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Abstract. In this paper, we discuss the stability of the sets of efficient points of
vector-valued and set-valued optimization problems when the data (E,, f,)
(resp. (E,, F,)) of the approximate problems converge to the data (E, f) (resp.
(E, F)) of the original problem in the sense of Painleve-Kuratowski or Mosco.
Our results improve and generalize those obtained by Attouch and Riahi in
Section 5 in [1].
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1. Introduction

In [1], Attouch and Riahi applied their Theorem 3.3 and established the sta-
bility result for the set of efficient points of a multiobjective optimization
problem in finite dimensional space R under the pareto order. In this paper,
we consider the stability of the sets of efficient points of vector-valued and set-
valued maps in a Banach space Y under general cone order setting when the
data (E,, f,) (resp. (E,, F,)) of the approximate problems converge to the
data (E, f) (resp. (E,F)) of the original problem in the sense of Painleve-
Kuratowski and Mosco (for details, see Section 2). Our results improve and
generalize those in Section 5 in [1].

This paper is structured as follows. In Section 2, we present some concepts
and notations. Section 3 is devoted to the stability results. Section 4 concludes
the paper.
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2. Concepts and notations

In this section, we introduce some concepts and notations, which will be used
in the sequel.

Throughout this paper, we assume X and Y are both Banach spaces. Y is
partially ordered by a nontrival, closed, pointed and convex cone C, i.e.,
Vo, meY, yy <cyr iff yp—y1eC. Let C*={leY*:l(c)>0,Vce C}
denote the positive polar cone of C and int C denote the interior of C if the
interior of C is nonempty.

We first recall the Painlevé-Kuratowski convergence and Mosco conver-
gence of a set sequence.

Definition 2.1. Let Z be a first countable topological space. The Painlevé-
Kuratowski convergence of a seqence of subsets {D, : n € N} of Z to a subset

D of Z (ie., D, LK D) means limsup D, = D < liminf D, with

n—oo =
liminf D, = {x = lim,_ . X, : X, € Dy, Vn € N}
n—oo
limsup D, = {x = limg_; Xy, : Xn, € Dy, Vk,{nr} a subsequence of N}.
n—oo

Definition 2.2. Let Z be a normed space. We say that a sequence of subsets
{D,} of Z Mosco converges to D = Z if w— limsup D, = D c liminf D,

n—oo n—=
with w — limsup = {x = w — limy_ o Xy, : X, € Dy, Vk,{nr} a subsequence
n—oo
of N}, where x = w — limy_, 4, X, stands for the weak convergence of x,
to x.

Definition 2.3. A vector-valued function f : X — Y is said to be lower semi-
continuous (l.s.c.) with respect to (w.r.t.) Cif Vye Y, {xe X : f(x) <c y} is
closed.

We use extc A to denote the set of maximal (efficient) points of 4, i.e.,
zeextcAff (z4+ C)n A ={z}.

We introduce a virtual element +oo in Y meanning that +00 —ye C,
VyeY.
Definition 2.4. We say a seqence of vector-valued functions f, (defined on X)

Painlevé-Kuratowski (P.K. for short) (resp. Mosco (M for short)) converges
to a vector-valued function f (defined on X) if

epi(f,) = {(x, y) : y e f(x) + C} 25 epi(f)
= {(x,7) 1y £ (x) + CYepi(f;) 5 epi(f)).

Definition 2.5. We say a sequence of nonempty set-valued maps F, (defined on
X) P.K.(M) converges to a nonempty set-valued map F (defined on X) if

epi(Fy) = {(x, y) : y € Fo(x) + C} 25 epi(F)

= {(x, ) : y € F(x) + C}(epi(F,) — epi(F)).
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Definition 2.6. Let {f,: E,— Y,n=1,2,...} be a sequence of vector-
valued functions and denote by {(E,, f,) :n=1,2,...} the corresponding
sequence pairs. f : E — Y. we say (E,, f,) P.K.(M) converges to (E, f) if

ﬁﬁ;f(f_;ﬂf),where

= [ flx), ifxekE,
Sl) = {—i—oo, if xe X\E,;
o [Sf(x), if xeE;
f(x)_{+oo, if xe X\E.

