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Abstract. The properly quasi-convexity of multivalued mappings in an
ordered vector space is introduced. Existence theorems for generalized vector
quasi-equilibrium problems and multivalued vector equilibrium problems are
obtained.
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1 Introduction

Throughout the paper, let Z be a real topological vector space, P Z a
closed, convex, pointed cone. Define a vector ordering on Z by P: Vx,y € Z,
x <y< y—xeP. Let K be a nonempty subset of a real vector space X, and
¢: K x K — Z such that ¢(x,x) >0 for all x € K. The vector equilibrium
problem consists in finding X € K such that

(VEP) ¢(X,y) =0 VyeK.

If Z = R (real numbers) and P = [0, +c0), then the VEP becomes the scalar
equilibrium problem, which has many diverse applications (see Blum and
Oettli (1994), and Oettli and Schldger (1997)).

Let D be a nonempty subset of a real vector space Y, and S: S 33 K and
A : K 3 D multivalued mappings. Let /' : K x D x K — Z be a given map-
ping such that f(x, y,x) > 0 for all x € K and y € A(x). The generalized vector
quasi-equilibrium problem consists in finding X € K and y € 4(X) such that

(GVQEP) xe S(x¥) and f(x,7,x) >0 VxeS(x).
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Let F: K x D 3 Z be given. The multivalued vector equilibrium problem
consists in finding y € D such that

(MVEP) F(x,7) < P VxeK.

Until now, only a few papers deal with these problems in the strong sense.
The purpose of the paper is to discuss some existence results for these prob-
lems. Our results generalize some main results of Chan and Pang (1982) and
Parida and Sen (1987), and obtain vector versions of the well-known Walras
Excess Demand Theorem and Ky Fan minimax Inequality (see Gwinner
(1981)). Now, we recall some notations and preliminary results which will be
used throughout the paper.

Let Z* be the topological dual space of Z, P* < Z* the polar cone of
P ie., P*={z*eZ":{z* z) > 0Vze P}. We assume that P* has a weak*
compact convex base B. This means that B < P* is a weak™ compact convex
set such that 0 ¢ B and P* = [ ] AB (see [6)).

220

Lemma 1. (Jeyakumar and Oettli (1993)). Let B be a weak* compact convex
base of P*, and z € Z. Then

(i) z=20& (z%,z) >0Vz* € P*;
(i) z>0< {(z*,z) =0 Vz* € B.

Definition 1. Let X and Y be two topological spaces, 7 : X = Y a multivalued
mapping. (i) 7 is said to be upper semi-continuous (u.s.c.) at x € X if for each
open set V containing 7'(x), there exists an open set U containing x such that
foreach te U, T(f) = V; T is said to be u.s.c. on X if it is u.s.c. at all x € X.
(ii) 7 is said to be lower semi-continuous (l.s.c.) at x € X if for any open set
with T(x) n V # (, there exists an open set containing x such that for each
teU, T(t)nV # ; T is said to be l.s.c. on X if it is 1.s.c. at all x € X. (iii)
T is said to be continuous on X if it is at the same time u.s.c. and ls.c.
on X. (iv) T is said to be closed if the graph G,(T) of T, ie., G,(T) =
{(x,y):xe X and ye T(x)}, is a closed setin X x Y.

Lemma 2 (Tan (1985)). (i) T is closed if and only if for any net {x,}, x, — x
and any net {y,}, y4 € T(xy), y4 — , one has y € T(x).

(i) If T is closed and T(X) is compact, then T is u.s.c., where T(X) =
\J T(x) and E is the closed hull of a set E.

xeX

(iii) If T is w.s.c. and for each x € X, T(x) is a closed set, then T is closed.
(iv) If X is compact and T is w.s.c., and for each x € X, T(x) is compact,
then T(X) is compact.

(V) Tis I.s.c. at x€ X if and only if for any y € T(x), and any net {x,},
Xy — X, there exists a net {y,} such that y, € T(x,) and y, — y.

