0, x) dx < & (2.11)
and
u(x)g¥ (x0,x) < B for xe X'. (2.12)

We use the following definition of Blackwell optimal policies.

Definition 2.1. For any set Il1' € IT we say that a policy n* € IT' is Blackwell
optimal within the class I1', if for every x € X and nw € I1' there exists a number
Po(x,7) < 1such that vg(x,n*) = vg(x, m) for all f € (Bo(x, ), 1). In the case of
IT' = IT we say that n* is Blackwell optimal.

The two main existence results of our work are summarized in the follow-
ing theorems.
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Theorem 2.1. In MDC satisfying Assumptions 2.1-2.5 there exists a determin-
istic stationary policy ¢* which is Blackwell optimal in the class X of stationary
policies.

Theorem 2.2. In MDC satisfying Assumptions 2.1-2.6 there exists a determin-
istic stationary policy ¢* which is Blackwell optimal in the class I of all poli-
cies; namely, if ¢* is Blackwell optimal within X, then ¢* is Blackwell optimal
within IT as well.

Theorem 2.1 is proved in HY. Theorem 2.2 is a consequence of Theorem
2.1 and Theorem 4.1 of this paper.
3. More on the weak-strong topology
We first recall the needed definitions and results from HY, Sections 5 and 6. In
this section only the Assumption 2.1 and the o-finite measure m on X from
Assumption 2.5 are used.
Definition 3.1. (a) A real-valued function f(x,a), a € Ay, x € X on K is called a
Carathéodory function if [ is ( Borel) measurable and is continuous in the vari-
able a everywhere on K.
(b) The class Cary(K) consists of all bounded Carathéodory functions on K.

(c) The class Car,,(K) consists of Carathéodory functions on K satisfying the
condition

J f(x)m(dx) < oo.
X

Definition 3.2. (a) The space S = S(K,m) consists of all measures s on K satis-
fying the condition

Prys = m.

(b) For any positive c, the class S, = S.(K,m) consists of all measures s on K
satisfying the condition

Prys < cm.
(Here (Prys)(B) = s((B x A) nK) for every Be %Byx.)

Definition 3.3. The weak-strong topology (ws-topology) in S (or in S.) is the
coarsest topology in which the mapping s — [, f ds is continuous in s for every

f € Car,,(K), so that s, 2 s if and only if

lim Jdes,, = L{fdsoC for every f € Cary(K). (3.1

n—oo

Lemma 3.1. The spaces S and S, are sequentially compact in the ws-topology.
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Lemma 3.2. There exists a unique mapping j: %~ — S = S(K,m) such that if
s = j(o), 0 € X then

s(dxda) = o(x, da)m(dx)

so that
[] recats =] ra

for every measurable and absolutely integrable function f on K.
Moreover, j maps 2 on S.

In this paper we need in addition the n-dimensional analogue of Lemma
3.1 and a specific convergence result.

Consider n copies (X;, A;, K;,m;) of (X, A, K,m), i=1,2,...,n. The
product spaces X = X; x ---x X, A=Ay x - x Ayand K = K; x --- x K,,

also satisfy Assumption 2.1 (in 4 we consider the product topology). The

product measure m = mj X --- x m, also is o-finite. Let S:= S(K,m) (see
Definition 3.2(a)). Similar to (2.2) and (2.7), for any real-valued function
f(x1,a1,...,x,,a,) on K (here a; € A(x;), x; € X;) we define

f(x1,...,x,) =sup|f(xi,ar,...,xn,a)

where each g; runs over the set A(x;). Applying to X, 4, K, m and S the
Definitions 3.1, 3.3 and Lemma 3.1, we have the following result.

Lemma 3.3. If f is continous in @ = (ay, . .., a,) (in the product topology in A),
and if

J f(xl,...,x,,)dﬁz< o0,

X

then the integral

J(E)ZJ f(XI,al,...,Xn7an)dS, S‘EE

K

is continuous in § on the compact S (in the ws-topology ).
For the convergence result we need one more definition.

Definition 3.4. The space Sin(K,m) consists of all finite measures s on K with
the property: Prys is absolutely continuous with respect to the measure m on X.

Lemma 3.4. Let s, € Sin(K,m), t =1,2,..., and let u, be fixed nonnegative
Radon-Nikodym derivatives of Prys, with respect to m. If for every ¢ > 0 there
exists a set X' € By with m(X') < o and a constant B > 0 such that

Prys,(X\X') <e, t=1,2,... (3.2)
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and
u,(x) < B, xeX', t=1,2,..., (3.3)

then there exists a measure S, € Sun(K,m) and a subsquence {s!} of the
sequence {s;} such that

lim Jdesi' = JdeSOO’ f € Cary(K). (3.4)

1— 00

Proof. Consider a sequence ¢ | 0 and sets X/ and numbers B; related to ¢;
by (3.2)—(3.3). Replacing if necessary B; by max (Bi, B,...,B;), we may
assume that By < B, < ---. By replacing after that X/ by X{ u--- U X/, we
may assume that also X| = X, < ---. Define ' '

[oe)
Zi=X, Z=X\X_,(j=23,...), sz)(\\ljx;.

Then X =Z, uZ,uZ,u---is a decomposition of X into disjoint sets such
that simultaneously forall t =1,2,...