Definition 2.7. Let {F,, : E, — 2Y n=1,2,...} be a sequence of nonempty set-
valued maps and denote by {(E,, F,)} the corresponding pairs. F : E — 27 is
a nonempty set-valued map. We say (E,, F,) P.K.(M) converges to (E, F) if

= PK. =
F, — F, where

_ F, if x e E,
F,(x) = (%), el .
+oo, if xe X\E;;
_ F if xe E
+o0, if xe X\E.

Definition 2.8. Let f: X — Y be a vector-valued function. We say f is
bounded below if Jyy € ¥ such that f(X) — yo = C.

Let f,: X — Y be a sequence of vector-valued functions. We say f, are
uniformly bounded below if 3y € Y such that f,(X) —yo = C,Vne N.

Definition 2.9. Let F : X — 2Y be a set-valued map. We say that F is bounded
below if 3y € Y such that [F(X) — y¢] = C, where F(x) = () F(x).

xeX

Let F, : X — 2 be a sequence of set-valued maps. Wiae say that F, are
uniformly bounded below if there exists yo € Y such that [F,(X) — yo] = C for
all n.

3. Stability of the set of efficient (minimal) points

This section presents the main results, which generalize the corresponding
results in [1, Section 5]. We shall first state the results and then prove them one
by one.

Theorem 3.1. Assume intC # &, —C <= {ye Y :l(y) +¢|y|| <0} for some
leY* ande> 0. (E,, f,), (E, f) are as defined in Definition 2.6. ¥\n € N, E, is
a nonempty closed subset of X, f, is L.s.c. w.r.t. C. E < X is nonempty closed. f
is Ls.c. wr.t. C.

In addition,

(a) inf inf I(f,(x)) > —oo/

PK.
(b) (Emfn) — (E7f)’ i
(c) 3 a compact subset K of X such that E,, c K,¥n € N;
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(d) Vp > 0,3 a compact subset K, of Y such that ext_c f,(E,) npB < K,
where B is the unit ball of Y.
Then ext_c f(E) is nonempty and

ext_cf(E) < liminf ext_c f,(E,).

Theorem 3.2. C (without the assumption intC # &), f,,E. E, f are as in
Theorem 3.1. V1 € C*, A(f,) is Ls.c. on E,. A(f) is Ls.c. on E.

In addition,
(a) inf inf I(f,(x)) > —oo;

PK.

(b) (En, f,) — (E, f);
(c) 3 a compact subset K of X such that E,, c K,VYn € N;

(d) Vp > 0,3 a compact subset K, of Y such that ext_c f,(E,) npB c K,,
where B is the unit ball of Y.

Then ext_c f(E) is nonempty and

ext_cf(E) < liminf ext_¢ f,(E,).

Theorem 3.3. X and Y are reflexive Banach spaces. C,E,, f,,E, f are as in
Theorem 3.1. f,, f are Ls.c. (with respect to the weak topology of X) w.r.t. C.
In addition,

(a) inf inf I(f,(x)) > —o0;
neN xekE,
(b) (En f,) ** (E. f);
(c) 3 a bounded closed subset K of X such that E, = K,¥n € N;
(d) Vp > 0,3 a compact subset K, of Y such that ext_c f,(E,) 0 pB < K,,
where B is the unit ball of Y.
Then ext_c f(E) is nonempty and

ext_cf(E) < liminf ext_c f,(E,).

Theorem 3.4. X, Y, C (without the assumption int C # (&), E,, E, f,, f are as
in Theorem 3.3¥A e C* A(f,), A(f) are Ls.c. (with respect to the weak topology
of X).
In addition,
(a) inf inf /(f,(x)) > —o0;
neN xekE,

a)
(0) (Enfy) (. f);
(c) 3 a bounded closed subset K of X such that E, = K,Vn e N;
(d) Vp > 0,3 a compact subset K, of Y such that ext_c f,(E,) npB < K,,
where B is the unit ball of Y.
Then ext_c f(E) is nonempty and

ext_cf(E) < liminf ext_c f,(E,).

Remark 3.1.

