Mathematical Methods of Operations Research © Springer-Verlag 2000

Stability in vector-valued and set-valued optimization¹

X. X. Huang²

Department of Mathematics and Computer Science, Chongqing Normal University, Chongqing 400047, China

Manuscript received: May 1999/Final version received: June 2000

Abstract. In this paper, we discuss the stability of the sets of efficient points of vector-valued and set-valued optimization problems when the data (E_n, f_n) (resp. (E_n, F_n)) of the approximate problems converge to the data (E, f) (resp. (E, F)) of the original problem in the sense of Painleve-Kuratowski or Mosco. Our results improve and generalize those obtained by Attouch and Riahi in Section 5 in [1].

Key words: Convergence of set sequence, Mosco convergence, Painlevé-Kuratowski convergence, cone extremization, stability

1. Introduction

In [1], Attouch and Riahi applied their Theorem 3.3 and established the stability result for the set of efficient points of a multiobjective optimization problem in finite dimensional space R^N under the pareto order. In this paper, we consider the stability of the sets of efficient points of vector-valued and setvalued maps in a Banach space Y under general cone order setting when the data (E_n, f_n) (resp. (E_n, F_n)) of the approximate problems converge to the data (E, f) (resp. (E, F)) of the original problem in the sense of Painleve-Kuratowski and Mosco (for details, see Section 2). Our results improve and generalize those in Section 5 in [1].

This paper is structured as follows. In Section 2, we present some concepts and notations. Section 3 is devoted to the stability results. Section 4 concludes the paper.

¹ The research was partially supported by the National Natural Science Foundation of China.

² Current corresponding address: School of Mathematics and Stastics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia. E-mail: huangxx@cs.curtin.edu.au

2. Concepts and notations

In this section, we introduce some concepts and notations, which will be used

Throughout this paper, we assume X and Y are both Banach spaces. Y is partially ordered by a nontrival, closed, pointed and convex cone C, i.e., $\forall y_1, y_2 \in Y, y_1 \leq_C y_2 \text{ iff } y_2 - y_1 \in C. \text{ Let } C^* = \{l \in Y^* : l(c) \geq 0, \forall c \in C\}$ denote the positive polar cone of C and int C denote the interior of C if the interior of C is nonempty.

We first recall the Painlevé-Kuratowski convergence and Mosco convergence of a set sequence.

Definition 2.1. Let Z be a first countable topological space. The Painlevé-Kuratowski convergence of a sequence of subsets $\{D_n : n \in N\}$ of Z to a subset D of Z (i.e., $D_n \xrightarrow{P.K} D$) means $\limsup_{n \to \infty} D_n \subset D \subset \liminf_{n \to \infty} D_n$ with $\liminf_{n \to \infty} D_n = \{x = \lim_{n \to \infty} x_n : x_n \in D_n, \forall n \in N\}$

$$\liminf_{n \to \infty} D_n = \{ x = \lim_{n \to +\infty} x_n : x_n \in D_n, \forall n \in N \}$$

 $\limsup D_n = \{x = \lim_{k \to +\infty} x_{n_k} : x_{n_k} \in D_{n_k}, \forall k, \{n_k\} \text{ a subsequence of } N\}.$

Definition 2.2. Let Z be a normed space. We say that a sequence of subsets $\{D_n\}$ of Z Mosco converges to $D \subset Z$ if $w - \limsup_{n \to \infty} D_n \subset D \subset \liminf_{n \to \infty} D_n$ with $w - \limsup \{x = w - \lim_{k \to +\infty} x_{n_k} : x_{n_k} \in D_{n_k}, \forall k, \{n_k\} \text{ a subsequence}\}$ of N}, where $x = w - \lim_{k \to +\infty} x_{n_k}$ stands for the weak convergence of x_{n_k} to x.

Definition 2.3. A vector-valued function $f: X \to Y$ is said to be lower semicontinuous (l.s.c.) with respect to (w.r.t.) C if $\forall y \in Y, \{x \in X : f(x) \leq_C y\}$ is closed.

