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Abstract. The current paper presents a short survey of stochastic models of
risk control and dividend optimization techniques for a ®nancial corpora-
tion. While being close to consumption/investment models of Mathematical
Finance, dividend optimization models possess special features which do
not allow them to be treated as a particular case of consumption/investment
models.

In a typical model of this sort, in the absence of control, the reserve
(surplus) process, which represents the liquid assets of the company, is gov-
erned by a Brownian motion with constant drift and di¨usion coe½cient. This
is a limiting case of the classical Cramer-Lundberg model in which the reserve
is a compound Poisson process, amended by a linear term, representing a
constant in¯ux of the insurance premiums. Risk control action corresponds
to reinsuring part of the claims the cedent is required to pay simultaneously
diverting part of the premiums to a reinsurance company. This translates
into controlling the drift and the di¨usion coe½cient of the approximating
process. The dividend distribution policy consists of choosing the times and
the amounts of dividends to be paid out to shareholders. Mathematically, the
cumulative dividend process is described by an increasing functional which
may or may not be continuous with respect to time.

The objective in the models presented here is maximization of the
dividend pay-outs. We will discuss models with di¨erent types of conditions
imposed upon a company and di¨erent types of reinsurances available, such
as proportional, noncheap, proportional in a presence of a constant debt
liability, excess-of-loss. We will show that in most cases the optimal dividend
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distribution scheme is of a barrier type, while the risk control policy depends
signi®cantly on the nature of the reinsurance available.

Key words: Stochastic control, stochastic di¨erential equations, controlled
stochastic processes, proportional reinsurance, dividend optimization, ruin
probabilities

1 Introduction

There are a lot of problems in insurance and ®nance which can be set up
as optimization problems, in which the decision maker has an option to
dynamically control certain variables, simultaneously a¨ecting the state of the
controlled process as well as the objective function, whose value he wants to
maximize (minimize). In actuarial science one of this type of problems is to
®nd the optimal rate of dividend pay-outs for an insurance company. This
problem was discussed in the literature for quite a while, e.g., [15], [7], [8], [12],
[25], [26]. In his speech to the Royal Statistical Society of London in 1967, K.
Borch pointed out the value of the control theory for actuarial science:

The theory of control processes seems to be ``tailor-made'' for the problems
which actuaries have struggled to formulate for more than a century. It may
be interesting and useful to meditate a little how the theory would have devel-
oped, if actuaries and engineers had realized that they were studying the same
problems and joined forces over 50 years ago. A little re¯ection should teach us
that a ``highly specialized'' problem may, when given the proper mathematical
formulation, be identical to a series of other, seemingly unrelated problems.

In the last 25 years there have been quite a few attempts in which the
insurance surplus was treated as a di¨usion process (e.g., see [30], [38], [22]), in
contrast to the more established Cramer-Lundberg model in which the surplus
process is described by a compound Poisson process with drift (see the original
paper by Lundberg [43]). Di¨usion process modeling of the surplus gave rise
to a whole new development within the ``optimization'' area of the actuarial
science. It allowed to use the techniques of optimal di¨usion control to those
actuarial problems in which the surplus could be treated as a linear di¨usion.
Recently the interplay between ®nance, insurance and control attracted a lot of
attention. The dividend optimization/risk control models which can describe
the behavior of an insurance corporation, started being thoroughly developed.
This paper is devoted to some recent advances in the di¨usion control models
in the actuarial science.

Another closely related area, in which di¨usion control models recently
gained prominence, is Mathematical Finance. One of the ®rst attempts to
describe the stock price ¯uctuation via a Brownian motion can be traced back
to Bachelier [4]. The limitations of the arithmetic Brownian motion, used by
Bachelier hindered further development of this model. The classical paper of
Black and Scholes [5], introduced logarithmic Brownian motion as the model
of the stock price process and set the foundation for the option pricing theory.
During the same period of time Merton published his seminal paper on the
optimal consumption/investment strategy for a small investor [45]. In this
model an individual faces a problem of dynamically trading his portfolio,
using the proceeds to ®nance his consumption. The stocks available for trad-
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ing have prices modeled by di¨usion processes. The ultimate objective is to
maximize the total discounted expected utility of consumption. In spite (or
maybe because) of several technical ¯aws and gaps, this paper attracted a lot
of attention and made a strong impact on the future development of the ®eld
of consumption/investment models. In fact, this paper perpetuated numerous
corrections and amelioration of Merton's original version (e.g., [41], [40], [14],
[56], [57] [21] to name a few), which in turn stimulated development of an
entirely new area within the classical ®nance, based primarily on the tools
and techniques of the control theory. A comprehensive list of literature on
di¨usion consumption/investment models can be found in [46] and [55].

Since for a long period of time ruin probabilities were of a major interest in
mathematical insurance, the ®rst di¨usion optimization models in insurance
dealt with minimization of the ruin probabilities ± or equivalently ± max-
imization of survival probabilities (see [1], [7], [10], [18], [22], [23], [25], [27],
[28], [29], [38], [52], [53], [58]. A more detailed reference can be found in two
monographs by Buhlmann and Gerber [12] and [26]). Beginning from the
middle of 90's we see a series of papers, which use di¨usion control in divi-
dend optimization or similar models (see [39], [10], [11], [51], [3], [36], [37],
[61], [60]). The dividend optimization/risk control models in many instances
can be viewed as consumption/investment models with linear utility function
and with risky assets governed by an arithmetic Brownian motion, rather than
by a logarithmic one. In a certain sense a dividend optimization insurance
problem is a problem of a small investor living in a ``Bachelier world''. In this
world the nature of the assets' growth is linear rather than exponential, and
every investor has a linear utility function. It should be also mentioned that
the dividend optimization models possess some additional features not always
present in the classical consumption/investment schemes, such as singularity
of the dividend distribution process (see [39], [51], [3], [36]), in most cases
inevitability of bankruptcy, etc. Moreover, in the ``Black-Scholes-Merton's
world'', linear utility functions make the optimization problem trivial as a
recent work by Radner and Shepp [51] shows. That might be the reason for
the most of di¨usion optimization models in insurance to be developed ``from
scratch'' even though some of those dealt with portfolio management and
insurance (e.g., [11]) whose frameworks are very close to those of the classical
mathematical ®nance.

First dividend optimization problems were formulated for the Cramer-
Lundberg, compound Poisson, models (see [24], [12]). This setting has a more
intuitive appeal. In fact, to understand how one arrives at a di¨usion control
model of an insurance company, it is better to start with a more ``tangible''
Cramer-Lundberg model of the reserve (surplus) and its di¨usion limit.
Assume that claims arrive at a Poisson rate l and the size of i-th claim is Ui,
where fUig are iid with mean m and variance s2. If rt represents the reserve of
the company at time t then

rt � r0 � ptÿ
XA�t�
i�1

Ui; �1:1�

where p is the amount of premium per unit time received by the insurance
company and r0 is the initial reserve. Suppose that m � mn as well as p � pn

in (1.1) depend on n and they converge to zero at the rate of
���
n
p

so that
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m 0 � limn!y mn

���
n
p

and p 0 � limn!y pn

���
n
p

exist. If one makes change of
time and normalizes the state space: rt 7! rnt=

���
n
p

, then the limiting process Rt

satis®es

dRt � m dt� s dWt �1:2�

with Wt being a standard Brownian motion and

m � p 0 ÿ lm 0; s2 � l��m 0�2 � s2�: �1:3�

It should be mentioned that the di¨usion approximation (1.2) is suitable
for big portfolios, that is, for the case in which an individual claim is negligible
compared to the size of the total reserve. Motivations for and relevant refer-
ences on this and more complicated examples of di¨usion approximations
in risk theory can be found in Iglehart [38], Grandell [27], [28], [29], Emanuel
et al. [18], Harrison [30], Asmussen [1], Schmidli [52], [53] and Mùller [48].

In the next sections we will describe di¨erent control functions based on
di¨usion approximation (1.2). In most cases (1.2) represents the dynamics of
the reserve process when no control actions are taken. Depending on the type
of reinsurance (risk control) modes and constraints on the dividend pay-out
rates, we will get di¨erent types of di¨usion control models: regular, singular,
mixed, with various drift/di¨usion control functions. In Section 2 we present
models, in which the only available control is related to the dividend pay-outs.
We develop the optimality equation and explain how one come about its
solution. This is done in su½cient details to give understanding of the general
methods and techniques employed. Section 3 deals with the model in which
only the level of reinsurance is controlled, while the dividend pay-out scheme
is ®xed. The type of reinsurance considered is proportional reinsurance which
requires the reinsurer to cover a fraction of each claim equal to the fraction of
total premiums he receives from the cedent. Here we also present a su½ciently
detailed analysis. In subsequent sections we will only outline the major steps
since many technical procedures are similar to those described in Section 2 and
Section 3. Next we deal with the model which combines the features of the
two previous ones. We allow for both dividend and reinsurance control. We
treat the case of dividend pay-out rate being bounded as well as the case of
unrestricted rate.

In Section 5 we consider a model in which the company faces additional
debt liabilities, which must be amortized at a constant rate. Next section is
devoted to the model of the so-called noncheap reinsurance. This is the case
when for insuring a fraction of each claim, the reinsurer need to be paid
wa; w > 1 of all premiums. We show that after a change of parameters this
model becomes equivalent to the model with debt liabilities. In section 7 we
consider the case of the excess-of-loss reinsurance. The cedent pays each claim
up to b, called the retention level, while the reinsurer pays everything in excess
of b. It turns out that the analysis in this case depends on whether or not the
claim size distribution has a bounded support.

In Section 8 we outline some open problems. A generalized Ito's
formula and a simpli®ed version of the one dimensional Skorohod problem
are presented in Appendix.