Prys)(Zj1VZjpu---UZy) < g, (3.5)
u(x) <B; if xeZ,. (3.6)
Here m(Z;) < oo for all finite j, and since ¢ | 0, (3.5) implies that

(Prys)(Z) =0, ¢>1. (3.7)

Consider now the sets K; = K n(Z; x A), j=o0,1,2,... and the corre-
sponding “restricted” measures s;; defined by

si(M) = 8s;(M n Kj)), Me Bk, j=o0,1,2,.... (3.8)

By (3.7) s;,(Ky) =0 for all . Therefore we may set s,,(K,) =0, and in
proving (3.4) may neglect the set K, i.e. consider the case when K., and Z,
are empty sets, so that (3.4) reduces to

zlin% Jz; Jvads[ = Z JK,- fdsy, feCar(K). (3.9)

Y j=1

The measures sy, 52/, . . . are different from 0 only on K;, and considered on

this space they belong to S.(Kj,m) with ¢ = B;, as follows from (3.6) (cf.
Definition 3.2(b)). By Lemma 3.1 the sequence {si;, 52, ...}, considered on Kj,
has a subsequence converging to some measure s..; € S.(Kj;, m); by setting s..;

equal to zero on K\ Kj, we may treat s.,; as a measure on K too. By an evident
diagonal process applied to the set {s;;, > 1, j > 1}, we obtain a subsequence
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{s!} = {s,} of the sequence {s;} such that

ws

Sj — Sy onkK;, j=12..., (3.10)

and we define the needed measure s., on K by

E) =" s.(E) Z (EnK;), Ee%k. (3.11)
=1

We have to prove that s, belongs to Sgn(K,m) and that s, satifies (3.9).

The first assertion means that the measure Prys., is absolute continuous
with respect to m, and that the measure s, is finite. To prove the absolute
continuity, we observe that, in general, if s, 2 5., in the space S.(K,m), then
(Prys,)(E) — (Prysy)(E) for each E € #y; to see this, apply (3.1) to the
indicator of the set (E x A) n K. Applied to the convergence (3.10) in the
space S.(Kj,m) with ¢ = B;, this observation together with (3.11) and (3.6)
shows that

(Pryse)(E) = (Prys.;)(E) = lim (Prysj;)(E) < Bim(E) (3.12)

I— o0

for every E € #(Z;). Since X is the union of the sets Z;, (3.12) implies the
absolute contlnulty of Prys,, with respect to m. By the same observation and
by (3.11), we have

S0 (K) = (Prysy)(X) = i (Prys.;)(Z leirg Prys))(Z).  (3.13)
=1

y (3.8), Fatou’s lemma for positive series, (3.11) and (3.2)—(3.3), this implies

I*ML

S0 (K) = leir{;(PrXsi)( ) < lim Z (Prys))(Z))
=

= lim (Prys!)(X) < e+ Bm(X') < . (3.14)

i— o0

It remains to prove (3.9). Since f € Cary(K), we have |f| < C < oo, and
therefore

J=1

Hdesl{ - JdeS;o

[ o] o

+ C(s] + 55 <U K) (3.15)

n+1

for any n =1,2,.... The convergence (3.10) implies that here the sum from 1
to n tends to 0 when i — oo. To get (3.9), we have to show that the factor at C
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in (3.15) can be made less than ¢ uniformly in i by the selection of n. Since

(UK) (Prys]) (UZ,) i=1,2,...
n+1 n+l1

this follows from (3.5) and from the relation

-
soc<UKj>< lim (Prys!) <UZ>
nil i—00 nil

obtained similar to (3.13)—(3.14). [

4. Blackwell optimality in the space of all policies

In this section we prove that a stationary policy 7 is Blackwell optimal in the
space I1 of all policies if 7 is Blackwell optimal in the space 2 of stationary
policies. Together with Theorem 2.1, this result proves Theorem 2.2.

The main idea of the proof was developed in Dekker and Hordijk (1988)
for the case of a countable state space X and unbounded rewards. In Yush-
kevich (1994, 1997) the proof was extended to the case of a Borel state space
but bounded rewards, a finite reference measure and a severe Doeblin condi-
tion. The present extension to the more general case of a Borel state space,
unbounded rewards and less restrictive recurrence conditions is more technical
and requires an extra Assumption 2.6. All assumptions of Section 2 are sup-
posed to hold in this section.

We recall the needed results from HY. Assumptions 2.1, 2.2 and 2.4 imply
the existence of a constant f, < 1 depending on the numbers C and y intro-
duced there (or equivalently, a number p, > 0, p, = ,80 — 1) such that for
everyge X and fy < f <1 (or0<p<py)

o0

0plx,0) = (14 Pho(,p); holx,p) i= S A (x)p" (4.1)

n=—1
where p = ' — 1, il € V, and
A, < Ci1Cy, n>—1 (4.2)
(HY, Lemma 3.3). Here and afterwards, by Cj, C,,... we denote positive
constants depending on the parameters of the model; their exact values play
no role in the reasoning.

In connection with (4.1)—(4.2) we introduce the space # of Laurent series
in the variable p of the form

hi=h(x,p) =Y h"(x)p" with i" e V,,, @ 1A < 0, (4.3)
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and a similar space ¢ of the series

glx.a,p) = gulx,@)p" with Tm |g, [,/ < oo (4.4)
n—oo

n=-—1
where g, are measurable functions on K (see (2.2) for the notation g,,).

