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Abstract. Set-valued optimisation is an important topic and has wide appli-
cations in engineering and game theory. An interesting topic in set-valued
optimisation is the appropriate introduction of a derivative concept for set-
valued mappings. In this paper, Dini directional derivatives are introduced
and investigated for set-valued mappings. A derivative concept of a Jacobi®-
cator for set-valued mappings is introduced in terms of the Dini directional
derivatives. Applications are given to present optimality conditions and mean
value theorems.
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1 Introduction

There is a lot of interests in the study of set-valued analysis and optimisation.
It is well known that set-valued optimisation has important applications in
engineering and game theory, see Aubin and Ekeland (1984) and the refer-
ences cited therein. The set-valued analysis has been presented in Aubin and
Frankowska (1990). Systematic study of set-valued optimisation has been
presented in Luc (1989) and Aubin and Ekeland (1984). An important aspect
in the set-valued optimisation is the study of a derivative or directional deri-
vative concept for a set-valued mapping. This has been initialized to the study
of subdi¨erentials of vector-valued functions, see Zowe (1974), Thibault
(1982), and Sawaragi et al (1985), Chen and Craven (1991) and Yang (1992).
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The research of a derivative concept of a set-valued mapping has been
advanced by Borwein (1977), Corley (1988) and Luc (1991). In Jahn and
Rauh (1997), some studies have been done on the modi®cation of contingent
derivatives of a set-valued mapping initially introduced in Aubin and Ekeland
(1984) and Luc (1991) to appropriately address optimality conditions of set-
valued optimisation. The results in Jahn and Rauh (1997) have been extended
in Chen and Jahn (1997) to establish the existence of a contingent derivative.

The Dini directional derivative has played an important role in nonsmooth
analysis and optimisation. For example, the Dini directional derivative for a
real-valued function has been applied to de®ne various subdi¨erentials. Re-
cently, the upper and lower Dini directional derivatives for a scalar-valued
function have been used to de®ne a convexi®cator for a continuous function in
Jeyakumar and Yang (1997). A mean value theorem is then established for
a class of continuous functions. A Dini directional derivative for a vector-
valued function is given in Valadir (1979) in terms of in®mum. Recently a
generalized Dini directional derivative for a vector-valued function is de®ned
using the concept of a minimal element in Yang (1997) and applied to give
optimality conditions of a vector optimisation problem.

In this paper, two developments are associated to study set-valued map-
pings: the ®rst one is the convexi®cator for a real-valued function given
in Jeyakumar and Yang (1997) in terms of Dini directional derivative and
the second one is a Dini directional derivative for a vector-valued function
introduced in Yang (1997). Set-valued upper and lower Dini directional deri-
vatives for a set-valued mapping are introduced in terms of a minimal element
and a maximal element respectively and applied to present optimality condi-
tions for a set-valued optimisation with a convex set constraint. Upper and
lower Jacobi®cators for a set-valued mapping are de®ned using the set-valued
Dini directional derivatives. It is shown that the convex subdi¨erential of a
cone convex function de®ned in Thibault (1982) is an example of an upper
Jacobi®cator. The optimality conditions obtained in terms of set-valued upper
and lower Dini directional derivative are applied to establish a mean value
theorem for a set-valued mapping. It will be shown that the conventional
mean value theorem can be derived as a special case.

2 Directional derivatives

Let X be a real topological vector space and Y be an ordered vector topology
space, in which relations are de®ned by a closed convex cone P with
intP0q. In addition, Y is assumed to be a complete vector lattice, i.e.,
supfy1; y2g exists for all y1; y2 A Y and every bounded nonempty subset has
an in®mum and a supremum. Let K HY be a bounded nonempty subset. The
in®mum and the supremum of K is denoted by Inf K and SupK respectively.
The sets of minimal elements and maximal elements of K are de®ned respec-
tively by

V-min K � fy A K j �fyg ÿ P�XK � fygg;

V-max K � fy A K j �fyg � P�XK � fygg:

Let L�X ;Y� be the space of all continuous linear functions from X to Y.
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Let F : X ! 2Y be a set-valued mapping, i.e., for each x A X , F�x� is a
subset of Y. A function f : X ! Y is said to be a continuous selection of F if f
is continuous and f �x� A F �x�, Ex A X . See Ding et al (1992). Denote by
CS�F � the set of all continuous selections of F. Assume that CS�F�0q.