The results of Section 2 were developed in [39] and [3]. The proportional
reinsurance model with no dividend control was considered in [36]. The model
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of Section 3 was considered in [37]. The method of solution used there was
®rst developed by Radner and Shepp in [51]. Debt liability scheme can be
found in [61]. The case of minimization of ruin probability in the presence of
liabilities was also considered in [11]. Reduction of noncheap reinsurance to
a debt liability problem is ®rst done in this paper. A similar case of cheap
reinsurance with no dividend control was studied in [35]. The excess-of-loss
model can be found in [2].

2 Dividend control model

2.1. Setting of the problem

As always, a rigorous mathematical setting of a stochastic control problem
starts from a quadruple �W;F;Ft;P� and a standard Brownian motion
Wt adapted to Ft.

In a pure dividend control model the dynamics of the reserve process is the
same as in (1.2) with and extra term ÿdLt added to the right hand side of the
equation. Thus

dRt � m dt� s dWt ÿ dLt; �2:1�

R0ÿ � x �2:2�

The control functional Lt represents the cumulative amount of dividends paid-
out up to time t. The major requirement on Lt is that it is nonnegative and
adapted to the ®ltration Ft. The latter is the mathematical expression of the
fact that in making the policy decision one can use only the past history but
not the future information. In addition there is a technical requirement that Lt

is right continuous with left limits (cadlag). Any functional satisfying these
conditions is called an admissible control or a policy.

Once a dividend distribution policy is chosen, the bankruptcy time t is
de®ned as

t � infftV 0 : Rt U 0g: �2:3�

With each control functional L we associate its performance index

Jx�L� � E

� t

0

eÿct dLt; �2:4�

where the integral in the right hand side of (2.4) is the Lebesgue-Stiltjes
integral. The objective is to ®nd

V�x� � sup
L

Jx�L�: �2:5�

and the functional L�t such that

V�x� � Jx�L��: �2:6�
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The function V is called the value function or the optimal return function and
the functional L� is called the optimal control or the optimal policy.

There are two cases to be considered in this setting. The ®rst case is when
the rate of dividend payments is bounded by a constant M. Thus (2.1) can be
rewritten as

dRt � �mÿ l�t�� dt� s dWt;

where l�t� is an Ft-adapted process chosen by a controller, subject to

0U l�t�UM:

In the second case there are no restrictions on the pay-out rate, in which case
the functional Lt is a general increasing right continuous functional. For
convenience purposes, in the sequel we will write Jx�l���� instead of Jx�L�,
whenever L 0�t� � l�t� is a priori bounded.

2.2. Bounded rate of dividends

In this case the solution can be found via the classical stochastic control
theory (see [19]). Prior to dealing with the analytical part of the problem one
needs to establish

Lemma 2.1. The function V is a nonnegative concave function.

The formal proof is rather simple and we omit it. There is a natural
economic interpretation of this fact. Shares in two insurance companies with
identical market parameters will not give better return on investment than one
company with a combined capital.

Our next step is to ®nd the function V. To understand the equation this
function must satisfy, consider for each y > 0 a control ly�t� such that

EJy�ly�t��VV�y� ÿ e:

Fix x > 0 and let

l e�t� � l; 0U tU d,

lRd; �tÿ d� t > d.

�
The meaning of l e�t� is the following: we use dividend rate l on the interval
�0; d� and then switch to the e-optimal process lRd

��� corresponding to reserve
level Rd at the time d. Then by Ito's formula we can write

V�x�VExfJx�l e����g

� lEx
1ÿ eÿct5d

c

� �
� Ex

� t

d

lR�d��tÿ d�eÿct dt; t > d

� �
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� ldPx�t > d� � Ex

� t

d

lR�d��tÿ d�eÿct dt; t > d

� �
� o�d�

� ldPx�t > d� � Ex 1ft>dgE
� t

d

lR�d��tÿ d�eÿct dt jFd

� �� �
� o�d�

� ldPx�t > d� � Ex 1ft>dgER�d� eÿcd

� t R�d�

0

lR�d��s�eÿcsds

" #" #
� o�d�

V ldPx�t > d� � �1ÿ cd��ExV�R�d�� ÿ e� � o�d�; �2:7�

where tR�d� is the bankruptcy time associated with the initial position R�d�
and the policy lRd

��� (for a rigorous de®nition of tR�d� as well as the policy l e

one needs to introduce shift operators in the underlying probabilty space).
Inequality (2.7) should be valid for all l A �0;M�. It can be shown (see Fleming
& Rishel [19]) that this inequality is tight for at least one l A �0;M�. Dividing
by d and letting d! 0, we arrive at the so-called Hamilton±Jacobi±Bellman
(HJB) equation for the optimal return function:

max
0UlUM

1

2
s2V 00�x� � �mÿ l�V 0�x� ÿ cV�x� � l

� �
� 0: �2:8�

Since the reserve x � 0 corresponds to the bankruptcy state, the value func-
tion must vanish at this point

V�0� � 0: �2:9�

To ®nd a solution to (2.8)±(2.9), one should recall that V is concave and that
the expression in the left hand side of the equation (2.9) is a linear function of
l. Thus for each x the maximizer of the left hand side of (2.8) is either l � 0
if V 0�x� > 1 of l �M, if V 0�x�U 1. In view of concavity of V, the set
fx : V 0�x� > 1g (if nonempty) is an interval �0; u� and by virtue of (2.8) for all
x A �0; u�, the function V satis®es

1
2 s2V 00�x� � mV 0�x� ÿ cV�x� � 0; �2:10�

while for xV u

1
2 s2V 00�x� � �mÿM�V 0�x� ÿ cV�x� �M � 0: �2:11�

Denote

yG�y� � ÿyG
���������������������
y2 � 2cs2

p
s2

�2:12�

and put y1 � y��m�; y2 � yÿ�m� and ŷ � yÿ�mÿM�. The solution to (2.10),
(2.9) is

C�ey1x ÿ ey2x�;
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while the solution to (2.11) is given by

M

c
� C1eŷx � C2ey��mÿM�x:

In order for the above function to be concave one must have C2 � 0 and
C1 < 0. Thus to ®nd the solution we must determine three unknown con-
stants: C;C1 and u. To this end we use the so-called ``principle of smooth ®t''.
The function V must be continuous with a continuous ®rst derivative. In
addition the derivative of V at u must be equal to 1 (simple argument shows
that this would imply continuity of the second derivative at u as well). This
gives us three equations.

C�ey1u ÿ ey2u� �M

c
� C1eŷu; �2:13�

C�y1ey1u ÿ y2ey2u� � 1; �2:14�

C1ŷeŷu � 1: �2:15�

Theorem 2.1. If

a �M

c
� 1

ŷ
> 0 �2:16�

then the solution of (2.13)±(2.15) exists and unique with

u � 1

y1 ÿ y2
log

1ÿ ay2

1ÿ ay1
> 0;

C � �ey1u ÿ ey2u�ÿ1 > 0;

C1 � 1

ŷ
eÿŷu < 0:

The solution of (2.8), (2.9) is given by

V�x� �
C�ey1x ÿ ey2x�; 0U x < u,

M

c
� C1eŷx; uU x <y

8><>:
If aU 0 then the solution to (2.8), (2.9) is given by

V�x� �M

c
�1ÿ eŷx�:

In order to construct the optimal control one should start with identifying
the optimal feedback control function L��x�. The latter is de®ned as the
argmax of the left hand side of the equation (2.8). The structure of our solution
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shows that in the case of a > 0

L��x� �M1x>u;

while if aU 0, then

L��x�1M:

After the optimal feedback L��x� is determined, one can ®nd the optimal
reserve process R��t� as a solution to the following stochastic di¨erential
equation

dR�t � �mÿL��R�t �� dt� s dWt; �2:17�

R�0 � x:

When the solution to (2.17) is obtained, the optimal control functional l � is
determined via

l ��t� �L��R�t �: �2:18�

To see that (2.17), in fact, yields the optimal process one needs to prove the
following veri®cation lemma.

Lemma 2.2. If V is a concave solution of (2.8), (2.9), then for any control l���

V�x�V Jx�l����:

If

L��x� � arg max
lUM

1

2
s2V 00�x� � �mÿ l�V 0�x� ÿ cV�x� � l

� �
;

then for l ��t� given by (2.17), (2.18)

Jx�l ����� � V�x�:

Proof. Let l�t� be any control and Rt be the corresponding reserve process.
Then by virtue of Ito's formula (see [17], Ch. 12)

E�V�eÿcT5tRT5t�� ÿ V�x�

� E

�T5t

0

eÿct 1

2
s2V 00�Rt� � �mÿ l�t��V 0�Rt� ÿ cV�Rt�

� �
dt: �2:19�

In view of (2.8) the integrand in the right hand side of (2.19) is greater or equal
to ÿeÿctl�t�. Thus

E�eÿcT5tV�RT5t�� ÿ V�x�UÿE

�T5t

0

eÿctl�t� dt: �2:20�
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Since V has at most a linear growth and Rt U mt� sWt, we have V�Rt�U
K�1� mt� sWt�. Also eÿcT5tV�RT5t� � eÿcT 1t>T V�RT �U eÿcT V�RT5t�.
Therefore

lim
T!y

E�eÿcT5tV�RT5t�� � 0:

Thus one can pass to a limit in (2.20) to obtain

V�x�VE

�y
0

eÿctl�t� dt � Jx�l����: �2:21�

This proves the ®rst part of the veri®cation lemma. To prove the second part
one needs to notice that the inequalities in (2.20) and (2.21) become equalities,
when l�t� is replaced by l ��t� �L��R��t��.

In any control problem, in order to complete its solution, one always needs
to ®nd the optimal process and to go through a veri®cation lemma like the one
above. Nevertheless, in essence the problem is solved, once the solution to HJB
equation is found and the optimal feedback is determined. Existence of the
optimal feedback control shows that the optimal policy depends only on the
current level of reserve. The optimal control functional is obtained via a
solution to a stochastic di¨erential equation.