Lemma 3 (Berge (1963)). Let X and Y be two Hausdorff topological spaces,
T : X 3 Y a continuous multivalued mapping such that for each x € X, T(x) is
a nonempty compact set of Y. Let ¢ : X x Y — R be continuous. Then the
Sunction M (x) = mTi?) @(x,y) is continuous.

yeT(x
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Definition 2 (Ferro (1989)). Let (Z,P) be an ordered topological vector
space, and K a nonempty convex subset of a vector space X. Let f : K — Z be
given. (i) f is called convex if for every x,y e K and te0,1], we have
flex+(1=0)y) <tf(x) + (1 = 0)f (»);

(i) f'is called properly quasi-convex if for every x,y € K and ¢ € [0, 1], we
have

either f(tx+ (1 —10)y) <f(x)
or  flx+(1-0y)<f()

Remark 1. A mapping may be convex and not properly quasi-convex, and
conversely (see Ferro (1989)). It is easily seen that properly quasi-convexity
and quasi-convexity are equivalent to each other in the scalar case (Z =R
and P = [0, +00)).

The following multivalued version of properly quasi-convexity is new.

Definition 3. Let F : K =3 Z be a multivalued mapping. F is said to be prop-
erly quasi-convex if for every x,y € K, t € [0, 1], and u € F(x), v € F(y), there
exists z € F(¢tx + (1 — ¢)y) such that either z < u or z < v.

Lemma 3. Let F: K 3 Z be a multivalued mapping. Then F is properly
quasi-convex if and only if for any x;€ K, z;e F(x;), t; >0, i=1,...,n,

n
S t; =1, there exist z € F(t1x) + - -+ + t,x,) and some i such that z < z;.
i=1

Proof. It is enough to show the necessity. We proceed by induction. When
n = 2, the conclusion is true. Suppose that for n = m, the conclusion is true. If
m+1
XiyoosXm1 €K, >0, Y t;=1,z,€ F(x;), i=1,....m+ 1, we write y =
i=1
Im Imt1 ml
X + Xmi1, and x= > ;ix;, Then x=rfx 4+ +
I+ 1 Im + Lt i=1
t—1Xm—1 + (tm + tme1)y. By the definition, there exists a Z € F(y) such that

either Z<z, or Z<z,.. (1)

By the inductive assumption, there exists a z € F(x) such that either z < z; for
some i or z < z. If z < Z, by (1) we have either z < z,, or z < z,,,41. The proof
is completed.

The classical Knaster-Kuratowski-Mazurkiewicz (in short, KKM) theo-
rem was generalized by Shioji [10]. First we state a generalization of the KKM

mapping.

Definition 4. Let X and Y be vector spaces, and K a nonempty convex subset
of X. Let G: K33 Y and T: K 3 Y be given. G is said to be a T-KKM
mapping if for each finite subset {xi,...,x,} of K, T(co(xy,...x,))

<= |J G(x;), where co(E) is the convex hull of a set E.

i=1
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Lemma 4. (Shioji [10]) Let X and Y be topological vector spaces, K a compact
convex subset of X. Let G: K 3 Y and T : K 3 Y be multivalued mappings.
Assume that (i) T is u.s.c. and G is a T-KKM mapping, (ii) for each x € K,
T(x) is a nonempty convex compact set and G(x) is a closed set. Then

() G(x) # .

xekK

Definition 5. (Schaefer [9]) A topological vector space X is called quasi-
complete if every bounded, closed subset of X is complete.

2 Generalized vector quasi-equilibrium problems

Theorem 1. Let X, Y and Z be real locally convex Hausdorff topological vector
spaces, and let Y be quasi-complete. Let K = X be a convex compact set, and
D < Y a closed convex set, and P = Z a closed, convex, pointed cone. Let P*
have a weak™® compact convex base B. Let S : K 3 K be a continuous mapping
such that for each x € K, S(x) is a nonempty closed convex set, and A : K 3 D
a u.s.c. mapping such that for each x € K, A(x) is a nonempty compact convex
setof D. Let f : K x D x K — Z be continuous. Assume that

(i) for any xe K and y € A(x), f(x,y,x) = 0;
(ii) for any (x,y) € K x D, f(x,y,u) is properly quasi-convex in u.