De®nition 2.1. Given x, d A X , m A F �x�, de®ne the limiting set of F at x in the
direction d with respect to m as

Y
m

F �x; d� � z

���� z � lim
ti#0

f �x� tid� ÿ m

ti
for some f A CS�F�; f �x� � m

� �
:

�1�

If F � f is a single-valued function, then the following limiting set of f at x in
the direction d is de®ned

Yf �x; d� � z

���� z � lim
ti#0

f �x� tid� ÿ f �x�
ti

� �
: �2�

For our approach in this paper, we need:

Assumption 2.1. The subset Y
m

F �x; d� (and Yf �x; d�) has a minimal element and
a maximal element.

See Jahn (1986) for conditions on the existence of a minimal element.

De®nition 2.2. Let F : X ! 2Y be a set-valued mapping. Let x, d A X and
m A F �x�. The upper and lower Dini-directional derivatives of F at x in the
direction d with respect to m are de®ned respectively by

F
m
��x; d� � V-max Y

m
F �x; d�; F m

ÿ�x; d� � V-min Y
m

F �x; d�:

It is clear that

F
m
��x; d�WF m

ÿ�x; d�HY
m

F �x; d�:

Proposition 2.1. If Assumption 2.1 holds, then

(i) F
m
��x; d�0q and F m

ÿ�x; d�0q;

(ii) F
m
��x; d� and F m

ÿ�x; d� as mappings of d are positively homogeneous.

Proof: (i) follows from Assumption 2.1 and (ii) follows from De®nitions 2.1
and 2.2. r

Remark 2.1. Let F � f : X ! Y be a single-valued function. In Yang (1997),
the subset Yf �x; d� in (2) was de®ned and the upper and lower Dini-directional
derivatives were de®ned respectively by

f d
� �x; d� � V-max Yf �x; d�; f d

ÿ �x; d� � V-min Yf �x; d�:
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Remark 2.2. Recall that Thibault (1982) de®ned the following subset for a
single-valued Lipschitz function f : X ! Y in the sense of Clarke

Df �x; d� � z

���� z � lim
xi!x;ti#0

f �xi � tid� ÿ f �xi�
ti

� �
:

It is clear that Yf �x; d�HDf �x; d�. When f is a P-convex function (see De®-
nition 3.1), Valadir (1972) de®ned the directional derivative

f 0ÿ�x; d� � Inf
t>0

f �x� td� ÿ f �x�
t

;

and the subdi¨erential

qc f �x� � fT A L�X ;Y � jT�d�U f 0ÿ�x; d�; Ed A Xg:

It follows (Thibault (1982)) that

f 0ÿ�x; d� � SupfT�d� jT A qc f �x�g; �3�

if f 0ÿ�x; d� is continuous as a function of d.

3 Optimality conditions

In this section we apply the directional derivatives de®ned in the last section to
characterise optimality conditions for a set-valued optimization problem. This
optimality result will be applied to establish a mean value theorem for a set-
valued mapping in Section 5. We begin by presenting a characterisation of the
convexity of a set-valued mapping.

In the following, denote ly� �1ÿ l�x by ylx.

De®nition 3.1. Let C be a convex subset of X and F : X ! 2Y . F is said to
be P-convex on C if

lF �y� � �1ÿ l�F�x�HF �ylx� � P;

for any x, y A C, l A �0; 1�. In particular, a single-valued function f : X ! Y is
said to be P-convex on C if

l f �y� � �1ÿ l� f �x� A f �ylx� � P;

for any x, y A C, l A �0; 1�.

