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Abstract. This paper is the second part of our study of Blackwell optimal
policies in Markov decision chains with a Borel state space and unbounded
rewards. We prove that a stationary policy is Blackwell optimal in the class
of all history-dependent policies if it is Blackwell optimal in the class of
stationary policies.

We also develop recurrence and drift conditions which ensure ergodicity
and integrability assumptions made in the previous paper, and which are more
suitable for applications. As an example we study a cash-balance model.
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1. Introduction

In the preceding paper Hordijk and Yushkevich (1999), further on referred
to as HY, we proved the existence of Blackwell optimal policies in the class
of stationary policies in Markov decision chains (MDC) with a Borel state
space, unbounded rewards, and transition densities (with respect to a reference
measure) satisfying compactness-continuity, uniform ergodicity and uniform
integrability conditions (the full list of assumptions is presented in Section 2).
Our ®rst goal in this paper is to prove under the same assumptions that a
policy Blackwell optimal in the class of stationary policies is at the same time
Blackwell optimal in the class of all history-dependent policies (Theorem 4.1),
and thus to establish the existence of Blackwell optimal policies in that broader
sense (Theorem 2.2). The proof follows the main patterns of a similar proof
for countable models developed in Dekker and Hordijk (1988), with the addi-
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tional use of the weak-strong topology in the class of stationary policies, as it
is done in the case of Borel models with bounded rewards in Yushkevich
(1997). However, it is more technical and requires additional results on this
topology.

The uniform geometric ergodicity condition for Markov chains generated
by stationary policies, and the uniform integrability condition for nonsta-
tionary Markov policies assumed in HY, are nonpractical for a straightfor-
ward veri®cation in speci®c MDCs with a noncompact Borel state space and
an unbounded reward function. Our second goal is to substitute these two
conditions by simpler recurrence and drift (Lyapunov-type) assumptions more
suitable for applications (Theorems 5.1 and 5.2). This part of the paper is
based on the ideas developed in Hordijk and Spieksma (1992) and Hordijk,
Spieksma and Tweedie (1995).

Our third goal is to apply the obtained results to a cash-balance control
model (Theorem 6.1).

In Section 2 we recall the model, de®nitions and assumptions from HY. In
Section 3 we prove additional properties of the weak-strong topology in the
space of stationary policies needed for our goals. In Section 4 we extend the
Blackwell optimality from stationary to all policies. In Section 5 we replace
the uniform integrability and ergodicity assumptions by simpler recurrence
and drift conditions. The cash-balance model is treated in Section 6.

2. Model and assumptions

In this section we give a brief review of the model, notations and assumptions
from HY, refering to that paper for more details. For convenience, we pre-
serve the numeration of assumptions given in HY.

A Markov decision chain (MDC) is de®ned by a state space X, an action
space A, action sets Ax � A�x�, a transition probability function P�x; a;B�
and a reward function r�x; a�. Let

K � f�x; a� : a A Ax; x A Xg:

Everywhere below measurability means Borel measurability, and BE

denotes the Borel s-algebra in a Borel space E.

Assumption 2.1. The state space X is a Borel space, the action space A is a
topological Borel space, the action sets Ax are nonempty compact x-sections of
a Borel measurable set K in X � A. The reward function r�x; a� and the transi-
tion probability P�x; a;B�, B A BX are measurable functions of �x; a� on K.

By FJSJM JP we denote, respectively, the sets of deterministic sta-
tionary, all stationary, Markov, arbitrary history-dependent policies. A policy
from F is determined by (and identi®ed with) a selector, i.e. a measurable
mapping j : X ! A with its graph in K. A policy s A S is a (measurable)
stochastic kernel s�x; da� from X to A with the property s�x;Ax� � 1. A policy
p A M is a sequence fs1; s2; . . .g; st A S.

To every initial state x A X and policy p A P there corresponds a
probability distribution Pp

x in the space of all in®nite-horizon trajectories
x0a1x2a2 . . . (we follow here the enumeration of states and actions used in
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Dynkin and Yushkevich (1979)). Let Ep
x be the corresponding expectation.

For any discount factor b A �0; 1�, the expected discounted reward vb�x; p�,
x A X , p A P is de®ned by

vb�x; p� :� Ep
x

Xy
t�0

b tr�xt; at�1� �
Xy
t�0

b tEp
x r�xt; at�1�: �2:1�

The convergence of (2.1) is guaranteed by the bounding Assumption 2.2
below. To formulate this assumption, we introduce the following notations.

Given a possibly unbounded strictly positive function m on X, we denote
by Vm the Banach space of measurable real-valued functions f on X with the
®nite m-norm

k f km :� sup
x AX

j f �x�j
m�x� ;

for an operator T: Vm ! Vm we set

kTkm :� sup
f :k f km U 1

kT f km:

Also, for any real-valued function f on K, let

f̂ �x� :� sup
a AAx

j f �x; a�j; x A X : �2:2�

Assumption 2.2. A measurable bounding function mV 1 on X is given, and the
reward function r and the transition operator P satisfy the conditions:

(a) kr̂km U 1;
(b) for some constant C > 0

Pm�x; a�UCm�x�; �x; a� A K ;

where the operator P transforms functions f on X into functions Pf on K by the
formula

P f �x; a� :�
�

X

f �y�P�x; a; dy�; �x; a� A K

(the bound 1 in (a) is taken to simplify formulas; all results are trivially
extended to any ®nite constant instead of 1).

Next is the continuity assumption.

Assumption 2.3. (a) The reward function r�x; a�, �x; a� A K is continuous in a.
(b) P f �x; a� is continuous in a for every f A Vm.

In the uniform ergodicity assumption we consider all Markov chains on
the space X generated by stationary policies s A S. For such policies, formula
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(2.1) reduces to

vb�x; s� �
Xy
t�0

b tPt
srs�x�; x A X ; s A S; b A �0; 1� �2:3�

where

Ps f �x� :�
�

A

P f �x; a�s�x; da�;

rs�x� :�
�

A

r�x; a�s�x; da�; x A X ; s A S: �2:4�

Another form of the operator Ps de®ned in (2.4) is given in terms of the
transition function Ps�x;B�, B A BX of the considered Markov chain:

Ps f �x� �
�

X

f �y�Ps�x; dy�;

Ps�x;B� :�
�

A

P�x; a;B�s�x; da�; x A X :

�2:5�

Assumption 2.4. For every s A S, the t-th convolution Pt
s�x;B� of the transition

function Ps�x;B� de®ned in (2.5) converges to a stochastic transition function
Ps�x;B� from X to X in the following sense: there exist positive numbers C and
g < 1 such that

kPt
s ÿ Pskm UCg t; s A S; t � 0; 1; 2; . . .

where Ps is the operator in Vm de®ned by a formula similar to (2.5).

The next assumption is about the existence of a transition density and its
properties. Mention that it covers Assumptions 2.2(b) and 2.3(b) (see HY).

