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Abstract. One of the main di½culties in nonsmooth analysis is to devise cal-
culus rules. It is our purpose here to show that a certain cooperative behavior
between functions (resp. sets, resp. multifunctions) yields calculus rules for
subdi¨erentials (resp. normal cones, resp. coderivatives). In previous contri-
butions, the quali®cation conditions ensuring calculus rules were given in a
non symmetric way. The new conditions can be combined easily and encom-
pass various criteria. We also address the important question of the extension
of calculus rules from the Lipschitz case to the general case.
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1. Subdi¨erentials

There are several ways of presenting subdi¨erentials (see for instance [13],
[16], [39], and their references). As noticed by several authors, a uni®ed
approach through a set of general properties is convenient: in such a way,
speci®c constructions can be avoided for most developments. In the sequel, we
denote by X a class of normed vector spaces (n.v.s.), for instance the class of
all Banach spaces, the class of separable spaces or the class of Asplund spaces.
For X in X, F�X � denotes a subset of the set of lower semicontinuous func-
tions from X to R. � RW fyg.

We consider a subdi¨erential q associated with the families X, F as a
mapping which associates to any X in X, f A F�X�, x A X a subset qf �x� of
X � in such a way that the following properties are satis®ed (here L�X ;Y �
denotes the space of linear continuous maps from X to Y, A A L�X ;Y�, b A Y ,
c A R�)

(S1) If f �x� �y then qf �x� is empty;
(S2) if f and g coincide on some neighborhood of x then qf �x� � qg�x�;



(S3) if f is convex then qf �x� � fx� : f � � �V x�� � � � f �x� ÿ hx�; xig;
(S4) if f attains at x a local minimum then 0 A qf �x�;
(S5) if X � Y � Z, f �y; z� � g�y� � h�z� then qf �y; z�H qg�y� � qh�z�;
(S6) if f � � � � cg�A� � ��b�, with A�X� �Y then qf �x�Hcqg�A�x��b��A.

Related axioms can be given to introduce a notion of normal cone to a subset
S of X belonging to a certain family C�X� of subsets C of X. We suppose that
for each f A F�X � the epigraph Ef � epi f of f given by Ef :� f�x; r� A X �
R : rV f �x�g belongs to C�X �R�. Given a subdi¨erential q the normal cone
to S at x can be introduced either as qiS�x�, where iS is the indicator function
of S (iS�x� � 0 for x A S,y for x A X nS) else as the set given by

N�S; x� :� R�qdS�x�

where dS is the distance function to S : dS�x� :� d�x;S� :� infy AS d�x; y�.
Here we choose the second process as a de®nition of the normal cone. In turn,
starting from a subdi¨erential q de®ned on the class of locally Lipschitzian
functions, the normal cone concept enables to extend to any function the
subdi¨erential q by setting

qf �x� :� fx� : �x�;ÿ1� A N�Ef ; xf �g with xf :� �x; f �x��

when f �x� is ®nite, the empty set otherwise. Taking the sum norm on prod-
ucts, one shows easily the following result.

Proposition 1.1. If q satis®es properties (S1)±(S5) on the class of Lipschitzian
functions, then its extension de®ned as above satis®es the same properties on the
class of l.s.c. functions.

Examples. The main examples we have in mind besides the circa-
subdi¨erential of Clarke [6], the moderate subdi¨erential of Michel-Penot
[28] and the b-subdi¨erential of Treiman [44] are the following ones.

1) The FreÂchet subdi¨erential of f at x is the set qÿf �x� of all vectors x�
satisfying

lim inf
kuk!0�

kukÿ1� f �x� u� ÿ f �x� ÿ hx�; ui�V 0:

2) The Hadamard (or contingent) subdi¨erential consists of all x� satisfying

hx�; uiU f 0�x; u� :� lim inf
�t;v�!�0�;u�

tÿ1� f �x� tv� ÿ f �x��; Eu A X :

These two preceding examples are particular cases of the notion of sub-
di¨erential associated to a bornology B. In the ®rst case one takes for B the
whole family of bounded subsets; in the second case one takes for B the
family of compact subsets.

3) The viscosity subdi¨erentials which are de®ned with the help of auxili-
ary smooth functions (see [3], [8], [16]). They are of much use in the study of
Hamilton-Jacobi equations.
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These three classes of subdi¨erentials can be considered as forming the
group of so-called elementary subdi¨erentials.

Important procedures enable one to get other classes of subdi¨erentials.
4) The limiting or stabilization procedure. Starting with any subdi¨erential

q, one de®nes a new subdi¨erential q called the limiting or stabilized sub-
di¨erential associated with q (see [25], [29]±[33] and their references). It is
obtained as follows: x� belongs to qf �x� if it is a weak* cluster point of a
sequence �x�n � such that x�n A qf �xn� for each n, where �xn� ! x and
� f �xn�� ! f �x�. A similar de®nition holds for normal cones.