We use $ext_C A$ to denote the set of maximal (efficient) points of A, i.e., $z \in ext_C A \text{ iff } (z + C) \cap A = \{z\}.$

We introduce a virtual element $+\infty$ in Y meanning that $+\infty - y \in C$, $\forall v \in Y$.

Definition 2.4. We say a sequence of vector-valued functions f_n (defined on X) Painlevé-Kuratowski (P.K. for short) (resp. Mosco (M for short)) converges to a vector-valued function f (defined on X) if

$$epi(f_n) = \{(x, y) : y \in f(x) + C\} \xrightarrow{P.K.} epi(f)$$
$$= \{(x, y) : y \in f(x) + C\} (epi(f_n) \xrightarrow{M} epi(f)).$$

Definition 2.5. We say a sequence of nonempty set-valued maps F_n (defined on X) P.K.(M) converges to a nonempty set-valued map F (defined on X) if

$$epi(F_n) = \{(x, y) : y \in F_n(x) + C\} \xrightarrow{P.K.} epi(F)$$
$$= \{(x, y) : y \in F(x) + C\} (epi(F_n) \xrightarrow{M} epi(F)).$$

Definition 2.6. Let $\{f_n: E_n \to Y, n=1,2,\ldots\}$ be a sequence of vector-valued functions and denote by $\{(E_n,f_n): n=1,2,\ldots\}$ the corresponding sequence pairs. $f: E \to Y$. we say (E_n,f_n) P.K.(M) converges to (E,f) if $\overline{f_n} \xrightarrow{P.K.} \overline{f}(\overline{f_n} \xrightarrow{M} \overline{f})$, where

$$\overline{f_n}(x) = \begin{cases} f_n(x), & \text{if } x \in E_n, \\ +\infty, & \text{if } x \in X \backslash E_n; \end{cases}$$

$$\bar{f}(x) = \begin{cases} f(x), & \text{if } x \in E; \\ +\infty, & \text{if } x \in X \setminus E. \end{cases}$$

Definition 2.7. Let $\{F_n: E_n \to 2^Y, n = 1, 2, ...\}$ be a sequence of nonempty set-valued maps and denote by $\{(E_n, F_n)\}$ the corresponding pairs. $F: E \to 2^Y$ is a nonempty set-valued map. We say (E_n, F_n) P.K.(M) converges to (E, F) if $\overline{F_n} \xrightarrow{P.K.} \overline{F}$, where

$$\overline{F_n}(x) = \begin{cases} F_n(x), & \text{if } x \in E_n, \\ +\infty, & \text{if } x \in X \setminus E_n; \end{cases}$$

$$\overline{F}(x) = \begin{cases} F(x), & \text{if } x \in E, \\ +\infty, & \text{if } x \in X \setminus E. \end{cases}$$

Definition 2.8. Let $f: X \to Y$ be a vector-valued function. We say f is bounded below if $\exists y_0 \in Y$ such that $f(X) - y_0 \subset C$.

Let $f_n: X \to Y$ be a sequence of vector-valued functions. We say f_n are uniformly bounded below if $\exists y_0 \in Y$ such that $f_n(X) - y_0 \subset C, \forall n \in N$.

Definition 2.9. Let $F: X \to 2^Y$ be a set-valued map. We say that F is bounded below if $\exists y_0 \in Y$ such that $[F(X) - y_0] \subset C$, where $F(X) = \bigcup_{X \in F} F(X)$.

Let $F_n: X \to 2^Y$ be a sequence of set-valued maps. We say that F_n are uniformly bounded below if there exists $y_0 \in Y$ such that $[F_n(X) - y_0] \subset C$ for all n.

3. Stability of the set of efficient (minimal) points

This section presents the main results, which generalize the corresponding results in [1, Section 5]. We shall first state the results and then prove them one by one.

