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Abstract. This paper develops a closed form solution of the mean-variance
portfolio selection problem for uncorrelated and bounded assets when an ad-
ditional technical assumption is satisfied. Although the assumption of un-
correlated assets is unduly restrictive, the explicit determination of the efficient
asset holdings in the presence of bound constraints gives insight into the nature
of the efficient frontier. The mean-variance portfolio selection problem con-
sidered here deals with the budget constraint and lower bounds or the budget
constraint and upper bounds. For the mean-variance portfolio selection
problem dealing with lower bounds the closed form solution is derived for two
cases: a universe of only risky assets and a universe of risky assets plus an
additional asset which is risk free. For the mean-variance portfolio selection
problem dealing with upper bounds, the results presented are for a universe
consisting only of risky assets. In each case, the order in which the assets are
driven to their bounds depends on the ordering of their expected returns.

Key words: Parametric quadratic programming, mean-variance portfolio
selection, efficient frontier, capital market line.

1 Introduction

In Markowitz (1956, 1959) and Sharpe (1970), the Mean-Variance (M-V)
portfolio selection problem is analyzed subject to general linear constraints
using quadratic programming and parametric quadratic programming meth-
ods. One way to formulate the M-V portfolio selection problem (see Best and
Grauer (1990) for example) is:

* This research was supported by the National Science and Engineering Research Council of
Canada.
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min{—u'x 4+ $x'Zx|I'x = 1, Ax < b}, (1.1)

where p is an n-vector of expected returns, X is an (n,n) covariance matrix, x
is an n-vector of asset holdings to be determined, / is an n-vector of 1’s, 4 is an
(m,n) matrix and b is an m-vector. We use prime (') to denote matrix trans-
position and adopt the convention that all non-primed vectors are column
vectors. The constraint /’x = 1 requires the asset holdings to sum to unity and
is called the budget constraint. The constraints Ax < b represent general linear
constraints such as non-negativity constraints (precluding short sales), upper
bounds on asset holdings, sector constraints and any other linear constraints
the investor may wish to impose.

The M-V portfolio selection problem and the related Capital Asset Pricing
Model (CAPM) have been studied by many authors under a variety of as-
sumptions. Brennan (1971) addresses the issue of borrowing and lending rates.
Turnbull (1977) also considers this along with personal taxation, uncertain
inflation and non-market assets. Levy (1983) deals with problems of short
sales as does Schnabel (1984).

Let x(¢) denote an optimal solution of (1.1) for any fixed 7. We refer to the
x(1)’s as M-V portfolios. Then u, = u'x(t) and o, = x'(r)Zx(r) are its corre-

sponding mean and variance, respectively. We call the plot of all such (ap7 )

the M-V frontier. As ¢ varies from 0 to + oo, the plot of (aj, #,) traces out the

efficient frontier. As ¢ varies from 0 to — oo, the lower or inefficient frontier is
obtained. Both the efficient and inefficient frontiers can also be viewed in
(0p,1,) space. If the only constraint in (1.1) is the budget constraint, then
under the assumption that X is positive definite, the solution of (1.1) can be
obtained in closed form. See, for example, Best and Grauer (1990). When (1.1)
does indeed include inequality constraints, the efficient portfolios are piece-
wise linear functions of the parameter ¢. Associated with (1.1) is a set of in-
tervals 0 =ty <1, ) < t,...,t,_1 < t,. In each of these v intervals, the effi-
cient portfolios are linear functions of ¢; i.e., there exist n-vectors hy;, hy;,
i=1,...,vsuch that

x(t) = hoi + thy,  ti <t <t, (1.2)
for all i =1,...,v. Determination of all of these intervals and the associated
vectors ho;, hy;, i =1,...,v is a difficult task and a parametric quadratic pro-

gramming algorithm such as in Perold (1984) or Best (1996) must be used. In
this general case, it would be not possible to obtain the efficient portfolios in
closed form. Furthermore, the number of parametric intervals, v, is not known
a priori and may be quite large.

A special case of (1.1), which is usually given in textbooks is

min{—#(z'x + rx,41) +%x’2x| I'x + xpp1 = 1, xp41 = 0}, (1.3)

where x, 2, i and [ are the n-dimensional quantities previously discussed, x;, 1
denotes the holdings in the risk free asset and r is the risk free rate. When
t =0, the solution of (1.3) is x =0 and x,4; = 1. As ¢ is increased, x,;; is
eventually reduced to 0 for #=t¢, and the corresponding x is the market
portfolio x,,. For 0 < t < t,,, the efficient portfolios correspond to the Capital
Market Line. As ¢ is increased beyond ¢,,, the holdings in the risk free asset
remain at 0; i.e., the constraint x,,; > 0 is active for ¢ > #,,. This corresponds
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to the familiar efficient frontier for the n risky assets. These two intervals are a
special case of (1.2) with v =2, =0, t; = ¢, and #, = co. It is because (1.3)
has just a single inequality constraint that its solution can be obtained ex-
plicitly. If (1.3) were to be augmented with no short sales restrictions; i.e., the
constraints x > 0, then there would be 2" possibilities for active sets and it
would be impossible to obtain a closed form solution in general.