We need the following assumptions.

Assumption 3.1. Let Y
m

F �x; d� be de®ned as in (1). The domination property is
said to hold for Y

m
F �x; d� if

Y
m

F �x; d�H �V-min Y
m

F �x; d� � P�X �V-max Y
m

F �x; d� ÿ P�:
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Assumption 3.2. Let x, y A C. If z A F �ylx� � P, El A �0; 1�, then there exists
f A CS�F� such that z A f �ylx� � P, El A �0; 1�.

Note that Assumption 3.2 holds if F�x� � f �x� � P, Ex A C and f is
P-convex.

Proposition 3.1. Let C be a convex subset of X and F : X ! 2Y . If Assumption
3.2, and the mapping F is P-convex on C, then for any x, y A C and m A F �x�,

F �y� ÿ mHY
m

F �x; yÿ x� � P:

If, in addition, Assumption 3.1 holds, then

F �y� ÿ mHF m
ÿ�x; yÿ x� � P:

Proof: For any m A F�x�, l A �0; 1�,

lF �y� � �1ÿ l�mHF �ylx� � P:

For any w A F�y�, by Assumption 3.2, there exists f A CS�F � such that

lw� �1ÿ l�m A f �ylx� � P;

i.e.,

wÿ m A
f �x� l�yÿ x�� ÿ m

l
� P:

Thus

wÿ m A Y
m

F �x; yÿ x� � P:

Then

F �y� ÿ mHY
m

F �x; yÿ x� � P:

Furthermore, it follows from Assumptions 3.1 that

Y
m

F �x; yÿ x�HV-min Y
m

F �x; yÿ x� � P:

Thus

F �y� ÿ mHF m
ÿ�x; yÿ x� � P: r

Consider the set-valued optimization problem (P)

WeakÿminfF�x� j x A Cg;

where C is a subset of X and F : X ! 2Y .
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De®nition 3.2. (i) The point �x0; m� A C � Y is said to be a weak minimiser of
(P) if m A F�x0�, and

�F �x� ÿ m�XÿintP �q; Ex A C: �4�

(ii) The point �x0; m� A C � Y is said to be a weak maximiser of (P) if
m A F �x0�, and

�F �x� ÿ m�X intP �q; Ex A C:

An equivalent de®nition for a weak minimiser is given as follows: �x0; m� is
a weak minimiser of (P) if and only if m A F�x0�, and

�fmg ÿ intP�XF �C� �q;

where F �C� �6
x AC

F �x�. See Luc (1989) and Chen and Jahn (1997).

Let the cone of feasible directions of C at x be de®ned by

S�x0;C� � fd A X j bt0 > 0; x0 � td A C; Et A �0; t0�g:

Theorem 3.1. Consider the set-valued optimization problem (P).

(i) If �x0; m� A C � Y is a weak minimiser of (P), then

Y
m

F �x0; d�XÿintP �q; Ed A S�x0;C�: �5�

In particular,

F m
ÿ�x0; d�XÿintP �q; Ed A S�x0;C�:

(ii) Assume that C is convex and F is P-convex. If Assumption 3.2 holds, (5)
holds and x0 A C, m A F�x0�, then �x0; m� is a weak minimiser of (P).

Proof: (i) Since �x0; m�HC � Y is a weak minimiser of (P), we have from (4)

�F �x� ÿ m�XÿintP �q; Ex A C:

Thus for any d A S�x0;C�, there exists t0 > 0 such that

�F �x0 � td� ÿ m�XÿintP �q; Et A �0; t0�:

As intP is an open set, we have

Y
m

F �x0; d�XÿintP �q; Ed A S�x0;C�:

(ii) If �x0; m� A C � Y is not a weak minimiser of (P), there exists x A C,
x A F �x� such that

xÿ m A ÿintP:

278 X. Q. Yang



Since xÿ x0 A S�x0;C�, we have

Y
m

F �x0; xÿ x0�XÿintP �q:

It follows from the P-convexity of F and Proposition 3.1 that

F �x� ÿ mHY
m

F �x0; xÿ x0� � P:

Thus

xÿ m A Y
m

F �x0; xÿ x0� � P:

There exists h A Y
m

F �x0; xÿ x0�, such that xÿ m A h� P. Then h A ÿintP, a
contradiction to (5). r

Remark 3.1. Similarly, if �x0; m� A C � Y is a weak maximiser of (P), then

Y
m

F �x0; d�X intP �q; Ed A S�x0;C�: �6�

In particular,

F
m
��x0; d�X intP �q; Ed A S�x0;C�:

Consider the following optimization problem (P1)

Weakÿmin f f �x� j x A C1;A�x� � bg;

where C1 is a convex subset of X, f : X ! Y , A : X ! Z and Z is a real
topology vector space. Now let C � fx A X j x A C1;A�x� � bg. Assume that
x0 A C is a weak minimizer of (P1). From Yang (1992), there exists a linear
operator T : X ! Y such that

f �x� � T�A�x� ÿ b� ÿ f �x0� B ÿintP; Ex A C1:

Without any di½culty under the current setting that X is a real topology
vector space and Y is an ordered vector topology space, one can establish the
continuity of T, see Wang (1986).

Hitherto, assume that T is continuous. For any d A S�x0;C�, there exists
t0 > 0,

f �x0 � td� � T�A�x0 � td� ÿ b� ÿ f �x0� B ÿintP; t A �0; t0�:

From the continuity of T, we have

f 0ÿ�x0; d� � �T � A��d� B ÿintP:

Assume that f 0ÿ�x0; d� is continuous as a function of d. From (3), for each
d A S�x0;C�, there exists Td A qc f �x0� such that

Td�d� � �T � A��d� B ÿintP:
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4 Jacobi®cators

Recall that g : X ! R is a continuous real-valued function. The dual space of
X is denoted by X � and it is equipped with the weak* topology. Let x A X at
which g is ®nite. The lower and upper Dini directional derivative of g at x in
the direction v are de®ned respectively by

gÿ�x; v� :� lim inf
t#0

g�x� tv� ÿ g�x�
t

g��x; v� :� lim sup
t#0

g�x� tv� ÿ g�x�
t

:

The function g : X ! R is said to have a convexi®cator of g at x if there
exists a weak* compact convex subset qdjg�x� of the dual space X � satisfying,
for all v A X ,

gÿ�x; v�U max
x� A q djg�x�

x��v�;

g��x; v�V max
x� A q djg�x�

x��v�:

See Jeyakumar and Yang (1997) and references cited therein for details.
One advantage of the introduction of a convexi®cator is that a Mean Value
Theorem can be established for a class of continuous functions.

In this section, we extend the above concept of a convexi®cator for a real-
valued function and introduce a Jacobi®cator of a set-valued mapping. We
show that for a P-convex function, the subdi¨erential qc f �x0� is an example
of an upper Jacobi®cator.

De®nition 4.1. Let F : X ! 2Y be a set-valued mapping. Let x A X and
m A F �x�. F is said to admit an upper Jacobi®cator at x with respect to m if there
is a compact convex subset q�d F�x� of L�X ;Y � such that for any d A X ,

Suphq�d F�x�; di A F m
ÿ�x; d� � P;

where the set hq�d F�x�; di :� fT�d� jT A q�d F�x�g.

De®nition 4.2. Let F : X ! 2Y be a set-valued mapping. Let x A X and
m A F �x�. F is said to admit a lower Jacobi®cator at x with respect to m if there
is a compact convex subset qÿd F�x� of L�X ;Y � such that for any d A X ,

Infhqÿd F �x�; di A F
m
��x; d� ÿ P;

where the set hqÿd F�x�; di :� fT�d� jT A qÿd F�x�g.

