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Abstract. We consider the problem of maximizing the expected utility from
consumption or terminal wealth in a market where logarithmic securities
prices follow a Lévy process. More specifically, we give explicit solutions for
power, logarithmic and exponential utility in terms of the Lévy-Khintchine
triplet. In the first two cases, a constant fraction of current wealth should be
invested in each of the securities, as is well-known for related discrete-time
models and for Brownian motion. The situation is different for exponential
utility.
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1 Introduction

One of the basic questions in mathematical finance is how to choose an opti-
mal investment strategy in a securities market, or more precisely, how to
maximize the expected utility from consumption or terminal wealth (cf. e.g.
Korn (1997) for an introduction). This is often called Merton’s problem, since
it was solved by Merton (1969, 1971) in a Markovian It6-process model.
Similar to related work in discrete-time settings (cf. Mossin (1968), Samuelson
(1969), Hakansson (1970)), his solution relies crucially on the Hamilton-
Jacobi-Bellman equation from stochastic control theory.

An entirely different approach to portfolio optimization is based on mar-
tingale methods. Harrison & Kreps (1979) and Harrison & Pliska (1981)
showed that arbitrage and completeness of securities markets can be expressed
in terms of equivalent martingale measures. This leads to a two-step procedure
for the solution of Merton’s problem in complete models (cf. Pliska (1986),
Karatzas et al. (1987), and Cox & Huang (1989)): The unique martingale
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measure yields the optimal terminal payoff, which in turn is used to determine
the corresponding portfolio strategy in a second step.

This approach can be transfered to incomplete markets if the unique
pricing measure is replaced with an in some sense least favourable martingale
measure (cf. He & Pearson (1991a,b), Karatzas et al. (1991), Cvitani¢ &
Karatzas (1992), Kramkov & Schachermayer (1999), Schachermayer (1999),
Kallsen (1998)). An important early reference for this martingale or duality
method is Bismut (1975).

It is usually quite hard to compute optimal strategies explicitly unless the
market is of a certain simple structure or the logarithm is chosen as utility
function. We refer to Hakansson (1971), Merton (1971), Aase (1984), Karatzas
et al. (1991), Cvitani¢ & Karatzas (1992), Goll & Kallsen (1999) for the latter
case. In this paper, time-homogeneous models are considered for power, log-
arithmic, and exponential utility functions. We suppose that logarithmic
securities prices follow a process with stationary independent increments.

Our problem has been solved by Merton (1969) for continuous Lévy pro-
cesses (i.e. Brownian motion with drift). The fraction of current wealth that is
invested in each of the securities stays constant over time if power or loga-
rithmic utility is considered. An analogous result has been derived by Mossin
(1968), Samuelson (1969) for the discrete-time counterpart of these models.
Very recently, Framstad et al. (1999) and Benth et al. (1999) solved the opti-
mal consumption problem for power utility and a quite large class of Lévy
processes.

All these papers apply dynamic programming to obtain the explicit solu-
tion. By contrast, the duality or martingale approach is used in this paper to
derive the optimal portfolio and consumption in terms of the characteristic
triplet of the Lévy process. Due to the powerful toolbox of the general theory
of stochastic processes, the proofs get much simpler.

The paper is organized as follows. We begin with the problem and our
version of the duality link to martingale measures. The explicit solution is
given in Section 3. Finally, the appendix contains some auxiliary results from
stochastic calculus.

We generally use the notation of Jacod & Shiryaev (1987) and Jacod (1979,
1980). The transposed of a vector or matrix x is denoted as x' and its
components by superscripts. Stochastic and Stieltjes integrals are written as
J"O H;dX; = H - X,. Increasing processes are identified with their correspond-
ing Lebesgue-Stieltjes measure.

2 Optimal portfolios and martingale measures

Our mathematical framework for a frictionless market model is as
follows (cf. Goll & Kallsen (1999)). We work with a filtered probability space
(R,7,(#1),cr., P) in the sense of Jacod & Shiryaev (1987), Definition 1.1.2.
Securities 0,...,d are modelled by their price process S :=(S°,...,8%).
Security 0 is assumed to be positive and plays a special role. It serves as a
numeraire by which all other securities are discounted. More specifically, we
. 1 1 1
denote the discounted price process as S := S—S = (1 @Sl, @Sd> We
assume that S is a R™!-valued semlmartmgale Occasionally, we will identify
S with the R?-valued process (S',...,S%).
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We consider an investor (hereafter called “you’) who disposes of an initial
endowment &S| € (0, 0). Trading stmtegzes are modelled by R -valued,
predictable stochastlc processes ¢ = (9°,...,p), where ¢! denotes the number
of shares of security 7 in your portfolio at time .