The contribution of this paper is as follows. When the covariance matrix
for the risky assets is positive definite, diagonal (i.e., the assets are uncorre-
lated) and an additional technical assumption is satisfied, we obtain an explicit
solution to (1.1) when the linear inequality constraints are lower bounds and
t > 0 (Section 2). The assumption of uncorrelated assets is of course unduly
restrictive. However, obtaining an explicit representation of efficient asset
holdings subject to bound constraints does give insight into the efficient fron-
tier in the presence of inequality constraints. We show that there are precisely
n intervals and the asset holdings are reduced to their lower bounds (and
remain there) in the order of smallest expected return to largest expected
return. The end of the parametric interval is determined by the asset with
smallest expected return, among those still held above their lower bounds,
being reduced to its lower bound. This situation is illustrated in Figure 1 for
the case of lower bounds of zero.

In Section 3, we examine the analogous case for upper bounds. We do this
by first solving the lower bound case for ¢ < 0; i.e., we determine the results
for the inefficient or lower part of the M-V frontier. Having solved this prob-
lem the results for the upper bounded problem are obtained by means of a
simple transformation.

For the case of lower bounds and ¢ > 0 in Section 4, we consider the ad-
dition of a risk free asset. We show that the Capital Market Line; i.e, the lin-
ear part of the efficient frontier in (g,, 1,) space of the problem dealing with
risky assets and an additional risk free asset, meets the efficient frontier for the
risky assets only with a modified budget constraint in that part of the frontier
corresponding to its first parametric interval. Section 5 summarizes our results
and concludes the paper.

2 Lower bounds and the efficient frontier

The problem to be analyzed is the following n-dimensional problem with
lower bounds

min{—tu'x +ix'Zx|l'x =d,x > e}, (2.1)

where e = (e}, e,,...,e,) is a vector of lower bounds on asset holdings, / is
an n-vector of 1’s, d is a scalar, ¢ is a non-negative scalar parameter, 2 =
diag{o,...,0,} is a diagonal matrix of variances, u = (4,,...,4,)" is a vector
of expected returns, and x is an n-vector of asset holdings. The budget con-
straint is usually written as //x = 1; i.e., d = 1 in (2.1). It will be convenient in
our analysis to allow d to assume any value. Throughout this paper we will
refer to /’x = d as the budget constraint.
Our results for (2.1) will require the following assumption to be satisfied.

Assumption 2.1. (a) g; > 0, fori=1,...,n, (b) p; < - < .
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to -~ T T1=-=2Zp1=0,z, =1

Ty =+ =2Ip9 =0, Tn_1,Zn held positively

z1 = 9 = 0, all other assets held positively

x1 = 0, all other assets held positively

to®<——all assets held positively

Fig. 1. Efficient Frontier for Risky Assets with No Short Sales

Note that by a suitable re-indexing of the assets, one can always obtain
W < < - < p,. Consequently Assumption 2.1(b) is not restrictive in that
if only requires the 4,’s to be distinct.

Throughout this paper, results can be written more concisely if any condi-
tion “for i=1,...,k —1” is regarded as vacuous when k& = 1 and similarly,
“the sum from 1 to &k — 1 of some quantities” should be regarded as having
value 0 when k£ = 1.

First, for k =1,...,n, we consider a problem with no inequality con-
straints and which is closely related to (2.1):

min{—zu'x + %x’Zx ['x=d,x;=e1,...,Xp_1 = €1} (2.2)

The solution of (2.2) can be formulated concisely in terms of the constants

O =1/(a" + - +0a,), (2.3)

Oz = Ov (/0% + -+ + /) n), (24)

O =d —(e1 + -+ ex_1), (2.5)
fork=1,...,n.

Lemma 2.1. Let Assumption 2.1(a) be satisfied. Then for k =1,... n, the
optimal solution for (2.2) is

X; = ¢€j, izl,...7k—l,
xi = (O30 + t(w;, — O))/oi, =k, ..., n

The multiplier for the budget constraint is u = —0s01; + t0y, and the multi-
pliers for the constraints x; = e;,i =1,....k— 1, are
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v; = e;g; — O3 01 + (O — 1),
respectively.

Proof: Let 1 <k <n. From Assumption 2.1(a), the objective function for
(2.2) is strictly convex. Furthermore, the constraints of (2.2) are linear.
Therefore the Karush-Kuhn-Tucker (KKT) conditions (see Mangasarian
(1969)) are both necessary and sufficient for optimality. The dual feasibility
portion of the KKT conditions for (2.2) asserts that

W, —oxi=u, i=k,...n
Solving for x; gives
xi=ty/oi—ujo, i=k,... n (2.6)

Summing the x;, using the budget constraint and the constraints x; = e; for
i=1,...,k—1 gives

d=ei+ - +e + 1t /or+ -+ w,/on) —u(l/og + -+ 1/ay),
from which we obtain

u = —03.01; + t0y. (2.7)

Substituting for u in (2.6) gives
xi = (OO + t(w; — Oo))/oi, =k, ..., n (2.8)

Equations (2.7) and (2.8) then verify the first two assertions of the lemma.
The multipliers for the constraints x; = ¢;,i = 1,...,k — 1, are obtained

from the remaining portion of the dual feasibility conditions for (2.2)
i, — oix;i = u — v;.