Assumption 2.5. A s-®nite reference measure m on the space X is given, and

(a) the transition probabilities are de®ned by means of a given transition density
function p�x; a; y� ��x; a� A K ; y A X � so that

P�x; a;B� �
�

B

p�x; a; y�m�dy�; �x; a� A K ; B A BX ;

where p is measurable, nonnegative and its integral over X is identically 1;
(b) p�x; a; y� is continuous in a;
(c) the transition density p is related to the bounding function m by the condition�

X

p̂�x; y�m�y� dyUCm�x�; x A X �2:6�
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where, similar to (2.2)

p̂�x; y� � max
a AAx

p�x; a; y�; �x; y� A X � X : �2:7�

Where it is not confusing, we write dx in place of m�dx�.
In the last, uniform integrability condition we consider all Markov policies

p � fs1; s2; . . .g A M. For such a policy, the de®nition (2.1) of the discounted
reward takes on the following form similar to (2.3):

vb�x; p� �
Xy
t�0

b tQ�t�p rst�1
�x�; x A X ; p A M; b A �0; 1� �2:8�

where

Q�0�p :� I ; Q�t�p :� Ps1
Ps2

. . . Pst
if tV 1: �2:9�

We need some uniquely determined densities corresponding to the operators
de®ned in (2.5) and (2.9) (except Q�0� � I ). We set

ps�x; y� �
�

A

p�x; a; y�s�x; da�; q�1�p �x; y� � ps1
�x; y�;

q�t�1�
p �x; y� �

�
X

q�t�p �x; z�pst�1
�z; y� dz; �x; y� A X � X :

�2:10�

Assumption 2.6. The part (a) of Assumption 2.5 holds, and for every initial
state x0 A X and every Markov policy p A M, the t-step transition densities
de®ned in (2.10) satisfy together with the bounding function m the following
condition: for every e > 0 there exists a set X 0JX with m�X 0� <y and a
constant B > 0 such that simultaneously for all t � 1; 2; 3; . . .�

XnX 0
m�x�q�t�p �x0; x� dx < e �2:11�

and

m�x�q�t�p �x0; x�UB for x A X 0: �2:12�

We use the following de®nition of Blackwell optimal policies.

De®nition 2.1. For any set P 0 A P we say that a policy p� A P 0 is Blackwell
optimal within the class P 0, if for every x A X and p A P 0 there exists a number
b0�x; p� < 1 such that vb�x; p��V vb�x; p� for all b A �b0�x; p�; 1�. In the case of
P 0 � P we say that p� is Blackwell optimal.

The two main existence results of our work are summarized in the follow-
ing theorems.
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Theorem 2.1. In MDC satisfying Assumptions 2.1±2.5 there exists a determin-
istic stationary policy j� which is Blackwell optimal in the class S of stationary
policies.

Theorem 2.2. In MDC satisfying Assumptions 2.1±2.6 there exists a determin-
istic stationary policy j� which is Blackwell optimal in the class P of all poli-
cies; namely, if j� is Blackwell optimal within S, then j� is Blackwell optimal
within P as well.

Theorem 2.1 is proved in HY. Theorem 2.2 is a consequence of Theorem
2.1 and Theorem 4.1 of this paper.

3. More on the weak-strong topology

We ®rst recall the needed de®nitions and results from HY, Sections 5 and 6. In
this section only the Assumption 2.1 and the s-®nite measure m on X from
Assumption 2.5 are used.

De®nition 3.1. (a) A real-valued function f �x; a�, a A Ax, x A X on K is called a
CaratheÂodory function if f is (Borel) measurable and is continuous in the vari-
able a everywhere on K.

(b) The class Car0�K� consists of all bounded CaratheÂodory functions on K.
(c) The class Carm�K� consists of CaratheÂodory functions on K satisfying the

condition�
X

f̂ �x�m�dx� <y:

De®nition 3.2. (a) The space S � S�K ;m� consists of all measures s on K satis-
fying the condition

PrX s � m:

(b) For any positive c, the class Sc � Sc�K ;m� consists of all measures s on K
satisfying the condition

PrX sU cm:

(Here �PrX s��B� � s��B� A�XK� for every B A BX :)

De®nition 3.3. The weak-strong topology (ws-topology) in S (or in Sc) is the
coarsest topology in which the mapping s! �

K
f ds is continuous in s for every

f A Carm�K�, so that sn ÿ!ws
sy if and only if

lim
n!y

�
K

f dsn �
�

K

f dsy for every f A Carm�K�: �3:1�

Lemma 3.1. The spaces S and Sc are sequentially compact in the ws-topology.
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Lemma 3.2. There exists a unique mapping j : S ! S � S�K ;m� such that if
s � j�s�, s A S then

s�dx da� � s�x; da�m�dx�

so that�
X

�
Ax

f �x; a�s�x; da� dx �
�

K

f ds;

for every measurable and absolutely integrable function f on K.
Moreover, j maps S on S.

In this paper we need in addition the n-dimensional analogue of Lemma
3.1 and a speci®c convergence result.

Consider n copies �Xi;Ai;Ki;mi� of �X ;A;K ;m�, i � 1; 2; . . . ; n. The

product spaces X � X1 � � � � � Xn, A � A1 � � � � � An and K � K1 � � � � � Kn

also satisfy Assumption 2.1 (in A we consider the product topology). The

product measure m � m1 � � � � �mn also is s-®nite. Let S :� S�K ;m� (see
De®nition 3.2(a)). Similar to (2.2) and (2.7), for any real-valued function
f �x1; a1; . . . ; xn; an� on K (here ai A A�xi�, xi A Xi) we de®ne

f̂ �x1; . . . ; xn� � sup j f �x1; a1; . . . ; xn; an�j

where each ai runs over the set A�xi�. Applying to X , A, K , m and S the
De®nitions 3.1, 3.3 and Lemma 3.1, we have the following result.

Lemma 3.3. If f is continous in a � �a1; . . . ; an� (in the product topology in A),
and if�

X

f̂ �x1; . . . ; xn� dm <y;

then the integral

J�s� �
�

K

f �x1; a1; . . . ; xn; an� ds; s A S

is continuous in s on the compact S (in the ws-topology).

For the convergence result we need one more de®nition.

De®nition 3.4. The space Sfin�K ;m� consists of all ®nite measures s on K with
the property: PrX s is absolutely continuous with respect to the measure m on X.

Lemma 3.4. Let st A Sfin�K ;m�, t � 1; 2; . . . ; and let ut be ®xed nonnegative
Radon-Nikodym derivatives of PrX st with respect to m. If for every e > 0 there
exists a set X 0 A BX with m�X 0� <y and a constant B > 0 such that

PrX st�XnX 0� < e; t � 1; 2; . . . �3:2�
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and

ut�x�UB; x A X 0; t � 1; 2; . . . ; �3:3�

then there exists a measure sy A Sfin�K ;m� and a subsquence fs 0ig of the
sequence fstg such that

lim
i!y

�
K

f ds 0i �
�

K

f dsy; f A Car0�K�: �3:4�

Proof. Consider a sequence ej # 0 and sets X 0j and numbers Bj related to ej

by (3.2)±(3.3). Replacing if necessary Bj by max �B1;B2; . . . ;Bj�, we may
assume that B1 UB2 U � � � : By replacing after that X 0j by X 01 W � � �WX 0j , we
may assume that also X 01 JX 02 J � � � : De®ne

Z1 � X 01; Zj � X 0j nX 0jÿ1� j � 2; 3; . . .�; Zy � X
/
6
y

1

X 0j :

Then X � Zy WZ1 WZ2 W � � � is a decomposition of X into disjoint sets such
that simultaneously for all t � 1; 2; . . .