Theorem 3.1. Assume int $C \neq \emptyset$, $-C \subset \{y \in Y : l(y) + \varepsilon ||y|| \le 0\}$ for some $l \in Y^*$ and $\varepsilon > 0$. (E_n, f_n) , (E, f) are as defined in Definition 2.6. $\forall n \in N$, E_n is a nonempty closed subset of X, f_n is l.s.c. w.r.t. C. $E \subset X$ is nonempty closed. f is l.s.c. w.r.t. C.

In addition,

- (a) $\inf_{n \in N} \inf_{x \in E_n} l(f_n(x)) > -\infty;$
- (b) $(E_n, f_n) \xrightarrow{P.K.} (E, f)$;
- (c) \exists a compact subset K of X such that $E_n \subset K, \forall n \in N$;

(d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C} f_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C}f(E)$ is nonempty and

$$ext_{-C}f(E) \subset \liminf_{n\to\infty} ext_{-C} f_n(E_n).$$

Theorem 3.2. C (without the assumption int $C \neq \emptyset$), f_n, E_n, E, f are as in Theorem 3.1. $\forall \lambda \in C^*$, $\lambda(f_n)$ is l.s.c. on E_n . $\lambda(f)$ is l.s.c. on E.

In addition,

- (a) $\inf_{n\in N}\inf_{x\in E_n}l(f_n(x))>-\infty;$
- (b) $(E_n, f_n) \xrightarrow{P.K.} (E, f)$;
- (c) \exists a compact subset K of X such that $E_n \subset K, \forall n \in N$;
- (d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C} f_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C}f(E)$ is nonempty and

$$ext_{-C}f(E) \subset \liminf_{n\to\infty} ext_{-C} f_n(E_n).$$

Theorem 3.3. X and Y are reflexive Banach spaces. C, E_n, f_n, E, f are as in Theorem 3.1. f_n, f are l.s.c. (with respect to the weak topology of X) w.r.t. C. In addition,

- (a) $\inf_{n \in \mathbb{N}} \inf_{x \in E_n} l(f_n(x)) > -\infty;$
- (b) $(E_n, f_n) \stackrel{M}{\rightarrow} (E, f)$;
- (c) \exists a bounded closed subset K of X such that $E_n \subset K, \forall n \in N$;
- (d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C} f_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C}f(E)$ is nonempty and

$$ext_{-C}f(E) \subset \liminf_{n \to \infty} ext_{-C} f_n(E_n).$$

Theorem 3.4. X, Y, C (without the assumption int $C \neq \emptyset$), E_n, E, f_n, f are as in Theorem 3.3 $\forall \lambda \in C^*, \lambda(f_n), \lambda(f)$ are l.s.c. (with respect to the weak topology of X).

In addition,

- (a) $\inf_{n \in N} \inf_{x \in E_n} l(f_n(x)) > -\infty$;
- (b) $(E_n, f_n) \stackrel{M}{\rightarrow} (E, f)$;
- (c) \exists a bounded closed subset K of X such that $E_n \subset K, \forall n \in N$;
- (d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C} f_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C}f(E)$ is nonempty and

$$ext_{-C}f(E) \subset \liminf_{n \to \infty} ext_{-C} f_n(E_n).$$

Remark 3.1.

(i) The condition $-C \subset \{y \in Y : l(y) + \varepsilon ||y|| \le 0\}$ for some $l \in Y^*$ and $\varepsilon > 0$ is equivalent to the statement that $\exists l \in C^* \setminus \{0\}$ and ε such that $l(c) \ge \varepsilon$ for any $c \in C$ with ||c|| = 1. The latter is fulfilled when Y is a finite dimen-

sional space and C is a nontrivial, pointed, closed and convex cone. Note that Attouch and Riahi considered only the special case when $Y = R^N$ and $C = R_+^N$. On the other hand, the following example shows that the condition $-C \subset \{y \in Y : l(y) + \varepsilon ||y|| \le 0\}$ for some $l \in Y^*$ and $\varepsilon > 0$ can be satisfied when Y is infinite dimensional, which illustrates the fact that Theorem 3.1 (Theorem 3.3) does generalize the corresponding results in [1, Section 5].