Setting x; = ¢; fori = 1,...,k — 1 and substituting u from (2.7) gives
U,-:e,-a,-—03k91k+l(02k—,ui), l'Zl,...7k—1,

as required. O
Some properties of 0y, 0, and 03 are formulated in the following lemma.

Lemma 2.2. The following hold:

(a) 1/91’](_] = I/O'k_l + 1/0110 k=2,...,n,

(b) Osk =03 1 —ex—1, k=2,...,m, .

(C) sz_/’tj :Hlk((ﬂk _ﬂj)/o-k+ T +(,un _'uj)/o-n)a J= 1) s, k= 1) Y

Proof: These follow immediately from (2.3), (2.4) and (2.5). O

Our analysis requires the following assumption to be satisfied.
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Assumption 2.2. (a) 1 > 0, (b) e,0, < -+ < e1ay, (¢) d > e101/611.

In this section we formulate an explicit solution for (2.1) when Assumptions
2.1 and 2.2 are satisfied.

By setting e=0 and d =1 in (2.1) we obtain the portfolio selection
problem

min{—iu'x + ix'Zx|I'x =1,x > 0} (2.9)

with no short sales. Since Assumptions 2.2(b) and (c) are automatically sat-
isfied, our results for (2.9) will require only Assumption 2.1 and ¢ > 0. This
will result in the efficient frontier for no short sales. Furthermore, the same
conclusion holds when the budget constraint in (2.9) is replaced with a more
general budget constraint, /’x = d, where d is any strictly positive number.
The principal result for (2.1) is as follows. For ¢ =0, all assets® strictly
exceed their lower bounds. As ¢ is increased, eventually asset 1 is decreased to
e; at t = t;. Asset 1 remains at e; for all 7 > #;. Assets 2, ..., n strictly exceed
their respective lower bounds e, .. ., e, for ¢ > ¢ until asset 2 is reduced to e,
at t = t,. Now asset 1 remains at e¢; and asset 2 remains at e, for all 1 > ¢, and
assets 3, ...,n strictly exceed es, ..., e,, respectively, until asset 3 is decreased
to e3 at t=t3. The process continues in a similar manner and assets
1,2,...,i— 1 remain at their lower bounds for all 7 > #;,_;, with asset i being
reduced to ¢; at #; and all other assets with higher indices are strictly above
their lower bounds. This is illustrated in Figure 1 for the problem (2.9).
For k =0,...,n, define

0, k=0,
tk = (93k01k — eko'k)/(HZk —,uk), k=1,....,n—1, (2.10)
o, k=n.

For k =1,...,n, define

Xk = xk( ) (( )17 (xk)27 R (x/c)n)/ where,
(xk);=e;, i=1,....,k—1, (2.11)
(x); = (xi(2)); = (93k91k + ;= O))/ois =k, ....n,
u(t) = —0x Ok + 0oy, (2.12)
o = o(2) = (k)1 (V)5 - - - (00),,)" where,

(0); = (0x (1))
:6101*03/(91k+t(02k*,u,’)7 l’:l,n-,k*l,
(0k); =0, i=k, ... ¢,

(2.13)

with 01, 0 and 63, being given by (2.3), (2.4) and (2.5), respectively. Then
the principal result for (2.1) with ¢ > 0 is the following theorem.

! Technically speaking, we should use ““asset holdings™ rather than ““asset”. However, we will use
the term asset to mean asset holdings for the sake of brevity.
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Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied and let ty, ..., t, be
defined by (2.10). Then fork=1,...,n,

(@) ti—1 < tx,

(b) x(t) = xx(2), for all t € [tx_1, tx), is optimal for (2.1) with x;(t) being given
by (2.11),

(c) the multipliers for the lower bounds are given by v(t) = vi(t), for all
1 € [tx—1, t], where vy (1) is given by (2.13),

(d) the multiplier for the budget constraint is given by u(t) = w(t), for all
t € [tr—1, ty], where uy(t) is given by (2.12).

Before proceeding with the proof of Theorem 2.1, it is helpful to introduce
the following lemma. This lemma will be used first to establish that the con-
stant part of (xz); in (2.11) exceeds its lower bound and second to verify
Theorem 2.1(a).