Then there exist X € K and j € A(X) such that X € S(X) and f(%,7,x) = 0 for all
x € S(X).

Proof. For any fixed (x,y,u)e K xDxK, <z* f(x,y,u)) is weak*
continuous on B. Let g(x,y,u) :mil}9 z* f(x,y,u)>. By Lemma 3, g is
z*te

continuous on K x D x K. Define the multivalued mapping @ : K x D 3 K
by

D(x,y) = {ve S(x): g(x,y,v) = mggl)g(x,y, u)}, V(x,y)eKxD.
ue X

1) For any fixed (x,y) € K x D, @(x,y) is a closed subset of S(x).
Let a net {v,} = @(x,y), v, — v be arbitrarily given. Since v, € S(x)
and g(x,y,v,) = mSi<n)g(x,y, u), for any ue S(x), we have g(x,y,v,) <
ue X

g(x,y,u). Since g is continuous and S(x) is closed, we have v € S(x) and
9(x.y.0) = limg(x,y.v,) < g(x.y.1).

Hence, g(x,y,v) = urensi&) (x,y,u) and v € D(x,y).

2) For any fixed (x,y) € K x D, &(x,y) is a convex subset of S(x).

We proceed by contradiction. Suppose that there exists some (x,y) €
K x D such that @(x,y) is not convex. Then there exist v;, v, € @(x,y) and
a te(0,1) such that rw; + (1 — #)vy ¢ @(x,y). Since S(x) is convex, fv; +
(1 — f)vy € S(x). Observe that g(x,y,v;) = mSi(n)g(x,y,u), i=1,2,and

ues(x
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Q(XJGUi) <g(xayalvl+(1_t)v2)7 i= 172 (2)

By the definition of ¢, there exist zj,z;y € B such that g(x,y,v;) =
zh f(x,p,v1)>, i =1,2. Since f'(x, y, u) is properly quasi-convex in u, we have

either £(x,y, tv1 + (1 — £)vs) < f(x,¥,01) (3)
or  f(x,y, 014 (1= 1)va) <f(x,p,02). (4)
If (3) holds, then
g(x, p, toy + (1 = 1)v2) < <Lz, f(x,p, 01 + (1 = 1)2))
<Lz S p,01)) = g(x,p,01). ()
By (2) and (5), we have a contradiction. If (4) holds, then
g(x,p, 01 + (1 = )oo) < 25, f(x,p, 01 + (1 = )v2))
<<z, f (%, ,02)) = g(x,p,v2). (6)

Also, a contradiction.

3) disus.c.

Observe that K is compact. By Lemma 2(ii), we need only to show that &
is closed. Let a net (x,,y,) € K x D be given such that (x,,y,) — (x,») €
K x D, and Let a net v, € @(x,, y,) be given such that v, — v. We shall show
v e d(x,y). Since S is u.s.c. and for each x € K, S(x) is a closed set, by
Lemma 2(iii), S is closed. It follows from v, € S(x,) and x, — x, v, — v that
v e S(x). Since S is Ls.c., by Lemma 2(v), for any u € S(x), there exists a net
u, € S(x,) such that u, — u. Since v, € d(x,,y,), we have

g(xaaYaava) = g;i(n)g(xxayaau) < g(xocayomuoc)'

It follows from the continuity of ¢ that
g(x,,v) = lim g(xy, o, v4) < M g(xy, Yo, s) = g(x,3,u), Vue S(x).
o o

Thus, g(x,y,v) = mSi(n)g(x,y, ). This means that v € @(x, y) and @ is u.s.c.
ue X
4) Let A(K) = | A(x). By Lemma 2(iv), A(K) is compact. Let L =

xeK

co(A(K)). Since Y is quasi-complete, it follows that L is a compact convex set
of Y (see Schaefer (1980)). Define the multivalued mapping F: K x L 3
K x L by F(x,y) = (®(x,y),A(x)),¥(x,y) € K x L. Then F is u.s.c, and for
every (x,y) € K x L, F(x,y) is a nonempty convex compact set of K x L. By
the Kakutani-Fan-Glisksberg fixed point theorem, there exists a point
(X,7) € K x L such that (X,7) € F(X,7), i.e.,, X€ ®(X,7) and j € A(X). This
means that X € S(X), y € A(X) and ¢g(X,7,x) > g(X,7,%) >0, Vx e S(x). By
Lemma 1, we get the conclusion. The proof is completed.
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Remark 2. When Z =R and P = [0,+00), Theorem 1 contains as special
cases Theorem 1 of Chan and Pang (1982) and Theorem 1 of Parida and Sen
(1987).