Example 3.1. Let $Y = l^1 = \{a = (a_1, \dots, a_n, \dots) : a_i \in R^1, \sum_{i=1}^\infty |a_i| < +\infty \}, C = \{a = (a_1, \dots, a_n, \dots) : a_i \geq 0, i = 1, 2, \dots \}, \quad l = (1, 1, \dots) \in C^*.$ Then $l(c) = \sum_{i=1}^\infty c_i = 1$ for any $c = (c_1, \dots, c_n, \dots) \in C$ such that $\|c\|_{l_1} = 1$. It follows that $-C \subset \{y \in Y : \underline{l(y)} + \varepsilon \|y\| \leq 0\}.$

- (ii) It is clear that if $\overline{f_n}$ are uniformly bounded below (i.e., there exists $y_0 \in Y$ such that $f_n(x) y_0 \in C, \forall x \in E_n, \forall n$), then (a) holds automatically. (iii) Let $Y = R^N$, $C = R_+^N$. It is not hard to see that the conditions of
- (iii) Let $Y = \mathbb{R}^N$, $C = \mathbb{R}^N_+$. It is not hard to see that the conditions of Theorem 5.2 in [1] imply all the conditions in our Theorem 3.1. However, the Definition 5.1 in [1] is a stronger version of convergence than (b) in our Theorem 3.1. Therefore, our Theorem 3.1 improves Theorem 5.2 in [1].

We need the following lemmas to prove the theorems above.

Lemma 3.1. Under the assumptions of Theorem 3.1 (or Theorem 3.2), we have

$$(E_n, f_n) \xrightarrow{P.K.} (E, f) \Rightarrow f_n(E_n) + C \xrightarrow{P.K.} f(E) + C.$$

Proof. Firstly, we prove

$$f(E) + C \subset \liminf_{n \to \infty} f_n(E_n) + C \tag{1}$$

 $\forall y \in f(E)$ with $y = f(x), \forall c \in C$, then $(x, y + c) \in epi(\overline{f})$. Since $\overline{f_n} \xrightarrow{P.K.} \overline{f}$, we have $epi(\overline{f}) \subset \liminf_{n \to \infty} epi(\overline{f_n})$.

So $\exists (x_n, y_n) \in epi(\overline{f_n})$ with $y_n = \overline{f_n}(x_n) + c_n$ such that $(x_n, y_n) \rightarrow (x, y + c)$. Thus $y_n \rightarrow y + C$.

Obviously, $x_n \in E_n$ when n is sufficiently large. Hence, $y_n = \overline{f_n}(x_n) + c_n = f(x_n) + c_n \in f_n(E_n) + C$, when n is sufficiently large, implying (1).

Secondly, We prove $\limsup (f_n(E_n) + C) \subset f(E) + C$.

For any $x_{n_k} \in E_{n_k}$, $c_{n_k} \in C$ with $f_{n_k}(x_{n_k}) + c_{n_k} \in f_{n_k}(E_{n_k}) + C$ such that $f_{n_k}(x_{n_k}) + c_{n_k} \to y$.

Now that $\{x_{n_k}\}\subset K$ and K is a compact subset of X, we deduce that there exist a subsequence $\{x_{n_{k_j}}\}$ and $x\in K$ such that $x_{n_{k_j}}\to x$. Noticing that $y\neq +\infty$, we obtain $x\in E$. So $(x,y)\in epi(f)$, i.e., $y\in f(E)+C$. The proof is complete.

Similarly, we can prove the following Lemma 3.2.

Lemma 3.2. Under the assumptions of Theorem 3.3 (or Theorem 3.4),

$$(E_n, f_n) \xrightarrow{M} (E, f) \Rightarrow f_n(E_n) + C \xrightarrow{M} f(E) + C.$$

Lemma 3.3. Let $E \subset X$ be nonempty compact. $f: E \to Y$ is l.s.c. w.r.t. C on E. Then f(E) + C is nonempty closed and $ext_{-C}[f(E) + C] = ext_{-C}f(E)$.