�PrX st��Z j�1 WZ j�2 W � � �WZy� < ej; �3:5�

ut�x�UB j if x A Z j: �3:6�

Here m�Zj� <y for all ®nite j, and since ej # 0, (3.5) implies that

�PrX st��Zy� � 0; tV 1: �3:7�

Consider now the sets Kj � K X �Zj � A�, j �y; 1; 2; . . . and the corre-
sponding ``restricted'' measures stj de®ned by

stj�M� � st�M XKj�; M A BK ; j �y; 1; 2; . . . : �3:8�

By (3.7) st�Ky� � 0 for all t. Therefore we may set sy�Ky� � 0, and in
proving (3.4) may neglect the set Ky, i.e. consider the case when Ky and Zy
are empty sets, so that (3.4) reduces to

lim
i!y

Xy
j�1

�
Kj

f ds 0i �
Xy
j�1

�
Kj

f dsy; f A Car0�K�: �3:9�

The measures s1j; s2j; . . . are di¨erent from 0 only on Kj, and considered on

this space they belong to Sc�Kj;m� with c � Bj, as follows from (3.6) (cf.
De®nition 3.2(b)). By Lemma 3.1 the sequence fs1j; s2j; . . .g, considered on Kj,
has a subsequence converging to some measure syj A Sc�Kj ;m�; by setting syj

equal to zero on KnKj, we may treat syj as a measure on K too. By an evident

diagonal process applied to the set fstj; tV 1; j V 1g, we obtain a subsequence
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fs 0ig � fsti
g of the sequence fstg such that

sij ÿ!ws
syj on Kj ; j � 1; 2; . . . ; �3:10�

and we de®ne the needed measure sy on K by

sy�E� �
Xy
j�1

syj�E� �
Xy
j�1

syj�E XKj�; E A BK : �3:11�

We have to prove that sy belongs to S®n�K;m� and that sy sati®es (3.9).
The ®rst assertion means that the measure PrX sy is absolute continuous

with respect to m, and that the measure sy is ®nite. To prove the absolute

continuity, we observe that, in general, if sn ÿ!ws
sy in the space Sc�K ;m�, then

�PrX sn��E� ! �PrX sy��E� for each E A BX ; to see this, apply (3.1) to the
indicator of the set �E � A�XK . Applied to the convergence (3.10) in the
space Sc�Kj ;m� with c � Bj, this observation together with (3.11) and (3.6)
shows that

�PrX sy��E� � �PrX syj��E� � lim
i!y
�PrX s 0ij��E�UBjm�E� �3:12�

for every E A B�Zj�. Since X is the union of the sets Zj, (3.12) implies the
absolute continuity of PrX sy with respect to m. By the same observation and
by (3.11), we have

sy�K� � �PrX sy��X� �
Xy
j�1

�PrX syj��Zj� �
Xy
j�1

lim
i!y
�PrX s 0ij��Zj�: �3:13�

By (3.8), Fatou's lemma for positive series, (3.11) and (3.2)±(3.3), this implies

sy�K� �
Xy
j�1

lim
i!y
�PrX s 0i ��Zj�U lim

i!y

Xy
j�1

�PrX s 0i ��Zj�

� lim
i!y
�PrX s 0i ��X�U e� Bm�X 0� <y: �3:14�

It remains to prove (3.9). Since f A Car0�K�, we have j f jUC <y, and
therefore�

K

f ds 0i ÿ
�

K

f dsy

���� ����U Xn

j�1

�
Kj

f ds 0ij ÿ
�

Kj

f dsyj

�����
�����

� C�s 0i � sy� 6
y

n�1

Kj

 !
�3:15�

for any n � 1; 2; . . . : The convergence (3.10) implies that here the sum from 1
to n tends to 0 when i!y. To get (3.9), we have to show that the factor at C
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in (3.15) can be made less than e uniformly in i by the selection of n. Since

s 0i 6
y

n�1

Kj

 !
� �PrX s 0i � 6

y

n�1

Zj

 !
; i � 1; 2; . . . ;

this follows from (3.5) and from the relation

sy 6
y

n�1

Kj

 !
U lim

i!y
�PrX s 0i � 6

y

n�1

Zj

 !

obtained similar to (3.13)±(3.14). r

4. Blackwell optimality in the space of all policies

In this section we prove that a stationary policy t is Blackwell optimal in the
space P of all policies if t is Blackwell optimal in the space S of stationary
policies. Together with Theorem 2.1, this result proves Theorem 2.2.

The main idea of the proof was developed in Dekker and Hordijk (1988)
for the case of a countable state space X and unbounded rewards. In Yush-
kevich (1994, 1997) the proof was extended to the case of a Borel state space
but bounded rewards, a ®nite reference measure and a severe Doeblin condi-
tion. The present extension to the more general case of a Borel state space,
unbounded rewards and less restrictive recurrence conditions is more technical
and requires an extra Assumption 2.6. All assumptions of Section 2 are sup-
posed to hold in this section.

We recall the needed results from HY. Assumptions 2.1, 2.2 and 2.4 imply
the existence of a constant b0 < 1 depending on the numbers C and g intro-
duced there (or equivalently, a number r0 > 0, r0 � bÿ1

0 ÿ 1� such that for
every s A S and b0 < b < 1 (or 0 < r < r0)

vb�x; s� � �1� r�hs�x; r�; hs�x; r� :�
Xy
n�ÿ1

h�n�s �x�rn �4:1�

where r � bÿ1 ÿ 1, h
�n�
s A Vm and

kh�n�s km UC1C n
2 ; nVÿ 1 �4:2�

(HY, Lemma 3.3). Here and afterwards, by C1;C2; . . . we denote positive
constants depending on the parameters of the model; their exact values play
no role in the reasoning.

In connection with (4.1)±(4.2) we introduce the space H of Laurent series
in the variable r of the form

h :� h�x; r� �
Xy
n�ÿ1

h�n��x�rn with hn A Vm; lim
n!y
kh�n�k1=n

m <y; �4:3�
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and a similar space G of the series

g�x; a; r� �
Xy
n�ÿ1

gn�x; a�rn with lim
n!y
kĝnk1=n

m <y �4:4�

where gn are measurable functions on K (see (2.2) for the notation ĝn).

For series
Py

n�ÿ1

bnrn with real coe½cients bn (converging for small jrj > 0)

we consider the natural ordering equal to the lexicographical ordering of the
sequences fbÿ1; b0; b1; b2; . . .g denoted by the symbols �, �, �, � 0, so that,
for example, Sbnrn � 0 means that

P
bnrn > 0 for all r in some su½ciently

small interval 0 < r < r1. The same notation is used for the corresponding
partial ordering in the case of Laurent series in r with coe½cients being func-
tions on X or K. Recall (HY, Proposition 4.1) that one may integrate in-
equalities � and �: if, for example,

Xy
n�ÿ1

gn�x; a�rn � 0; �x; a� A K �4:5�

and if all functions gn are integrable with respect to a s-®nite measure s on K,
then also

Xy
n�ÿ1

rn

�
K

gn ds � 0: �4:6�

If there is a collection of Laurent series fa�r� in r depending on some pa-
rameter a, then by Lexmax

a
fa�r� we denote such of those series (if any) that

Lexmax
a

fa�r� � fa�r� for all values of a.