Lemma 2.3. Let Assumptions 2.1(a) and 2.2(b), (c) be satisfied. Then for
k=1,....nandi=1,...,n, the following inequality holds:

e; < O30 /o

Proof: Using Assumptions 2.2(b), (c) and 2.1(a) we obtain the following for
k=1,...,nandi=1,...,n

1 1 _10%—
d>€ﬂ:elal(_+...+_> S (@+.._+M)

O o1 O ol Ok—1

€0
O1k

1 1
+e,~a,~<—+~-~+—> =i+ +ep +
Ok On

After re-arranging, the desired inequality is obtained. O

Proof of Theorem 2.1: Let t;, k=0,...,n, be given by (2.10). Assumptions
2.1(b) and 2.2(c) imply that

doy, —
= 117810.1 >0= 1.
O — 1
Fork=2,...,n—1, Lemma 2.2, Assumption 2.2(b) and Lemma 2.3 imply
O3.k-101k-1 — ex10k1 _ Oz — ex—10k-1/01k
02 k-1 — 1y (e = 1) /oic + -+ + (W — t5—1) /o

lk-1 =

0301 — ex—1041 < O3 01k — ex—1051
O — iy O — 1y,

0301k — exox

= Ii.
O — 1y,

For k = n, part (a) holds trivially and this completes the proof of part (a).
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Let 1 <k <n and xi, u, v; be as in the statement of Theorem 2.1. With
Assumption 2.1(a), the KKT conditions are both necessary and sufficient for
optimality (see Mangasarian (1969)). These conditions are

x>e, I'x=d,
tw—2x=ul—v, v=0, (2.14)
v'(x —e) =0.

It follows directly from Lemma 2.1 that /'x; =d and tu — Xx; = wl — vy.
Furthermore, the definitions of x, v, imply that v (xx —e) = 0. In order to
show that (2.14) is satisfied, it remains to show that for all s with #,_; <t < #;
the following inequalities are satisfied:

(xk); = e, i=k,...,nand (2.15)
(0k); =0, i=1,....k—1. (2.16)
We first verify (2.15). The definition of x; given by (2.11) and Lemma 2.3
imply that the constant part of x; exceeds e. When k = n, the coefficient of ¢
vanishes. Thus, (2.15) holds for k = n. Now let k be such that 1 <k <n—1.

Since the budget constraint /'x; = d is satisfied for any value of the parameter
t, this implies that the sum of the coefficients of ¢ in x; equals zero; i.e.,

(e — Oo) Jor + - + (, — O) /o = 0. (2.17)

Assumption 2.1(b) and (2.17) imply the existence of an integer p, with
k < p; < n such that

W — 0y <0, i=k,... p,and (2.18)
w—0y >0, i=p,+1,... 1 (2.19)

From Lemma 2.3, Assumption 2.2(a), (2.11) and (2.19) it follows that
(xk); >eifori=p,+1,...,nand

> 0. (2.20)

In order for (xi), to also satisfy the lower bounds for i with k <i < p,, it
follows from (2.11) and (2.18) that # must satisfy

. [03101; — ejo;
[ < mln{ 3kV1k i0i
O — 1

i:k,...,pk}. (2.21)
Assumption 2.2(b) implies that

O30 — eror < 0301 —eio; i=k+1,...,n (2.22)
and from Assumption 2.1(b),

Ow — g > O —p;, i=k+1,...,n (2.23)
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From (2.18), 6y —u; >0 for i =k,...,p, and from Lemma 2.3, 03,0, —
eig; > 0fori=1,...,n It now follows from (2.22) and (2.23) that

O3k 01k — exor 0301 — ejo;

Ci—k+1,.. 2.24
O — 1y, Ooic — 1 P (2.24)

Inequality (2.24) then implies

. {93k91k — ¢;0;
min{ =% L
Orc — 1;

ik } _ 0301 — exox
o lk O — 1y

The quantity on the right-hand side of this last equation is precisely #. This,
(2.20) and (2.21) imply that

(2.15) is satisfied for all 7 with 0 < 7 < #. (2.25)

To verify (2.16), first observe that from (2.10) and (2.13)

035101 k-1 — €x—10%—
(0k(te-1)) gy = €x—10%—1 — O3 01 + Sl 10 Lol = 1Ok l(sz — )
2,k—1 — M1
Using Lemma 2.2(b) and (c) gives
(0 (tk=1))—y = €x—1(0k—1 + Orx) — O3, k—101x
03 k-1 — €x—10k—1/01 k-1
+ = — O1k
o S R o v S
Ok Oy
y (M T M)
O} Oy
Re-arranging and then applying Lemma 2.2(a) gives
(0k(te-1)) gy = €x—1(0k—1 + O — O%—1011/ 01 k—1),
= ej_1(0k—1 + O — O — 0k—1),
= 0. (2.26)

Next observe that from Assumptions 2.1(b), 2.2(a), (b) and (2.13)
(0e(1); = (k(2);, 2<i<k-—1,1t>0. (2.27)

By definition of vy, its first (k — 1) components are strictly increasing func-
tions of ¢. This with (2.26) and (2.27) implies that

(2.16) is satisfied for all ¢ with 7 > #_;. (2.28)

Thus, (2.25) together with (2.28) imply that (2.15) and (2.16) are satisfied si-
multaneously for #;_; < ¢ < #; which completes the proof of the theorem. []
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3 Upper bounds and the efficient frontier

In this section we will solve (2.1) for ¢ < 0. In addition to Assumption 2.1 we
require the analog of Assumption 2.2, namely

Assumption 3.1. (a) 1 < 0, (b) 101 < -+ < e,0,, (¢) d > ¢,0,/511.