0
For series Y b,p" with real coefficients b, (converging for small |p| > 0)
n=-—1

we consider the natural ordering equal to the lexicographical ordering of the
sequences {b_1,bo, b1, by, ...} denoted by the symbols >, =, <, = 0, so that,
for example, Xb,p" > 0 means that >_ b,p" > 0 for all p in some sufficiently
small interval 0 < p < p;. The same notation is used for the corresponding
partial ordering in the case of Laurent series in p with coefficients being func-
tions on X or K. Recall (HY, Proposition 4.1) that one may integrate in-
equalities > and =<: if, for example,

Z gn(x,a)p" <0, (x,a)eK (4.5)
n=—1

and if all functions g, are integrable with respect to a g-finite measure s on K,
then also

Z p" JK gnds < 0. (4.6)

n=-—1

If there is a collection of Laurent series f,(p) in p depending on some pa-
rameter o, then by Lexmax f,(p) we denote such of those series (if any) that
o

Lexmax f,(p) = f,(p) for all values of o.

The following operator L : # — ¢ (HY, Section 7) plays an important
role: for h € # as in (4.3),

Lh(x,a,p) =Y (Lh),(x,a)p" (4.7)

where
(Lh)_(x,a) = Ph"V(x,a) — iV (x),
(Lh)y(x,a) = r(x,a) + Ph® (x,a) — i (x) — h7V (x), (4.8)
(Lh),(x,a) = Ph" (x,a) — h" (x) — " D(x), n=>1.
Assumptions 2.2, 2.3 and relations (4.3) show that the functions (Lk), in

(4.7)—(4.8) are continuous in a and satisfy bounds requested in (4.4), so that if
h e A then

%(Lh)n e Carg(K), n>—1. (4.9)
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Moreover, if & = h, for some o € 2 so that (4.2) holds, then
|Lh" (x,a)| < C3Chu(x), n=—1, (x,a)€eKkK. (4.10)

With every o € 2 we relate the operator L, : # — # ([HY], Section 4),
which can be expressed in the form

Lsh(x,p) = J Lh(x,a,p)o(x,da),

X

so that

Loh(x,p) = 37 PP LA (), (L) (x) = | @n,xaotx.ao.

n=-—1

(4.11)

In Sections 4 and 7 of [HY] (see, in particular, Theorems 4.2, 7.1 and 7.2)
we have proved that in MDC satisfying Assumptions 2.1-2.5:

() the lexicographical Bellman operator 7T : # — # is well defined for
each h € # by either of the two expressions

Th(x,p) = Lexngax L;h(x,p) = Lexmax Lh(x,a,p), xeX; (4.12)
ge

ae Ay
(ii) the Blackwell optimality equation
Th=0, heH (4.13)
has a unique solution /*, and a policy 7 € 2 is Blackwell optimal within
2 if and only if &, = h*;
(iii) there exists a policy ¢ € @ with h, = h*.

After recalling those results we can move forward. The identities given in
the next two lemmas go back to Sladky (1974) and Hordijk and Sladky
(1977).

Lemma 4.1. In MDP satisfying Assumptions 2.1, 2.2 and 2.4 there exists for

every Markov policy n ={0y,02,...} and every he A# a positive number
p1 = p1(h) such that in the notations

Pi=P, (121), Q0 =0V (1=0)

(see (2.4), (2.9)) we have

> P QY Y Qi — Q" — Q) =0 (4.14)
=0

n=-—1
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Jor 0<p<p, f=104+p) ! where the double series in (4. 14) converges in
the u-norm, and where for the uniformity of all terms we set =) = 0.

Proof. The convergence in norm follows from (4.3) and the bound

ST Oumlx) < ?“ (4.15)
=0 1-=p

obtained in HY, Lemma 2.1. The total sum = 0, because the coefficient at
each term Q,4" is equal to

p"Bt = p B — pm B = p"B(1 — B — Bp) = 0. O
Lemma 4.2. Assume the conditions of Lemma 4.1, and denote
r[:ro—t, L[ZLO—/ (IZ 1). (416)

For every t€ X and 0 < p < min(py, p,(h))

vp(m) — vp(t Zﬁ QL1 he. (4.17)

Proof. By (4.7)~(4.8) and (4.11), (2.4)

0

Lothy = 1oy + Z pn[Pthgn) _ hgn) _ hgnfl)]

n=-—1

gas in Lemma 4.1, i\ = 0). Therefore, since Q11 = Q/P,y1 (cf. (2.4)), we
ave

QiLisihe = Qiregi + Y p"[Qh? — Qu(h — h"D)).
n=-—1

Hence

Zﬁ Qth+1hr—Zﬁ erf+1+z Zﬂ [Qi1h™ — Q,(he™ — B=D)].

n=-—1

This is equivalent to (4.17) because the first sum on the right side is equal to
vg(m) (cf. (2.8)), while the second sum according to (4.14) and (4.1) simplifies
to

B O = ST W = (14 phop(e) = —op(e). O
n=-—1 n=-—1

Theorem 4.1. In MDC satisfying Assumptions 2.1-2.6, a policy t, Blackwell
optimal within X', is Blackwell optimal in the class IT as well.
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Proof. Many details of the proof coincide with the corresponding arguments
in the preceding papers by Dekker and Hordijk (1988) and Yushkevich (1994,
1997), but for the completeness of the paper we present the proof in full.