The following operator L : H! G (HY, Section 7) plays an important
role: for h A H as in (4.3),

Lh�x; a; r� �
Xy

n�ÿ1

�Lh�n�x; a�rn �4:7�

where

�Lh�ÿ1�x; a� � Ph�ÿ1��x; a� ÿ h�ÿ1��x�;

�Lh�0�x; a� � r�x; a� � Ph�0��x; a� ÿ h�0��x� ÿ h�ÿ1��x�;

�Lh�n�x; a� � Ph�n��x; a� ÿ h�n��x� ÿ h�nÿ1��x�; nV 1:

�4:8�

Assumptions 2.2, 2.3 and relations (4.3) show that the functions �Lh�n in
(4.7)±(4.8) are continuous in a and satisfy bounds requested in (4.4), so that if
h A H then

1

m
�Lh�n A Car0�K�; nVÿ 1: �4:9�
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Moreover, if h � hs for some s A S so that (4.2) holds, then

jLh�n�s �x; a�jUC3C n
2 m�x�; nVÿ 1; �x; a� A K : �4:10�

With every s A S we relate the operator Ls : H!H ([HY], Section 4),
which can be expressed in the form

Lsh�x; r� �
�

Ax

Lh�x; a; r�s�x; da�;

so that

Lsh�x; r� �
Xy
n�ÿ1

rn�Lsh��n��x�; �Lsh��n��x� �
�

Ax

�Lh�n�x; a�s�x; da�:

�4:11�

In Sections 4 and 7 of [HY] (see, in particular, Theorems 4.2, 7.1 and 7.2)
we have proved that in MDC satisfying Assumptions 2.1±2.5:

(i) the lexicographical Bellman operator T : H!H is well de®ned for
each h A H by either of the two expressions

Th�x; r� � Lexmax
s AS

Lsh�x; r� � Lexmax
a AAx

Lh�x; a; r�; x A X ; �4:12�

(ii) the Blackwell optimality equation

Th � 0; h A H �4:13�

has a unique solution h*, and a policy t A S is Blackwell optimal within
S if and only if ht � h�;

(iii) there exists a policy j A F with hj � h�.

After recalling those results we can move forward. The identities given in
the next two lemmas go back to SladkyÂ (1974) and Hordijk and SladkyÂ
(1977).

Lemma 4.1. In MDP satisfying Assumptions 2.1, 2.2 and 2.4 there exists for
every Markov policy p � fs1; s2; . . .g and every h A H a positive number
r1 � r1�h� such that in the notations

Pt � Pst
�tV 1�; Qt � Q�t�p �tV 0�

(see (2.4), (2.9)) we have

Xy
n�ÿ1

r�n� Q0h�n� �
Xy
t�0

b t�1�Qt�1h�n� ÿQth
�n� ÿQth

�nÿ1��
" #

� 0 �4:14�
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for 0 < r < r1, b � �1� r�ÿ1, where the double series in (4.14) converges in
the m-norm, and where for the uniformity of all terms we set h�ÿ2� � 0.

Proof. The convergence in norm follows from (4.3) and the bound

Xy
t�0

b tQtm�x�U C4

1ÿ b
�4:15�

obtained in HY, Lemma 2.1. The total sum � 0, because the coe½cient at
each term Qth

�n� is equal to

rnb t ÿ rnb t�1 ÿ rn�1b t�1 � rnb t�1ÿ b ÿ br� � 0: r

Lemma 4.2. Assume the conditions of Lemma 4.1, and denote

rt � rst
; Lt � Lst

�tV 1�: �4:16�

For every t A S and 0 < r < min�r0; r1�ht��

vb�p� ÿ vb�t� �
Xy
t�0

b tQtLt�1ht: �4:17�

Proof. By (4.7)±(4.8) and (4.11), (2.4)

Lt�1ht � rt�1 �
Xy
n�ÿ1

rn�Pt�1h�n�t ÿ h�n�t ÿ h�nÿ1�
t �

(as in Lemma 4.1, h
�ÿ2�
t � 0). Therefore, since Qt�1 � QtPt�1 (cf. (2.4)), we

have

QtLt�1ht � Qtrt�1 �
Xy
n�ÿ1

rn�Qt�1h�n�t ÿQt�h�n�t ÿ h�nÿ1�
t ��:

Hence

Xy
t�0

b tQtLt�1ht�
Xy
t�0

b tQtrt�1�
Xy

n�ÿ1

rn
Xy
t�0

b t�Qt�1h�n�t ÿQt�ht�n� ÿ h�nÿ1�
t ��:

This is equivalent to (4.17) because the ®rst sum on the right side is equal to
vb�p� (cf. (2.8)), while the second sum according to (4.14) and (4.1) simpli®es
to

ÿbÿ1
Xy
n�ÿ1

rnQ0h�n�t � ÿbÿ1
Xy
n�ÿ1

h�n�t rn � ÿbÿ1�1� r�vb�t� � ÿvb�t�: r

Theorem 4.1. In MDC satisfying Assumptions 2.1±2.6, a policy t, Blackwell
optimal within S, is Blackwell optimal in the class P as well.
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Proof. Many details of the proof coincide with the corresponding arguments
in the preceding papers by Dekker and Hordijk (1988) and Yushkevich (1994,
1997), but for the completeness of the paper we present the proof in full.

As well-known (Strauch (1969)), in a Borelian MDC to every initial state
x0 and policy p A P there corresponds a Markov policy p 0 such that for every
tV 0 the joint distribution of the pair �xt; at�1� is the same for policies p and
p 0 and the given x0. It follows that in MDC we consider vb�x0; p� � vb�x0; p

0�
for all b A �0; 1�, and therefore it is su½cient to prove that t is Blackwell
optimal within the class M of Markov policies. To do this, we ®x x0 and a
policy p � fs1; s2; . . .g A M, and prove the existence of a number b � < 1�

or r� � 1

b�
ÿ 1 > 0

�
such that

vb�x0; p� ÿ vb�x0; t�U 0 if b � < b < 1 �or 0 < r < r��: �4:18�
We use the notations of Lemmas 4.1 and 4.2, and write h in place of

ht � h�. By (4.12)±(4.13) Lt�1ht � Tht � 0, and therefore (4.17) makes the
assertion (4.18) rather plausible. However, the proof is very technical. By
Lemmas 4.1 and 4.2 there exists b � < 1 such that (with bÿ1�1� r� � 1)

vb�x0; p� ÿ vb�x0; t� �
Xy

n�ÿ1

Xy
t�0

atnb trn; b � < b < 1 �4:19�

where the double series converges absolutely, and according to (4.17), (4.16),
(4.11), for every nV 1

a0n � Q0�L1h�n�x0� �
�

A

�Lh�n�x0; a�s�x0; da�

atn � Qt�Lt�1h��n��x0�

�
�

K

�Lh��n��x; a�s�x; da�q�t�p �x0; x� dx; if tV 1 �4:20�

(we use the densities of operators Qt � Q
�t�
p introduced in (2.10) and utilized in