The dividend optimization problem considered in this section yields a
rather simple control mode. When (2.16) holds the optimal policy consists of
not paying dividends until the reserve level reaches u and paying the maximal
possible rate whenever the reserve level is above u. If (2.16) is not true then the
optimal policy is always to pay the maximal rate.

2.3. Unrestricted dividend rates

Suppose we consider the same control problem as in the previous subsection
but without any bound on the dividend rates. Deriving HJB equation (2.8)
and trying to solve it formally, we will see that as a function of l, the left hand
side of (2.8) is linear. Therefore, its maximizer is either 0 or y. To overcome
this di½culty, we have to change the control functional. Namely, we choose
Lt which represents the cumulative amount of dividends paid out up to time t.
We will consider only admissible controls, that is those functionals Lt which
are nonnegative nondecreasing Ft-adapted cadlag processes. Once an admis-
sible control Lt is chosen, the dynamics of the reserve process is given by (2.1),
(2.2). To understand the equation the optimal return function V, given by
(2.5), (2.6) satis®es in this case, de®ne Ly

� by

EJy�Ly
� �VV�y� ÿ e:

and put

Lt�e� �
0; t < d,

LRd

tÿd; tV d;

(
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(assuming Lt 1Lt; for t > t). The policy L��e� prescribes to pay no dividends
before time d; during this period of time the reserve evolves as a Brownian
motion with a constant drift and a constant di¨usion coe½cient, and gets to
the level Rd. Then we switch to the policy LRd

�ÿd, which yields, no less than
V�Rd� ÿ e. Since such policy is suboptimal

V�x�VE

� t

0

eÿct dLt�e�1E

�y
0

eÿct dLt�e�

� E

�y
d

eÿct dLRd

tÿd � E eÿcdE

�y
0

eÿcu dLRd
u jFd

� �� �
V eÿcdE�V�Rd� ÿ e�

In view of arbitrariness of e, we arrive at

V�x� ÿ eÿcdEV�Rd�V 0:

Assuming twice continuous di¨erentiability of V,

eÿcdEV�Rd� � �1ÿ cd� V�x� � d
s2

2
V 00�x� � mV 0�x�

� �� �
� o�d�:

Dividing by d and letting d! 0, we obtain

s2

2
V 00�x� � mV 0�x� ÿ cV�x�U 0: �2:22�

This is one of the so-called ``variational inequalities'' that V should satisfy.
To obtain another inequality, ®x x and d > 0 and let Ly

� be de®ned as above.
Consider Lt�e� � d� Lxÿd

t . The policy L��e� in this case consists of paying in-
stantaneously d as dividend (thus reducing reserve to xÿ d) and then follow-
ing the policy Lxÿd

� . Since L��e� is suboptimal

V�x�VE

� t

0

eÿct dLt�e� � d� E

� t

0

eÿct dLxÿd
t

V d� V�xÿ d� ÿ e:

Arbitrariness of e results in V�x� ÿ V�xÿ d� V d and consequently

V 0�x�V 1: �2:23�

A more re®ned argument shows that one of the inequalities (2.22)±(2.23) must
be tight and the function V must satisfy

max
s2

2
V 00�x� � mV 0�x� ÿ cV�x�; 1ÿ V 0�x�

� �
� 0 �2:24�
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at least in viscosity sense (see [20]). However, in our case the value function
turns out to be twice continuously di¨erentiable and must satisfy (2.24) in
the classical sense. In addition the function V is subject to (2.9) for the same
reasons as before.

To solve the control problem our ®rst step would be ®nding a twice
continuously di¨erentiable solution to (2.24), (2.9). To understand, how one
can derive such a solution, let us assume that the optimal return function V is
concave. (After V is found we will see that this assumption holds.) Then V 0 is
decreasing and there exists a point u such that V 0�u� � 1, while V 0�x� < 1 for
all x < u. Thus (2.22) is tight for all x < u. On the other hand due to (2.24)
and concavity, the inequality (2.23) must be tight for all xV u. The solution of
the equality (2.22) subject to (2.9) is given by

V�x� � C�ey1x ÿ ey2x�;

with C being a free constant and y1 and y2 the same as in the previous
subsection. The solution to the equality V 0�x� � 1 is given by a linear
function x� C1. To ®nd C, C1 and u, we again use ``the principle of smooth
®t''. Equalizing the values, derivatives and the second derivatives from the
right and from the left at the point u, we get

C�ey1u ÿ ey2u� � C1 � u;

C�y1ey1u ÿ y2ey2u� � 1;

C�y2
1ey1u ÿ y2

2ey2u� � 0:

A sequential solution of those three equations with respect to u, C and C1

yields

u � 2

y1 ÿ y2
log

���� y2

y1

���� � s2��������������������
m2 � 2s2c

p log

��������������������
m2 � 2s2c

p
� m��������������������

m2 � 2s2c
p

ÿ m
; �2:25�

C � 1

y1ey1u ÿ y2ey2u
�2:26�

and

C1 � C�ey1u ÿ ey2u� ÿ u: �2:27�

As soon as those free parameters are found, we can write an explicit
expression for the solution to (2.24).

Theorem 2.2. Let u;C and C1 be given by (2.25)±(2.27). Let

V�x� � C�ey1x ÿ ey2x�; xU u

C1 � x; xV u

�
�2:28�

Then V is a concave twice continuously di¨erentiable solution to (2.24), (2.9).
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Our next step is to ®nd the optimal policy, whose performance index
coincides with the value function. In this case, however, we do not have any
more the advantage of determining the optimal feedback function from the
solution to HJB equation. In fact, to ®nd the optimal control one must ®nd a
solution �R�t ;L�t � to the Skorohod problem in �ÿy; u� (see Appendix, Section
9.2). To determine the optimality of �R�t ;L�t �, we need to prove the following
veri®cation lemma.

Lemma 2.3. Let V be given by (2.28). Then for any control functional L

Jx�L�UV�x�:

If �R�t ;L�t � is a solution to the Skorohod problem in �ÿy; u� then

Jx�L�� � V�x�:

Proof. Let Lt be any control functional and Rt be the corresponding reserve
process and t be the bankruptcy time. Then (9.1) implies

V�x� � E�eÿcT5tV�RT5t��

ÿ E

�T5t

0

eÿct 1

2
s2V 00�Rt� � mV 0�Rt� ÿ cV�Rt�

� �
dt

� E

�T5t

0

eÿctV 0�Rt� dLc
t ÿ E

X
0UtUT5t

eÿct�V�Rt� ÿ V�Rtÿ�� �2:29�

By virtue of (2.22) the integrand in the ®rst integral in the right hand side of
(2.29) is nonpositive. In view of (2.23) the integrand in the second integral in
the right hand side is not smaller than eÿct. By the same token

V�Rt� ÿ V�Rtÿ� � V�Rtÿ ÿ �Lt ÿ Ltÿ�� ÿ V�Rtÿ�Uÿ�Lt ÿ Ltÿ�

Thus (2.29) yields

V�x�VE�eÿcT5tV�RT5t�� � E

�T5t

0

eÿct dLc
t � E

X
0UtUT5t

eÿct�Lt ÿ Ltÿ�

� E�eÿcT5tV�RT5t�� � E

�T5t

0

eÿct dLt:

By letting T !y, we get the ®rst assertion of the veri®cation lemma. To get
the second statement, assume for simplicity that xU u and apply (2.29) to the
pair �R�t ;L�t �.
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V�x� � E�eÿcT5tV�R�T5t��

ÿ E

�T5t

0

eÿct 1

2
s2V 00�R�t � � mV 0�R�t � ÿ cV�R�t �

� �
dt

� E

�T5t

0

eÿctV 0�R�t � dL�t : �2:30�

Since (2.22) is tight for all xU u and R�t U u for all t > 0, the ®rst integral in
the right hand side of (2.30) vanishes. Since dL�t � 1R�t �u dL�t , the quantity
V 0�R�t � in the second integral can be replaced by V 0�u�1 1. Combining these
facts together, we get

V�x� � E�eÿcT5tV�R�T5t�� � E

�T5t

0

eÿct dL�t : �2:31�

Letting T !y, and using the fact that 1t<yR�t � 0 as well as a linear growth
of V at in®nity, we deduce that the ®rst term in the r.h.s. of (2.31) tends to 0,
whereas the second converges to Jx�L��. This proves the second part of the
veri®cation lemma.

The economic interpretation of this optimal policy is somewhat di¨erent
from the one we have in the case of bounded dividend rate. The level u is
the reserve level which under the optimal policy should be never exceeded.
Whenever, the reserve becomes larger than u, everything in excess, should be
distributed as dividends. We will call such a policy a barrier policy with the
barrier u.

3 Risk control model

This model deals with the case, when the control of the risk is done via the
so-called proportional reinsurance. Proportional reinsurance means that it is
possible for the cedent to divert �1ÿ a� fraction of all premiums to the
reinsurance company with the obligation from the latter to pay �1ÿ a� frac-
tion of each claim. To understand the nature of the control functional and
the dynamics of the controlled process, let us start again from the Cramer-
Lundberg model. Suppose the reinsurance rate 1ÿ a is ®xed. Then

rt � r0 � aptÿ
XA�t�
i�1

aUi;

Taking the usual di¨usion approximation rt 7! rnt=
���
n
p

, we get as a limit a
Brownian motion with drift am and di¨usion coe½cient as, where m and s are
given by (1.3). If the reinsurance is dynamically chosen, then we model the
reserve process as

dRt � a�t�m dt� a�t�s dWt;

R0 � x;
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where the control functional a�t� represents the fraction of claims the cedent
insures itself (while 1ÿ a�t� is the reinsured fraction) at time t. As usual a�t�
should be adapted to the ®ltration Ft and in addition for each tV 0

0U a�t�U 1:

In this model the dividend distributions are not controlled, rather we assume
that the reserve is kept in a bank and the interest it gains is continuously paid
out as dividends. Thus the performance index associated with each control
functional a�t� is de®ned as

Jx�a���� � E

� t

0

eÿctRtdt;

where t is the bankruptcy time given by (2.3) and the optimal return function
is given by

V�x� � sup
a���

Jx�a����:

This is a regular stochastic control problem. The function V satis®es a stan-
dard Hamilton-Jacobi-Bellman equation

max
a A �0;1�

s2a2

2
V 00�x� � maV 0�x� ÿ cV�x� � x

� �
� 0: �3:1�

Simple probabilistic arguments show that V is concave and satis®es (2.9).
Thus our main analytical problem is to ®nd a concave solution to (3.1) subject
to (2.9).