As well-known (Strauch (1969)), in a Borelian MDC to every initial state
xo and policy 7 € IT there corresponds a Markov policy #’ such that for every
t > 0 the joint distribution of the pair (x;,a,+1) is the same for policies 7 and
n’ and the given xo. It follows that in MDC we consider vg(xo, ) = vg(xo,7")
for all f€(0,1), and therefore it is sufficient to prove that 7 is Blackwell
optimal within the class M of Markov policies. To do this, we fix x; and a
policy © = {oy,02,...} € M, and prove the existence of a number f* < 1

1
(or pr= F —-1> 0) such that
vg(x0, ) —vg(x0,7) <0 if fr<f <1 (or0<p<p). (4.18)
We use the notations of Lemmas 4.1 and 4.2, and write / in place of
h. =h*. By (4.12)-(4.13) L;s1h, < Th, =0, and therefore (4.17) makes the

assertion (4.18) rather plausible. However, the proof is very technical. By
Lemmas 4.1 and 4.2 there exists #* < 1 such that (with f~'(1 + p) = 1)

v (X0, 1) — vg(x0,7) = Z Zamﬂ’p”, pr<p<l (4.19)

n=—1 1=0

where the double series converges absolutely, and according to (4.17), (4.16),
(4.11), for every n > 1

don = Qo(Lih)"(x0) = L(Lh)"(xo,a)a(xo,da)
A, = Qt(Lt+1h)(n) (XO)
:J (LR (x, a)o(x, da)q? (xo, x) dx, if 1> 1 (4.20)

(we use the densities of operators Q;, = QSZ” introduced in (2.10) and utilized in
Assumption 2.6). By the second form of the operator 7 in (4.12) and by the
equation (4.13), we have

i: (L) (x,a)p" <0, (x,a) € K. (4.21)

n=-—1

It is convenient to introduce separate series
o0 0

A, () = Zamﬁg a(p) = Z anp”  (n=—1,t>0). (4.22)
=0 n=-—1

Then (4.19) takes on the form

vp(x0, ) — vp(x0,7) = Z Au(B)p", (4.23)

n=-—1
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while relations (4.5)—(4.6), applied to (4.21) and to the measure s(dx da) pres-
ent in the integral (4.20), show that

a(p) 20, t=>0. (4.24)

There is a trivial case when all the coefficients a;, in (4.19) are zeros: in that
case (4.18) holds with the equality sign. Otherwise there exists such N > —1
that all a,, with n < N are zeros, but at least one of the numbers a,y is differ-
ent from 0. In that case (4.23) becomes

vg(x0,7) — vp(x0,7) = An(B)p™ + An:1(B)p™ ' + R (4.25)
with
R= Z Au(B)p". (4.26)
n=N+2

On the other hand, the formula for @,(p) in (4.22) turns into
0
a,(p) = Zam/)n
n=N
where because of (4.24) and the choice of N
0
awy <0 (1=0,1,...), b:=> ay<0. (4.27)
=0

Also, from (4.22),

llgrll Ay(f)=b<0. (4.28)
The cases b = —oo and b > — oo are treated in different ways. In the first of

them we proceed as in the preceding papers: the two last terms in (4.25) are
negligible in comparison with the main term Ay(f)p”, which, due to (4.28),
becomes negative as f T 1 (so that p | 0). Namely, from the bound (4.10) ap-
plied to ¢ = 7 € X and from (4.20) we get

lam| < C3C3Quu(xg), n=—-1, t=0. (4.29)
Therefore, by (4.15) and (4.22),

CsCl
1-p

1
= 5y ;" , (4.30)

[4n(B)] <

and by (4.26)

RI<Cs(14+p) 3 Cp' ! < Cop™*!
n=N+2
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for positive p sufficiently close to 0. Utilizing the last bound, we can rewrite
(4.25) in the form

bp(x0, %) — 030, ) = pV [An(B) + pAxa(B) +o(1)] aspl0.  (431)

By (4.30) the term pAyyi(f) remains bounded as p | 0, and the condition
b = —oo together with (4.28) shows that the difference vg(xo,7) — vp(x0,7)
becomes negative as p | 0.

The case of a finite negative b is the most complicated one. Here we use
Assumption 2.6 and the related Lemma 3.4'. Formula (4.31) in this case
simplifies to

op(x0, %) — 0p(x0,7) = pV[b + pAy1(B) +0(1)] asp | 0.

To get the needed negativity of the left side, it is sufficient to show that
liﬂ’]l pAn+1(f) < 0. We prove this inequality by contradiction.
P

Suppose the contrary. Then, by a well-known property of the Abel sum-
mation, and since p = (1 — )p ",

1
0< hm ﬁﬂANH(ﬁ) = hrrll (1- Za, reifl < hm A N1 -

Hence there are a number ¢ and a subsequence {#} of the sequence
{0,1,2,...} such that

a1 =e>0, i=12 ... (4.32)

The definition (4.20) of the coefficients a,, with ¢ > 1 can be rewritten in the
form

= J gn(x,a)s,(dxda), n>-1, t>1
K

where

gn(x,a) = (Uzii;l#’ s(dx da) = g\ (xo, x)u(x)o (x, da) dx (4.33)

(the coeflicients agp, play no role in the forthcoming reasoning). By (4.21) and
since pu(x) =1 >0

g(x,a,p) = i gn(x,a)p" <0, (x,a)eK. (4.34)

n=—

! In the proof of the corresponding Theorem 5.4 in Dekker and Hordijk (1988), in the case of a
finite b, the Fatou lemma is used without an explanation why it is applicable. Indeed at this point
the uniform integrability as in Assumption 2.6 is needed, which in the countable case can be de-
duced from the Assumptions 2.2, 2.3 and 2.4 (see Lemmas 4.6 and 4.7 in Dekker, Hordijk and
Spieksma (1994)). In Yushkevich (1994), (1997) a similar problem does not arise because of severe
boundedness assumptions.
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By (4.9) g, € Cary(K). Also Prys,(dx) = qgf) (x0, x)u(x) dx, so that the func-

tions u,(x) := ¢y’ (xo,x)u(x) can be taken for Radon-Nikodym derivatives
dPrys,/dm. By Assumption 2.6 there exist a number B > 0 and a subset
X' < X of finite measure m such that (uniformly in r =1,2,...)