Assumption 2.6). By the second form of the operator T in (4.12) and by the
equation (4.13), we haveXy

n�ÿ1

�Lh��n��x; a�rn � 0; �x; a� A K : �4:21�

It is convenient to introduce separate series

An�b� �
Xy
t�0

atnb t; at�r� �
Xy
n�ÿ1

atnrn �nVÿ 1; tV 0�: �4:22�

Then (4.19) takes on the form

vb�x0; p� ÿ vb�x0; t� �
Xy

n�ÿ1

An�b�rn; �4:23�
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while relations (4.5)±(4.6), applied to (4.21) and to the measure s�dx da� pres-
ent in the integral (4.20), show that

at�r� � 0; tV 0: �4:24�

There is a trivial case when all the coe½cients atn in (4.19) are zeros: in that
case (4.18) holds with the equality sign. Otherwise there exists such N Vÿ1
that all atn with n < N are zeros, but at least one of the numbers atN is di¨er-
ent from 0. In that case (4.23) becomes

vb�x0; p� ÿ vb�x0; t� � AN�b�rN � AN�1�b�rN�1 � R �4:25�

with

R �
Xy

n�N�2

An�b�rn: �4:26�

On the other hand, the formula for at�r� in (4.22) turns into

at�r� �
Xy
n�N

atnrn

where because of (4.24) and the choice of N

atN U 0 �t � 0; 1; . . .�; b :�
Xy
t�0

atN < 0: �4:27�

Also, from (4.22),

lim
b"1

AN�b� � b < 0: �4:28�

The cases b � ÿy and b > ÿy are treated in di¨erent ways. In the ®rst of
them we proceed as in the preceding papers: the two last terms in (4.25) are
negligible in comparison with the main term AN�b�rN , which, due to (4.28),
becomes negative as b " 1 (so that r # 0�. Namely, from the bound (4.10) ap-
plied to s � t A S and from (4.20) we get

jatnjUC3C n
2 Qtm�x0�; nVÿ 1; tV 0: �4:29�

Therefore, by (4.15) and (4.22),

jAn�b�jU C5C n
2

1ÿ b
� C5C n

2

1� r

r
; �4:30�

and by (4.26)

jRjUC5�1� r�
Xy

n�N�2

C n
2 rnÿ1 UC6rN�1
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for positive r su½ciently close to 0. Utilizing the last bound, we can rewrite
(4.25) in the form

vb�x0; p� ÿ vb�x0; t� � rN �AN�b� � rAN�1�b� � o�1�� as r # 0: �4:31�
By (4.30) the term rAN�1�b� remains bounded as r # 0, and the condition
b � ÿy together with (4.28) shows that the di¨erence vb�x0; p� ÿ vb�x0; t�
becomes negative as r # 0.

The case of a ®nite negative b is the most complicated one. Here we use
Assumption 2.6 and the related Lemma 3.41. Formula (4.31) in this case
simpli®es to

vb�x0; p� ÿ vb�x0; t� � rN �b� rAN�1�b� � o�1�� as r # 0:

To get the needed negativity of the left side, it is su½cient to show that
lim
r#0

rAN�1�b�U 0. We prove this inequality by contradiction.

Suppose the contrary. Then, by a well-known property of the Abel sum-
mation, and since r � �1ÿ b�bÿ1,

0 < lim
b"1

1ÿ b

b
AN�1�b� � lim

b"1
�1ÿ b�

Xy
t�0

at;N�1b t U lim
t!y

at;N�1:

Hence there are a number e and a subsequence ftig of the sequence
f0; 1; 2; . . .g such that

ati ;N�1 V e > 0; i � 1; 2; . . . : �4:32�

The de®nition (4.20) of the coe½cients atn with tV 1 can be rewritten in the
form

atn �
�

K

gn�x; a�st�dx da�; nVÿ 1; tV 1

where

gn�x; a� � �Lh��n��x; a�
m�x� ; st�dx da� � g�t�p �x0; x�m�x�s�x; da� dx �4:33�

(the coe½cients a0n play no role in the forthcoming reasoning). By (4.21) and
since m�x�V 1 > 0

g�x; a; r� :�
Xy
n�ÿ1

gn�x; a�rn � 0; �x; a� A K : �4:34�

1 In the proof of the corresponding Theorem 5.4 in Dekker and Hordijk (1988), in the case of a
®nite b, the Fatou lemma is used without an explanation why it is applicable. Indeed at this point
the uniform integrability as in Assumption 2.6 is needed, which in the countable case can be de-
duced from the Assumptions 2.2, 2.3 and 2.4 (see Lemmas 4.6 and 4.7 in Dekker, Hordijk and
Spieksma (1994)). In Yushkevich (1994), (1997) a similar problem does not arise because of severe
boundedness assumptions.
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By (4.9) gn A Car0�K�. Also PrX st�dx� � q
�t�
p �x0; x�m�x� dx, so that the func-

tions ut�x� :� q
�t�
p �x0; x�m�x� can be taken for Radon-Nikodym derivatives

d PrX st=dm. By Assumption 2.6 there exist a number B > 0 and a subset
X 0HX of ®nite measure m such that (uniformly in t � 1; 2; . . .)

st�K� � PrX st�X �UBm�X 0� � e <y;

so that st A Sfin�K ;m� (cf. De®nition 3.4). By Assumption 2.6, all the con-
ditions of Lemma 3.4 are satis®ed. According to this lemma, there exists a
subsequence of the sequence ftig, which we denote fTjg, and a ®nite measure
sy on K such that for each n � ÿ1; 0; 1; 2; . . .

ayn :�
�

K

gn dsy � lim
j!y

�
K

gn dsTj
� lim

j!y
aTj n: �4:35�

The Laurent series

ay�r� �
Xy

n�ÿ1

aynrn

converges for small jrj > 0, as follows from (4.35), (4.33) and bounds (4.10):
jaynjUC3C n

2 sy�K�. From (4.34) and (4.35) we have

ay�r� �
�

K

g�x; a; r� dsy � 0 �4:36�

(cf. (4.5)±(4.6)). On the other hand, since atn with nUN are zeros, by (4.35)
ayn with n < N also are zeros. The same is true for ayN , because the series
de®ning b in (4.27) converges, so that atN ! 0 as t!y. Thus ay�r� �
ay;N�1rN�1 � ay;N�2rN�2 � � � � where according to (4.32) and (4.35)
ay;N�1 V e > 0, and this contradicts with (4.36). r

Finally, the existence of a deterministic stationary Blackwell optimal policy
in the space P of all policies (Theorem 2.2) follows immediately from Theo-
rems 2.1 and 4.1.

5. Recurrence conditions for Blackwell optimality

The uniform ergodicity and integrability conditions used in [HY] and Section
4 for Blackwell optimality (Assumptions 2.4 and 2.6) are to complicated for a
straightforward veri®cation in speci®c models with a noncompact state space
X and an unbounded reward function. In this section we consider recurrence-
type conditions more suitable for applications, which imply Assumptions 2.4
and 2.6 (if other assumptions of Section 2 hold). We refer the reader to the
paper by HernaÂndez-Lerma et al. (1991) for a comprehensive survey of re-
currence and ergodicity conditions in a more general context of Markov and
controlled Markov chains. Assumptions 2.1±2.3 and 2.5 are supposed to be
satis®ed in this section. Main results of this section are summarized in Theo-
rems 5.1 and 5.2 and Corollary 5.1.
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The following uniform minorant condition is stronger than the existence of
a uniformly small set as de®ned in Hordijk, Spieksma and Tweedie (1995) (a
T1-set in their terminology).