Proof. For any $f(x_n) + c_n \in f(E) + C$ with $x_n \in E$, $c_n \in C$ such that

$$f(x_n) + c_n \to y \tag{2}$$

By the compactness of E, we get a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $x \in E$ such that $x_{n_k} \to x$. This combined with (2) yields $f(x_{n_k}) + c_{n_k} \to y$.

Arbitarily fix an $e \in \text{int } C$, then $\forall \varepsilon > 0$, $\exists K_0$, when $k \ge K_0$, $f(x_{n_k}) + c_{n_k} \le C$ $y + \varepsilon e$. So $f(x_{n_k}) \le C$ $y + \varepsilon e$. By the l.s.c. of f w.r.t. C, we know that $f(x) \le C$ $y + \varepsilon e$, i.e., $f(x) - y - \varepsilon e \in -C$. Letting $\varepsilon \to 0$, we have $f(x) - y \in -C$ (since -C is closed). Hence $y \in f(x) + C \subset f(E) + C$.

It is obvious that the relation $ext_{-C}[f(E) + C] = ext_{-C}f(E)$ holds.

Lemma 3.4. Let $E \subset X$ be nonempty compact. Let $f: X \to Y$ be such that $\forall \lambda \in C^*$, $\lambda(f)$ is l.s.c. on E. Then f(E) + C is nonempty closed and $ext_{-C}[f(E) + C] = ext_{-C}[f(E)]$.

Proof. We only show that f(E) + C is closed.

For any $f(x_n) + c_n \in f(E) + C$ with $x_n \in E$, $c_n \in C$ such that $f(x_n) + c_n \to y$. By the compactness of E, we have a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $x \in E$ such that $x_{n_k} \to x$. Moreover, $f(x_{n_k}) + c_{n_k} \to y$. Hence $\lambda(f(x_{n_k}) + \lambda(c_{n_k}) \to \lambda(y), \forall \lambda \in C^*$, implying $\lambda(f(x)) \leq \liminf_{n \to \infty} \lambda(f(x_{n_k})) \leq \lambda(y) \forall \lambda \in C^*$.

Thus $f(x) \leq_C y$, implying $y \in f(x) + C \subset f(E) + C$.

Proof of Theorem 3.1. We simply apply Theorem 3.3 in [1] with C replaced by -C, $D_n = f_n(E_n) + C$, D = f(E) + C. By Lemma 3.1 and Lemma 3.3, we know that D_n , D are nonempty closed and $D_n \xrightarrow{P.K.} D$. In addition, $\inf_{n \in N} \inf_{y \in D_n} l(y) \ge \inf_{n \in N} \inf_{x \in E_n} > -\infty$. Moreover, $\forall \rho > 0$, $(ext_{-C}D_n) \cap \rho B = (ext_{-C}f_n(E_n)) \cap \rho B \subset K_\rho$. So all the conditions of Theorem 3.3 in [1] hold, hence, $ext_{-C}f(E) = ext_{-C}D \ne \emptyset$ and $ext_{-C}f(E) = ext_{-C}D \subset \liminf_{n \to \infty} ext_{-C}D_n = \lim_{n \to \infty} \inf_{n \to \infty} ext_{-C}f(E_n)$. The proof is completed.

Theorem 3.2 can be similarly proved.

Lemma 3.5. Let X be a reflexive Banach space and int $C \neq \emptyset$. If $E \subset X$ is nonempty, closed and bounded. $f: E \to Y$ is l.s.c. (with respect to the weak topology of X) on E w.r.t. C. Then f(E) + C is a nonempty closed set and $ext_{-C}[f(E) + C] = ext_{-C}f(E)$.

Proof. Since *X* is reflexive, we know that *E* is a weakly compact subset of *X*. $\forall f(x_n) + c_n \in f(E) + C$ with $x_n \in E, c_n \in C$ such that $f(x_n) + c_n \to y$.