Proposition 2.1. Assume that S° is a semimartingale such that S° S° are
positive. Then we have equivalence between

1. goeL(S) andgo,T —¢050+fo(ﬂs dS; for any te R,
2. pe L(S) and 9] S, —(oOSo—&—J"O(pA dS, for any t € R,.

(Note that it is not necessary to assume that S° is predictable as is — for
simplicity — often done in the literature. For the definition of multidimensional
integrals cf. Jacod (1980).)

Proof. cf. Goll & Kallsen (1999) O

We call a trading strategy ¢ € L(S) with ¢, = 0 self-financing if ?, TS, =
jot T dS, for any 1 € R, A self-financing strategy ¢ belongs to the set S of all
admzsszble strategies if its discounted gains process |, ¢, TS, is bounded from
below.

Fix a terminal time 7' € IR ;. We assume that your discounted consumption
up to time ¢ is of the form fot s dK;, where i denotes the discounted consump-
tion rate according to the “clock” K. We assume that K is an increasing
function with Ky = 0. Typical choices are K; := 1{7 5, (consumption only at
time 7), K;:=1t (consumption uniformly in time), K;:= )  _, In(s) (con-
sumption only at integer times). x is supposed to be an element of the set & of
all optional processes that are bounded from below and satisfy IOT |xcs| dK
< oo P-almost surely. For k € K&, the corresponding undiscounted consumption
rate at time 7 is x,S°. Your discounted wealth at time ¢ is given by V;(p,x) :=
e+ for goj dS’X - jot KgdK;. A pair (p,x) e © x K belongs to the set P of
admissible portfolio/consumption pairs if V(p, k) = 0.

Definition 2.2. A utility function is a strictly increasing, differentiable, strictly
concave function u : I — R, where I = R or (0, c0).

In the following, u denotes a utility function. Later, we will only consider the

xi=r 1

cases u(x) =—— » for pe R:\{0,1}, u(x) =log(x), and u(x) =1-— ;e’px

for p € (0, o0).

Definition 2.3. 1. We say that (% ) € B is an optimal portfolio/consumption
pair if it maximizes (¢, K) — E( fo u(r,) dK,) over all (¢,K) € P.

2. We say that (pe 6 1s an optimal port]’ollo for terminal wealth if it
maximizes ¢ — E(u(e+ fo ?, TdS,)) overall § e S.

Remarks.

1. If we set K := l7 o), then p € S is an optimal portfolio for terminal
wealth if and only if (¢, <) € B is an optimal portfolio/consumption pair,
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where xr ::6+f0 (0, dS; and x, can be chosen arbitrarily for ¢ < T.
Therefore the terminal wealth problem can be treated as a special case of
maximization of utility from consumptlon
2. Let u(x) = log(x) and suppose that E( Jo llog(S))| dK;) < o0. If (p, k) € P
is an optlmal portfolio/consumption pair, then it maximizes also (¢, ) —
jo (7:SY) dK,) (i.e., the expected utility of undiscounted consumption)
over all (¢,Kx) e B. A similar statement holds for the terminal wealth
problem.

3. Let u(x)=

deterministic. Define K := (S°)’"'K. Then (p,x)e®B is an optimal
portfoho/consumptlon pair if and only if it maximizes (@,K)—

fo 9)dK;) over all (¢,x) € ®. A similar statement holds for the
termmal wealth problem. In other words: The problem to optimize the
utility of undiscounted consumption or terminal wealth can be transformed
into an equivalent discounted one, if the consumption clock is appropri-
ately modified.

1-p
» for some peR, \{0,1} and suppose that S° is

Lemma 2.4. Let x be an optional process. Suppose that there exists a positive
martingale Z with the following properties:

1. (28)" is a local martingale,
2. Z,=u'(ky) for any t € [0, T},
3. E(J,f Zix,dK,) = E(Zy)e.

