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Abstract. Set-valued optimisation is an important topic and has wide appli-
cations in engineering and game theory. An interesting topic in set-valued
optimisation is the appropriate introduction of a derivative concept for set-
valued mappings. In this paper, Dini directional derivatives are introduced
and investigated for set-valued mappings. A derivative concept of a Jacobifi-
cator for set-valued mappings is introduced in terms of the Dini directional
derivatives. Applications are given to present optimality conditions and mean
value theorems.
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1 Introduction

There is a lot of interests in the study of set-valued analysis and optimisation.
It is well known that set-valued optimisation has important applications in
engineering and game theory, see Aubin and Ekeland (1984) and the refer-
ences cited therein. The set-valued analysis has been presented in Aubin and
Frankowska (1990). Systematic study of set-valued optimisation has been
presented in Luc (1989) and Aubin and Ekeland (1984). An important aspect
in the set-valued optimisation is the study of a derivative or directional deri-
vative concept for a set-valued mapping. This has been initialized to the study
of subdifferentials of vector-valued functions, see Zowe (1974), Thibault
(1982), and Sawaragi et al (1985), Chen and Craven (1991) and Yang (1992).

* This research was supported by the Australian Research Council.
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The research of a derivative concept of a set-valued mapping has been
advanced by Borwein (1977), Corley (1988) and Luc (1991). In Jahn and
Rauh (1997), some studies have been done on the modification of contingent
derivatives of a set-valued mapping initially introduced in Aubin and Ekeland
(1984) and Luc (1991) to appropriately address optimality conditions of set-
valued optimisation. The results in Jahn and Rauh (1997) have been extended
in Chen and Jahn (1997) to establish the existence of a contingent derivative.

The Dini directional derivative has played an important role in nonsmooth
analysis and optimisation. For example, the Dini directional derivative for a
real-valued function has been applied to define various subdifferentials. Re-
cently, the upper and lower Dini directional derivatives for a scalar-valued
function have been used to define a convexificator for a continuous function in
Jeyakumar and Yang (1997). A mean value theorem is then established for
a class of continuous functions. A Dini directional derivative for a vector-
valued function is given in Valadir (1979) in terms of infimum. Recently a
generalized Dini directional derivative for a vector-valued function is defined
using the concept of a minimal element in Yang (1997) and applied to give
optimality conditions of a vector optimisation problem.

In this paper, two developments are associated to study set-valued map-
pings: the first one is the convexificator for a real-valued function given
in Jeyakumar and Yang (1997) in terms of Dini directional derivative and
the second one is a Dini directional derivative for a vector-valued function
introduced in Yang (1997). Set-valued upper and lower Dini directional deri-
vatives for a set-valued mapping are introduced in terms of a minimal element
and a maximal element respectively and applied to present optimality condi-
tions for a set-valued optimisation with a convex set constraint. Upper and
lower Jacobificators for a set-valued mapping are defined using the set-valued
Dini directional derivatives. It is shown that the convex subdifferential of a
cone convex function defined in Thibault (1982) is an example of an upper
Jacobificator. The optimality conditions obtained in terms of set-valued upper
and lower Dini directional derivative are applied to establish a mean value
theorem for a set-valued mapping. It will be shown that the conventional
mean value theorem can be derived as a special case.

2 Directional derivatives

Let X be a real topological vector space and Y be an ordered vector topology
space, in which relations are defined by a closed convex cone P with
int P # . In addition, Y is assumed to be a complete vector lattice, i.e.,
sup{y1, 2} exists for all y;,y, € Y and every bounded nonempty subset has
an infimum and a supremum. Let K = Y be a bounded nonempty subset. The
infimum and the supremum of K is denoted by Inf K and Sup K respectively.
The sets of minimal elements and maximal elements of K are defined respec-
tively by

V-min K={yeK|[({y}—-P)nK={y}t}
V-max K={yeK|({y}+P)nK={y}}.

Let L(X, Y) be the space of all continuous linear functions from X to Y.
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Let F: X — 2¥ be a set-valued mapping, i.e., for each x e X, F(x) is a
subset of Y. A function f : X — Y is said to be a continuous selection of Fif f
is continuous and f(x) € F(x), Vx € X. See Ding et al (1992). Denote by
CS(F) the set of all continuous selections of F. Assume that CS(F) # (.