(i) The condition —C = {ye Y : I(y) +¢|ly|| <0} for some /e Y* and
& > 0 is equivalent to the statement that 3/ € C*\{0} and ¢ such that /(c) > ¢
for any ¢ € C with ||c|| = 1. The latter is fulfilled when Y is a finite dimen-
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sional space and C is a nontrivial, pointed, closed and convex cone. Note
that Attouch and Riahi considered only the special case when ¥ = R" and
C = RY. On the other hand, the following example shows that the condition
—Cc{yeY:I(y)+e|y|| <0} for some /€ Y* and ¢ > 0 can be satisfied
when Y is infinite dimensional, which illustrates the fact that Theorem 3.1
(Theorem 3.3) does generalize the corresponding results in [1, Section 5].

Example 3.1. Let Y =/'={a=(a1,...,an,...) :a; € R}, 2, |a;| < +o0},
C={a=(a1,...,an,...):a;>0,i=1,2,...}, [=(l,1,...)eC*. Then
I(c) =327 ¢i=1forany ¢ = (c1,...,¢y,...) € C such that ||, = 1.1t fol-
lows that —C = {ye Y : I(y) +¢||y|| < 0}.

(ii) It is clear that if f, are uniformly bounded below (i.e., there exists
»o € Y such that f,(x) — yo € C,Vx € E,, Vn), then (a) holds automatically.

(iii) Let ¥ = RY, C = RY. It is not hard to see that the conditions of
Theorem 5.2 in [1] imply all the conditions in our Theorem 3.1. However, the
Definition 5.1 in [1] is a stronger version of convergence than (b) in our The-
orem 3.1. Therefore, our Theorem 3.1 improves Theorem 5.2 in [1].

We need the following lemmas to prove the theorems above.

Lemma 3.1. Under the assumptions of Theorem 3.1 (or Theorem 3.2), we have

(Eu f) Z5 (B, f) = f(E) + C 25 1(B) + C.

Proof. Firstly, we prove
f(E)+ C climinf f,(E,)+ C (1)

Yy ef(E) with y = f(x),Vc e C, then (x, y+c) € epi(f). Since f, ﬁif, we
have epi(f) < liminf epi(f,).

So  3I(xy, yu) €epi(f,) with y, = f,(x,) +¢, such that (x,, y,) —
(x,y+¢). Thus y, — y+ C. .

Obviously, x, € E, when n is sufficiently large. Hence, y, = f,(x,) + ¢, =
S (xn) + ¢ € f,(Ey) + C, when n is sufficiently large, implying (1).

Secondly, We prove lim sup(f,(E,) + C) = f(E) + C.

n—oo
For any x, € E,,c, € C with f, (x,)+cy € f, (E, )+ C such that
fnk (X, ) + . — ¥
Now that {x,, } = K and K is a compact subset of X, we deduce that there
exist a subsequence {x, } and xeK such that x, — x. Noticing that
y # +o0, we obtain x € E. So (x, y) € epi(f), i.e., y € f(E) + C. The proof is
complete.

Similarly, we can prove the following Lemma 3.2.

Lemma 3.2. Under the assumptions of Theorem 3.3 (or Theorem 3.4),

(En f)) 5 (B, f) = f(E) + C L f(E) + C.
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Lemma 3.3. Let E c X be nonempty compact. f : E — Y islLs.c. wr.t. Con E.
Then f(E) + C is nonempty closed and ext_c[f(E) + C] = ext_c f(E).

Proof. For any f(x,) + ¢, € f(E) + C with x,, € E, ¢, € C such that

S () +en—y (2)

By the compactness of E, we get a subseqence {x,, } of {x,} and x € E such
that x,, — x. This combined with (2) yields f(x,,) + ¢y, — ».

Arbitarily fix an e € int C, then Ve > 0,3Kj, when k > Ko, f(xp,) + ¢, <c
y—+ee. So f(xn) <cy+ee. By the Ls.c. of f w.r.t. C, we know that f(x) <¢
y+ee, ie., f(x) —y —¢eee —C. Letting ¢ — 0, we have f(x) —y e —C (since
—Cisclosed). Hence ye f(x) + C < f(E)+ C

It is obvious that the relation ext_¢[f(E) + C] = ext_c f(E) holds.