Throughout this paper, results can be written more concisely if any condition
“for i=n—k+1,...,n” should be regarded as vacuous when k£ =0 and
similarly, “the sum from n —k + 1 to n of some quantities” should be re-
garded as having value 0 when k& = 0.

Analogous to the discussion following Assumption 2.2, when ¢ = 0 and d
takes on any positive value, Assumptions 3.1(b) and (c) are satisfied. Thus
when ¢ =0, d >0 and 7 <0 only Assumption 2.1 is required for (2.1) to
obtain the results in this section.

Remark 3.1. The problem considered in this section has the following financial
interpretation. Let y = —x and s = —¢ in (2.1) with # < 0. This gives the
problem

min{—su'y + 3’ Zy|l'y = —d,y < —e}. (3.1)

The problem (3.1) is the portfolio selection problem with » risky assets, for
which the covariance matrix 2 is diagonal, the budget constraint is /'y = —d
and where an upper bound of —e; is imposed on each asset i. Thus, solving
(2.1) with lower bounds and ¢ < 0 is equivalent to solving (3.1) with upper
bounds and s > 0.

The solution of (2.1) for ¢ > 0 given in Theorem 2.1 requires the critical
parameter values 7y < #; < --- < t,. The solution of (2.1) for #+ <0 also re-
quires n + 1 critical parameter values. In order to distinguish the critical pa-
rameter values for the lower part of the M-V frontier from those for the upper,
we will use a negative subscript and the analogs of the former critical param-
eters will be 79 > ¢t_; > --- > t_,. The remaining quantities will be indexed in
a similar manner.

Analogous to (2.2) for ¢ > 0, for the case of ¢ < 0 we consider the follow-
ing problem for k =0,...,n— 1:

min{—tu'x + %x’Zx [I'X =d, Xp_f41 = €nieilye-sXn =€} (3.2)

The solution of (3.2) can be formulated concisely in terms of the constants

S hp1 =1/(a7" + -+ a1, (3.3)
F2 1 = Mg (g /o + -+ Wy /Oni), (3.4)
K1 =d — (en—ir1+ -+ en), (3.5)

fork=0,...,n—1.
The following is a corollary to Lemma 2.1.
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Corollary 3.1. Let Assumption 2.1(a) be satisfied. Then for k =0,...,n—1,
the optimal solution for (3.2) is

Xi = (B 190 k41 + t; — S.541)) /00, i=1,...,n—k,
xi=e¢, i=n—k+1,...,n

The multiplier for the budget constraint is u = —33 k413 k+1 + t92 k41 and the
multipliers for the constraints x; = e;;i=n—k+1,...,n are

v = €07 — H3 191 k1 + H(Fo k1 — 1),

respectively.
Proof: This follows from Lemma 2.1 by re-indexing the assets. O

The principal result for (2.1) for ¢ < 0 is as follows. For all twitht_, <t <
!_(n—1), asset 1 (i.e., the asset with the smallest expected return) remains at 93,
while each other asset i remains at its lower bound ¢; for i =2,...,n. As't
increases beyond 7_(,_p), the first asset strictly exceeds e;, the second asset
strictly exceeds e, and each other asset i remains at e;. As ¢ is increased fur-
ther, assets 1, 2 and 3 strictly exceed their respective lower bounds while the
other assets remain at their bounds. The process continues until ¢ is increased
to a critical value ¢t | < 0. For t_; < ¢ <0, all assets are held strictly above
their lower bounds.

We next give a precise statement of the solution of (2.1) with # < 0. For
k=-1,0,...,n— 1, define

0, k=-1,
(93 k1, k41 — €niOn—ic) [ (B2, k1 — ty_i)s
W ' ‘ (3.6)

—oo, k=n-1.
For k=0,...,n— 1, define

Xk =X (6) = (X_)p, (X_k)ps - -+, (x_),)" Where,
(X—k); = (x=k(2)); (3.7)
(x_i); = (S k1 gev1 + 1y — S2541))Joi, i=1,...,n—k, '
(x_); =€, i=n—k+1,...,n,

u_i (1) = =R k19 k1 + 192,411, (3.8)
UV = U,k(l) = ((U,k)l, (U,k)27 ey (U,k)n)/ where,
(v_k); =0, i=1,...,n—k, (3.9)
(v-r); = (v (2));
=0, — N 11 F (S pr1 —4), i=n—k+1,...,n,

with 91 k41, $2,k+1 and 93 ;41 being given by (3.3), (3.4) and (3.5). The prin-
cipal result for (2.1) with 7 < 0 is the following theorem.
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Theorem 3.1. Let Assumptions 2.1 and 3.1 be satisfied and let ty,t_1, ... t_, be
defined by (3.6). Then fork =0,...,.n—1,

(@) t_(ky1) <tk
) x(1) = x_(2), for all t € [t_(11), L1, is optimal for (2.1) with x_i(t) being
given by (3.7),
(c) the multipliers for lower bounds are given by v(t) =v_i(t), for all
t € [t_(kq1), t-k|, where v_;(t) is given by (3.9),
(d) the multiplier for the budget constraint is given by u(t) = u_y(t), for all
t € [t_(k41), 1], where u_i(t) is given by (3.8).