Corollary 1. Let K,D,P,P*,S and A be as in Theorem 1. Let f: K x D X
K — Z be continuous. Assume that

(i) there exists a ¢ € Z such that for any x € K and y € A(x), f(x,y,x) = ¢,
(i) for any fixed (x,y) € K x D, f(x,y,u) is properly quasi-convex in u.

Then there exist X € K and y € A(X) such that X € S(X) and f(X,y,x) = ¢ for all
x € S(X).

The following corollary is a vector version of the Walras Excess Demand
Theorem.

Corollary 2. Let K, D, P, P* and A be as in Theorem 1. Let ¢ : K X D — Z be
continuous. Assume that

(i) there exists ¢ € Z such that for any x € K and y € A(x), p(x,y) > ¢;
(i) for any fixed y € D, ¢(u,y) is properly quasi-convex in u.

Then there exist X € K and y € A(X) such that ¢(x,7y) = c for all x € K.

Proof. In Corollary 1, define the multivalued mapping S: K 3 K by
S(x) =K for all xe K. Then S is continuous. For every (x,y,u)e€ K x
D x K, let f(x,y,u) = ¢(u,y). Corollary 1 yields the conclusion.

3 Multivalued vector equilibrium problems

Theorem 2. Let Z be an ordered topological vector space with the vector order-
ing induced by a closed, convex, pointed cone P. Let X and Y be topological
vector spaces, K — X a nonempty compact convex set, and D < Y a nonempty
closed convex set. Let T : K 3 D be a u.s.c. multivalued mapping such that for
each x € K, T'(x) is a nonempty compact convex set. Let F: K x D 3 Z be a
multivalued mapping. Assume that

(i) forany xe K and y € T(x), F(x,y) = P;

(ii) forany xe K, {y € D : F(x,y) < P} is closed;

(iii) for any y € D, F(x,y) is properly quasi-convex in Xx.

Then there exists j € D such that F(x,y) < P for all x e K.

Proof. Define G : K =3 D by

G(x)={yeD:F(x,y) = P}, VxeKk.

By condition (i), G(x) is closed. We need to show that G is a 7-KKM
n

mapping. Suppose to the contrary that T(x) ¢ () G(x;) for some
i=1
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X1,...,X, € K and some X € co({x1,...,x,}). Then there exists a y € T(X)

n

such that y ¢ () G(x;), i.e., F(x;,7) ¢ P, i=1,...,n. Hence, for each i, there
=1

exists a z; € F(x;, 7) such that

L¢P, i=1,...n (7)

Since F(x,y) is properly quasi-convex in x, by Lemma 3, there exist a
Z € F(X,y) < P and some i such that

0<zZ<z. (8)

By (7) and (8), we get a contradiction. Lemma 4 yields that () G(x) # &,
xekK
i.e., there exists a y € D such that F(x,y) = P for all x € K. )

Remark 3. If for any x € K, F(x,y) is L.s.c. in y, then by Lemma 2(v), it is easy
to check that {y € D : F(x,y) < P} is closed.

The following is a vector version of the Ky Fan minimax inequality.

Corollary 3. Let Z, P and K be as in Theorem 2, and ¢ : K x K — Z a single-
valued mapping. Assume that

(i) for any x € K, p(x,x) = 0;
(ii) forany xe K, {y € K : p(x,y) = 0} is closed;
(iii) for any y € K, ¢(x,y) is properly quasi-convex in x.

Then there exists y € K such that ¢(x,y) > 0 for all x € K.

Proof. In Theorem 2, let D = K, T = I (identity mapping) and F = ¢.
Then Theorem 2 yields the conclusion.
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