5/(K) = Prys,(X) < Bn(X') +¢ < o0,

so that s, € S (K, m) (cf. Definition 3.4). By Assumption 2.6, all the con-
ditions of Lemma 3.4 are satisfied. According to this lemma, there exists a
subsequence of the sequence {7;}, which we denote {7}, and a finite measure
S on K such that for each n = —1

Aoon ::J gndse, = 1imJ gndst, = lim ar,,. (4.35)
K J70 JK J—

The Laurent series
o0
ax(p) =D doup”
n=—1

converges for small |p| > 0, as follows from (4.35), (4.33) and bounds (4.10):
Aoon| < C3C5 s, (K). From (4.34) and (4.35) we have

ar(p) = | alvapds, <0 (4.36)

(cf. (4.5)—(4.6)). On the other hand, since a,, with n < N are zeros, by (4.35)
., With n < N also are zeros. The same is true for a.,y, because the series
defining b in (4.27) converges, so that a,y — 0 as t — o0. Thus a,(p) =
aOOJ\szN+1 + ago_NHpN+2 +--- where according to (4.32) and (4.35)
dx n+1 = € > 0, and this contradicts with (4.36). [

Finally, the existence of a deterministic stationary Blackwell optimal policy
in the space /7 of all policies (Theorem 2.2) follows immediately from Theo-
rems 2.1 and 4.1.

5. Recurrence conditions for Blackwell optimality

The uniform ergodicity and integrability conditions used in [HY] and Section
4 for Blackwell optimality (Assumptions 2.4 and 2.6) are to complicated for a
straightforward verification in specific models with a noncompact state space
X and an unbounded reward function. In this section we consider recurrence-
type conditions more suitable for applications, which imply Assumptions 2.4
and 2.6 (if other assumptions of Section 2 hold). We refer the reader to the
paper by Hernandez-Lerma et al. (1991) for a comprehensive survey of re-
currence and ergodicity conditions in a more general context of Markov and
controlled Markov chains. Assumptions 2.1-2.3 and 2.5 are supposed to be
satisfied in this section. Main results of this section are summarized in Theo-
rems 5.1 and 5.2 and Corollary 5.1.
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The following uniform minorant condition is stronger than the existence of
a uniformly small set as defined in Hordijk, Spieksma and Tweedie (1995) (a
7 1-set in their terminology).

Assumption 5.1. There exist two sets D, X' € Bx with m(D) >0, m(X') >0
and a number 0 such that the transition density

p(x,a,y)>6>0 forxeD, acd,, yeX

We mention that in the particular case D = X this assumption is precisely
the simultaneous Doeblin-Doob condition used in Yushkevich (1997)(cf. HY,
(2.31)—(2.32)), which is much more restrictive and often fails to hold in models
with an unbounded set X.

The next assumption is a generalization to the case of a Borel space X
of the p-uniform (geometric) recurrence condition from Dekker and Hordijk
(1992).

Assumption 5.2. There exist: 1) a set D € Bx with m(D) > 0 and

sup u(x) < o0, (5.1)

xeD

and 2) a number 0 < o < 1, such that
J p(x,a, y)u(y)dy < au(x) forall (x,a) € K. (52)
X\D

The following uniform drift condition is closely related to Assumption 5.2,
as stated in Lemma 5.1 below.

Assumption 5.3. There exist: 1) a set D as in Assumption 5.2, and 2) numbers
0<y<1,b>0,such that

Pu(x,a) < yu(x)+b-1p(x) forall (x,a) € K. (5.3)

Lemma 5.1. Assumption 5.3 implies Assumption 5.2 with the same set D and
with u replaced by u*, where

1 (x) = plx) + b1p(x). (5.4)

Moreover, with u replaced by u*, Assumptions 2.1-2.3, 2.5 remain valid, only
with maybe a larger constant C.

Proof. It is the same as in the case of a countable X; see Hordijk and Spieksma
(1992), pp. 350-351. We only mention for more clarity that g < u* < (1 +b)u

(as follows from (5.4) and the condition x> 1), so that ||f]|,. <|fIl, <
(L+b)|If1l, for every function f on X. Therefore relations (5.3)—(5.4) imply
(5.2) with

oczmm((;g%). O
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The next uniform accessibility condition is introduced in Hordijk, Spieksma
and Tweedie (1995).

Assumption 5.4. There exists a set D € By such that for every sublevel set
M.={xeX:ulx) <c} (5.5)

there are an integer N > 1 and a number n such that uniformly in x € M, and
celX

PY(x,D) :=P%{xy e D} =5 >0. (5.6)

Utilizing results from Meyn and Tweedie (1993), Hordijk, Spieksma and
Tweedie (1995) proved equivalence results for various conditons on a collec-
tion of Markov chains. The Key Theorem in their paper implies, in particular,
the following result stating uniform ergodicity of Markov chains generated
by stationary policies, needed for applications of our theorems on Blackwell
optimality.

Theorem 5.1. Assumptions 5.1, 5.3 and 5.4 with the same set D, together with
Borel measurability of the model and Assumptions 2.2(b) and 2.5(a), imply
Assumption 2.4.

Proof. See the above reference. []

We now turn to conditions guaranteeing Assumption 2.6. A more standard
form of the uniform integrability than in (2.11)—(2.12) is given in the following
assumption.