Assumption 5.1. There exist two sets D;X 0 A BX with m�D� > 0, m�X 0� > 0
and a number d such that the transition density

p�x; a; y�V d > 0 for x A D; a A Ax; y A X 0:

We mention that in the particular case D � X this assumption is precisely
the simultaneous Doeblin-Doob condition used in Yushkevich (1997)(cf. HY,
(2.31)±(2.32)), which is much more restrictive and often fails to hold in models
with an unbounded set X.

The next assumption is a generalization to the case of a Borel space X
of the m-uniform (geometric) recurrence condition from Dekker and Hordijk
(1992).

Assumption 5.2. There exist: 1) a set D A BX with m�D� > 0 and

sup
x AD

m�x� <y; �5:1�

and 2) a number 0 < a < 1, such that�
XnD

p�x; a; y�m�y� dyU am�x� for all �x; a� A K : �5:2�

The following uniform drift condition is closely related to Assumption 5.2,
as stated in Lemma 5.1 below.

Assumption 5.3. There exist: 1) a set D as in Assumption 5.2, and 2) numbers
0 < g < 1, b > 0, such that

Pm�x; a�U gm�x� � b � 1D�x� for all �x; a� A K : �5:3�

Lemma 5.1. Assumption 5.3 implies Assumption 5.2 with the same set D and
with m replaced by m�, where

m��x� � m�x� � b1D�x�: �5:4�

Moreover, with m replaced by m�, Assumptions 2.1±2.3, 2.5 remain valid, only
with maybe a larger constant C.

Proof. It is the same as in the case of a countable X; see Hordijk and Spieksma
(1992), pp. 350±351. We only mention for more clarity that mU m�U �1� b�m
(as follows from (5.4) and the condition mV 1), so that k f km � U k f km U
�1� b�k f km � for every function f on X. Therefore relations (5.3)±(5.4) imply
(5.2) with

a � max g;
g� b

1� b

� �
: r
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The next uniform accessibility condition is introduced in Hordijk, Spieksma
and Tweedie (1995).

Assumption 5.4. There exists a set D A BX such that for every sublevel set

Mc � fx A X : m�x�U cg �5:5�

there are an integer N V 1 and a number h such that uniformly in x A Mc and
s A S

PN
s �x;D� :� Ps

xfxN A DgV h > 0: �5:6�

Utilizing results from Meyn and Tweedie (1993), Hordijk, Spieksma and
Tweedie (1995) proved equivalence results for various conditons on a collec-
tion of Markov chains. The Key Theorem in their paper implies, in particular,
the following result stating uniform ergodicity of Markov chains generated
by stationary policies, needed for applications of our theorems on Blackwell
optimality.

Theorem 5.1. Assumptions 5.1, 5.3 and 5.4 with the same set D, together with
Borel measurability of the model and Assumptions 2.2(b) and 2.5(a), imply
Assumption 2.4.

Proof. See the above reference. r

We now turn to conditions guaranteeing Assumption 2.6. A more standard
form of the uniform integrability than in (2.11)±(2.12) is given in the following
assumption.

Assumption 5.5. (a) For every cV 1 we have (cf. (5.5))

m�Mc� <y: �5:7�

(b) For every x0 A X

lim
c!y

sup
tV 1

sup
p AM

�
XnMc

m�x�q�t�p �x0; x� dx � 0: �5:8�

Lemma 5.2. If for every x0 A X and p A M the densities q
�t�
p �x0; x�, x A X , tV 1

are uniformly bounded (in particular, if the transition density p�x; a; y� is
bounded), then Assumption 5.5 implies Assumption 2.6.

Proof. If p�x; a; y� is bounded by a constant C1, then q
�t�
p �x; y� is also bounded

by the same C1; this is a direct consequence of equations (2.10), proved by
induction in t. To get (2.11)±(2.12) from (5.7)±(5.8), it is su½cient to take
X 0 �Mc for a su½ciently large c, and to set B � C1c. r

Finally, in Theorem 5.2 we show that the m-uniform recurrence condition
(Assumption 5.2) together with the following dominance-integrability condi-
tion for the transition density p�x; a; y� imply the uniform integrability as
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stated in Assumption 5.5. The proof of this theorem follows the pattern of the
proof of Lemma 4.7 in Dekker, Hordijk and Spieksma (1994), with adjust-
ments due to a Borel space X.

Assumption 5.6. Assumption 5.5(a) holds, and there exists a measurable func-
tion lV 0 such that�

X

l�x�m�x� dx <y and p̂�x; y�U l�y�; x A D; y A X �5:9�

(D is the set from Assumption 5.2).

Theorem 5.2. Assumptions 2.1, 2.5, 5.2 and 5.6 imply Assumption 5.5.

Proof. We need to show that the sup
tV1

. . . in (5.8) becomes less than e > 0 when

c!y. From (5.1) and (5.5) we have

DJMc if cV c0 � sup
x AD

m�x�: �5:10�

To evaluate the integral in (5.8), we apply the last exit decomposition with
respect to the set D. If p � fs1; s2; . . .g and cV c0, then, due to (5.10),�

XnMc

m�x�q�t�p �x0; x� dx

�
�

X1

. . .

�
Xtÿ1

�
Mt

ps1
�x0; x1� . . . pst

�xtÿ1; xt�m�xt� dx1 . . . dxt

�
Xt

k�1

Ik �5:11�

where

I1 �
�

D1

. . .

�
Dtÿ1

�
Mt

F�z� dz;

I2 �
�

D1

�
D2

. . .

�
Dtÿ1

�
Mt

F�z� dz;

Ik �
�

X1

. . .

�
Xkÿ2

�
Dkÿ1

�
Dk

. . .

�
Dtÿ1

�
Mt

F�z� dz; 3U k U tÿ 1;

It �
�

X1

. . .

�
Xtÿ2

�
Dtÿ1

�
Mt

F �z� dz;

and where: (a) for clarity, Xk, Dk, Mk denote identical copies of the sets X, D,
Mc corresponding to the integration with respect to dxk, and E is the com-
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plement of E JX ; (b) for the compactness of formulas

F �z� dz :� ps1
�x0; x1� . . . pst

�xtÿ1; xt�m�xt� dx1 . . . dxt �5:12�
(if t < 4, some of the terms are absent; we leave this case to the reader, and
perform the calculations for tV 4).

Let

b1 � max�c0; m�x0�� �5:13�
and choose N � N�e; x0; c0� so large that

aN

1ÿ a
b1 <

e

2
�5:14�

where a is the constant in (5.2). Since Mt JD by (5.10), we have

I1 U
�

D1

. . .

�
Dt

F�z� dz;

and from (5.2) and (5.12) we obtain by induction

I1 U a tm�x0�: �5:15�

By a similar reasoning we obtain from (5.2) and (5.10) for all k > 1

Ik U
�

X1

. . .