5) The approximation and stabilization procedure (see [13], [16]). Given a
Lipschitzian function f with rate c and an element V of the family V of vector
subspaces of X, one sets

qV f �x� � fx� : x� jV A q� f jV��x�g

and one de®nes the approximate subdi¨erential of f at x by

q̂f �x� � 7
V AV

lim sup
u!x

qV f �u�X cBX�:

In the general case one de®nes q̂f �x� as above, using the normal cone to the
epigraph of f.

Let us note the following result whose proof is easy.

Proposition 1.2. If q is a subdi¨erential satisfying properties (S1)±(S6), then
the limiting subdi¨erential q satis®es the same properties.

2 Additional properties of subdi¨erentials

The following crucial homotonicity (or isotonicity or monotonicity) property
corresponds to an antitonicity property of the normal cone associated with the
subdi¨erential. It ensures that the subdi¨erential has a certain accurateness.
On the contrary, a subdi¨erential which does not satisfy it cannot be very
precise.

De®nition 2.1. ([39]) The subdi¨erential q is said to be homotone if

f V g; f �x0� � g�x0� ) qf �x0�I qg�x0�:

The elementary subdi¨erentials are homotone. Although this important
property is not shared by other subdi¨erentials such as the limiting sub-
di¨erentials, the Clarke subdi¨erential, the moderate subdi¨erential and the
approximate subdi¨erential, one can detect a weaker property which may
serve as a substitute in certain situations.

De®nition 2.2. The subdi¨erential q is said to be quasi-homotone relatively to a
class N�X� of compatible norms on X if for any f A F�X �, any subset S of X
one has, for the distance function dS associated with a norm in N�X�,

f V dS; f jS � 0 ) Ex0 A S qf �x0�I qdS�x0�
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If one can take for N�X� the class of all compatible norms on X, we sim-
ply say that q is quasi-homotone. This property is satis®ed for the limiting
FreÂchet subdi¨erential in Asplund spaces and for the approximate sub-
di¨erential in any Banach space (thanks to the Io¨e's separable reduction
principle [14]). It has been recently proved in [41] that it is also satis®ed for the
Clarke subdi¨erential. The following two consequences are worth noticing.

Proposition 2.3. If q is quasi-homotone, then for any subset S of X and any
x0 A S on has �0; 1�qdS�x0� � qdS�x0�.

Proof. Given r A �0; 1�, taking f � rÿ1 dS we get that qdS�x0�H rÿ1qdS�x0�.
Since dS attains its in®mum at x0 we also have 0 : qdS�x0�H qdS�x0�. Thus
�0; 1�qdS�x0�H qdS�x0�; the reverse inclusion is obvious. r

Proposition 2.4. If q is quasi-homotone relatively to a class N�X� of compatible
norms on X, then the normal cone associated with q does not depend on the
choice of the norm in N�X �.

Proof. Let k � k0 be another norm in N�X�: for some b; c > 0 one has

bk � kU k � k0U ck � k;

so that, for any subset S of X one has for the associated distance function d 0S

bdS U d 0S U cdS:

Then it follows from the quasi-homotonicity property with f :� cÿ1d 0S that
qd 0S�x0�I cqdS�x0�. Similarly, assuming that q is quasi-homotone with respect
to the norm k � k0 we get bqdS�x0�I qd 0S�x0�. r

Moreover quasi-homotonicity will play a key role when dealing with the
following linear estimate (LE) around x0 for the distance functions associated
with the sets of a family S1; . . . ;Sk with x0 A S :� S1 X � � � XSk; here N�x0�
denotes the family of neighborhoods of x0.

�LE� for some c > 0 and some V A N�x0� : Ev A V

d�v;S�U c
Xk

i�1
d�v;Si�:

The estimate (LE) and its consequences have been studied by a number of
authors including Federer [9], Io¨e [13]±[16], Clarke-Raissi [7], Jourani [20],
Jourani-Thibault [23]±[24], AzeÂ-Chou-Penot [1].

De®nition 2.5. The subdi¨erential q is said to satisfy the (exact) sum rule on
the class F if for any ®nite subset f f1; . . . ; fkg of F�X� and any x A
dom f1 X � � � X dom fk

q� f1 � � � � � fk��x�H qf1�x� � � � � � qfk�x�;
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provided the following linear-rate metric quali®cation condition is satis®ed:

(LRQC) there exist c > 0, r > 0, U A N�x� such that the inequality

d u;
X

ri

� �
; epi

X
fi

� �
U c

X
d��u; ri�; epi fi�

holds for all u A U and all ri A � fi�x� ÿ r; fi�x� � r�.

This condition is satis®ed when all the functions but one at most are
Lipschitzian.

The notions we delineated enable us to get an easy proof to the following
rule for the calculus of the normal cone to an intersection.