By the weak compactness of E, we obtain a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $x \in E$ such that $x_{n_k} \to x$. Arbitarily fix an $e \in \text{int } C$, $\forall \varepsilon > 0$, $\exists K_0 > 0$, when $k \ge K_0$, we have $f(x_{n_k}) + c_{n_k} \le_C y + \varepsilon e$. Thus $f(x_{n_k}) \le_C y + \varepsilon e$. By the l.s.c. of f (w.r.t. C and the weak topology of X), we have $f(x) \le_C y + \varepsilon e$. Hence, $f(x) \le_C y + \varepsilon e$, i.e., $y \in f(x) + C \subset f(E) + C$.

Similar to the proof of Lemma 3.4 (applying the weak topology of X), we can prove Lemma 3.6.

Lemma 3.6. Let X be a reflexive Banach space. If $E \subset X$ is nonempty, closed and bounded, $f: E \to Y$ is such that $\forall \lambda \in C^*$, $\lambda(f)$ is l.s.c. (with respect to the weak topology of X) on E, then f(E) + C is nonempty closed and $ext_{-C}[f(E) + C] = ext_{-C}f(E)$.

Applying our Lemma 3.2, Lemma 3.5 and Theorem 3.5 in [1], we can easily prove Theorem 3.3.

Applying our Lemma 3.2, Lemma 3.6 and Theorem 3.5 in [1], we can also prove Theorem 3.4.

- **Theorem 3.5.** Let $C \subset \{y \in Y : l(y) + \varepsilon ||y|| \le 0\}$ for some $l \in Y^*, \varepsilon > 0$. $\forall n \in N, E_n$ is a nonempty closed subset of $X, F_n : X \to 2^Y$ is u.s.c. nonempty compact-valued. E is a nonempty closed subset of $X, F : X \to 2^Y$ is u.s.c. nonempty compact-valued. In addition,
 - (a) $\inf_{n \in N} \inf_{x \in E_n} \inf_{y \in F_n(x)} l(y) > -\infty;$
 - (b) $(E_n, F_n) \stackrel{M}{\rightarrow} (E, F)$;
 - (c) \exists a bounded closed subset K of X such that $E_n \subset K, \forall n \in N$;
- (d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C} F_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C} F(E)$ is nonempty and $ext_{-C} F(E) \subset \liminf_{n \to \infty} ext_{-C} F_n(E_n)$.

Theorem 3.6. Let X, Y be reflexive Banach spaces. C, E_n, F_n, E, F are as in Theorem 3.5. F_n, F are u.s.c. (with respect to the weak topology of X). In addition,

- (a) $\inf_{n \in N} \inf_{x \in E_n} \inf_{y \in F_n(x)} l(y) > -\infty;$
- (b) $(E_n, F_n) \stackrel{M}{\rightarrow} (E, F)$;
- (c) \exists a bounded closed subset K of X such that $E_n \subset K, \forall n \in N$;
- (d) $\forall \rho > 0, \exists$ a compact subset K_{ρ} of Y such that $ext_{-C}F_n(E_n) \cap \rho B \subset K_{\rho}$, where B is the unit ball of Y.

Then $ext_{-C} F(E)$ is nonempty and $ext_{-C} F(E) \subset \liminf_{n \to \infty} ext_{-C} F_n(E_n)$.

Remark 3.2. If $\overline{F_n}$ are uniformly bounded below (i.e. there exists $y_0 \in Y$ such that $[F_n(E_n) - y_0] \subset C, \forall n$), then (a) in Theorems 3.5 and 3.6 holds automatically.

The following lemmas are needed to prove Theorems 3.5, 3.6.

Lemma 3.7. Under the assumptions of Theorem 3.5, $(E_n, F_n) \xrightarrow{P.K.} (E, F)$ implies $F_n(E_n) + C \xrightarrow{P.K.} F(E) + C$.

Lemma 3.8. Under the assumptions of Theorem 3.6, $(E_n, F_n) \xrightarrow{M} (E, F)$ implies $F_n(E_n) + C \xrightarrow{M} F(E) + C$.