Then E( [, u(’,) dK,) < E(J, u(x;) dK,) for any (4, %) € B.

Proof. We will give a proof that works as well if T = o0, K, < 2 (cf the
remark at the end of this section). Let (¢, %) € B be such that E( fo (%) dK;)
is defined. Fix neN. Let P* ~ P be defined by CZLP = EZ(TZAOn)'

zTrngTan — (78)T " is a local martingale, ST is a P*-local martingale (cf.
Jacod & Shiryaev (1987), 11.3.8). We have that
O

Tan _ Thn B ZT/\n
[ zn) - (25
Trn
= E(ZO)EP* (J IZ‘; th>
0

< E(Z0)Ep-(e+ ¢ - Stan+ Vi, (3,7)).

Since

Ifnis large enough, then V;, ,(¢,x) = 0. By Ansel & Stricker (1994), Corol-
laire 3.5, ¢'- ST"" is a P*-local martlngale and hence a P*-supermartingale.
It follows that E( [,/ "" Z%, dK,) < E(Z)e for n large enough. Monotone con-
vergence yields hmn_>30 E(J, TN 77 dK,) = Timy, o (E(J, N 7 (7 +m) dK,) —

E(Zy)ymKrp,) = fo Z,K, dK,) where —m denotes a lower bound of «x.
Therefore, we have E( jo Z,k,dK,) < E(Zy)e. Since u is concave, it follows
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that

0

T T T
E( H(K[) dK[) +E(J Z,IZ‘, dK{) E<J Z[KI dKl)
0 0 0

< E(J Tu(lc,) dK,) 0

0

E(JOTu(fE,) dK,) < E(J T(u(}c,) +u' (1) (K — 1¢1)) dKI)

Remarks.

1. Lemma 2.4 has a terminal wealth version. If ¢ is a self-financing strategy
and Z a positive martingale such that

1. (zS)" is a local martingale,
2. Zr=u'(e+ [ ol dS)),
3. E(Zr J‘OT dS,) =0,

then E(u(e + fo TdS,)) < E(u(e + fOT(olT dS,)) for any ¢ € .
Zr
2. Note that ——— EZ) is the dens1ty of a probability measure P* ~ P. Condition
0

1 means that P* is a local martingale measure, i.e. ST is a P*-local
martingale.

3. The above lemma implies that (¢, x) € B is optimal if u’(x) = Z for some
Z as above. Similarly, p € S is optimal for terminal wealth if u'(e+
Jo ol dSy) =
In Kramkov & Schachermayer (1999), Schachermayer (1999) it is shown
that an optimal portfolio for terminal wealth is necessarily of a similar
form.

4. Using a different language, a version of the previous lemma can be found
in Karatzas et al. (1991), Theorem 9.3. The proof of Lemma 2.4 is essen-
tially classical (cf. e.g. the proof of Theorem 2.0 in Kramkov & Schacher-
mayer (1999)).

The following lemma adresses the uniqueness of optimal portfolio/
consumption pairs.

Lemma 2.5. Let (¢,x) and (gﬁ, K) be optimal portfolio/consumption pairs with
finite expected utility E( fo (1, dK,) Then k =FK holds (P® K)-almost
everywhere on Q x [0, T]. Moreover, [, ¢} dS, = Jo @ dS, and hence V,(p,x)
= Vi(@¢,K) for all t with K,_ < Kr. In particular, the discounted wealth pro-
cesses coincide up to indistinguishability. An analogous statement holds for
optimal portfolios for terminal wealth.

Proof. Let (p,x),(9,K) € ‘B be optlmal portfolio/consumption pairs.

First step: Define ¢ := 1 (p + ¢), £ := 1 (x + £). Obviously, (¢,x) € B. By
optimality of (¢, k), (¢, K), we have jQx 0,77 (u(Re) = I(u(rc)) + u(x,)))d(P ® K)
= Joxpo. 1 #E)A(P R K) = [o.0 7 (Kt) (P ® K) < 0. Since u is concave, the
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integrand u(k,) — 4 (u(,;) + u(%;)) is non-negative, which implies that it is 0
(P ® K)-almost everywhere. Therefore ¥ = k (P ® K)-almost everywhere be-
cause u is strictly concave.