Let A��x� be the maximizer of the l.h.s. of (3.1). If 0 < A��x� < 1 then

A��x� � ÿ mV 0�x�
s2V 00�x� : �3:2�

The function A��x� is the optimal feedback control function. It shows the
amount of risk (measured in terms of nonreinsured fraction of each claim) to
be taken if the current reserve is x. Assume that there exists a point u1 such
that for all x A �0; u1� the expression in the r.h.s. of (3.2) is strictly positive and
does not exceed 1. Then substituting A��x� from (3.2) into (3.1), we get

ÿ m2�V 0�x��2
2s2V 00�x� ÿ cV�x� � x � 0; for all 0 < x < u1: �3:3�

Concavity of V implies existence of a function X : R! �0;y�, such that
ÿlog�V 0�X�z��� � z. It is easily seen, that

V 0�X �z�� � eÿz and V 00�X�z�� � ÿeÿz

X 0�z� : �3:4�
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Substituting x � X �z� into (3.3) and using (3.4), we get an equation for X.

m2

2s2
X 0�z�eÿz ÿ cV�X�z�� � X�z� � 0:

Di¨erentiating both parts of this equation with respect to z, we obtain

X 00�z� ÿ �1� cb ÿ bez�X 0�z� � 0; �3:5�

where

b � 2s2=m2:

The solution to (3.5) can be expressed as

X �z� � k1
G�cb � 1�

b cb�1
G�ez� � k2 � k1G�ez� � k2;

where G is the cumulative distribution function of a Gamma distribution with
parameters �cb � 1; 1=b�. From the de®nition of X we have ÿlog�V 0�x�� �
log Gÿ1 xÿ k2

k1

� �� �
, or

V 0�x� � 1

Gÿ1 xÿ k2

k1

� � : �3:6�

A simple but tedious analysis shows that in the above formula k2 � 0. On the
other hand, according to our assumptions A��x� � 1 for all xV u1. Therefore
on �u1;y� the function V satis®es

1

2
s2V 00�x� � �mÿM�V 0�x� ÿ cV�x� � x � 0:

Any concave solution of this equation is given by

V�x� � x=c� m=c2 � Keŷx �3:7�

where ŷ � yÿ�mÿM� (see (2.12) ) and K < 0 is a free constant. Thus taking
into account (3.6), (2.9) and (3.7), we can suggest the solution to (3.1) in the
form

V�x� �

� x

0

1

Gÿ1�z=k1�
dz; 0U x < u1,

x=c� m=c2 � Ke ŷx; x > u1.

8><>: �3:8�

There are three unknown constants in this solution: k1;K and u1. To deter-
mine them we use the principle of smooth ®t. Making the value the ®rst and
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second derivative continuous at the point u1, we get three equations whose
solution yield

�k1; u1� � s2

mag�a� ;
s2G�a�
mag�a�

� �
: �3:9�

K � eÿŷu1

� u1

0

1=Gÿ1�z=k1� dzÿ u1=cÿ m=c2

� �
; �3:10�

where

a � c 1� m

s2ŷ

� �
: �3:11�

These computations enable one to prove the following theorem.

Theorem 3.1. Let V be given by (3.8), with k1, u1 and K given by (3.9), (3.10).
Then V is a concave solution of the Hamilton-Jacobi-Bellman equation (3.1)
subject to (2.9).

Corollary 3.1. The optimal feedback control function is given by

A��x� �
Gÿ1 x

k1

� �
g Gÿ1 x

k1

� �� �
ag�a� ; x < u1,

1; x > u1,

8>>><>>>:
where g is the density of G and a is given by (3.11).

Determining the optimal return function V and the optimal feedback
control A��x� in essence completes the solution of the problem. The proof of
veri®cation theorem in this case is similar to the one in Section 2. The only
technical di¨erence lies in the fact that V might have in®nite derivatives at 0,
which would require localization technique while applying Theorem 9.1.

Economic interpretation of the obtained results is the following. If the
reserve is above u1, then it is optimal to take the maximal risk, using no
reinsurance. If the reserve level is below u1, then the optimal fraction which
must be reinsured at each time t is 1ÿ A��x�, where x is the current reserve.

4 Risk and dividend control model

Suppose, that a ®nancial corporation has an option to chose the amount and
time of the dividend distribution in addition to choosing the business policy
(reinsurance fraction in the case of an insurance company). We describe con-
trol p by a two-dimensional stochastic process fap�t�;Lp

t g, where 0Uap�t�U1
corresponds to the risk exposure at time t (while 1ÿ ap�t� being the reinsu-
rance fraction) and Lp

t V 0 is a non-decreasing process whose value corre-
sponds to the cumulative amount of the dividends distributed up to time t.
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The dynamics of the reserve process under this policy is

dRt � map�t� dt� sap�t� dWt ÿ dLp
t ; �4:1�

R0ÿ � x: �4:2�

The performance index of each policy is de®ned by the expected present value
of the cumulative dividend distributions

Jx�p� � E

� t

0

eÿct dLp
t ; �4:3�

and the optimal return function is de®ned as

V�x� � sup
p

Jx�p�: �4:4�

The policy p� is optimal if

V�x� � Jx�p��: �4:5�
As in Section 2 we will consider the cases, of bounded and of unrestricted
dividend rates respectively.

4.1. Bounded dividend rate

Suppose that the dividend rate is bounded by a constant M <y. That is

Lp
t �

� t

0

lp�s� ds; 0U lp�s�UM;

and (4.1) and (4.3) can be rewritten as

dRt � �map�t� ÿ lp�t�� dt� sap�t� dWt;

Jx�p� � E

� tp

0

eÿctlp�t� dt:

The function V given by (4.4) satis®es a standard HJB equation (see [19])

max
a A �0;1�; l A �0;M�

1

2
s2a2V 00�x� � �maÿ l�V 0�x� ÿ cV�x� � l

� �
� 0; �4:6�

with the boundary condition (2.9).
To ®nd a solution to (4.6), assume that V is concave (this assumption will

be veri®ed a posteriori). Let u1 � inffu : V 0�u� � 1g. Then due to concavity of
V the maximizer l of the left hand side of (4.6) is

L��x� � 0 x < u1,

M xV u1.

�
�4:7�
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Therefore for all x < u1

max
a A �0;1�

1

2
s2a2V 00�x� � maV 0�x� ÿ cV�x�

� �
� 0: �4:8�

Let A��x� be the maximizer of the left hand side of (4.8). Let OJ �0; u1� be
such that 0 < A��x� < 1 for all x A O. Then

A��x� � ÿ mV 0�x�
s2V 00�x� ; x A O: �4:9�

Substitution of (4.9) into (4.8) results in

ÿ m2�V 0�x��2
2s2V 00�x� ÿ cV�x� � 0 for all x A O: �4:10�

The solution of (4.10), (2.9) can be found ``from scratch'': V�x� � C1xg,
where

g � c

m2

2s2
� c

: �4:11�

Then

A��x� � ÿ mx

s2�gÿ 1� :

Putting

u � s2

m
�1ÿ g�; �4:12�

we ®nd that O � �0; u�. On the other hand A��x� � 1 for x > u. Inserting the
latter into (4.8), we obtain the following solution for u < x < u1

V�x� � C2ey2x � C3ey1x; �4:13�

where y1 � y��m� and y2 � yÿ�m�, given by (2.12).
If x > u1, then L��x� �M and V must satisfy

1
2 s2V 00�x� � �mÿM�V 0�x� ÿ cV�x� �M � 0: �4:14�

Any concave solution of (4.14) is given by

V�x� �M

c
� C4eŷx;

where ŷ � yÿ�mÿM�. Thus we conjecture the solution to (4.6) as
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V�x� �

C1xg; x < u,

C2ey2x � C3ey1x; u < x < u1,

M

c
� C4eŷx; x > u1,

8>>><>>>: �4:15�

with u is given by (4.12) and C1;C2;C3;C4 and u1 being unknown constants.
For the function V to be twice continuously di¨erentiable we must have the
value the ®rst and second derivatives to be continuous at u and u1. In view of
validity of (4.10) in O, (4.13) in �u; u1� and (4.14) in �u1;y�, it is su½cient
to check continuity of any two of those quantities. Recalling that under our
assumption V 0�u1� � 1, we get ®ve equations:

V�uÿ� � V�u��; V 0�uÿ� � V 0�u��;

V�u1ÿ� � V�u1��; V 0�u1ÿ� � 1; V 0�u1�� � 1:

Solution of these equations yields

u1 � u� 1

y1 ÿ y2
log

ŷÿ y2

y1 ÿ ŷ

 !
; �4:16�

C1 � ÿ2my1y2s2�ey2�u1ÿu� � ey1�u1ÿu��; �4:17�

C2 � eÿy2u

y2�e�u1ÿu�y2 � e�u1ÿu�y1� ; �4:18�

C3 � eÿy1u

y1�ey2�u1ÿu� � ey1�u1ÿu�� ; �4:19�

C4 � 1

ŷ
eÿŷu1 : �4:20�

To tie up loose ends, we need to verify that u1 given by (4.16) is not smaller
than u, otherwise the assumptions used in obtaining (4.15) fail.