Definition 2.1. Given x, d € X, u € F(x), define the limiting set of F at x in the
direction d with respect to u as

SO+ ud) —p for some f e CS(F),f(x) :,u}.

(1)

If F = f is a single-valued function, then the following limiting set of f at x in
the direction d is defined

z=Ilim

Y;(X; d) - {Z 10 t;
i 1

d) = {: )

- i Y T 1) f(X)}.

10 t;

For our approach in this paper, we need:

Assumption 2.1. The subset Y} (x,d) (and Yy(x,d)) has a minimal element and
a maximal element.

See Jahn (1986) for conditions on the existence of a minimal element.
Definition 2.2. Let F: X — 2V be a set-valued mapping. Let x, d € X and

1€ F(x). The upper and lower Dini-directional derivatives of F at x in the
direction d with respect to u are defined respectively by

Fl(x;d) = V-max Yf(x;d), F*(x;d)=V-min Y} (x;d).
It is clear that
Fi(xid) U FA(x;d) = YE(x;d)

Proposition 2.1. If Assumption 2.1 holds, then

(i) F{(x;d) # & and F*(x;d) # ;
(ii) F{(x;d) and F*(x;d) as mappings of d are positively homogeneous.

Proof: (i) follows from Assumption 2.1 and (ii) follows from Definitions 2.1
and 2.2. ]

Remark 2.1. Let F =f : X — Y be a single-valued function. In Yang (1997),

the subset Y (x;d) in (2) was defined and the upper and lower Dini-directional
derivatives were defined respectively by

f%(x;d) = V-max Yy(x,d), f(x;d)=V-min Ys(x,d).
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Remark 2.2. Recall that Thibault (1982) defined the following subset for a
single-valued Lipschitz function f : X — Y in the sense of Clarke

lim S (xi+ tid) _f(xi)}.

Xi—x,t;10 t

Zz =

qmaz%

It is clear that Y;(x,d) = Dr(x,d). When f'is a P-convex function (see Defi-
nition 3.1), Valadir (1972) defined the directional derivative

f1(x;d) = med 1) —/(x)

>0 t ’
and the subdifferential
0.f(x)={TeL(X,Y)|T(d) <f (x;d),Vd € X}.
It follows (Thibault (1982)) that
fL(x;d) = Sup{T(d) | T € 0./ (x)}, (3)

if £ (x;d) is continuous as a function of d.

3 Optimality conditions

In this section we apply the directional derivatives defined in the last section to
characterise optimality conditions for a set-valued optimization problem. This
optimality result will be applied to establish a mean value theorem for a set-
valued mapping in Section 5. We begin by presenting a characterisation of the
convexity of a set-valued mapping.

In the following, denote Ay + (1 — A)x by yAx.

Definition 3.1. Let C be a convex subset of X and F : X — 2Y. F is said to
be P-convex on C if

AF(y) + (1 — ))F(x) = F(yAx) + P,

forany x,y € C, . € (0,1). In particular, a single-valued function f : X — Y is
said to be P-convex on C if

Af )+ (1 =) f(x) ef(vix) + P,
forany x,ye C, 1€ (0,1).
We need the following assumptions.

Assumption 3.1. Let Y} (x;d) be defined as in (1). The domination property is
said to hold for Y} (x;d) if

Yf(x;d) = (V-min Y} (x;d) + P) n (V-max Yf(x;d) — P).
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Assumption 3.2. Let x, ye C. If ze F(yAx) + P, YA € (0,1), then there exists
f € CS(F) such that z € f (yJx) + P, YA e (0,1).

Note that Assumption 3.2 holds if F(x) =f(x)+ P, Vxe C and f is
P-convex.

Proposition 3.1. Let C be a convex subset of X and F : X — 2Y. If Assumption
3.2, and the mapping F is P-convex on C, then for any x, y € C and p € F(x),

F(y)—p< Ye(xy—x)+P.
If, in addition, Assumption 3.1 holds, then
F(y) —pu<= Fi(x;y —x) + P.
Proof: For any u e F(x), A€ (0,1),
AF(y)+ (1 — Du = F(yAx) + P.
For any w € F(y), by Assumption 3.2, there exists f € CS(F) such that
w+ (1 —=Npef(yix)+ P,
ie.