Proposition 2.6. Suppose q is quasi-homotone and satis®es the sum rule on the
class of Lipschitzian functions. Let S1; . . . ;Sk be closed subsets of X satisfying
the linear estimate (LE) around x A S :� S1 X � � � XSk. Then

N�S; x�HN�S1; x� � � � � �N�Sk; x�:

Proof. Let us set f �u� :� c
Pk

i�1 d�u;Si�, so that f �u�V d�u;S� for u A V and
f �u� � 0 for each u A S. Then, as q is quasi-homotone and satis®es the sum
rule for Lipschitzian functions we have

qdS�x�H qf �x�H
Xk

i�1
cqdSi

�x�:

Taking the cones generated by these sets we get the announced inclusion. r

A number of calculus rules can be derived in a simple way from a relation
pertaining to the subdi¨erential of a performance function (see [17]). Recall
that the performance function p associated with a function f on the product of
two Banach spaces W and X is the function given by

p�w� � min
x AX

f �w; x�:

The following notion (often reproduced under di¨erent guises) will be needed.

De®nition 2.7. ([35]) Given a multifunction S : W x X and w A W , BHW ,
C HX , S is called lower semicontinuous at �w;C� on B if for any net �wi�i A I
in B converging to w, there exists a subnet �wi�k��k AK and a net �xk�k AK in D
converging to a certain x A C such that xk A S�wi�k�� for each k A K .

When C is a singleton fxg, this de®nition corresponds to the usual lower
semicontinuity of S at �w; x�. Another extreme case is when C � X . Inter-
mediate cases such as C � S�w� may also be of an interest. It will be con-
venient to adopt the following terminology.

De®nition 2.8. Let us say that q satis®es property (P) or is performable if
whenever f and p are as above and the solution mapping S given by S�u� �
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argmin f �u; � � is lower semicontinuous at �w;C� for some C HS�w� one has

w� A qp�w� ) �w�; 0� A 6
x AC

qf �w; x�:

We say that q satis®es property �N� if for any subsets, E;F of X and W re-
spectively, any w A C, C HE and any surjective continuous linear map
A : X !W such that �AjE�ÿ1 is lower semicontinuous on F at �w;C� one has

AT�N�F ;w��H 6
e AC

N�E; e�:

Proposition 2.9. ([17]) Any elementary subdi¨erential (Hadamard, FreÂchet or
viscosity) q satis®es properties �N� and (P). The limiting FreÂchet subdi¨erential
and the approximate subdi¨erential satisfy property (P).

Proposition 2.10. ([43]) Suppose q satis®es property (P) and the exact sum rule
on the class of Lipschitzian functions. Then if A : X ! Y is linear and con-
tinuous and if g is Lipschitzian on Y, for f � g � A one has

qf �x�HAT�qg�Ax��:

The following result extends [16] Proposition 6.1 and Corollary 6.2 to a
general subdi¨erential.

Proposition 2.11. ([43]) Suppose q is quasi-homotone, satis®es property (P)
and the exact sum rule on the class of Lipschitzian functions. Then it satis®es
the sum rule on the class of l.s.c. functions.

The following notion represents a variant of the sum rule which corre-
sponds exactly to our needs in the next section. Thus it is a variant of the
notion of trustworthiness due to A. D. Io¨e [13]. Moreover, we incorporate in
it a quantitative concern. The idea of taking just a part Nu of the normal cone
N instead of the whole normal cone has already been used by Io¨e ([16]) and
Jourani and Thibault ([23], [24]); however, the estimates we get below using
such a concept seem to be new.

De®nition 2.12. A subdi¨erential q is said to be amiable (resp. metrically ami-
able) with respect to a subset S of a Banach space X if for any e > 0, and any
convex function f on X which is Lipschitzian with rate 1 and attains its in®mum
on S at some x A S there exist y A S XB�x; e�, z A B�x; e�, y� A N�S; y� (resp.
y� A Nu�S; y� :� qdS�y��, z� A qf �z� such that ky� � z�kU e.

If one can take e � 0 in what precedes, q is said to be exactly amiable or
exactly metrically amiable respectively. It is said to be amiable on X with
respect to a class C�X� of subsets of X if it is amiable with respect to S for
each S in the class C�X�. In particular, if C�X� is the whole family of closed
subsets of X, it is said to be amiable on X. It is said to be amiable on a family
of Banach spaces X if for any X in X it is amiable on X. Clearly, if q satis®es
the sum rule it is exactly amiable. If moreover qf �x�HBX � whenever f is
Lipschitzian with rate 1 and x A X , then q is exactly metrically amiable. A
similar observation holds when q satis®es a fuzzy sum rule.
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3 Allied and synergetic sets

The following two symmetric properties represent a kind of cooperative be-
havior which will be at the heart of our study of subdi¨erential calculus and
codi¨erential calculus. They are closely related. The simplest one (which is
also the strongest one) receives the simplest terminology (borrowed from
Jameson in his study of cones). It emerged from the works of A. D. Io¨e
([13]±[14] and latter contributions), Jourani ([20]), Jourani and Thibault ([23],
[24]) and the author ([36]±[40]). These two de®nitions can be extended to an
arbitrary number of subsets; we only consider two subsets for notational
convenience and simplicity. Here we denote weak* convergence by !� and

�xn� !F z0 means �xn� ! z0 and xn A F for each n.