Proof: The proof is similar to the proof of Theorem 2.1 and uses Lemma 3.1
below. 0

Note that all bound constraints are inactive at xo(z) for - < ¢ < #; and xg
defined by (3.7) is identical to x( defined by (2.11) although their domains of
definition differ.

The following lemma is used first to establish that the constant part of
(x_k); in (3.7) exceeds its lower bound and second to verify Theorem 3.1(a).

Lemma 3.1. Let Assumptions 2.1(a), 3.1(b), (c¢) be satisfied. Then for
k=0,....n—landi=1,... n, the following inequality holds:

e < R k1M k+1/0
Proof: The proof is similar to the proof of Lemma 2.3. O

We next use Theorem 3.1 to provide an optimal solution for the upper
bounded problem

min{—u/'x +$x'Zx|I'x =d,x < e} (3.10)

for z > 0. In doing so, it is helpful to introduce the following notation. Let
x(t,d,e), v(t,d,e) and u(t,d,e) denote the optimal solution, the vector of
multipliers for the upper bounds and the multiplier for the budget constraint
for (3.10), respectively, and x(z,d, e), 0(t,d,e) and i(¢,d, e) denote the optimal
solution, the vector of multipliers for the lower bounds and the multiplier for
the budget constraint for (2.1), respectively, as explicit functions of their
problem data ¢, d and e, respectively. The solution for (3.10) is formulated in
the following theorem.

Theorem 3.2. Let Assumptions 2.1, 2.2(a), (b) be satisfied and assume d <
enon /911 in (3. IO) Then x(t,d,e) = —x(—t,—d, —e), v(t,d,e) = 0(—t,—d, —e)
and u(t,d,e) = —u(—t,—d, —e)

Proof: As in Remark 3.1, we utilize the transformation X = —x and s = —¢ in
(3.10) giving

min{—sy'% +18Z%|I'x = —d, % > —¢} (3.11)

with s < 0. For the data of (3.11), Assumption 2.1 is satisfied. Assumption
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2.2(b) implies —ejo; < --- < —e,0, so that Assumption 3.1(b) for (3.11) is
satisfied. Furthermore, from the assumption in the statement of the theorem,
—d > —e,0,/%11 and thus Assumption 3.1(c) is satisfied. Thus, Theorem 3.1
may be applied to (3.11).

From Theorem 3.1 and the notation just introduced, the optimal solution
for (3.11) is X(—t, —d, —e), with the vector of multipliers for the lower bounds
and the multiplier for the budget constraint being given by &(—¢, —d, —e) and
i(—t,—d,—e). The assertion in the statement of the theorem now follows
from comparing the KKT conditions for (3.10) and (3.11). O

4 Lower bounds with a risk free asset

In this section we consider the following (n + 1)-dimensional problem with
lower bounds

min{—tuyxo — ('x +1x'Zx | I'x + xg = d, x0 > €9, x > e}, (4.1)

where ey, 1, xo are the lower bound, the expected return and the holdings of
the risk free asset 0, respectively, and /, e, d, t, X', u, x have the same meaning
as in Section 2. The quantity u, is usually called the risk free rate and is
sometimes denoted by r,. In what follows it is sometimes convenient to rep-
resent the risk free holdings and the risky holdings as a single vector. Thus for
example, we represent the entire holdings vector for the k-th interval as the
(n+ 1)-dimensional vector xi(f) where component 0 of x;(#) denotes the
holdings for the risk free asset. The use of this notation should be clear from
context.

We will consider (4.1) under Assumption 2.1(a), > 0 and the following
assumption:

Assumption 4.1. (a) gy < p; < --- < p,, (b) ¢,0, < -+ <ejo1 <0, (c) d > ep.
Note that Assumption 4.1(b) with Assumption 2.1(a) imply ¢; <0,
i=1,...,n

First we consider a problem with no inequality constraints that is closely
related to (4.1):

min{—tuyxo — tp'x +1x'2x|[I'x + xo = d}. (4.2)
The optimal solution for (4.2) is formulated in the following lemma.

Lemma 4.1. Let Assumption 2.1(a) be satisfied. The optimal solution for (4.2)
is

x0=d—t(921—u0)/911, xi:l(ﬂ[—uo)/0i7 izl»"'7n7

where 011 and 01 are defined as in (2.3) and (2.4) for k = 1 and the multiplier
for the budget constraint is u = t,.