De®nition 4.3. Let F : X ! 2Y be a set-valued mapping. Let x A X and
m A F �x�. F is said to admit a Jacobi®cator qdF�x� at x with respect to m if
qdF�x� is both upper and lower Jacobi®cator of F at x with respect to m.
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Remark 4.1. (i) Assume that f : X ! Y is a P-convex function on X and that
f 0ÿ�x0; d� is continuous as a function of d. Then from (3)

Suphqc f �x�; di � f 0ÿ�x; d�;

where hqc f �x�; di � fT�d� jT A qc f �x�g. Thus qc f �x� is an upper Jacobi®-
cator of f at x.

(ii) If Y � R, F � g : X ! R, P � R�, then qdF �x� � qdjg�x�.

5 Mean value theorem

In this section, mean value theorems are derived for set-valued mappings
using the Jacobi®cator.

Lemma 5.1. Assume that (i) F : X ! 2Y is a set-valued mapping, (ii) for each
x A X , F�x� is compact, (iii) F �a� and F �b� are singleton and (iv) Assumption

2.1 holds. De®ne H : �0; 1� ! 2Y by

H�t� � F�a� t�bÿ a�� ÿ F�a� � t�F�b� ÿ F�a��; t A �0; 1�:

Let g A �0; 1�, m A H�g� and c � a� g�bÿ a�. Then there exists m1 A F �c� such
that for any v A R,

Y
m

H�g; v� � Y
m1

F �c; v�bÿ a�� � v�F�a� ÿ F�b��: �7�

Proof: Since m A H�g�, there exists m1 A F�c� such that

m � m1 ÿ F �a� � g�F �b� ÿ F �a��:

We have

H�g� tiv� ÿ m

ti

� F�a� �g� tiv��bÿ a�� � tiv�F�a� ÿ F�b�� ÿ m1

ti

� F�a� g�bÿ a� � tiv�bÿ a�� ÿ m1 � tiv�F�a� ÿ F�b��
ti

� F�c� tiv�bÿ a�� ÿ m1

ti
� v�F�a� ÿ F�b��:

Then (7) holds. r

Theorem 5.1. Assume that (i) F : X ! 2Y is a set-valued mapping, and a,
b A X , (ii) for each x A �a; b�, F�x� is compact, F �a� and F�b� are singleton,
(iii) F admits a Jacobi®cator at every point on the interval �a; b�, and (iv)
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Assumption 2.1 holds, then there exists c A �a; b� such that

F �b� ÿ F �a� B �SuphqdF�c�; bÿ ai� intP�W �InfhqdF �c�; bÿ aiÿ intP�:
�8�

Proof: De®ne

H�t� � F�a� t�bÿ a�� ÿ F�a� � t�F�b� ÿ F�a��; t A �0; 1�:

Then

H�0� � H�1� � 0:

Since F�x� is compact for every x A �a; b� and F�a� and F �b� are singleton, it
is clear that H�t� is compact for every t A �0; 1�. So W fH�t�jt A �0; 1�g is com-
pact. Thus H attains a weak minimiser or maximiser at some g A �0; 1�. As-
sume ®rst that H attains a weak minimiser at some g A �0; 1�. From Theorem
3.1 (i), there exists m A H�g� such that

Y
m

H�g; v�XÿintP �q; Ev A R:

Then from Lemma 5.1,

�Y m1

F �c; v�bÿ a�� � v�F �a� ÿ F �b���XÿintP �q; Ev A R;

where c � a� g�bÿ a� and m1 A F�c�. Consequently, from Assumption 2.1,
F m1

ÿ �c; v�bÿ a��0q, and

�F m1

ÿ �c; v�bÿ a�� � v�F�a� ÿ F�b���XÿintP �q; Ev A R:

Let v � 1. Then

�F m1

ÿ �c; bÿ a� � F �a� ÿ F �b��XÿintP �q: �9�

From De®nition 4.1,

SuphqdF �c�; bÿ ai A F m1

ÿ �c; bÿ a� � P; Ed A X : �10�

Then, from (9) and (10),

F �b� ÿ F �a� B SuphqdF�c�; bÿ ai� intP: �11�

Let v � ÿ1. Then

�F m1

ÿ �c; aÿ b� � F �b� ÿ F �a��XÿintP �q: �12�

From De®nition 4.1,

SuphqdF �c�; aÿ bi A F m1

ÿ �c; aÿ b� � P: �13�
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Then from (12) and (13),

F �b� ÿ F �a� B ÿSuphqsF �c�; aÿ biÿ intP � InfhqsF�c�; bÿ aiÿ intP:

�14�

Combining (11) and (14), we have

F �b� ÿ F �a� B �SuphqdF�c�; bÿ ai� intP�W �InfhqdF �c�; bÿ aiÿ intP�:

Assume now that H attains a weak maximiser at some g A �0; 1�. From (6),
there exists m A H�g� such that

Y
m

H�g; v�X intP �q; Ev A R:

Then from Lemma 5.1,

�Y m1

F �c; v�bÿ a�� � v�F�a� ÿ F�b���X intP �q; Ev A R;

where c � a� g�bÿ a� and m1 A F �c�. Consequently,

�F m1

� �c; v�bÿ a�� � v�F�a� ÿ F�b���X intP �q; Ev A R:

As before, let v � 1;ÿ1 and apply De®nition 4.1, we have

F�b� ÿ F�a� B InfhqdF�c�; bÿ aiÿ intP:

F�b� ÿ F�a� B SuphqdF �c�; bÿ ai� intP:

Therefore (8) holds. r

Corollary 5.1. If f : X ! Y is di¨erentiable and a, b A X , then

f �b� ÿ f �a� B �`f �c��bÿ a� � intP�W �`f �c��bÿ a� ÿ intP�;

where c A �a; b�.

Corollary 5.2. If f : X ! Y is P-convex, and a, b A X then there exists
c A �a; b� such that

f �b� ÿ f �a� B �Suphqc f �c�; bÿ ai� intP�W �Infhqc f �c�; bÿ aiÿ intP�:
�15�

Proof: De®ne

h�t� � f �a� t�bÿ a�� ÿ f �a� � t� f �b� ÿ f �a��; t A �0; 1�:

Then

h�0� � h�1� � 0:
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Since f is P-convex, it is clear that h attains a minimal at some g A �0; 1�. From
Theorem 3.1 (i), we have

Yh�g; v�XÿintP �q; Ev A R:

Then from Lemma 5.1,

�Yf �c; v�bÿ a�� � v� f �a� ÿ f �b���XÿintP �q; Ev A R;

where c � a� g�bÿ a�. Consequently,

� fÿ�c; v�bÿ a�� � v� f �a� ÿ f �b���XÿintP �q; Ev A R:

Then the rest of the proof is similar to that of Theorem 5.1 and is omitted.
Then, (15) holds. r

Next result shows that for a real-valued function, Theorem 5.1 is reduced
to a Mean Value Theorem in Jeyakumar and Yang (1997).

Corollary 5.3. Let a, b A X and let g : X ! R be a continuous function. As-
sume, that, for each x A �a; b�, qdjg�x� is a convexi®cators of g at x. Then, there
exists c A �a; b� and x� A qdjg�c� such that

g�b� ÿ g�a� � x��bÿ a�: �16�

Proof: It follows from Remark 4.1 (ii) and Theorem 5.1 that

g�b� ÿ g�a� B �Suphqdjg�c�; bÿ ai� intP�W �Infhqdjg�c�; bÿ aiÿ intP�:

where P � R�. Thus

Infhqdjg�c�; bÿ aiU g�b� ÿ g�a�U Suphqdjg�c�; bÿ ai:

Since qdjg�x� is compact and convex for each x, there exist c A �a; b� and
x� A qdjg�c� such that (16) holds. r
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