De®nition 3.1. ([40]) Given a member X of X, a subdi¨erential q and the
normal cone notion N associated with it, two elements F ;G of the family C�X �
are said to be allied at �x0; y0� A F � G if whenever �xn� !F x0, �yn� !G y0,
x�n A N�F ; xn�, y�n A N�G; yn�, the relation �kx�n � y�nk� ! 0 implies �kx�nk� ! 0,
�ky�nk� ! 0.

De®nition 3.2. Given X, q, N, F, G as above, F and G are said to be synergetic

at �x0; y0� A F � G if whenever �xn� !F x0, �yn� !G y0, x�n A N�F ; xn�,
y�n A N�G; yn�, the relations �kx�n � y�nk� ! 0, �x�n � !

�
0, �y�n � !

�
0 imply

�kx�nk� ! 0, �ky�nk� ! 0.

Usually one takes x0 � y0 � z0 for some point z0 A F XG and one says
that F and G are allied (resp. synergetic) at z0. If in the preceding de®nitions
one imposes x�n A Nu�F ; xn� :� qdF �xn� (resp. y�n A Nu�G; yn� :� qdG�yn�) in-
stead of x�n A N�F ; xn� (resp. y�n A N�G; yn�) one says that F and G are metri-
cally allied or metrically synergetic respectively. We observe that in a ®nite
dimensional space X any pair of subsets F, G of X is always synergetic (but
not always allied). The relationships between these two notions are clari®ed in
the following statement.

Proposition 3.3. Alliedness implies synergy. Conversely, under the following
quali®cation condition in which N is the limiting normal cone associated with N,
synergy of F, G at z0 implies alliedness of F, G at z0

N�F ; z0�X �ÿN�G; z0�� � f0g:
Proof. The ®rst assertion is obvious. Suppose the quali®cation condition holds
and F and G are not allied at z0. Then there exist c > 0 and sequences

�xn� !F z0, �yn� !G z0, x�n A N�F ; xn�, y�n A N�G; yn�, such that �kx�n � y�nk� ! 0
and rn :� max�kx�nk; ky�nk�V c for each n. Dividing x�n and y�n by rn we may
suppose x�n and y�n belong to the closed unit ball BX � of X � for each n. In view
of our quali®cation condition any weak* cluster point u� of �x�n � must be 0 as
ÿu� is a cluster point of �y�n �. Thus, by the weak* compactness of BX � , we get
�x�n � !

�
0, �y�n � !

�
0 and F and G are not synergetic at z0. r

In order to present examples, let us recall the following notion which has
been introduced (in terms of nets) in the convex case in [36] and in the non-
convex case in [38]. The in¯uence of properties detected in [27] has been deci-
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sive for the emergence of this concept, in conjunction with the notion of
operator of type �S�� due to F. E. Browder ([4], [5]; see also [2] for uses in
optimization theory). The sequential form we adopt here arouse from dis-
cussions with A. Io¨e to whom other variants [17] and their characterizations
are due [16].

De®nition 3.4. A set F in C�X� is said to be (sequentially) normally compact at

x0 A F if for any sequences �xn� !F x0, �x�n � !
�
0 in X � such that x�n A N�F ; xn�

for each n, one has �x�n � ! 0.

The relationships of this notion with synergy are clear and simple.

Proposition 3.5. If F is normally compact at z0, then for any subset G the sets
F ;G are synergetic at z0.

Proof. The result is immediate since for any sequences as in De®nition 3.2 one
has �ky�nk� ! 0 whenever �kx�nk� ! 0. r

Thus, the following examples provide important instances in which normal
compactness is satis®ed.

Example. Any ®nite codimensional C1-submanifold of X is normally compact.

Example. Any convex subset with a nonempty interior is normally compact
(see [36] Lemma 2.13).

Example. Any Loewen set around z0 is normally compact around z0 (see
[27], [38], [16]). Here the set F is said to be a Loewen set (for q or N) around
z0 A F if

(LC) there exist a neighborhood V of z0 and a weak* closed, weak* locally
compact cone C in X � such that N�F ; x�HC for each x A V XF .

Example. ([27] for the FreÂchet normal cone, [19]±[22], [16] for the case of the
approximate normal cone). The set F is a Loewen set whenever F is compactly
epi-Lipschitzian around z0 in the sense: there exist t > 0, a compact set K and
r > 0 such that for each t A �0; t�

F X �z0 � rBX � � trBX HF ÿ tK :

The situation in Proposition 3.5 and in the subsequent examples is not
symmetric; however, there are cases in which both subsets have to play a role.