Lemma 4.1. u1 > u if and only if

M >
m

2
� cs2

m
: �4:21�

This enables us to formulate the following

Theorem 4.1. Assume (4.21) holds. Then V given by (4.15) with u, C1;C2;C3,
C4 and u1 de®ned via (4.12) and (4.16)±(4.20) is a concave twice continuously
di¨erentiable solution of (4.6), (2.9).
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Corollary 4.1. The optimal feedback control A� is equal to

A��x� � x=u; x < u,

1; xV u.

�
The economic interpretation of this solution is the following. If the maximal
dividend rate is high enough (i.e., (4.21) holds), then the optimal policy is to
take the risk linearly proportional to the current amount of reserve, until the
reserve reaches the level u. Above this level it is optimal to take the maximal
risk. The dividends start being paid when the reserve level exceeds u1; u1 > u.
They are always paid at the maximal rate.

It is important to note that under the optimal policy, the reserve process
behaves like a logarithmic Brownian motion on �0; u�, as an a arithmetic
Brownian motion on �u; u1� and as arithmetic Brownian motion with di¨erent
parameters on �u1;y�. In particular, under the optimal proportional reinsur-
ance policy, the bankruptcy time is in®nite.

4.2. Small bound on dividend rate

The calculations in the previous subsection do not show us the nature of the
optimal return function, when (4.21) is not true. Obviously, we cannot assume
that there exist u < u1, such that both (4.7) and (4.9) (with O � �0; u�) are
valid. In fact, it is possible to show that the assumption of an existence of u,
such that A��x� � 1 for xV u also leads to a contradiction. Thus we conjec-
ture that there exists u1, such that (4.7) is satis®ed and in addition

A��x� � a�1 const < 1 �4:22�

for all x > u1. Since L��x� � 0 for x < u1, we see that V satis®es (4.10) on
�0; u1�, therefore V�x� � C1xg, where g is given by (4.11). In view of (4.22) and
(4.8) we have two equations that V must satisfy

1
2 s2�a��2V 00�x� � �ma� ÿM�V 0�x� ÿ cV�x� �M � 0;

ÿ mV 0�x�
s2V 00�x� � a�:

The only pair �a�;V�x��, which satis®es both equations is

a� � M

m

2
� cs2

m

; �4:23�

and

V�x� �M

c
� C2eÿ�m=a �s2�x;
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where C2 is a free constant. Note that due to M U
m

2
� cs2

m
, the right hand

side of (4.23) does not exceed 1. To ®nd C1;C2 and u1, we should use
V�u1ÿ� � V�u1��;V 0�u1ÿ� � V 0�u1�� � 1. Those 3 equations result in

u1 �Mg�1ÿ g�
c

; C1 � u
1ÿg
1 =g; C2 � ÿg

M

c
ecu1=Mg: �4:24�

The following theorem proves that thus constructed function V is the solution
to the HJB equation.

Theorem 4.2. Suppose that (4.21) does not hold. Let g and u1 be given by
(4.11) and (4.24) respectively. Then

V�x� �
u1

g

x

u1

� �g

xU u1,

M

c
�1ÿ geÿ�c=Mg��xÿu1�� x > u1

8>>><>>>:
is a concave twice continuously di¨erentiable solution of (4.6), (2.9).

From our construction, we see that A��x� � a�
x

u1
51

� �
. The economic

interpretation of the obtained results is the following. The optimal risk expo-
sure is proportional to the current level of reserve, and reaches its maximum
a� at u1. When the reserve exceeds u1, the maximal rate of dividends is paid
out, while the risk exposure remains a�.

In essence, this results show that if maximal allowable dividend rate is
small, then there is no need to take the maximal risk, no matter, how big
is your reserve. Higher risk, results in potentially higher reserve levels in the
future. However, the presence of discounting and limitation on the pay-out
rate preclude from cashing in on this high reserve. From (4.21) it is also seen
that the higher the discount rate the more likely one would not need to take
the maximal risk at any time. As in the previous case, the bankruptcy time is
in®nite under the optimal policy.

4.3. Unrestricted dividend rate

Since the dynamics of the reserve is given by (4.1), (4.2), with Lt being an
arbitrary increasing cadlag adapted process, we have a so-called mixed regular-
singular stochastic control problem. If one uses heuristic arguments similar to
those employed in Sections 2 and 3, then the HJB equation for the optimal
return function V can be derived in the following form

max max
a A �0;1�

1

2
s2a2V 00�x� � maV 0�x� ÿ cV�x�

� �
; 1ÿ V 0�x�

� �
� 0: �4:25�

Assuming concavity, we derive an existence of u1 > 0, such that
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V 0�x� � 1; xV u1

and for all x < u1

max
a A �0;1�

1

2
s2a2V 00�x� � maV 0�x� ÿ cV�x�

� �
� 0:

Assuming existence of u < u1, such that argmax of the left hand side of (4.25)
is between 0 and 1 for all x < u and is equal to 1 for all uU xU u1, we can
repeat the procedure in the previous subsections and arrive at the conjecture
for the optimal return function V:

V�x� �
C1xg; x < u,

C2ey2x � C3ey1x; u < x < u1,

x� C4; x > u1.

8<: �4:26�

The following theorem concludes the solution of the analytical part of the
problem.

Theorem 4.3. Let V be de®ned by (4.26), where u is given by (4.12), C1;C2;C3

are given by (4.17)±(4.19),

u1 � u� 1

y1 ÿ y2
log

ÿy2

y1

� �
;

and

C4 � m

c
ÿ u1:

Then V is a concave twice continuously di¨erentiable solution of (4.25), (2.9).

Recalling the expression for A��x�, we get

A��x� � x

u
51:

Notice that due to jy2j > y1, the value for u1 is always greater than u. The
optimal reserve process R�t would be a re¯ected at u1 di¨usion with drift
mA��x� and a di¨usion coe½cient sA��x�. The optimal control functional L�t
is the one, which maintains the re¯ection of R�t from the boundary u1, that is,
the couple �R�t ;L�t � forms a solution to the Skorohod problem in �y; u1�. To
prove this fact, one needs to go through a veri®cation lemma, similar to the
one in Section 2.

It is important to notice that under the optimal control the reserve process
R�� will be a logarithmic Brownian motion on �0; u� and an arithmetic
Brownian motion on �u; u1� re¯ected at the upper boundary. In particular, the
bankruptcy time is in®nite.

Economically it means that we should use the policy, with risk propor-
tional to the current reserve level, until the reserve reaches u and and we must
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assume the maximal risk when the reserve is above this level. If the reserve
reaches u1 > u, then the dividends should be paid-out. The optimal policy is
the barrier policy with the barrier u1.

5 Dividend optimization with debt liabilities

5.1. Formulation of the optimization problem

Suppose, that in the situation described in the previous section there is a
constant debt payment such as ``coupon'' bonds or amortization of a loan.
Those payments must be made no matter what and cannot be controlled. If
we start with the Cramer-Lundberg model, then the dynamics of the reserve
process becomes

rt � r0 � ptÿ d 0tÿ
XA�t�
i�1

Ui; �5:1�

where d 0 is a constant rate of liability payments. Assuming the same limiting

approach as in Section 1 and (in addition assuming that d 0 � dn depends on n
in such a way that dn

���
n
p ! d), then in the absence of the risk control (i.e., no

reinsurance), we can get the same di¨usion approximation for the risk process
in (5.1) as in (1.2) with m replaced by mÿ d. In this case the problem with
debt liability would have been equivalent to the problem of Section 2 with m
replaced by mÿ d. If we use risk control and reinsure 1ÿ a fraction of each
claim, then p and Ui in the right hand side of (5.1) are replaced by ap and aUi

respectively. In the di¨usion limit the dynamics becomes

dRt � �ap�t�mÿ d� dt� ap�t�s dWt ÿ dLp
t ;

where p � �ap�t�;Lp
t � is a policy, whose ®rst component 0U ap�t�U 1 is the

fraction of each claim insured by the cedent at time t (that is, 1ÿ a�t� is the
reinsurance fraction) and the second component Lt is the cumulative amount
of dividends paid-out up to t. Those two processes must satisfy the same
admissibility requirements as described in Sections 2 and 3.

For each policy p we de®ne its performance index by (4.3) and the optimal
return function V is de®ned via (4.4). The Hamilton-Jacobi-Bellman equation
for V is close to (4.25), in fact, it di¨ers from (4.25) only by an extra term ÿd
in front of V 0, namely

max max
a A �0;1�

1

2
s2a2V 00�x� � �maÿd�V 0�x�ÿcV�x�

� �
; 1ÿV 0�x�

� �
�0: �5:2�

Now our main problem is to ®nd a concave solution to (5.2) subject to
(2.9). Despite ostensible similarity with the model of the previous section, the
analytical part of the liability problem would require a rather di¨erent
approach. The next theorem shows that for very large d the problem becomes
trivial.

Theorem 5.1. If mU d then V�x� � x.

24 M. I. Taksar



A consequence of this theorem is that L�t 1 x for all tV 0 and t � 0 under the
optimal policy. This agrees with the intuition: if the expected per unit
time pro®t is less than the rate of liability payments, then potentially we
cannot earn more than the amount of reserve that we have at the very begin-
ning. The optimal policy in this case is to declare bankruptcy immediately,
distributing all the reserve as dividends. In sequel, we will consider only the
case of m > d.

If we proceed like we did in the previous section and conjecture that there
always exists u > 0 such that A��x� < 1 for all x A �0; u�, then we might not
be able to ®nd a concave solution to (5.2) if d is close to m. Therefore we start
our preliminary analysis from an extreme assumption that A��x� � 1 for all
xV 0. In view of concavity there exists a point u1, such that V 0�x� > 1 for all
xU u1 and V 0�x� � 1 for all xV u1. As a result (5.2) reduces to

1
2 s2V 00�x� � �mÿ d�V 0�x� ÿ cV�x� � 0 �5:3�

on �0; u1�. The solution of this equation subject to (2.9) is V�x��C�ez�xÿezÿx�,
where z� � y��mÿ d� and zÿ � yÿ�mÿ d� (see (2.12)). Substituting this
expression back into (5.2), we see that the assumption, that the maximizer
A��x� of the right hand side is equal to 1, is valid i¨ for all x.