Lemma 3.4. Let E < X be nonempty compact. Let f:X — Y be such
that Nl e C*, A(f) is Ls.c. on E. Then f(E)+ C is nonempty closed and

ext_c[f(E) + C] = ext_c[/(E)]

Proof. We only show that f(E) + C is closed.

For any f(x,) 4+ ¢, € f(E) + C with x, € E, ¢, € C such that f(x,)+ ¢,
— y. By the compactness of E, we have a subsequence {x, } of {x,} and
x € E such that x, — x. Moreover, f(x,, )+ cy — y. Hence A(f(x,, )+
Men,) — A(p),VYA e C*, implying A(f(x)) < limiOpf Af(xn,) < A(y)VAe C*.

Thus f(x) <c y, implying y e f(x) + C = f(E) + C

Proof of Theorem 3.1. We simply apply Theorem 3.3 in [l] with C
replaced by —C, D, = f,(E,) + C,D = f(E) + C. By Lemma 3.1 and Lemma
3.3, we know that D,, D are nonempty closed and D, KD In addition,
1nf 1nf I(y) > 1nf 1nf > —o0. Moreover, Vp >0, (ext_¢D, )r\pB—

N yeD,
(ext c L (E, ))m pBCK So all the conditions of Theorem 3.3 in [I]
hold, hence, ext_cf(E)=ext_¢D # ¢ and ext_cf(E)=ext_¢Dc

lim 1nf ext_cD, = hm 1nf ext_cf(E,). The proof is completed.
n—aoo

Theorem 3.2 can be similarly proved.

Lemma 3.5. Let X be a reflexive Banach space and int C # . If E < X is
nonempty, closed and bounded. [ : E — Y is Ls.c. (with respect to the weak
topology of X) on E w.r.t. C. Then f(E)+ C is a nonempty closed set and

ext_c[f(E)+ C] =ext_cf(E).

Proof. Since X is reflexive, we know that E is a weakly compact subset of X.
Vf(x4) + cn €f(E) + C with x,, € E, ¢, € C such that f(x,) + ¢, — y.
By the weak compactness of E, we obtain a subsequence {x,, } of {x,} and
x € E such that x,, ox Arbltarlly fix an eeint C, Ve > 0, 1K, > 0, when
k = Koy, we have f(x,)+ ¢, <cy+ee. Thusf(xn,) <cy+c¢e. By the Ls.c.
of f (w.r.t. C and the weak topology of X), we have f(x) <¢ y + ee. Hence,

f(x)<cy+teeie,yef(x)+Cc f(E)+C
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Similar to the proof of Lemma 3.4 (applying the weak topology of X), we
can prove Lemma 3.6.

Lemma 3.6. Let X be a reflexive Banach space. If E < X is nonempty,
closed and bounded, [ : E — Y is such that VA € C*, A(f) is Ls.c. (with respect
to the weak topology of X) on E, then f(E)+ C is nonempty closed and

ext_c[f(E)+ C] =ext_cf(E).

Applying our Lemma 3.2, Lemma 3.5 and Theorem 3.5 in [1], we can
easily prove Theorem 3.3.

Applying our Lemma 3.2, Lemma 3.6 and Theorem 3.5 in [1], we can also
prove Theorem 3.4.

Theorem 3.5. Let Cc{yeY :I(y)+e|y| <0} for some leY* e>0.
Vne N, E, is a nonempty closed subset of X, F, : X — 2V is u.s.c. nonempty
compact-valued. E is a nonempty closed subset of X, F : X — 2V is u.s.c. non-
empty compact-valued. In addition,

(a) inf inf inf l( ) > —oo;

neN xekE, VEF (x)

(b) (En, ) 2 (E,F);

(c) 3 a bounded closed subset K of X such that E, = K,¥n e N;

(d) Vp > 0,3 a compact subset K, of Y such that ext_c F,(E,) npB < K,,
where B is the unit ball of Y.