W_ﬂef(eri(yl—X))—ﬂJrP'

Thus
w—pe Yh(x;y—x)+ P.
Then
F(y)—p<= Ye(x;y—x)+P.
Furthermore, it follows from Assumptions 3.1 that
Y/ (x;y —x) = V-min Y/ (x;y — x) + P.
Thus
F(y)—p < Ff(x;y—x) + P. O
Consider the set-valued optimization problem (P)
Weak — min{F(x) | x € C},

where C is a subset of X and F : X — 2Y.
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Definition 3.2. (i) The point (xo, 1) € C x Y is said to be a weak minimiser of
(P) if e F(x), and

(F(x)—p)n—intP=, VxeC. 4)

(ii) The point (xo,u) € C x Y is said to be a weak maximiser of (P) if
we F(x), and

(F(x) —u)nintP =, VxeC.

An equivalent definition for a weak minimiser is given as follows: (xo, x) is
a weak minimiser of (P) if and only if x € F(xo), and

({u} —intP) " F(C) = &,

where F(C) = UxecF(x). See Luc (1989) and Chen and Jahn (1997).
Let the cone of feasible directions of C at x be defined by

S(xg,C)={deX |3ty >0, xo+td e C, VYt 0, 1]}
Theorem 3.1. Consider the set-valued optimization problem (P).
(i) If (xo,u) € C x Y is a weak minimiser of (P), then

YE(xo;d) n—intP = &, Vd € S(xo, C). (5)
In particular,

F¥(xp;d)n—int P = &, Vd e S(xo, C).

(ii) Assume that C is convex and F is P-convex. If Assumption 3.2 holds, (5)
holds and xy € C, u e F(xy), then (xo, u) is a weak minimiser of (P).

Proof: (i) Since (xg,#) = C x Y is a weak minimiser of (P), we have from (4)
(F(x) —u)n—intP =, VxeC.

Thus for any d € S(xy, C), there exists 7y > 0 such that
(F(xo+1td)—p)n—intP =&, Vite|0,1).

As int P is an open set, we have
Yi(xo;d) n—intP = &, Vd € S(xo, C).

(i) If (xo, ) € C x Y is not a weak minimiser of (P), there exists x € C,
& € F(x) such that

¢ —pue—intP.
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Since x — xp € S(xp, C), we have
Y} (x0;x — x0) 0 —int P = .
It follows from the P-convexity of F and Proposition 3.1 that
F(x) —u < YE(x0;x — x0) + P.
Thus
&—pe YE(xo;x — x0) + P.

There exists 7 € Y} (xo; x — xo), such that & — gen+ P. Then n e —int P, a
contradiction to (5). O

Remark 3.1. Similarly, if (xp,#) € C x Y is a weak maximiser of (P), then
Yi(xo;d) nintP = ¥, Vd e S(xo,C). (6)
In particular,
F(x0;d) nint P = &, Vd € S(xo, C).
Consider the following optimization problem (P;)
Weak — min { f(x) | x € C1, A(x) = b},
where C) is a convex subset of X, f: X — Y, 4: X — Z and Z is a real
topology vector space. Now let C = {xe X |x e C;,A(x) = b}. Assume that

xo € C is a weak minimizer of (P;). From Yang (1992), there exists a linear
operator T : X — Y such that

f(x)+ T(A(x) —b) — f(x0) ¢ —int P, Vxe Cy.
Without any difficulty under the current setting that X is a real topology
vector space and Y is an ordered vector topology space, one can establish the
continuity of T, see Wang (1986).

Hitherto, assume that 7 is continuous. For any d € S(xp, C), there exists
tp > 0,

f(xo+td)+ T(A(xo+td) — b) — f(x0) ¢ —int P, t€]0,1).
From the continuity of 7, we have

1" (x0;d) + (T o A)(d) ¢ —int P.