ÿm�z�ez�x ÿ zÿezÿx�
s2�z2

�ez�x ÿ z2
ÿezÿx� V 1: �5:4�

Computing the left hand side of (5.4) for x � 0, we obtain

ÿ m

s2

V 0�0�
V 00�0� � ÿ

m

s2

1

z� � zÿ
� m

2�mÿ d� :

The above expression is greater or equal to 1 i¨

mU 2d: �5:5�
Accordingly, we will consider two di¨erent cases: the ®rst when (5.5) is valid,
the second when it is not.

5.2. The case of mU 2d

Theorem 5.2. If d < mU 2d, then

V�x� � C�ez�x ÿ ezÿx�; xU u1,

C�ez�u1 ÿ ezÿu1� � xÿ u1; x > u1,

�
�5:6�

where

u1 � 2
1

z� ÿ zÿ
log jzÿ=z�j;

C � �z�ez�u1 ÿ zÿezÿu1�ÿ1;

is a concave twice continuously di¨erentiable solution of (5.2), (2.9).
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With a hind side, we can claim that in this case the problem is equivalent
to dividend control problem of Section 2 if we replace the drift m in (2.1) by
mÿ d. The construction of the optimal policy is identical to a similar proce-
dure in Section 2. The optimal dividend pay-out scheme is to pay everything
in excess of the u1, whenever the reserve reaches this level. Under the optimal
policy, the probability of ruin is 1.

From the economic point of view we see, that if the expected per unit time
pro®t is not large compared to the liabilities, then it is optimal to take the
maximal risk, gambling on the increase of the reserve su½ciently enough to
avoid immediate bankruptcy.

5.3. The case of m > 2d

In this case, as the expression (5.5) shows, there must be a region O such that
0 < A��x� < 1, when x A O. Di¨erentiating (5.2) with respect to a, we see,
that A��x� is given by (3.2). Assuming convexity, set u1 � inffx : V 0�x� � 1g
and suppose O � �0; u�, with u < u1. Then, substituting (3.2) into (5.2), we get

ÿa
V 02�x�
V 00�x� ÿ dV 0�x� ÿ cV�x� � 0; �5:7�

where a � m2

2s2
. We will seek a concave solution to (5.7), (2.9). Let X�z� be

an inverse function to V 0�x�, that is, V 0�X�z�� � z. Di¨erentiating, we get
V 00�X�z�� � 1=X 0�z� and substituting this into (5.7) yields

ÿaz2X 0�z� ÿ dzÿ cV�X�z�� � 0: �5:8�

Di¨erentiating this equation with respect to z results in

ÿaz2X 00�z� ÿ �2a� c�zX 0�z� ÿ d � 0:

Solution to this linear ODE can be obtained by ``brute force'':

X �z� � Czÿ1ÿ�c=a� � C1 ÿ d

a� c
log z; �5:9�

where C and C1 are free constants. The function X�z� given by (5.9) is, how-
ever, not a solution to the equation (5.8) but to the equation obtained by the
di¨erentiation of (5.8). Because of that one extra free constant appears in the
solution. To get rid of this extra degree of freedom we should use the condi-
tion (2.9). That is, substituting X �z� � 0 into (5.8), and using (2.9), we get two
equations

Czÿ1ÿ�c=a� � C1 ÿ d

a� c
log z � 0;

ÿaz2 C ÿ1ÿ c

a

� �
zÿ2ÿ�c=a� ÿ d

a� c
zÿ1

� �
ÿ dz � 0:
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Excluding z from these equations, we get

C1 � ÿ dc

�a� c�2 �
da

�a� c�2 log C � da

�a� c�2 log
�a� c�2

dc
: �5:10�

Denote by XC�z� the function given by (5.9) with C1 expressed via C as in
(5.10). For any C > 0 the function XC is monotone on �0;y�, decreasing from
�y to ÿy. As a result

V�x� �
� x

0

Xÿ1
C �y� dy; xU u:

Our next step would be to determine the constant C and the point u. This will
be done in several stages. Denote

z1 � V 0�u�:

Since by the de®nition of the region O, we must have A��u� � 1, we can
substitute our solution into (3.2) and arrive at

ÿ m

s2
z1X 0C�z1� � 1:

Solving this equation for C, we get its expression through z1

C � z
1��c=a�
1

m c� a 1ÿ 2d

m

� �� �
2�a� c�2 : �5:11�

Note that since m > 2d the above expression is positive if z1 is so.
Next we have to write down a solution on �u; u1�. On this interval V

satis®es a linear di¨erential equation (5.3), whose general solution can be
written in the form

V�x� � C2

z�
exp�z��xÿ u�� � C3

zÿ
exp�zÿ�xÿ u��;

with two free constants C2 and C3. For xV u1,

V�x� � xÿ u1 � C4:

To determine C;C3;C4; u and u1, recall that by de®nition

u � XC�z1�; �5:12�

where C is given by (5.11). In addition applying the principle of smooth ®t at u
and u1 for the ®rst and the second derivatives:

V 0�uÿ� � V 0�u��; V 00�uÿ� � V 00�u��;
V 0�u1ÿ� � V 0�u1��; V 00�u1ÿ� � V 00�u1��;
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we get 5 equations, which determine C2;C3; u u1, z1, namely

C2 � 1

1�m=�s2z��
1�m=�s2zÿ�
� �z�=�z�ÿzÿ�

� ÿzÿÿ�m=s2�
z���m=s2�

� �
1�m=�s2z��
1�m=�s2zÿ�
� �zÿ=�z�ÿzÿ� ;

�5:13�

C3 � C2
z� � �m=s2�
ÿzÿ ÿ �m=s2� ; �5:14�

z1 � C2
z� ÿ zÿ

ÿzÿ ÿ �m=s2� ; �5:15�

C determined via z1 by (5.11), u determined via (5.12) and

u1 � u� 1

z� ÿ zÿ
log

1� m=�s2z��
1� m=�s2zÿ�
� �

; �5:16�

To determine C4, we must equate V�u1�� and V�u1ÿ�, which yields

C4 � C2

z�
exp�z��u1 ÿ u�� � C2

zÿ
exp�zÿ�u1 ÿ u��: �5:17�

Computing all unknown constants, enables us to formulate the following

Theorem 5.3. Let C;C1;C2;C3;C4; u and u1 are determined via (5.11), (5.10),
(5.12), (5.13), (5.14), (5.15), (5.16) and (5.17). Then

V�x� �

� x

0

Xÿ1
C �z� dz; x < u,

C2

z�
exp�z��xÿ u�� � C3

zÿ
exp�zÿ�xÿ u��; uU x < u1,

C4 ÿ u1 � x

8>>>>>><>>>>>>:
�5:18�

is a concave twice continuously di¨erentiable solution of (5.2), (2.9).

Corollary 5.1. The optimal feedback risk control function is given by

A��x� � ÿ m

s2
�Xÿ1

C �x��X 0C�Xÿ1
C �x��

1 ÿ m

s2

1

z�

1��C3=C2� exp��zÿÿz���xÿu��
1��C3zÿ�=�C2z�� exp��zÿÿz���xÿu�� ; x < u �5:19�

and A��x� � 1 for xV u.

It can be shown that A��x� given by (5.19) is an increasing function with
A��0� > 0. This makes it markedly di¨erent from the case of zero liability. In
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particular, the bankruptcy time under the optimal policy is ®nite with prob-
ability 1. The optimal dividend distribution scheme is similar to that of the
other cases: it is of the barrier type with the barrier u1.

6 Noncheap reinsurance

In the previous sections, we assumed that the safety loading of the the
reinsurer is the same as that of the cedent. In many cases the reinsurer re-
quires higher relative safety loading (see a more detailed discussion on safety
loading in the next section), which results in the cedent paying larger fraction
of premiums, than the fraction which is reinsured. We call this noncheap
reinsurance. Suppose that the cedent decides to reinsure 1ÿ a fraction of all
claims. Then he is required to divert w�1ÿ a� fraction of premiums to reinsurer
where w>1. The money which is paid to the reinsurer in excess of �1ÿ a�
fraction of premiums is called transaction cost.

Let p � �ap�t�;Lp
t � be an admissible control, de®ned as in Section 4. Then

under this policy the dynamics of the reserve is

dRt � �mÿ �1ÿ ap�t��wm� dt� ap�t�s dWt ÿ dLp
t ; �6:1�

R�0� � x:

Our aim is to maximize the expected total dividend pay-outs until the time of
bankruptcy, that is, to ®nd V given by (4.3), (4.4) and ®nd the optimal policy
p�, such that

Jx�p�� � V�x�:

If we rewrite the equation (6.1) in the form

dRt � �ap�t�wmÿ �wÿ 1�m� dt� ap�t�s dWt ÿ dLp
t ; �6:2�

then we see that the transaction cost problem is mathematically equivalent to
the problem with debt liabilities, if we put

m̂ � wm; d̂ � �wÿ 1�m: �6:3�

Using this isomorphism, we can formulate the following theorem.

Theorem 6.1. Let the dynamics of the reserve process be described by (6.2). If
wV 2 then the optimal return function (4.4) is given by (5.6) with m and d in
the expression for all constants replaced by m̂ and d̂ of (6.3).

If w < 2, then the optimal return function V is given by (5.18), with the same
substitution for m and d in the formulae for all free constants involved.

As a consequence, we see, that when wV 2, it is optimal always to take the
maximal risk, that is, not to use reinsurance at all. If w < 2, then the optimal
feedback risk control function A� is monotone, with A��0�>0. In other words,
even when the reserve approaches zero, it is not optimal to reinsure 100% of all
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claims. The dividend distribution policy is of the same barrier type as before.
In both cases, under the optimal policy, the probability of ruin is 1.