Assumption 5.5. (a) For every ¢ > 1 we have (cf. (5.5))
m(M,) < oo. (5.7)

(b) For every xo € X

lim sup sup J 21(x)q\ (x0, x) dx = 0. (5.8)
X\M,

(0 r>1rneM

Lemma 5.2. If for every xo € X and © € M the densities q;@ (x0,x), xe X, 1>1
are uniformly bounded (in particular, if the transition density p(x,a,y) is
bounded), then Assumption 5.5 implies Assumption 2.6.

Proof. If p(x,a, y) is bounded by a constant C;, then qu’) (x, y) is also bounded
by the same Cj; this is a direct consequence of equations (2.10), proved by
induction in 7. To get (2.11)-(2.12) from (5.7)—(5.8), it is sufficient to take
X' = M, for a sufficiently large ¢, and to set B= Cic. [

Finally, in Theorem 5.2 we show that the g-uniform recurrence condition
(Assumption 5.2) together with the following dominance-integrability condi-
tion for the transition density p(x,a, y) imply the uniform integrability as
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stated in Assumption 5.5. The proof of this theorem follows the pattern of the
proof of Lemma 4.7 in Dekker, Hordijk and Spieksma (1994), with adjust-

ments due to a Borel space X.

Assumption 5.6. Assumption 5.5(a) holds, and there exists a measurable func-
tion £ > 0 such that

Jx ((X)u(x)dx < oo and p(x,y)</(y), xeD,yeX (5.9)

(D is the set from Assumption 5.2 ).
Theorem 5.2. Assumptions 2.1, 2.5, 5.2 and 5.6 imply Assumption 5.5.

Proof. We need to show that the sup.. . in (5.8) becomes less than ¢ > 0 when
=1
¢ — oo. From (5.1) and (5.5) we have

Dc M, if ¢ =co=sup u(x). (5.10)
xeD

To evaluate the integral in (5.8), we apply the last exit decomposition with
respect to the set D. If = = {g1,02,...} and ¢ > ¢, then, due to (5.10),

j #(x)g? (x0, %) dx
X\M,

:J J J7 Do, (X0,X1) + o po (Xe—1, X)) pu(x) doxy . . . dx,
Xl Xr—l Mr

=> I (5.11)

L= J_ J_ J_ F(z) dz,
Dy JD, Dy I M,

I = J J J_...J_ J_F(z)dz, 3<k<t—1,
Xi X2 I Dy I D Dy I M,

I, = JXI . ..JXM JDH J}V[ F(z)dz,

and where: (a) for clarity, X, Dy, M denote identical copies of the sets X, D,
M., corresponding to the integration with respect to dx;, and E is the com-
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plement of E = X; (b) for the compactness of formulas
F(2)dz := p, (x0,X1) ... Py, (Xi—1, X )pu(x;) dxy .. . dx; (5.12)

(if t < 4, some of the terms are absent; we leave this case to the reader, and
perform the calculations for ¢ > 4).

Let

b] = max(co,,u(xg)) (513)
and choose N = N(g, xy, ¢p) so large that

OCN &

—1_be1 <§ (5'14)

where o is the constant in (5.2). Since M, = D by (5.10), we have

I < J_ J_ F(z)dz,
D D,
and from (5.2) and (5.12) we obtain by induction
I < ot’y(xo). (515)

By a similar reasoning we obtain from (5.2) and (5.10) for all k£ > 1

t—k+1
I < J J J & pal(x07xl)
Xi X2 J Dy

ce Doy (Xre—2, Xpe—1 ) p(Xp—1) dxy . . . dxg—y

(in the case k = 2, integrals over X should be skipped). By (5.10) u(x;_1) < co
on the set D;_, so that we have

I < co! 1 k=23 ... .1 (5.16)

From (5.13) and (5.15)—(5.16), and then (5.14) we get the bound
Ltbt 4Ly <b(a +o "+ o) <§ if e>b;  (5.17)

(if £ < N, (5.17) is also true, with the left side equal 0).
The terms in (5.11) with & > ko = max(t — N + 2,2) we evaluate by means
of Assumption 5.6. From the definition of those /; and (5.9) we have

I, < max J_ J_ J_ Doy (X, X0k) + - P, (Xi1, X ) (1) dxye . .. dx,
XEDi—y Dy D,y t

< J_ J_ Jﬂr/(xk)pokﬂ(xk,xkﬂ)

Dy D,

o Do (X1, X)) () dxye . dxy. (5.18)
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In (5.18) we do the following: (1) change the domains of integration to
Xk, ..., X, by multiplying the integrand by the indicators of the sets
Dy, ..., M, (2) consider copies Ay1,..., A, of the space 4, and using (2.10)
represent the factors p, as

po’,;[ (xi7 xi+1) = J p(xi7 dit1, xi+1)ai+1 (xh da[+1),
Aul

i=k,...,t—1; (3) fix an arbitrary g, € X, and insert an additional factor

1= J Ory1 (X, dag )
A1

into the integrand; (4) regroup the integrations in the alternating order: over
A, 41 with respect to o, (x;, da,+1), then over X, with respect to dx;, then over
A, with respect to o,(x,_1,da,), ..., finally over X; with respect to dx;; (5)
combine, using Lemma 3.2, iterated integrations over A;,; and then X; into
one integral over a copy K; of the space K with respect to the measure
s; = j(oi1), starting from i = ¢ and up to i = k. Then (5.18) becomes

Ikch(sk,...,s,):J_ﬂ,ds', K=K x---K, (5.19)
K
where

Sy s x0) = 15000) 4 (xk) p(Xie, @y Xier1)