Example. ([36]) Two closed convex subsets C and D of X are synergetic at
z0 A C XD whenever they are tranverse (see [34]) in the sense that
R��C ÿ z0� ÿR��Dÿ z0� � X .

Synergy is satis®ed in cases more general than the cases of a Loewen set or
of a normally compact set, since in the following statement one can suppose
F1 and G2 are Loewen sets and F2, G1 are arbitrary.

Proposition 3.6. Suppose Fi and Gi are allied (resp. synergetic) at �xi; yi� A
Fi � Gi for i � 1; 2. Then F1 � F2 and G1 � G2 are allied (resp. synergetic) at
��x1; x2�; �y1; y1��.
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Proof. It is an easy consequence of the de®nitions and of property (S5) of
subdi¨erentials. r

Thus the alliedness and the synergy properties can be easily combined.
The following result is the main motivation for the introduction of the

alliedness notion (see also [14]).

Theorem 3.7. Suppose q is amiable (resp. metrically amiable). Then alliedness
(resp. metric alliedness) implies the linear estimate �LE�.

Theorem 3.7 is a consequence of the following two more precise results.
We begin with the metric version; the other one, treated in Proposition 3.9, is
similar. The proof we give has many similarities with several previous results
(see [16], Prop. 6.3 and its references), but is also has its speci®cities.

Proposition 3.8. Let S1; . . . ;Sk be closed subsets of the Banach space X. Sup-
pose q is metrically amiable for X � S1 � � � � � Sk or exactly metrically ami-
able for S1 � � � � � Sk and there exist a > 0, r > 0, t A �0; 1�, x0 A S :� 7 k

j�1 Sj

such that for any xj A Sj XB�x0; r�, x�j A Nu�Sj; xj� one has

max
1UjUk

kx�j kV t )
Xk

j�1
x�j

V aÿ1t: �1�

Then there exists s > 0 depending on a; r only such that for each
x A V :� B�x0; s� one has

d�x;S�U atÿ1
Xk

j�1
d�x;Sj�: �2�

Proof. Let us ®rst consider the case q is metrically exactly amiable on
S1 � � � � � Sk. Let s > 0 be such that s < �aÿ1 � 2�ÿ1r. Let us show that for
each c > a and each x A V :� B�x0; s� the relation

d�x;S�U ctÿ1
Xk

j�1
d�x;Sj� �3�

holds. Taking the in®mum on c, the result will follow.

Suppose on the contrary that there exists some u A V such that

d�u;S� > ctÿ1
Xk

j�1
d�u;Sj�: �4�

Then there exist some uj A Sj satisfying

d�u;S� > ctÿ1
Xk

j�1
kuÿ ujk: �5�
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Let b > 0 be so small that

�1� b�ÿ1�1ÿ b� > t; cÿ1 < aÿ1�1� b� ÿ kbtÿ1:

Applying Ekeland's theorem to f given by f �x; x1; . . . ; xk� :�Pk
j�1 kxÿ xjk on Z :� X � S1 � � � � � Sk endowed with the metric given by

d��x; x1; . . . ; xk�; �x0; x01; . . . ; x0k�� � cÿ1tkxÿ x0k � b
Xk

j�1
kxj ÿ x0jk

we can ®nd �v; v1; . . . ; vk� A Z such that

Xk

j�1
kvÿ vjk � cÿ1tkuÿ vk � b

Xk

j�1
kuj ÿ vjkU

Xk

j�1
kuÿ ujk �6�

Xk

j�1
kvÿ vjkU

Xk

j�1
kxÿ xjk � cÿ1tkxÿ vk � b

Xk

j�1
kxj ÿ vjk �7�

for each �x; x1; . . . ; xk� A Z:
Since d�u;S�U d�u; x0�U s, relations (6) and (5) ensure that

kuÿ vkU ctÿ1
Xk

j�1
kuÿ ujk < d�u;S�U s;

kvj ÿ x0kU kvj ÿ vk � kvÿ uk � kuÿ x0kU �cÿ1 � 2�s < r:

Setting

g�x; x1; . . . ; xk� �
Xk

j�1
kxÿ xjk � cÿ1tkxÿ vk � b

Xk

j�1
kxj ÿ vjk;

p�x1; . . . ; xk� � inf
x AX

g�x; x1; . . . ; xk�;

we get from (7) that for any �x1; . . . ; xk� A S1 � � � � � Sk we have

p�v1; . . . ; vk�U
Xk

j�1
kvj ÿ vkU p�x1; . . . ; xk�;

and equality holds for �x1; . . . ; xk� � �v1; . . . ; vk�.
As g is Lipschitzian with rate �1� b� with respect to �x1; . . . ; xk� uniformly

in x, the performance function p is Lipschitzian with rate �1� b�. Since q
is exactly metrically amiable for S1 � � � � � Sk we can ®nd �v�1 ; . . . ; v�k� A
qp�v1; . . . ; vk� such that