Then ext_c F(E) is nonempty and ext_¢ F(E) < lirrln i;lf ext_c Fy(E,).
Theorem 3.6. Let X, Y be reflexive Banach spaces. C,E,, F,,E,F are as in
Theorem 3.5. F,, F are u.s.c. (with respect to the weak topology of X ). In ad-
dition,

(@) inf inf inf /(y) > —o0;

neN xeE, yeF,, x)

(b) (En Fy) = (E, F);

(¢) 3 a bounded closed subset K of X such that E, = K,¥n e N;

(d) Vp > 0,3 a compact subset K, of Y such that ext_c F,(E,) npB < K,
where B is the unit ball of Y.

Then ext_c¢ F(E) is nonempty and ext_¢ F(E) < liminf ext_¢ F,(E,).

n—oo

Remark 3.2. If F, are uniformly bounded below (i.e. there exists yo € ¥ such
that [F,(E,) — yo] = C,Vn), then (a) in Theorems 3.5 and 3.6 holds automat-
ically.

The following lemmas are needed to prove Theorems 3.5, 3.6.

Lemma 3.7. Under the assumptions of Theorem 3.5, (E,, F, ) (E F) implies
FuE)+C 8 FE) + C.

Lemma 3.8. Under the assumptions of Theorem 3.6, (E,, F,) Rl (E, F) implies
F,(E )+C—>F( )+ C.

The proofs of Lemma 3.7, Lemma 3.8 are similar to those of Lemma 3.1,
Lemma 3.2, respectively, we omit it.
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Lemma 3.9. Let E = X be nonempty compact. Let F : E — 2Y be u.s.c. non-
empty compact-valued, then F(E)+ C is nonempty closed and ext_c F(E) =
ext_c|F(E) + C].

Proof. We only need to show that F(E) + C is closed.

Yy, + ¢n € F(x,) + C with y, € F(x,)(x, € E),c, € C and y, + ¢, — y. We
prove that y € F(E) + C in the following two cases, respectively. (i) x, = x for
some x € X when # is sufficiently large.

Then y, € F(x), when n is sufficiently large By the compactness of F(x),
we get a subsequence {y,, } of {yn} and y’ € F(x) such that y,, — »’. How-
ever, Yy, + ¢y, — ¥, 80 ¢, —y—y €C,ie,yeF(x)+ Cc F(E)+ C.

(11) 3 a subsequence {x,, } whose elements are different from one another
such that y,, € F(x,,).

By the compactness of E, we obtain a subsequence {x,, } of {x,} and
x € E such that x,, — x. By the us.c. of F and the compactness of F(x ) we
have a subsequence { Y, } of { Y, } and y’ € F(x) such that Y, = y'. So

Cny, =V — y' edC,ie. yeF( )+CCF( )+ C. Theproof1scompleted

Lemma 3.10. X is a reflexive space, E is a nonempty closed bounded subset
of X. F: E—2Y isan ws.c. (w.r.t. the weak topology of X) nonempty com-
pact-valued map, then F(E)+ C is nonempty closed and ext_¢ F(E) =
ext_c[F(E) + C].

The proof of Lemma 3.10 is almost the same as that of Lemma 3.9, the
only difference being that the weak topology of X should be applied.

The combination of our Lemma 3.7, Lemma 3.9 and Theorem 3.3 in [1]
completes the proof of our Theorem 3.5.

The combination of our Lemma 3.8, Lemma 3.10 and Theorem 3.5 in [1]
completes the proof of our Theorem 3.6.

4. Conclusions

This paper considered the stability of vector-valued and set-valued opti-
mization problems based on the concepts of Painleve-kuratowski and Mosco
convergence of sets. The results generalized the corresponding results of At-
touch and Riahi in [1, Section 5]. The generalization is threefold: the objective
space Y is extended from finite dimensional to infinite dimensional; the dom-
inating cone C is extended from Rﬁ' to a general ordering cone; the objective
functions are extended to general vector-valued functions or set-valued maps.
Further research, for example, the stability of the set of weakly efficient points
(when the dominating cone C has nonempty interior) based on the concepts of
Painleve-Kuratowski and Mosco convergence of sets can be expected.
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