Second step: Let tye[0,T] with K;_ < Ky, moreover A := {V; (p,x)
<V (9,K)} € Fy, and D := 14(V,,(¢,K) — V;,(p,x)) = 0. Define a new port-
folio/consumption pair (@, <) by

7,(0) g (w) fr<tyormeA”
9, (w) == ’
t g (w) if 1>ty and we 4,

Ky for ¢t < ¢

Ki+———— fort>t.
[+KT—K,0 =1

More precisely, let @?:=¢?+ D for >ty so that ¢ is a self-financing
strategy. Since x = &, we have 9" - S;, < ¢'-S;, on A. This implies that @ is

.. K, - K, _
admissible. Moreover, we have V,(@,k)= V(p,x)+ D — D# >
T — Dpy—
Vi(p,x) for t=>ty, which implies that (@,x) € B. Obviously, ¥ >k on
A X [tg, T]. In view of the first step, this is only possible if P(4) = 0. O

Remark. If K, :=lim,_ ., K; < o0, then one can extend Definition 2.3 to in-
clude the case T = oo as well. To this end, we define the set P of admissible
portfolio/consumption pairs as follows: (¢, k) € B if there exists some 7 € R,
such that V;(p,x) > 0 for any ¢t € [fp A T, o0). Note that this coincides with
the old definition if T is finite. With this notion of admissibility, Lemmas 2.4
and 2.5 hold for T = oo as well. We do not want to consider terminal wealth
for T'= oo, since the limit fooo ¢! dS, is usually non-existent.

3 Solution in terms of triplets

We turn now to the explicit solution of the utility maximization problem. We
assume that S', ..., S are positive processes of the form

St=Sie(Lh, (3.1)

where L is a IR?-valued Lévy process with characteristic triplet (b, ¢, F) rela-
tive to some truncation function /: RY — R? (i.e., a PIIS in the sense of
Jacod & Shiryaev (1987), Definition 11.4.1). By Lemma 4.2, these processes
coincide with those of the form S’ = Sjexp(L') for R%-valued Lévy processes
L. If the undiscounted price process S is given in the form (3.1), then S is of
the form (3.1) as well, but for a different Lévy process whose characteristics
are obtained with the help of Lemma 4.3.

In the last couple of years, processes of the above type have become pop-
ular for securities models, since they are mathematically tractable and provide
a good fit to real data (cf. Eberlein & Keller (1995), Eberlein et al. (1998),
Madan & Senata (1990), Barndorff-Nielsen (1998)).
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Theorem 3. 1 (Logarithmic utility). Let u(x) = log(x). Assume that there exists
some y € R? such that
F{xeR?:14+9x<0})=0

thi%a‘“”kﬁﬂ<“

b—w+JG:%§—h@0Fw@:O

Let

K= KTéa( L),

V= Kt(KT - KI)7

A i
(/)t’::g—il/,, fori=1,...,d, ¢, .qu)s ds, — Zgﬂ’S’

—

for t€ [0, T], where we set Vy_ :=0. Then (p,x) € B is an optimal portfolio/
consumption pair with discounted wealth process V.

Proof. Set p :=1 in the proof of Theorem 3.2 below. O

I—p
— Sfor some peR\{0,1}.

Theorem 3.2 (Power utility). Ler u(x) =
Assume that there exists some y € R? such that
F{xeR?:14+9x<0})=0
X
2. [|=——=—=—h(x)|F(d
sy ol < =
3.

X
b— ———h F(dx) =0. 3.2
pert [( g — 00 )Pl (3.2)
Let
l—p I 1+pyx o
wi=— ycy—i—pJ((lerTx)p 1 |F(dx), A,:=t,
&
K= = &)L + 04),,
t IOTE“Ssz (v )i

T
V= KIJ 1[0.,]5(5)30'(37[) dK;,
o O

t d
0, = ;I Vi fori=1,...,d, (ﬂ? = L(p:dSS—Z(p;S;
i=1
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for t €0, T], where we set Vo_ :=0. Then (p,x) € B is an optimal portfolio/
consumption pair with discounted wealth process V.