() p(ximr, an x) 1y (x)u(xy), ds
= S(dxyp dagy ... dx;das )
= sg(dxg dagyr) - . . s¢(dx;, dagiy). (5.20)

Our goal now is the continuity of J.(5) in 5. As obtained from (5.18), for-
mula (5.20) defines J.(5) on the product space S = S x --- x S; (here S; are
copies of S). However, the integrand in (5.19) is a nonnegative measurable

function on K, so that J.(5) has sense on the whole space S = S(K,m) where
m=my X --- X my, m; being copies of m. Recall that a measure § on K

belongs to S if Prys = im (where X = X; X --- x X), so that evidently Sc<S.
By Lemma 3.1 applied to K, the space S is compact in the ws-topology. By

Lemma 3.3, the function J..(5) is continuous in § € S if only the integrand f. in
(5.19) is contiuous in @ = (ay41,...,ar1) and satisfies the integrability condi-
tion [y f,dm < oo. The continuity of f, in a follows from the continuity of

p(x,a,y) in a (Assumption 2.5). Next,

JCty e 1%0) < )Pt K1) - Pt 30 a(x0)

so that by applying recursively (2.6) (Assumption 2.5) and then (5.9) we have
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J_fcdﬁz:J J ()P (Xt Xe1) « - POxi—1, X0 ) p(x;) dx . . . dx,
X X X,

k

< C”kj ¢ (xp ) p(xk) dxye < 0.
X

_ Thus, for each ¢ > 1, the function J,.(5) is continuous on the compact space
S. Also, since the integral in (5.20) defining J.(5) converges absolutely, and
since the factor 15 (x;) of the integrand monotonically decreases to 0 as
¢ — oo (cf. (5.5)), we have

lim J.(5) =0, §eS.

Cc— 0
Hence, by Dini’s theorem,

lim max J.(5) = 0.
(X 5es

This, together with the uniform in & bound (5.19), implies the existence of
a number b, such that

&
I < —

N k=koko+1,....t if ¢ > bs.

Here ky = max(t — N + 2,2), so that the number of those terms is less than N,
and therefore

t
SNh<: ife=b
fe=ko 2

This, together with (5.17) shows that the integral in (5.11) and (5.8) is less than
¢ if ¢ > max(by, b2), uniformly in 7 and =, so that (5.8) holds. [

Corollary 5.1. In MDC with a bounded transition density p(x,a, y) Assumptions
2.1-2.3,2.5and 5.1, 5.3, 5.4, 5.6 imply the whole set of Assumptions 2.1-2.6.

Proof. Follows from Lemma 5.2 and Theorems 5.1, 5.2. []

6. Cash-balance model

In this section we consider a discrete-time cash-balance model in which the
rate of return is controlled, whereas the risk parameter is fixed.
The evolution of the proces {x,} is governed by the equation

X,:xt,1+a,+ Wr (61)
where x; is the state at time ¢, a, is the control parameter and W, are inde-

pendent standard normal random variables. Here the state x has the meaning
of the current cash balance, while the action a corresponds to a withdrawal of
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size —a (if a < 0) of the money in cash, or to a supply in the amount a (if
a>0).

Linear systems of the type (6.1) and their multi-dimensional general-
izations are well known in MDC, especially in the case of the Gaussian noise
W, and the quadratic cost criterion; see, for example, Kushner (1971), or for
the one-dimensional case, Dynkin and Yushkevich (1979). Our model is a
special case of the controlled linear system studied in Meyn (1997). For a
continuous-time cash-balance model see van Dijk and Hordijk (1996) and
references there.

We now describe the elements of the model and introduce conditions that
guarantee all the assumptions of the preceding sections, so that there exists a
Blackwell optimal policy.

The state space is evidently X = R = (—o0, ). The action sets A4, are
closed intervals in R

Ay ={a:a,(x) <a<a,(x)} (6.2)

where a, and a, are Borel-measurable functions from R to R with a,(x) <
a,(x) for every x. To satisfy recurrence conditions of Section 5, we need to
suppose that these two functions are bounded, say

M <a,(x) <ay(x) <M (6.3)

for some constant M > 0, and that

lim a,(x) < —1, lim a,(x) > % (6.4)

X—+00 X——00

The last condition together with (6.1) assures a sufficient drift towards the
origin from the remote states x*. For the action space 4 according to (6.3) we
may take the interval 4 = [-M, M| (or any larger interval, for instance the
whole R). In X and A4 we consider the usual Euclidian metrics and the corre-
sponding topology and Borel g-algebras of measurable sets.

As reference measure on X we take the Lebesgue measure. Then in accor-
dance with (6.1) the transition density is

p(xaaay)zw(y_x_a)a aeAx, X€ER (65)
where
(z) = L =n Lep (6.6)
(ﬂ \/2—5 I *

is the standard normal density. As bounding function we take the even
function

ux)=e*+e*, xeR (6.7)

2 Note that in the approach of Meyn (1997) this uniformly drift condition is relaxed for average
optimality. It is an interesting question whether the Meyn’s conditions also imply the convergence
of the Howard-Blackwell-Veinott policy improvement method for sensitive optimality criteria.
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The reward function r(x, a) may be any Borel function on the set K = {(x,a) :
a € Ay, x € R} continuous in a with |r(x,a)| < Cu(x), x € R for some constant
C>0.

To check the assumptions of Sections 2 and 5, it is convenient to prepare
some elementary formulas.