Proof: The proof follows directly from the KKT conditions for (4.2). O
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The principal result for (4.1) is as follows. For ¢ = 0, only the risk free asset
0 is held; i.e., xo(0) =d and x;(0) =0 for i = 1,...,n. As ¢ is increased, the
risk free asset 0 is reduced and all risky assets are increased from zero. At
t = ty, the risk free asset is reduced to its lower bound ¢y and remains there for
all ¢ > ty. Furthermore, at ¢ = 1), all of the risky assets strictly exceed their
lower bounds. As ¢ is increased beyond fy, the process continues precisely as
described by Theorem 2.1 with the 7y = 0 of Theorem 2.1 replaced by the ¢,
just described and the right-hand side of the budget constraint in (2.1) re-
placed with d — ey. Thus, as ¢ is increased from zero in (4.1), the risk free asset
is reduced to its lower bound first, then the first risky asset, then the second
risky asset and so on. For ) <t < 1y, the first piece of the efficient frontier
for (4.1) in (g, 1,) space is a straight line, namely the Capital Market Line
(CML). The remainder of the efficient frontier is piece-wise hyperbolic. The
CML meets the efficient frontier for the risky assets (with the budget con-
straint now being /'x = d — ¢y) at some point at that part for the frontier
corresponding to its first parametric interval, where all risky assets strictly
exceed their lower bounds. This is illustrated in Figure 2 for e¢; =0,
i=0,...,nand d = 1.

For k = —1,...,n, define

0, k=-1,
O11(d —e0) /(021 — 1), k=0, (43)
((Osx — e0)Owk — exor) /(O — 1), k=1,....,n—1,
w0, k=n.
Fork=0,...,n, let
Hp
tn-1
tn—
t2’72 CL‘0=~-'=1,‘n_1=0,:L‘n=1
T3L“0="'“—‘30n-2=(l
Tn-1,Zn held positively
zg =71 = T2 = 0,
all other assets held positively
zo = z1 = 0, all other assets held positively
Fo-S t zg = 0, all risky assets held positively
\:cozl,:cl:---=xn:0
Ip

Fig. 2. Efficient Frontier for Risky/Risk Free Assets with No Short Sales
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xi = xk (1) = ((Xk)gs (k)1 - -+ (X))
Up = Mk(l),

UV = Uk(l) = ((Uk)ov (Uk)lﬂ SRR (Uk)n)‘

For k = 0, define

d_t(QZI_ﬂ)/Hlb l:Oa
(x0), = { v (44)
l(ﬂi_ﬂo)/Uh 121,...,7’1,
Up = Z,Llo, (45)
vo = 0, (4.6)
and for k = 1,...,n, define
(xk);=e, i=0,...,k—1,
{ (x); = (xk (1)), (4.7)
= (O3 — e0)Oi + t(u; — Oo)) /oi, i=k,...,n,
u(t) = (eo — Oax)O1x + 1024, (4.8)
(0x); = (0 (2));
=eio;+ (eg — O3)01 + (O — ), i=0,....k—1, (4.9)
(0k); =0, i=k,...,¢,

where 61y, Oy, 03 are given by (2.3), (2.4), (2.5) fork=1,...,n and gy = 0.
The principal result for (4.1) with ¢ > 0 is the following theorem.

Theorem 4.1. Let Assumptions 2.1(a) and 4.1 be satisfied and let t_1, ty, ..., t,
be defined by (4.3) witht > t_y. Then

(@) tio1 < t, fork=0,...,n,

(b) x(t) = xx(2), for all t € [tx_1, tx], is optimal for (4.1) with xo(t) being given
by (4.4) and xi(t) being given by (4.7) fork =1,... . n,

(c) the multipliers for lower bounds are given by v(t) = v (t), for all te
[te—1, 1], where vo(t) is given by (4.6) and v (t) is given by (4.9) for
k=1,...,n,

(d) the multiplier for the budget constraint is given by u(t) = u(t), for all
t € [tk—1, tx], where uy(t) is given by (4.5) and u(t) is given by (4.8) for
k=1,...,n.

Proof: Let t; be defined by (4.3) for k = —1,...,n. Assumption 4.1 implies

L =0<1y= (d —eo)0n1 < (d —e9)011 - (d —e)011 — er0 — 1
Ox1 — 1ty O — 1y 01 — 1

1.e.

b

<ty <Hn. (410)
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Because of (4.10), the proof of the theorem can now proceed according to the
twocases0 <t <tfpand fp <t < t,.

Let xo, uop and vy be as in the statement of Theorem 4.1 and let 7 € [0, #y].
For t =0, (xp), = d and (xp); =0 for i = 1,...,n. According to Lemma 4.1,
Xo is the solution and uy is the multiplier for the budget constraint of (4.2)
where no inequality constraints are active. Assumptions 4.1(b) and (c) imply
that xq satisfies the lower bounds for # = 0 and thus x is also the optimal so-
lution of (4.1) for = 0. The same argument verifies that x, is the optimal
solution of (4.1) with the multiplier for the budget constraint given by u, for
all > 0 such that (x¢), = eo. Similar to Lemma 2.2(c), for k =1,...,n,

Oak — 1ty = Ouc (e — o)/ ok + -+ + (1 — 1)/ On), (4.11)

so that from Assumption 4.1(a) and (4.11), 021 — iy > 0. Thus from (4.4) (x¢),,
is a decreasing function of ¢. Furthermore, from (4.4) and Assumption 2.1 it
follows that (xo);, i = 1,...,n are increasing functions of . Since (xo()), =
e, it follows that x((¢) is indeed optimal for 0 < ¢ < 1.