�
Xkÿ2

�
Dkÿ1

a tÿk�1ps1
�x0; x1�

. . . pskÿ1
�xkÿ2; xkÿ1�m�xkÿ1� dx1 . . . dxkÿ1

(in the case k � 2, integrals over X should be skipped). By (5.10) m�xkÿ1�U c0

on the set Dkÿ1, so that we have

Ik U c0a tÿk�1; k � 2; 3; . . . ; t: �5:16�

From (5.13) and (5.15)±(5.16), and then (5.14) we get the bound

I1 � I2 � � � � � ItÿN�1 U b1�a t � a tÿ1 � � � � � aN� < e

2
if cV b1 �5:17�

(if t < N, (5.17) is also true, with the left side equal 0).
The terms in (5.11) with k V k0 � max�tÿN � 2; 2� we evaluate by means

of Assumption 5.6. From the de®nition of those Ik and (5.9) we have

Ik U max
x ADkÿ1

�
Dk

. . .

�
Dtÿ1

�
Mt

psk
�x; xk� . . . pst

�xtÿ1; xt�m�xt� dxk . . . dxt

U
�

Dk

. . .

�
Dtÿ1

�
Mt

l�xk�psk�1
�xk; xk�1�

. . . pst
�xtÿ1; xt�m�xt� dxk . . . dxt: �5:18�
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In (5.18) we do the following: (1) change the domains of integration to
Xk; . . . ;Xt by multiplying the integrand by the indicators of the sets
Dk; . . . ;Mt: (2) consider copies Ak�1; . . . ;At�1 of the space A, and using (2.10)
represent the factors ps as

psi�1
�xi; xi�1� �

�
Ai�1

p�xi; ai�1; xi�1�si�1�xi; dai�1�;

i � k; . . . ; tÿ 1; (3) ®x an arbitrary st�1 A S, and insert an additional factor

1 �
�

At�1

st�1�xt; dat�1�

into the integrand; (4) regroup the integrations in the alternating order: over
At�1 with respect to st�1�xt; dat�1�, then over Xt with respect to dxt, then over
At with respect to st�xtÿ1; dat�; . . . ; ®nally over X1 with respect to dx1; (5)
combine, using Lemma 3.2, iterated integrations over Ai�1 and then Xi into
one integral over a copy Ki of the space K with respect to the measure
si � j�si�1�, starting from i � t and up to i � k. Then (5.18) becomes

Ik U Jc�sk; . . . ; st� �
�

K

fc ds; K � Kk � � � �Kt; �5:19�

where

fc�xk; ak�1; . . . ; xt� � 1D�xk�l�xk�p�xk; ak�1; xk�1�
. . . 1D�xtÿ1�p�xtÿ1; at; xt�1Mc

�xt�m�xt�; ds

� s�dxk dak�1 . . . dxt dat�1�
� sk�dxk dak�1� . . . st�dxt; dat�1�: �5:20�

Our goal now is the continuity of Jc�s� in s. As obtained from (5.18), for-
mula (5.20) de®nes Jc�s� on the product space ~S � Sk � � � � � St (here Sj are
copies of S). However, the integrand in (5.19) is a nonnegative measurable

function on K , so that Jc�s� has sense on the whole space S � S�K ;m� where
m � mk � � � � �mt, mj being copies of m. Recall that a measure s on K

belongs to S if PrX s � m (where X � X1 � � � � � Xt), so that evidently ~S H S.

By Lemma 3.1 applied to K , the space S is compact in the ws-topology. By

Lemma 3.3, the function Jc�s� is continuous in s A S if only the integrand fc in
(5.19) is contiuous in a � �ak�1; . . . ; at�1� and satis®es the integrability condi-
tion

�
X

f̂c dm <y. The continuity of fc in a follows from the continuity of

p�x; a; y� in a (Assumption 2.5). Next,

f̂c�xk; . . . ; xt�U l�xk�p̂�xk; xk�1� . . . p̂�xtÿ1; xt�m�xt�

so that by applying recursively (2.6) (Assumption 2.5) and then (5.9) we have
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�
X

f̂cdm �
�

Xk

. . .

�
Xt

l�xk�p̂�xk; xk�1� . . . p̂�xtÿ1; xt�m�xt� dxk . . . dxt

UC tÿk

�
Xk

l�xk�m�xk� dxk <y:

Thus, for each cV 1, the function Jc�s� is continuous on the compact space
S. Also, since the integral in (5.20) de®ning Jc�s� converges absolutely, and
since the factor 1Mc

�xt� of the integrand monotonically decreases to 0 as
c!y (cf. (5.5)), we have

lim
c!y

Jc�s� � 0; s A S:

Hence, by Dini's theorem,

lim
c!y

max
s A S

Jc�s� � 0:

This, together with the uniform in k bound (5.19), implies the existence of
a number b2 such that

Ik <
e

2N
; k � k0; k0 � 1; . . . ; t if cV b2:

Here k0 � max�tÿN � 2; 2�, so that the number of those terms is less than N,
and therefore

Xt

k�k0

Ik <
e

2
if cV b2:

This, together with (5.17) shows that the integral in (5.11) and (5.8) is less than
e if cVmax�b1; b2�, uniformly in t and p, so that (5.8) holds. r

Corollary 5.1. In MDC with a bounded transition density p�x; a; y� Assumptions
2.1±2.3, 2.5 and 5.1, 5.3, 5.4, 5.6 imply the whole set of Assumptions 2.1±2.6.

Proof. Follows from Lemma 5.2 and Theorems 5.1, 5.2. r

6. Cash-balance model

In this section we consider a discrete-time cash-balance model in which the
rate of return is controlled, whereas the risk parameter is ®xed.

The evolution of the proces fxtg is governed by the equation

xt � xtÿ1 � at �Wt �6:1�
where xt is the state at time t, at is the control parameter and Wt are inde-
pendent standard normal random variables. Here the state x has the meaning
of the current cash balance, while the action a corresponds to a withdrawal of
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size ÿa (if a < 0) of the money in cash, or to a supply in the amount a (if
a > 0).

Linear systems of the type (6.1) and their multi-dimensional general-
izations are well known in MDC, especially in the case of the Gaussian noise
Wt and the quadratic cost criterion; see, for example, Kushner (1971), or for
the one-dimensional case, Dynkin and Yushkevich (1979). Our model is a
special case of the controlled linear system studied in Meyn (1997). For a
continuous-time cash-balance model see van Dijk and Hordijk (1996) and
references there.

We now describe the elements of the model and introduce conditions that
guarantee all the assumptions of the preceding sections, so that there exists a
Blackwell optimal policy.

The state space is evidently X � R � �ÿy;y�. The action sets Ax are
closed intervals in R

Ax � fa : ae�x�U aU au�x�g �6:2�
where ae and au are Borel-measurable functions from R to R with ae�x�U
au�x� for every x. To satisfy recurrence conditions of Section 5, we need to
suppose that these two functions are bounded, say

ÿM U ae�x�U au�x�UM �6:3�
for some constant M > 0, and that

lim
x!�y au�x� < ÿ 1

2
; lim

x!ÿy
ae�x� > 1

2
: �6:4�

The last condition together with (6.1) assures a su½cient drift towards the
origin from the remote states x2. For the action space A according to (6.3) we
may take the interval A � �ÿM;M� (or any larger interval, for instance the
whole R). In X and A we consider the usual Euclidian metrics and the corre-
sponding topology and Borel s-algebras of measurable sets.