The proofs of Lemma 3.7, Lemma 3.8 are similar to those of Lemma 3.1, Lemma 3.2, respectively, we omit it.

Lemma 3.9. Let $E \subset X$ be nonempty compact. Let $F: E \to 2^Y$ be u.s.c. nonempty compact-valued, then F(E) + C is nonempty closed and $ext_{-C}F(E) =$ $ext_{-C}[F(E)+C].$

Proof. We only need to show that F(E) + C is closed.

 $\forall y_n + c_n \in F(x_n) + C$ with $y_n \in F(x_n)(x_n \in E), c_n \in C$ and $y_n + c_n \to y$. We prove that $y \in F(E) + C$ in the following two cases, respectively. (i) $x_n \equiv x$ for some $x \in X$ when n is sufficiently large.

Then $y_n \in F(x)$, when n is sufficiently large. By the compactness of F(x), we get a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ and $y' \in F(x)$ such that $y_{n_k} \to y'$. However, $y_{n_k} + c_{n_k} \to y$, so $c_{n_k} \to y - y' \in C$, i.e., $y \in F(x) + C \subset F(E) + C$. (ii) \exists a subsequence $\{x_{n_k}\}$ whose elements are different from one another

such that $y_{n_k} \in F(x_{n_k})$.

By the compactness of E, we obtain a subsequence $\{x_{n_{k_1}}\}$ of $\{x_{n_k}\}$ and $x \in E$ such that $x_{n_{k_l}} \to x$. By the u.s.c. of F and the compactness of F(x), we have a subsequence $\{y_{n_{k_l}}\}$ of $\{y_{n_{k_l}}\}$ and $y' \in F(x)$ such that $y_{n_{k_l}} \to y'$. So $c_{n_{k_l}} \to y - y' \in C$, i.e., $y \in F(x) + C \subset F(E) + C$. The proof is completed.

Lemma 3.10. X is a reflexive space, E is a nonempty closed bounded subset of X. $F: E \to 2^Y$ is an u.s.c. (w.r.t. the weak topology of X) nonempty compact-valued map, then F(E) + C is nonempty closed and $ext_{-C}F(E) =$ $ext_{-C}[F(E) + C].$

The proof of Lemma 3.10 is almost the same as that of Lemma 3.9, the only difference being that the weak topology of X should be applied.

The combination of our Lemma 3.7, Lemma 3.9 and Theorem 3.3 in [1] completes the proof of our Theorem 3.5.

The combination of our Lemma 3.8, Lemma 3.10 and Theorem 3.5 in [1] completes the proof of our Theorem 3.6.

4. Conclusions

This paper considered the stability of vector-valued and set-valued optimization problems based on the concepts of Painleve-kuratowski and Mosco convergence of sets. The results generalized the corresponding results of Attouch and Riahi in [1, Section 5]. The generalization is threefold: the objective space Y is extended from finite dimensional to infinite dimensional; the dominating cone C is extended from R_{\perp}^{N} to a general ordering cone; the objective functions are extended to general vector-valued functions or set-valued maps. Further research, for example, the stability of the set of weakly efficient points (when the dominating cone C has nonempty interior) based on the concepts of Painleve-Kuratowski and Mosco convergence of sets can be expected.

References

- [1] Attouch H, Riahi H (1993) Stability Results for Ekeland's ε-variational principle and cone extremal solutions. Mathematics of Operations Research 18, 1:173-201
- [2] Sawaragi Y, Nakayama H, Tanino T (1985) Theory of Multiobjective Optimization. Academic Press, New York

- [3] Luc DT (1989) Theory of Vector Optimization. Springer-Verlag, Berlin
 [4] Aubin JP, Frankowska H (1990) Set-Valued Analysis. Wiley, Birkhauser, Boston
- [5] Aubin JP, Ekeland I (1984) Applied Nonlinear Analysis. Wiley, New York
- [6] Chen GY, Huang XX (1998) Stability results for Ekeland's ε variational principle for vector valued functions. Mathematical Methods of Operations Research 48:97–103