Let 1 <k <n and xi, ug, v, be as in the statement of Theorem 4.1 and
t € [tx—1, t]. The KKT conditions for (4.1) are

Xo=>ey, x=>e, ['x=d— xo, (4.12)
tu—2x=ul—v, v=0, (4.13)

ty = u— vy, 19 >0, (4.14)

vo(xo —e9) =0, v'(x—e)=0, (4.15)

where vy is the multiplier for the constraint xo > ey and v is the n-vector of
multipliers corresponding to the lower bounds x; > ¢; fori=1,...,n.
Consider the following problem dealing only with the # risky assets:

min{—tu'x +$x'2x|I'x = d — e, x > e}. (4.16)

We want to apply Theorem 2.1 to (4.16) for ¢ > #;. From Assumptions 4.1(b)
and (C), d>ey>ep+ 6101/()11 which implies that (d — 6’0) > 610'1/011. This
implies that Assumption 2.2(c) is satisfied for (4.16) with the right-hand side of
the budget constraint being replaced with d — e;. Thus Assumptions 2.1 and
2.2 are satisfied for (4.16). Note that the definition of # in Theorem 2.1 is
defined in terms of 6. In the present context d in the definition of 63, must be
replaced by d — ¢p. Doing so and using the #;’s from Theorem 2.1 gives the
t;’s defined by (4.3). Part (a) of the present theorem then follows from (4.10)
and Theorem 2.1(a). Furthermore, it also follows from Theorem 2.1 that the
vector of the last n components of x; is optimal for (4.16) with the vector of
multipliers for the lower bounds being the last » components of the (n + 1)-
vector v, and the multiplier for the budget constraint being u; for all ¢ with
tre1 <t <ty and k=1,...,n Thus, the KKT conditions (4.12), (4.13) and
(4.15) are satisfied.
From (4.14), the multiplier for the constraint (x;), > eo is

(vk)o =tk — 1y
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for all # > #. Substitution of u; from (4.8) gives
(vk)g = (€0 — O3)Ouc + 1(62 — 1),

in agreement with the statement of Theorem 4.1. It remains to show that
(vk)g =0 forallz> 1. (4.17)

To verify (4.17), first observe that from (4.9) and (4.11), (vx), is increasing in
t for any interval [t4_1, t;]. Consequently, (4.17) will be established by verify-
ing that (vk(f—1)), = 0. Although we have used X to denote the covariance
matrix, in the following we will use > to denote summation. Observe first that
from (4.3) and (4.9)

(03,6-1 — €0)01 k-1 — €x—10k_1
02, k-1 — My_1

(0k(tk-1))g = (eo — O3k )01k + (Or — ptp)-

Using Lemma 2.2(b), (c) and re-arranging gives

(0k(tk=1))o = ex—101k + (e0 — 03 4—1) 01k

03,1 — €0 — ex—105-1/01 k-1 " — L
TRCT [Oic g, 5t
Zj:k(ﬂj — t-1)/0; = 9

Further re-arranging and applying Lemma 2.2(a) leads to

(o = Os-1) 3ok (1 — tye—1) /0
Zj"l:k (ﬂj — 1)/ 0

(03,51 —e0) D4 (1 — 19) /0
Z]ik(ﬂj — 1)/ 0;

o o kW~ 1)/ O
— €k—10k—1 =3 ,
Dk — 1)/ 05 01 k1

(Uk([kfl))o = e 101k + 01k

O1x

(03k1 — e0) (1 — 1)

= er_101 +
Z;n:k(ﬂj — tk—1)/0;
O — O —
— ekflglkio — €k—10)—1 707
O — 1y, O — 1y
= —ep_161 S o a1 — o)ty — to)
O — Ly, Zf:k(/v{/ — ty—1)/0;
O — 1o
- ekflo-klea
— M

>0

)
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where the last inequality follows from Assumption 4.1, Lemma 2.2(c) and
(4.11). Thus, all of the KKT conditions for (4.1) are satisfied and the proof is
complete. O

5 Conclusion

We considered a portfolio selection problem of risky, uncorrelated assets
subject to lower bounds on all asset holdings. Under a technical assumption
we formulated a closed form solution for all portfolios corresponding to the
efficient frontier. We showed that as an investor’s aversion to risk decreases
(i.e., t increases from zero), the risky asset holdings were reduced to their
lower bounds (and remained there) in the order of smallest expected return to
largest expected return. We also considered the case when this problem was
augmented by a risk free asset. Using the results for the all risky asset case, we
obtained a closed form solution for the risk free asset problem. We showed
that in (g, ,up) space, the CML meets the efficient frontier for the risky assets
only with a modified budget constraint in the part for that frontier corre-
sponding to its first parametric interval.

We also considered a portfolio selection problem with risky assets similar
to the previous, but with upper bounds on asset holdings, rather than lower.
Under a technical assumption we developed a closed form solution for all
portfolios corresponding to the efficient frontier. We formulated a result
showing that as an investor’s aversion to risk decreases, the risky asset hold-
ings were increased to their upper bounds (and remained there) in the order of
largest expected return to smallest expected return.
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