As reference measure on X we take the Lebesgue measure. Then in accor-
dance with (6.1) the transition density is

p�x; a; y� � j�yÿ xÿ a�; a A Ax; x A R �6:5�

where

j�z� � 1������
2p
p eÿz2=2; z A R �6:6�

is the standard normal density. As bounding function we take the even
function

m�x� � ex � eÿx; x A R �6:7�

2 Note that in the approach of Meyn (1997) this uniformly drift condition is relaxed for average
optimality. It is an interesting question whether the Meyn's conditions also imply the convergence
of the Howard-Blackwell-Veinott policy improvement method for sensitive optimality criteria.
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The reward function r�x; a� may be any Borel function on the set K � f�x; a� :
a A Ax; x A Rg continuous in a with jr�x; a�jUCm�x�, x A R for some constant
C > 0.

To check the assumptions of Sections 2 and 5, it is convenient to prepare
some elementary formulas.

Lemma 6.1. For every b A R�
R

eyj�y� b� dy �
�

R

eÿyj�yÿ b� dy � e�1=2�ÿb: �6:8�

Proof. Use the substitutions xG b � z and the fact that (6.6) is a probability
density. r

Lemma 6.2. Consider the functions

Fh�z� �
j�z� h�; if zUÿ h

j�0�; if ÿ hU zU h

j�zÿ h�; if zV h

8>><>>: �6:9�

with hV 0. Then

p̂�x; y� :� max
a AAx

p�x; a; y�UFM�yÿ x�; x A R; y A R: �6:10�

Proof. By (6.5) and (6.2)±(6.3)

p̂�x; y�U max
jajUM

j�yÿ xÿ a�;

and (6.6) follows from the fact that j�z� is increasing on the negative half-axis
and is decreasing on the positive one. r

Lemma 6.3. For the functions Fh de®ned in (6.9) and any BV 0

max
jxjUB

Fh�yÿ x� � FB�h�y�; y A R: �6:11�

Proof. Compare the interval ÿBU xUB with the intervals ÿy < xU yÿ h,
yÿ hU xU y� h, and y� hU x <y where the function f �x� � Fh�yÿ x�
is respectively, increasing, constant� j�0�, and decreasing. r

Theorem 6.1. In the cash-balance model, the transition density is bounded and
all the Assumptions 2.1±2.3, 2.5 and 5.1, 5.3±5.4, 5.6 hold, so that by Corollary
5.1 and Theorem 2.2 there exits a deterministic stationary Blackwell optimal
policy.

Proof. Evidently, p�x; a; y� is bounded. We ®rst verify the assumptions of Sec-
tion 2. Assumption 2.1 (measurability and compactness), 2.2(a) (m-boundedness
of r), 2.3(a) (continuity of r in a), 2.5(a,b) (existence of a transition density
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continuous in a) hold trivially. Assumptions 2.2(b) (m-boundedness of the op-
erator P) and 2.3(b) follow from 2.5(a,b,c). Thus it remains to verify only
Assumption 2.5(c) stating in our case that�

R

p̂�x; y�m�y� dyUCm�x�; x A R �6:12�

for some number C > 0.
From (6.9)±(6.10) we have�

R

p̂�x; y�m�y� dy

U
�

R

m�y�FM�yÿ x� dy

�
� xÿM

ÿy
m�y�j�yÿ x�M� dy�

� x�M

xÿM

m�y�j�0� dy

�
��y

x�M

m�y�j�yÿ xÿM� dy: �6:13�

The second integral at the right side is, by (6.7),

j�0�
� x�M

xÿM

�ey � eÿy� dy � �ex � eÿx��eM ÿ eÿM�U eMm�x�:

The ®rst of the integrals in (6.13) we treat by Lemma 6.1. It is less than�
R

�ey � eÿy�j�yÿ x�M� dy � e�1=2��xÿM � e�1=2�ÿx�M

U e�1=2��M�ex � eÿx� � e�1=2��Mm�x�:
For the third of the integrals in a similar way we have the bound�

R

�ey � eÿy�j�yÿ xÿM� dy � e�1=2��x�M � e�1=2�ÿxÿM U e�1=2��Mm�x�:

Thus, by (6.13), (6.12) holds with C � �1� 2e1=2�eM .
Now we turn to the assumptions of Section 5. Assumption 5.1, stating that

p�x; a; y�V d > 0 for x A D, a A Ax, y A X 0 where m�D� > 0 and m�X 0� > 0,
trivially holds for any interval D � �ÿB;B� and X 0 � D with B > 0, since on
the compact ÿBU x; yUB, ÿM U aUM the normal density j�yÿ xÿ a�
is bounded from 0 (cf. (6.5) and (6.3)). We will select the set D � �ÿB;B� in
the next paragraph, where we consider Assumption 5.3 stating that

Pm�x; a�U gm�x� � b � 1D�x�; �x; a� A K �6:14�

for some g A �0; 1� and b > 0.
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By (6.8) and (6.2)±(6.3) we have

Pm�x; a� �
�

R

�ey � eÿy�j�yÿ xÿ a� dy

� e�1=2��x�a � e�1=2�ÿxÿa

U e�1=2��x�au�x� � e�1=2�ÿx�M ; a A Ax; x A R �6:15�

and therefore, by (6.4),

lim
x!�y

maxa Pm�x; a�
m�x� U lim

x!�y
e�1=2��x�au�x� � e�1=2�ÿx�M

ex � eÿx

� lim
x!�y e�1=2��au�x� < 1:

A similar reasoning with the bound (6.4) for ae�x� shows that

lim
x!ÿy

maxa Pm�x; a�
m�x� < 1:

Hence there exist numbers g A �0; 1� and B > 0 such that

Pm�x; a� � gm�x� if jxjVB: �6:16�

To obtain (6.14) from (6.16), it remains to set

D � �ÿB;B�; b � sup
a AAx
x AD

Pm�x; a� �6:17�

(by (6.15) and (6.3), Pm�x; a� is bounded if x is bounded).
Assumption 5.4 states that for every c > 0 there exist such N and h that

PN
s �x;D�V h > 0 if x A Mc; s A S

(here Mc � fx : m�x�U cg). It holds trivially with N � 1 and

h � inf

�
D

p�x; a; y� dy over a A Ax; x A Mc

because m�D� > 0 and p�x; a; y� � j�yÿ xÿ a� is bounded from 0 when
x; a; y run over the bounded set y A D, x A Mc, a A Ax.

The last Assumption 5.6 requires the sets Mc to be of ®nite measure (what
trivially holds in the case of m�x� � ex � eÿx and the Lebesgue measure on R),
and the existence of a Borel function l�y� such that

p̂�x; y�U l�y�; x A D; y A R and

�
R

l�y�m�y� dy <y: �6:18�
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By (6.10)±(6.11) and (6.17) we have the ®rst of the relations (6.18) for the
function l�y� � FB�M�y� (cf. (6.9)). Finally, the integral in (6.18) converges
for l � FB�M because FB�M�y� is decaying as eÿy2=2 as jyj !y, while m�y�
is growing as ejyj. r
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