Lemma 6.1. For every b € R

J p(y+b)dy = J ep(y —b)dy =20, (6.8)
R R

Proof. Use the substitutions x + b = z and the fact that (6.6) is a probability
density. [

Lemma 6.2. Consider the functions
(p(Z + h)a lf z<—h
Fi(z) = ¢ 9(0), if —h<z<h (6.9)
@(Z - h)7 lf z>h
with h > 0. Then

P(x,y) i=max p(x,a,y) < Fu(y—x), xeR, yeR (6.10)
ae Ay

Proof. By (6.5) and (6.2)—(6.3)

plx,y) < max ¢(y —x—a),
la) < M

and (6.6) follows from the fact that ¢(z) is increasing on the negative half-axis
and is decreasing on the positive one. []

Lemma 6.3. For the functions F, defined in (6.9) and any B > 0

max Fj(y —x) = Fgu(y), yeR. (6.11)

|x|<B

Proof. Compare the interval —B < x < B with the intervals —oo < x < y — A,
y—h<x<y+h and y+ h < x < oo where the function f(x) = F;(y — x)
is respectively, increasing, constant= ¢(0), and decreasing. []

Theorem 6.1. In the cash-balance model, the transition density is bounded and
all the Assumptions 2.1-2.3,2.5 and 5.1, 5.3-5.4, 5.6 hold, so that by Corollary
5.1 and Theorem 2.2 there exits a deterministic stationary Blackwell optimal

policy.

Proof. Evidently, p(x,a, y) is bounded. We first verify the assumptions of Sec-
tion 2. Assumption 2.1 (measurability and compactness), 2.2(a) (u-boundedness
of r), 2.3(a) (continuity of r in a), 2.5(a,b) (existence of a transition density
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continuous in @) hold trivially. Assumptions 2.2(b) (u-boundedness of the op-
erator P) and 2.3(b) follow from 2.5(a,b,c). Thus it remains to verify only
Assumption 2.5(c) stating in our case that

JRﬁ(x,y)u(y) dy < Cu(x), xeR (6.12)

for some number C > 0.
From (6.9)—(6.10) we have

J p(x, y)u(y) dy
R

< j 1) Fne(y — x) dy
R

x—M x+M
| ety = sy | ey
+J+w w(»)p(y —x — M) dy. (6.13)
x+M

The second integral at the right side is, by (6.7),
¢(0)J (@ + ey dy = (e + e ) (e — M) < eMu(x).
x—M

The first of the integrals in (6.13) we treat by Lemma 6.1. It is less than
J (ey +€—y)(p(y_ X+M) dy _ 6(1/2)+x7M +e(1/2)7.\’+M
R

< 6(1/2)+M(ex + e*X) _ e(1/2>+M,u(x).

For the third of the integrals in a similar way we have the bound
J (ey +e—y)(0(y_ x — M) dy — e(l/2)+x+M +€(]/2)_X_M < e<1/2)+M,u(x).
R

Thus, by (6.13), (6.12) holds with C = (1 + 2¢'/?)eM.

Now we turn to the assumptions of Section 5. Assumption 5.1, stating that
p(x,a,y) =5 >0forxeD,aec Ay, ye X' where m(D) > 0 and m(X’) > 0,
trivially holds for any interval D = [-B, B] and X’ = D with B > 0, since on
the compact —B < x,y < B, —M < a < M the normal density ¢(y — x — a)
is bounded from 0 (cf. (6.5) and (6.3)). We will select the set D = [—B, B] in
the next paragraph, where we consider Assumption 5.3 stating that

P:u(xa a) = y:u(x) +b- 1D(x)v (xa Cl) ek (614)

for some y € (0,1) and b > 0.
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By (6.8) and (6.2)—(6.3) we have

Pu(x,a) = J (e +e)p(y—x—a)dy
R
_ e(1/2)+x+a +€(1/2)7x7u

< e(l/2)+x+a,((x) +e(1/2)7x+M) aed., xeR (615)

and therefore, by (6.4),

— max, Pu(x,a) /2 xtax) 4 p(1/2)—x+M
lim —————~ < lim
e plx) Xt o0 e¥ + e

= Tm ) <
X—+00

A similar reasoning with the bound (6.4) for a.(x) shows that

T MaXe Pu(x,a) -1
== p(x)
Hence there exist numbers y € (0,1) and B > 0 such that
Pu(x,a) < yu(x) if |x| = B. (6.16)
To obtain (6.14) from (6.16), it remains to set

D =[-B,B], b=sup Pu(x,a) (6.17)
acAdy

(by (6.15) and (6.3), Pu(x,a) is bounded if x is bounded).
Assumption 5.4 states that for every ¢ > 0 there exist such N and # that

PN(x,D)=n>0 ifxeM, ceX

(here M, = {x: u(x) < c}). It holds trivially with N = 1 and
n= infj p(x,a,y)dy over aec Ay, xe M,
D

because m(D) >0 and p(x,a,y) =¢(y —x —a) is bounded from 0 when
X,a, y run over the bounded set ye D, xe M,, a € A,.

The last Assumption 5.6 requires the sets M, to be of finite measure (what
trivially holds in the case of u(x) = ¢* + ¢~ and the Lebesgue measure on R),
and the existence of a Borel function /() such that

Px) <), xeD yeR and | () < . (6.18)
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By (6.10)—(6.11) and (6.17) we have the first of the relations (6.18) for the
function /(y) = Fpim(y) (cf. (6.9)). Finally, the integral in (6.18) converges
for / = Fp, ) because Fp, () is decaying as e /2 as |y| — oo, while u(y)

is growing as el’l. [J
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