7 Excess-of-loss reinsurance

7.1. Speci®cs of the excess-of-loss reinsurance

Another type of reinsurance employed by many companies consists of
reinsuring not a ®xed fraction of each claim, but the amount of the claim
in excess of a given level b, called the retention level. If the claim size is U, then
the cedent pays U5b � U �b�, while the reinsurer picks up the rest of the
claim. To derive the dynamics of the reserve process, let us start from the
Cramer-Lundberg model, written in a slightly di¨erent form. Let us assume
that in (1.1) the premium p is calculated via the expected value principle, that
is,

p � �1� h�lEU �b�;

where h > 0 is a relative safety loading. Suppose that the retention level b is
®xed and the reinsurer uses the same safety loading as the cedent. Then, the
reserve level rt at the time t is

rt � r0 � pb;htÿ
XA�t�
i�1

U
�b�
i ;

where

pb;h � �1� h�lEU �b�:

Denote m�b��EU �b� and s�b��E��U �b��2� (thus m�y��m and s2�y��EU 2).
Then, when h! 0, the process fhrt=h2gtV 0 converges in distribution to a
Brownian motion with drift lm�b� and di¨usion coe½cient ls�b�. Without loss
of generality, we can put l � 1. Considering the retention level to be dynam-
ically controlled, we arrive at the following di¨usion control model.

A strategy p��bp�t�;Lp
t � is a pair of Ft-adapted processes, where bp�t�V0

and Lp
t is an increasing process subject to the same conditions as the ones in

Section 2. Under the policy p, the dynamics of the reserve process satis®es

Rt � x�
� t

0

m�bp�s�� ds�
� t

0

s�bp�s��Ws ÿ Lp
t ;

where x is the initial reserve level. The objective is to maximize the expected
present value of the cumulative dividend distributions, that is to ®nd V de®ned
by (4.3), (4.4) and the policy p� � �b��t�;L�t � subject to (4.5).

To make the problem more tractable, we ®rst make a change of
control variables. Instead of the retention level b we will use m � m�b� as
an independent control. The following lemma shows consistency of this
representation.
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Lemma 7.1. Let F be the distribution function of the claim size U and

yVN � inffx : F�x� � 1g1 supfx : F�x� > 0g; �7:1�

The function m�b� is a continuous increasing function of b on �0;N� and there
exists an inverse function b�m�, for which

b�m�y�� � y: �7:2�

The function f�m�1 s2�b�m�� is a strictly increasing convex function of m on
the interval �0; m� with

f�0� � 0; f�m� � s2�y�; ds2�0�
dm

� 0;
ds2�m�

dm
� 2N:

7.2. Unrestricted dividend rate

This is a mixed regular-singular control problem. The HJB equation for the
optimal return function V is

max max
m A �0;m�

f�m�
2

V 00�x� �mV 0�x� ÿ cV�x�
� �

; 1ÿ V 0�x�
� �

� 0: �7:3�

It turns out that the nature of the solution to (7.3) (2.9) depends on whether or
not the distribution of the claim size U has a bounded support, that is whether
or not N given by (7.1) is ®nite.

7.3. The case of the claim size distribution with unbounded support

Suppose V is concave (will be shown a posteriori) and u1 � inffx : V 0�x��1g.
Then for xU u1

max
m A �0;m�

f�m�
2

V 00�x� �mV 0�x� ÿ cV�x�
� �

� 0: �7:4�

Let M��x�1m�x� be the maximizer of the left hand side of (7.4). Then
di¨erentiating the left hand side of (7.4) with respect to m,

ÿ V 0�x�
V 00�x� �

1

2

d

dm
f�m�x�� � b�m�x��; �7:5�

where b�y� is de®ned by (7.2). Substituting (7.5) into (7.4), we arrive at

ÿf�m�
2b�m� V 0�x� �mV 0�x� ÿ cV�x� � 0; �7:6�

with m � m�x�. Di¨erentiating (7.6) with respect to x, and using (7.5) once
more, leads to
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f�m�
2b2�m� b 0�m�m 0 ÿ c

� �
V 0�x� � ÿ f�m�

2b�m� �m

� �
V 00�x� � 0

and eventually to

f�m�
2b2�m� b 0�m�m 0 ÿ c� f�m�

2b2�m� ÿ
m

b�m�
� �

V 0�x� � 0:

Since V 0�x�V 1, we can divide by V 0�x� and obtain an equation for m

m 0 � 2cb2�m� ÿ f�m� � 2mb�m�
f�m�b 0�m� :

Put

G�m� �
�m

0

f�y�b 0�y�
2cb2�y� ÿ f�y� � 2yb�y� dy:

Then

m�x� � Gÿ1�x� C�

for some unknown constant C. Making a conjecture m�0� � 0, we get C � 0.
Equation (7.5) shows

1

b�m�x�� � �log�V 0�x���0

Therefore, in view of V 0�u1� � 1 (u1 is still needed to be determined), we can
write

V�x� �
� x

0

e

� u1

z
�1=b�m�y��� dy

dz:

Since V 0�x� � 1 for xV u1, we conjecture

V�x� �

� x

0

e

� u1

z
�1=b�m�y��� dy

dz; x < u1,

xÿ u1 � C1; xV u1.

8><>: �7:7�

By construction the derivative of V at point u1 is equal to 1. Continuity of the
second derivative at u1 implies

0 � V 00�u1ÿ� � ÿ1

b�m�u1ÿ�� :

Therefore b�m�u1ÿ�� �y, or, in view of N �y,

m�u1� � Gÿ1�u1� � m �7:8�
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(see Lemma 7.1). Thus

u1 � G�m�: �7:9�

After u1 has been found, we can determine C1 by continuity of V at u1.

C1 �
� u1

0

e

� u1

z
�1=b�m�y��� dy

dz: �7:10�

Theorem 7.1. Let N �y and u1 and C1 be given by (7.9), (7.10). Then V�x�
de®ned by (7.7) is a twice continuously di¨erentiable concave solution of (7.3),
(2.9).

From the construction of the solution it follows that the optimal retention
level M��x� as a function of the current reserve x is equal to b�Gÿ1�x��. It is
an increasing function, which means that with higher reserves we need less
reinsurance. In contrast to the previous Section, the optimal policy always
require to have some reinsurance; there is no time interval when it is optimal
to take the full risk. The optimal dividend distribution policy is of a barrier
type with the maximal reserve level (barrier) equal to u1.

7.4. The case of the claim size distributions with bounded support

If we follow the same route as in the case of unbounded support then we can
come as far as (7.8), but at this point there could be no further progress, in
view of the fact that b�m�u1ÿ�� <y. Therefore we must proceed with the
assumption that there exists u < u1 such that (7.6) holds on �0; u�, while on
�u; u1� the function V satis®es

s2

2
V 00�x� � mV 0�x� ÿ cV�x� � 0: �7:11�

Proceeding as above, we can solve (7.6) for xU u:

V�x� � C

� x

0

e

� u

z
�1=b�m�y��� dy

dz; �7:12�

where C is a free constant. Arguments identical to those of the previous
subsection show that

u � G�m�: �7:13�

Solution of (7.11) can be written as

V�x� � C1ey1�xÿu1� � C2ey2�xÿu1�;

where y1 � y��m�; y2 � yÿ�m� calculated via (2.12). For x > u1, the derivative
of V is 1 and
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V�x� � xÿ u1 � C3: �7:14�

Due to the ``smooth ®t'' at u and u1,

V 0�uÿ� � V 0�u��; V 00�uÿ� � V 00�u��; V�u1ÿ� � V�u1��;

V 0�u1ÿ� � V 0�u1��; V 00�u1ÿ� � V 00�u1��: �7:15�

Note that we do not need to write V�uÿ� � V�u��, in (7.15) since this will
follow automatically from the continuity of the ®rst and the second derivative.
In addition, substituting (7.12)±(7.14) into ®ve equations of (7.15), we can
solve for C;C1;C2;C3 and u1.

C1 � ÿy2

y1�y1 ÿ y2� ; C2 � y1

y1�y1 ÿ y2� ;

u1 � u� 1

y1 ÿ y2
log

y2�1�Ny1�
y1�1�Ny2�
� �

; �7:16�

C � C1y1ey1�u1ÿu� � C2y2ey2�u1ÿu�; C3 � m

c
: �7:17�

Those calculations enables us to conclude with the following theorem.

Theorem 7.2. Suppose N <y. Let

V�x� �

C

� x

0

e

� u

z
�1=b�u�y��� dy

dz; x < u,

C1ey1�xÿu1� � C2ey2�xÿu1�; u < x < u1,

m

c
� xÿ u1; x > u1,

8>>>>><>>>>>:
where u, C;C1;C2;C3 and u1 are given by (7.13), (7.16) and (7.17). Then V is
a concave twice continuously di¨erentiable solution to (7.3), (2.9).

The optimal feedback risk control policy M��x� as a function of the current
reserve x is equal to b�Gÿ1�x�� for 0U xU u and b�x� � N if x > u. That is, if
the reserve level exceeds u then there should be no reinsurance. The optimal
dividend distribution policy is of a barrier type with the level u1 being the
barrier.