Assume that f’ (xo;d) is continuous as a function of d. From (3), for each
d € S(xo, C), there exists T € 0.f(xo) such that

Ty(d) + (T o A)(d) ¢ —int P.
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4 Jacobificators

Recall that g : X — R is a continuous real-valued function. The dual space of
X is denoted by X * and it is equipped with the weak* topology. Let x € X at
which ¢ is finite. The lower and upper Dini directional derivative of g at x in
the direction v are defined respectively by

g (x,v) := lim inf—g(x + ) —g(x)
o 110

gt (x,v) := lim supg(xﬂv—l)—g(ﬁ
t]0

The function g : X — IR is said to have a convexificator of g at x if there
exists a weak* compact convex subset 0%g(x) of the dual space X * satisfying,
forallve X,

(v max X,
x*e Bd’g(x)

gt(x,v) > max x*(v).
x*ed¥g(x)

See Jeyakumar and Yang (1997) and references cited therein for details.

One advantage of the introduction of a convexificator is that a Mean Value

Theorem can be established for a class of continuous functions.

In this section, we extend the above concept of a convexificator for a real-
valued function and introduce a Jacobificator of a set-valued mapping. We
show that for a P-convex function, the subdifferential 0. f(xp) is an example
of an upper Jacobificator.

Definition 4.1. Let F: X — 2Y be a set-valued mapping. Let xe X and

1 € F(x). Fis said to admit an upper Jacobificator at x with respect to u if there

is a compact convex subset 0 F(x) of L(X, Y) such that for any d € X,
Sup<aj F(x), d> € F(x;d) + P,

where the set {0 F(x),d) :={T(d)| T € 0, F(x)}.

Definition 4.2. Let F: X — 2Y be a set-valued mapping. Let xe X and

1€ F(x). Fis said to admit a lower Jacobificator at x with respect to u if there
is a compact convex subset 0, F(x) of L(X,Y) such that for any d € X,

Inf<{d, F(x),d) € F{(x;d) — P,
where the set <0, F(x),d) :={T(d)|T € d,F(x)}.
Definition 4.3. Let F: X — 2Y be a set-valued mapping. Let xe X and

ue F(x). Fis said to admit a Jacobificator 0,F (x) at x with respect to u if
04F (x) is both upper and lower Jacobificator of F at x with respect to p.
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Remark 4.1. (1) Assume that f : X — Y is a P-convex function on X and that
/" (x0;d) is continuous as a function of d. Then from (3)

Sup<d.f(x),dy = fL(x;d),
where {0.f(x),dy ={T(d)| T € 0.f(x)}. Thus 0.f(x) is an upper Jacobifi-
cator of fat x. '

() IfY=R F=g:X — R, P=R,, then 0,F (x) = 8¥g(x).
5 Mean value theorem

In this section, mean value theorems are derived for set-valued mappings
using the Jacobificator.

Lemma 5.1. Assume that (i) F : X — 2Y is a set-valued mapping, (ii) for each
x € X, F(x) is compact, (iii) F(a) and F(b) are singleton and (iv) Assumption
2.1 holds. Define H : [0,1] — 2Y by

H(t)=F(a+t(b—a))— F(a)+t(F(b) — F(a)), te]0,1].

Let ye (0,1), ue H(y) and ¢ = a+ y(b — a). Then there exists u' € F(c) such
that for any v e R,

YE(pv) = YV (c;0(b — a)) + v(F(a) — F(b)). (7)
Proof: Since p € H(y), there exists u! € F(c) such that

1= = F(a) + 9(F(b) - F(a)).
We have

H(y+tiv) —
1

_Fla+ (y+t0)(b - a)) + ti(F(a) — F(b)) — p!
I

F(a+y(b—a)+ tiw(b—a)) — u' + tw(F(a) — F(b))
1

_Plettetb =) =) - F )

Then (7) holds. O

Theorem 5.1. Assume that (i) F:X — 2Y is a set-valued mapping, and a,
be X, (ii) for each x € (a,b), F(x) is compact, F(a) and F(b) are singleton,
(iii) F admits a Jacobificator at every point on the interval (a,b), and (iv)
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Assumption 2.1 holds, then there exists ¢ € (a,b) such that

F(b) — F(a) ¢ (Sup{04F(c),b — ay + int P) U (Inf{d,F(c),b — a) — int P).
(8)
Proof: Define

Since F(x) is compact for every x € (a,b) and F(a) and F(b) are singleton, it
is clear that H(7) is compact for every 7 € [0,1]. So u {H(¢)|t € [0, 1]} is com-
pact. Thus H attains a weak minimiser or maximiser at some y € (0,1). As-
sume first that H attains a weak minimiser at some y € (0, 1). From Theorem
3.1 (i), there exists u € H(y) such that