ÿ�1� b�ÿ1�v�1 ; . . . ; v�k� A Nu�S1 � � � � � Sk; �v1; . . . ; vk��: �8�
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As g��; v1; . . . ; vk� attains its in®mum on X at x � v, a well known rule of
subdi¨erential calculus in convex analysis yields

�0; v�1 ; . . . ; v�k� A qg�v; v1; . . . ; vk�:

Now, as

g�x; x1; . . . ; xk� � h�A�x; x1; . . . ; xk�� � cÿ1tkxÿ vk � b
Xk

j�1
kxj ÿ vjk

with A�x; x1; . . . ; xk� :� �x1 ÿ x; . . . ; xk ÿ x�, h�y1; . . . ; yk� :�Pk
j�1 kyjk, there

exist y�j A qk � k�vj ÿ v� for j � 1; . . . ; k such that

�0; v�1 ; . . . ; v�k� � ÿ
Xk

j�1
y�j ; y

�
1 ; . . . ; y�k

 !
� cÿ1tBX � � bBX � � � � � � bBX �:

�9�
We cannot have vj � v for each j since otherwise we would have v A S and, by
(5), (6),Xk

j�1
kuÿ ujk < cÿ1t d�u;S�U cÿ1tkuÿ vkU

Xk

j�1
kuÿ ujk;

a contradiction. Therefore, max1UjUk ky�j k � 1. Since we take the sum norm
on a product, it follows from (S5) that �1� b�ÿ1v�j A Nu�Sj ; vj� with
vj A Sj XB�x0; r� for j � 1; . . . ; k, and with (9) we get

max
1UjUk

�1� b�ÿ1kv�j kV max
1UjUk

�1� b�ÿ1�ky�j k ÿ b� � �1� b�ÿ1�1ÿ b� > t;

Xk

j�1
�1� b�ÿ1v�j

U �1� b�ÿ1
Xk

j�1
y�j

� kb

 !

U �1� b�ÿ1�cÿ1t� kb� < aÿ1t;

a contradiction.
Now let us consider the case q is metrically amiable on X � S1 � � � � � Sk.

Let us take s, u, uj , v, vj , f, g, b as above, let us set m :� k � cÿ1t,

g�x; x1; . . . ; xk� � g�mÿ1x; x1; . . . ; xk�

and let us choose e > 0 so small that

kvj ÿ x0k � e < r; e <
1

2
max

j
kvÿ vjk;

�1� b�ÿ1�1ÿ b� ÿ e > t; cÿ1 � kbtÿ1 � �1� b��k �m�tÿ1e < aÿ1�1� b�:

Thus g attains its in®mum on Z :� X � S1 � � � � � Sk at �mv; v1; . . . ; vk� and is
Lipschitzian with rate 1� b. Since q is metrically amiable with respect to Z we
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can ®nd

�w;w1; . . . ;wk� A B��mv; v1; . . . ; vk�; e�;

�z; z1; . . . ; zk� A Z XB��mv; v1; . . . ; vk�; e�;

�w�;w�1 ; . . . ;w�k� A �1� b�ÿ1qg�w;w1; . . . ;wk�;

�z�; z�1 ; . . . ; z�k� A Nu�Z; �z; z1; . . . ; zk��
such that kz� � w�k < e, max kz�j � w�j k < e. Then z� � 0, z�j A Nu�Sj ; zj�,
�mw�;w�1 ; . . . ;w�k� A �1� b�ÿ1qg�mÿ1w;w1; . . . ;wk� and there exist y�j A
qk � k�wj ÿmÿ1w� for j � 1; . . . ; k such that

�1� b��mw�;w�1 ; . . . ;w�k� � ÿ
Xk

j�1
y�j ; y

�
1 ; . . . y�k

 !

� cÿ1tBX � � bBX � � � � � � bBX � :

We cannot have wj � mÿ1w for each j since kwj ÿ vjk < e, kmÿ1wÿ vkU
mÿ1e < e, 2e < maxj kvÿ vjk. Therefore, we have max1UjUk ky�j k � 1. Then

max
1UjUk

kz�j kV �1� b�ÿ1�1ÿ b� ÿ e > t;

Xk

j�1
z�j

U Xk

j�1
w�j

� ke

U �1� b�ÿ1
Xk

j�1
y�j

� kb

 !
� ke

U kmw�k � �1� b�ÿ1�cÿ1t� kb� � ke

Ume� �1� b�ÿ1�cÿ1t� kb� � ke < aÿ1t

and since zj A B�vj; e�XSj HB�x0; r�XSj, we get a contradiction. r

Proposition 3.9. Suppose q is amiable for X � S1 � � � � � Sk or exactly amiable
for S1 � � � � � Sk. Suppose there exist a > 0, r > 0, x0 A S :�7 k

j�1 Sj such that
for any xj A Sj XB�x0; r�, x�j A N�Sj; xj� one has

max
1UjUk

kx�j kV 1 )
Xk

j�1
x�j

V aÿ1: �10�

Then there exist s > 0 depending on a; r only such that for each
x A V :� B�x0; s� one has