7.5. Bounded dividend rate. Unbounded support for the claim size
distribution

In the case of the bounded dividend rate

Lp�t� �
� t

0

lp�s� ds; 0U lp�s�UM;
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and the HJB equation becomes

max
m A �0;m�; l A �0;M�

f�m�
2

V 00�x� � �mÿ l�V 0�x� ÿ cV�x� � l

� �
� 0: �7:18�

If we assume that there are u < u1 such that u1 � supfx : V 0�x� > 1g and
there should be no reinsurance whenever the reserve level is above u, then we
will arrive at a contradiction. Similarly, we will arrive at a contradiction if
we assume that the level u1 satis®es Gÿ1�u1� � m as in section 7.3. Thus our
assumption is that for all x > u1 the optimal retention level remains constant.
In this case, we can proceed as in Sections 7.3, 7.4 and obtain a solution for V
in the form

V�x� �

� x

0

e

� u1

z
�1=b�m�y��� dy

dz; x < u1,

M

c
� 1

~y�m1�
e

~y�m1��xÿu1�; xV u1,

8>>><>>>:
where

~y�m� �
ÿ�mÿM� ÿ

�����������������������������������������
�mÿM�2 � 2cf�m�

q
f�m� < 0

and u1 and m1 are unknown constants to be determined. Equalizing the value
of the second derivative from the left and from the right at u1 results in the
equation

1

b�m1� � ÿ
~y�m1�: �7:19�

The above equation has a unique solution because both sides of (7.19) are
continuous functions, the left hand side is strictly decreasing on �0; m� from
�y to 0 (recall that b�m� is strictly increasing from 0 to y), while the right
hand side is strictly increasing on �0; m�. Arguments similar to those of Section
7.3 show

u1 � G�m1�: �7:20�

Theorem 7.3. Let m1 be the root of (7.19) and u1 be given by (7.20). Then the
function V of (7.19) is a concave twice continuously di¨erentiable solution of
(7.18), (2.9).

The optimal feedback risk control policy is having the retention level
b�Gÿ1�x��, if the current reserve level is x and x < u1. Whenever xV u1, the
retention level is constant and equal to b�m1�. The dividend distribution policy
is not to pay any dividends until the reserve level reaches u1 and to pay the
maximal rate, whenever the reserve exceeds u1.
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7.6. Bounded dividend rate. Bounded support for the claim size
distributions

Here we have the same HJB equation (7.18). Intuitively, it is clear that if N is
large enough, we should have the same type of the solution as in Theorem 7.3.
For relatively small N, the same intuition suggests that we should have an
interval, when no reinsurance is necessary. In fact, this is true and below we
present the results without specifying details of the procedure. By and large
the proof goes along the same lines as in Sections 7.1±.7.5.

Theorem 7.4. Suppose

M > cN ÿ s2

2
� m; �7:21�

Let ŷ � yÿ�mÿM� and

D �
y1 � 1

N

� �
�y2 ÿ ŷ�

y2 � 1

N

� �
�y1 ÿ ŷ�

> 1;

u � G�m�;

u1 � u� 1

y1 ÿ y2
log D;

C1 � D�ÿy2=�y1ÿy2��

y2

1

y1 ÿ y2

� �
< 0;

C2 � ÿD�ÿy1=�y1ÿy2���y2 ÿ ŷ�
y1�y1 ÿ y2��y1 ÿ ŷ� > 0;

C � C1y2 � C2y1:

Then

V�x� �

C

� x

0

e

� u

z
�1=b�m�y��� dy

dz; x < u,

C1ey2�xÿu� � C2ey1�xÿu�; u < x < u1,

M

c
� 1

ŷ
eŷ�xÿu1�; x > u1

8>>>>>><>>>>>>:
is a concave twice continuously di¨erentiable solution of (7.18), (2.9).

Theorems 7.4 shows that if M and N are subject to (7.21), then the optimal
retention level is equal to b�Gÿ1�x��, when the current reserve is equal to x<u.
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There should be no reinsurance if uU xU u1. The dividends should be paid at
the maximal rate whenever the reserve exceeds u1.

Theorem 7.5. Suppose (7.21) is not true. Let m1 be the root of (7.19) and u1 be
given by (7.20). Then

V�x� �

� x

0

e

� u1

z
�1=b�m�y��� dy

dz; x < u1,

M

c
� 1

~y�m1�
e

~y�m1��xÿu1�; xV u1,

8>>><>>>:
is a concave twice continuously di¨erentiable solution of (7.18), (2.9).

From this theorem it follows that if (7.21) fails then the optimal retention level
as a function of the current reserve x is equal to b�Gÿ1�x��, when x < u1 and it
is equal to b�m1� for all x > u1. The dividends should be paid at the maximal
rate when the reserve is above u1.

8 Open problems

In the models presented here, the dividend distribution is frictionless, it does
not require any set-up costs. Suppose each time the dividends are distributed
there is a non recoverable cost K associated with it. In this case, there is no
possibility of continuous distributions, rather the pay-outs must be done is
lump sums. The control functional Lt is represented in the form

Lt �
X
hkUt

xk;

where 0U h1 < h2; . . . ; < hk; < � � � is a sequence of stopping times with respect
to Ft and xk are Fhk

measurable random variables. The sequence hk is the
sequence of times when the dividends are paid out, while xk is the kth amount
paid out. The performance index associated in this case with a policy p is

Jx�p� � E

� t

0

eÿct dLt ÿ
X
hk<t

Keÿchk

" #
:

This model should be solved via impulse control techniques. The HJB equation
for this problem would be quasivariational inequality which involves both
second order di¨erential operator and a di¨erence operator. A partial solution
to this problem is done in [39], where the case of a pure dividend control was
considered.

Another type of unsolved problems relates to existence of a ``dissolution
value'' of a company at the time of bankruptcy. This will change the bound-
ary condition (2.9) to

V�x� � P;
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where P is also called the terminal value. For the case of proportional rein-
surance with unrestricted dividend rate this problem was solved in [60]. Other
cases are still open.

Very closely related to the above is the problem with nonterminal bank-
ruptcy. This should be the model in which upon reaching the bankruptcy
state, the company does not go out of business, rather it stays in this state
a random amount of time (akin to reorganization under Chapter 11 of US
Bankruptcy Code) and then resumes ``business as usual''. In the consumption/
investment models in ®nance a di¨usion limit description of such behavior
would be via Brownian motion with delayed re¯ection at 0 (see [57]). It
appears that a similar approach might work in the dividend optimization
models as well.

A special interest is a problem of the excess-of-loss reinsurance in which
the reinsurer's safety loading increases with the retention level the cedent
chooses.

Another interesting and important extension would be to allow the reserve
to accrue interest. That would add a term rRt to the drift in the dynamics
of Rt. For example, in the case of proportional reinsurance the dynamics
becomes

dRt � �map�t� � rRt� dt� sap�t� dWt ÿ dLp
t :

The major analytical di½culty in solving the HJB arises from the fact that it
will contain an additional term rx in front of the ®rst derivative.

A more sophisticated version of the same problem would be the one in
which it is allowed to invest a part or all of the reserve in the stock market.
In this case we will have additional control variables which determine the
fraction of the reserve invested in risky or risk free asset. This is in addition to
reinsurance control parameters. Some work related to the case, when reserve
is invested in stock market (but with no control of those investments) is done
in [49], [50]. For the objectives of minimizing the ruin probability and max-
imization of the growth rate, this problem was solved in [10], [11].

The most di½cult extension of the investment possibility problem would
be to the original Cramer-Lundberg model, that would require modeling of
the reserve by the sum of two controlled processes: one being a compound
Poisson, the other a di¨usion process. The resulting Hamilton-Jacobi-Bellman
equation becomes an integro-di¨erential equation, whose closed form solution
would be hard to obtain if at all. In this regard, the computational methods
should become of a major interest.

9 Appendix

9.1. Generalized Ito's formula

Theorem 9.1. Let �W;F;Ft;P� be a probability space with ®ltration Ft and a
standard Brownian motion Wt, adapted to Ft. Let Lt be a right continuous
with left limits (cadlag) increasing Ft-adapted process. Suppose Xt satis®es the
following stochastic di¨erential equation
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Xt � x�
� t

0

m�Xs� ds�
� t

0

s�Xs� dWs ÿ Lt:

Denote by Lc
t � Lt ÿ

P
sU t �Ls ÿ Lsÿ� the continuous part of L. Then for any

twice continuously di¨erentiable function V�x� with bounded ®rst and second
derivatives and for any stopping time t with respect to Ft,

eÿctV�Xt� ÿ V�x� �
� t

0

eÿct 1

2
s2�Xt�V 00�Xt� � m�Xt�V 0�Xt� ÿ cV�Xt�

� �
dt

�
� t

0

eÿcts�Xt�V 0�Xt� dWt ÿ
� t

0

eÿctV 0�Xt� dLc
t

ÿ
X

0UtUt

eÿct�V 0�Xt� ÿ V�Xtÿ��:

In particular

V�x� � E�eÿctV�Xt��

ÿ E

� t

0

eÿct 1

2
s2�Xt�V 00�Xt� � m�Xt�V 0�Xt� ÿ cV�Xt�

� �
dt

� E

� t

0

eÿctV 0�Xt� dLc
t � E

X
0UtUt

eÿct�V�Xt� ÿ V�Xtÿ�� �9:1�

The proof of this theorem can be found in [47] p. 301 or [31] Ch. 4.

9.2. Skorohod problem on a real line

Let m�x� and s�x� be Lipschitz continuous functions. Let u A R be ®xed. A
solution to the Skorohod problem in �ÿy; u� with initial position x is a pair
�Xt;Lt� of cadlag Ft-adapted processes, such that Lt is nonnegative and
increasing and

X �t� � x�
� t

0

m�X�s�� ds�
� t

0

s�X �s�� dWs ÿ Lt; �9:2�

Xt U u; for all tV 0; �9:3��y
0

1X �s�<u dLs � 0: �9:4�

The resulting process Xt is a continuous for all t > 0 di¨usion process on
�ÿy; u� with drift m��� and di¨usion coe½cient s��� re¯ected at the upper
boundary u. Note, that if x > u, then L0 � xÿ u and X0 � u. By convention,
X0ÿ � x and L0ÿ � 0 and we assume that both X and L have a discontinuity
at 0 if x > u.
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Existence and uniqueness of a solution to the Skorohod problem in a much
more general setting is proved in [42]. In the case of s�x� and m�x� being
constants, the solution to the Skorohod problem (9.2)±(9.4) can be written in
a closed form (see [31] Ch. 2)

Lt � max max
sUt
�x� ms� sWs ÿ u�; 0

� �
; �9:5�

Xt � x� mt� sWt ÿ Lt: �9:6�
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