Yi(y;v) n—intP= &, VveR.
Then from Lemma 5.1,

(Y (¢;0(b — a)) = vo(F(a) — F(b))) n—intP = &, VveR,

where ¢ =a+ y(b— a) and u' € F(c). Consequently, from Assumption 2.1,
F* (¢;v(b—a)) # &, and

(F" (c;v(b — a)) + v(F(a) — F(b))) n—intP = &, WveR.
Let v = 1. Then

(F*' (¢;b — a) + F(a) — F(b)) N —int P = . (9)
From Definition 4.1,

Sup(ﬁdF(c),b—a>eFﬁl(c;b—a)+P, Vde X. (10)
Then, from (9) and (10),

F(b) — F(a) ¢ Sup{d4F(c),b — ay + int P. (11)
Let v = —1. Then

(F*(¢c;a—b) + F(b) — F(a)) n—int P = . (12)
From Definition 4.1,

Sup<d,F(c),a — by e F* (c;a — b) + P. (13)
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Then from (12) and (13),

F(b) — F(a) ¢ —Sup{d,F(c),a — by —int P = Inf{d,F(c),b — ay — int P.
(14)

Combining (11) and (14), we have
F(b) — F(a) ¢ (Sup{04F(c),b — ay + int P) U (Inf{d,F(c),b — a) — int P).

Assume now that H attains a weak maximiser at some y € (0, 1). From (6),
there exists u € H(y) such that

Yi(y;v) nintP = &, VYoeR.
Then from Lemma 5.1,

(Y4 (c;0(b — a)) + v(F(a) — F(b))) nint P = &, WveR,
where ¢ = a + y(b — a) and u' € F(c). Consequently,

(Fﬁ] (c;o(b—a)) +v(F(a) — F(b)))nintP =, VYvelR.
As before, let v =1, —1 and apply Definition 4.1, we have

F(b) — F(a) ¢ Inf{0,F(c),b — ay — int P.

F(b) — F(a) ¢ Sup<d4F(c),b — a) + int P.
Therefore (8) holds. ]
Corollary 5.1. If f : X — Y is differentiable and a, b € X, then

() = 1(a) ¢ (Vf()(b — a) +int P) U (V/(e)(b — a) — int P),
where ¢ € (a,b).

Corollary 5.2. If f: X — Y is P-convex, and a, be X then there exists
c € (a,b) such that

f(b) —f(a) ¢ (Supld.f(c),b —ay +int P) U (Inf{d.f(c),b — ay — int P).
(15)

Proof: Define
h(t) = f(a+1b —a)) —f(a) +1(f(b) = f(a)), 1€][0,1].

Then
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Since fis P-convex, it is clear that /1 attains a minimal at some y € (0, 1). From
Theorem 3.1 (i), we have

Yi(y;v) n—intP = &, VoeR.
Then from Lemma 5.1,

(Yr(c;v(b —a)) +u(f(a) —f (b)) n—int P = &, WveR,
where ¢ = a + y(b — a). Consequently,

(S (e;v(b = a)) +o(f(a) —f (b)) N —int P = &, VveR.

Then the rest of the proof is similar to that of Theorem 5.1 and is omitted.
Then, (15) holds. ]

Next result shows that for a real-valued function, Theorem 5.1 is reduced
to a Mean Value Theorem in Jeyakumar and Yang (1997).

Corollary 5.3. Let a, be X and let g: X — R be a continuous function. As-
sume, that, for each x € (a,b), 09 g(x) is a convexificators of g at x. Then, there
exists ¢ € (a,b) and x* € 0¥g(c) such that

g9(b) —g(a) = x*(b - a). (16)
Proof: 1t follows from Remark 4.1 (ii) and Theorem 5.1 that

g(b) — g(a) ¢ (Sup<d¥g(c),b — a) + int P) U (Inf{d%y(c),b — a) — int P).
where P = R,. Thus

Inf{0%(c), b — a) < g(b) — g(a) < Sup<d¥g(c),b — ad.

Since 0¥g(x) is compact and convex for each x, there exist ¢ € (a,b) and
x* € 3%g(c) such that (16) holds. O
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