d�x;S�U a
Xk

j�1
d�x;Sj�: �11�
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Proof. Since for each t A �0; 1� we have, for any xj A Sj XB�x0; r�,
x�j A N�Sj; xj�,

max
1UjUk

kx�j kV t ) max
1UjUk

ktÿ1x�j kV 1 )
Xk

j�1
x�j

V aÿ1t;

an inspection of the preceding proof in which we replace relation (8) by

ÿ�1� b�ÿ1�v�1 ; . . . ; v�k� A N�S1 � � � � � Sk; �v1; . . . ; vk��:

shows that

d�x;S�U atÿ1
Xk

j�1
d�x;Sj�

for each x A B�x0; s�, with s < �aÿ1 � 2�ÿ1r. Taking the supremum over t we
get the result in the case q is exactly amiable for S1 � � � � � Sk. The case q is
amiable for X � S1 � � � � � Sk is similar. r

In the following corollary we make use of an obvious extension of Propo-
sition 3.3 to a ®nite family of sets.

Corollary 3.10. In order that the sets S1; . . . ;Sk satisfy the linear estimate �LE�
it su½ces that they are metrically synergetic with respect to an amiable sub-
di¨erential and satisfy the following pointwise quali®cation condition for the
limiting normal cone associated with it:

x�i A N�Si; x0�; i � 1; . . . ; k
Xk

i�1
x�i � 0 ) x�1 � � � � � x�k � 0:

4 Allied and synergetic functions

We devote the present section to a functional version of the preceding notion
of cooperative behavior. Since our approach essentially consists in applying
the preceding concepts to the epigraphs of the functions, we will only sketch
the results.

De®nition 4.1. Two l.s.c. functions f ; g : X ! RW fyg are said to be allied
(resp. synergetic) at z A dom f X dom g if �Ef ÿ �z; f �z��� and �Eg ÿ �z; g�z���
are allied (synergetic) at �0; 0�.

Example. If f is l.s.c. and if g is locally Lipschitzian around z A dom f , then f
and g are synergetic at z.

Example. ([36]) Two convex l.s.c. functions f and g are synergetic at
z A dom f X dom g when

R��dom f ÿ z� ÿR��dom gÿ z� � X :
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As observed in ([34], [36]) for instance, such a condition is independent of z as
it can be written

R��dom f ÿ dom g� � X :

The subsets F and G of X are synergetic at z i¨ their indicator functions iF
and iG are synergetic at z.

In the following result we use the asymptotic subdi¨erential given by

qyf �z� :� fz� A X � : �z�; 0� A N�Ef ; zf �g:

Theorem 4.2. ([40]) Suppose q is either the FreÂchet subdi¨erential and X is an
Asplund space or q is the viscosity subdi¨erential associated to a bornology B
and X is B-smooth with BX � sequentially weak* compact. Let f and g be l.s.c.
on X, be synergetic at z A X and such that

qyf �z�X �ÿqyg�z�� � f0g:

Then

q� f � g��z�H qf �z� � qg�z�:

Corollary 4.3. Suppose q and X are as above, F ;G of X are synergetic at
e A E :� F XG and

N�F ; e�X �ÿN�G; e�� � f0g:

Then

N�E; e�HN�F ; e� �N�G; e�:

Conversely, it can be shown that a result bearing on the calculus of the
normal cone to an intersection can be transfered into a sum rule for functions.

5 Allied and synergetic multimappings

Coderivatives are the appropriate tools for the in®nitesimal study of multi-
mappings (or correspondences or set-valued mappings). Since multimappings
appear naturally in a number of problems, this tool is important, as noticed
by those who promoted it, among whom Aubin, Borwein, Io¨e, Mordu-
khovich, Pshenichnii, Rockafellar played a prominent role.

De®nition 5.1. The coderivative (associated with qq) of a multifunction
F : X x Y at �x; y� A F is the multifunction D�F �x; y� : Y �x X � de®ned by

D�F�x; y��y�� � fx� : �x�;ÿy�� A N�GraphF ; �x; y��g:

Coderivatives establish a link between normal cones and subdi¨erentials:
for a function f A F�X� with epigraph Ef considered as a multifunction from
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X to R one has

qf �x� � D�Ef �x; f �x���1�:
Calculus rules for coderivatives can be established under linear-rate metric
quali®cation conditions. We limit our study here to a chain rule, referring to
[17], [23], [24], [32] for other rules.

Theorem 5.2. Let q satisfy property (N), be quasi-homotone and satisfy the
exact sum rule. Let F : X x Y and G : Y x Z be multifunctions with closed
graphs. Let H :� G � F , z A H�x�. Set R�x; z� � F �x�XGÿ1�z�. Assume that
for some C HR�x; z�

(a) the resultant multifunction R is lower semicontinuous at �x; z;C� on Graph H;
(b) for any y A R�x; z� there is a c > 0 such that for all �x; y; z� of a neighbor-

hood of �x; y; z� one has

�LEC� d��x; z; y�;R�U cd��x; y�;F � � cd��y; z�;G�:

Then for all z� A Z �

D�H�x; z��z��H 6
y A C

�D�F�x; y�� � �D�G�y; z���z��

Proof. This result is an easy consequence of the calculus of the normal cone to
an intersection, owing to the facts that

R0 :� f�x; y; z� : y A R�x; z�g � F � Z XX XG

and that H is the projection of R0 onto X � Z. r

Coderivative criteria for obtaining the linear estimate for composition
�LEC� can be given using the following notion.

De®nition 5.3. The multifunctions F : X x Y , G : Y x Z are said to be allied

at �x; y; z� if y A R�x; z� :� F �x�XGÿ1�z� and if for any sequences �xn; yn� !F
�x; y�, �wn; zn� !G �y; z�, �x�n � ! 0, �z�n � ! 0 with �w�n ÿ y�n � ! 0, x�n A
D�F�xn; yn��y�n �, w�n A D�G�yn; zn��z�n � one has �y�n � ! 0. They are said to be

synergetic at �x; y; z� if the conditions �y�n � !
�
0, �w�n � !

�
0 are added in the

assumptions of the preceding de®nition.

Again, if Y is ®nite dimensional, any pair of multifunctions F : X x Y ,
G : Y x Z is synergetic. Clearly, �F ;G� is allied (resp. synergetic) i¨ the sets
F � Z, X � G are allied (resp. synergetic) so that we get the following results.

Proposition 5.4. If the multifunctions F : X x Y , G : Y x Z are allied at
�x; y; z� and if the subdi¨erential q is amiable then the condition �LEC� of the
preceding proposition is satis®ed.

Proposition 5.5. If the multifunctions F : X x Y , G : Y x Z are synergetic at
�x; y; z� and if the following quali®cation condition �QC� holds then they are
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allied at �x; y; z�:

�QC� �D�F �x; y��ÿ1�0�XD�G�y; z��0� � f0g:

Here D� denotes the coderivative associated with the limiting normal cone N.

Corollary 5.6. If q is quasi-homotone and satis®es �N� and the exact sum rule, if
the multifunctions F , G are synergetic at �x; y; z� and satisfy condition �QC�,
and if the resultant multifunction R is lower semicontinuous at �x; z; y� then for
each z� A Z � one has

D��G � F ��x; z��z��H �D�F�x; y�� � �D�G�y; z���z��

Example 5.7. If F (resp. Gÿ1) is sequentially coderivatively compact then for
any multifunction G (resp. F) the pair �F ;G� is synergetic. Here a multi-
function F is said to be sequentially coderivatively compact at �x; y� A GraphF
if for any sequence �xn; yn; x

�
n ; y

�
n � such that yn A F�xn�, x�n A D�F �xn; yn��y�n �,�xn; yn� ! �x; y�, kx�nk ! 0, the sequence �y�n � norm converges to 0, provided

it weak* converges to 0. This property (introduced in terms of nets in [38]) is
a weakening of the notion of partial normal compactness of a set-valued
mapping given in the preprint [32] which requires that �xn; yn� is an arbitrary
sequence of some neighborhood of �x; y� and is formulated as follows:

There exists a weak-star closed subspace L�HY � of ®nite codimension,
positive numbers g and s as well as a compact set S HY such that

kx�k �max
s AS
jhy�; sijV s

for any �x�; y�� A N�F ; �x; y�� with �x; y� A F XB��x; y�; g�, ky�k � 1 and
d�y�;L��U g.

The notion of coderivative compactness has been suggested to us by the
notion of normal compactness of a set. It appeared for the ®rst time in [37],
[38] and, slightly later on, in [24] of which we borrow the terminology. Its
sequential variant stems from discussions with A. D. Io¨e during the summer
of 1995. A deep characterization of it is given in [16] Theorem 1, along with a
complete analysis; see also [24], [32] and [38]. It is obviously satis®ed if the
graph of F is compactly epi-Lipschitz at �x; y� or if the graph of F is normally
compact at �x; y�.

Corollary 5.8. Let X, Y, Z be Banach spaces, let F and G be set-valued map-
pings from X into Y and from Y into Z respectively, and let q be a quasi-
homotone subdi¨erential satisfying the sum rule. Set as above R�x; z� �
F �x�XGÿ1�z� and assume that �x; y; z� A GraphH. Suppose that the following
two conditions are satis®ed:

(a) either G is sequentially coderivatively compact at �y; z� or Fÿ1 is
sequentially coderivatively compact at �y; x�;

(b) 0 A D�F�x; y��y�� & y� A D�G�y; z��0� ) y� � 0.

Then there is a c > 0 such that (LEC) holds for all �x; y; z� of a neighbor-
hood of �x; y; z�.
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