Proof. First step: If (b,¢,F) denotes the triplet of the Lévy process y'L
relatlve to some truncation functlon h:R — R, then we have F(G)=

[16(y"x)F(dx) for Ge# and [(|x|* Lio,s(Ix]) + 1[0 acxD)F F(dx) < oo for
any 0 > 0. Since y"h(x) — h(y"x) is bounded and 0 in a nelghbourhood of 0, it

follows that [|yTh(x) — h(y"x)|F(dx) < co. Moreover, f Tax)? Lo g (Ix])-
(dx) < oo by Condition 2. A second order Taylor expansmn ylelds that
1+ px 1+ py'x

—-1= fi Togeth foll hi —

57 O(x?) for x — 0. Together, it follows that [ (L

| 1+ px
1|F(dx) = | (T F(dx) < oo. Hence, « is well defined.

Second step: We have E(3,_ 71w o(1+7"4L,)) = E(1_og(1 +
y'x) s ul) =E(1_ypg(1+7x)*vF)=0 by Condition 1. Therefore,
P(Ex. te[0,T] with ‘A(y"L +0d), < —1) = 0. By Jacod & Shiryaev (1987),
1.4.64 and 1.4.61c, this implies that x = k& (y'L + aA) is positive on [0, T].

Third step: Define Z:=x? and N := —py L+ ((14+79™X)7 = 1) %
(ut —vE). We will show that Z = k,”&(N). Note that <k, k), = (k>y cy) -
A and u*([0,1] x G) = 16(k_yx) * uL for t € [0, T}, G € #. An application of
1t6’s formula (cf. Lemma 4.1) yields that Z = Zy + k=" - (—py'L — pad +

1
w;ﬁcyA + (1 +9"™%)” =14 py'x) * u). It remains to show that
1+ _
—py'L— poad + wfcwl F (497 =1+ pyTx) s p
= —py LA (L0 = 1)+ (u" —vh). (3.3)

Note that L = L€+ h(x) * (u& —vE) + (x — h(x)) * uX + bA and —py'bA —
poaAd = p(12+p) pleyd — (1 +9"x)7 =1+ py'h(x)) vt by Equation
(3.2). Summing up the terms on the left-hand side of Equation (3.3),
we obtain —py L — py'h(x) * (u" —vE) + (1 +7"%)7" — 1+ pyTh(x)) * u*
—((1+9™X)” =14 py'h(x))  vE, which equals the right-hand side of
Equation (3.3).

Fourth step: Since N is a local martingale, Z is a positive local
martingale. N is obviously a Lévy process. By Lemmas 4.2 and 4.4, Z is even
a martingale.

Fifth step: Fix ie{l,...,d}. Equation (3.2) yields pc*y4 =b'A+

(UJF)CW - hi(x)) * vL. Therefore,

[L',N] = (LN + > AL!AN,

s<-

d
= p P LY+ AL
O W ()

J=1
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i x! i x! i
=t~ () o ()

xi

=—b'A+ (m— h’(x)) s (ub =)+ (h(x) = x7) * it

In view of the canonical representation of the semimartingale L (cf. Jacod &
Shiryaev (1987), 11.2.34), this implies that L' + [L’, N] is a local martingale.
Hence, $'Z = SiZy+ (ZS")_ - L'+ (S'Z) - N+ (S'Z)_-[L,N] is a local
martingale as well.

dP*

P Zo If we set
pi=—-py and Y(x):=(1+7y'x)7, then (Z¢, LY =Z_ - (N¢ Ly =
(Zfl c'B’Z ) A and Z, = Z,_Y(x) for uL-almost all (¢,x), which implies
YZ_ = MP (Z|#) in the sense of Jacod & Shiryaev (1987), 111.3.15/16. Since
Lisa Levy process and S, Y are deterministic, it follows from Girsanov’s
theorem for semimartingales (cf. Jacod & Shlryaev (1987), 111.3.24) that Lis a
P*-Lévy process as well. The calculation in the fifth step shows that L'Z =
Z -L'+Z -N+Z_ -[L',N] is a local martingale for i = 1,...,d. There-
fore, 'L is a P*-local martingale (cf. Jacod & Shiryaev (1987), I11.3.8b). Note

Sixth step: Define a probability measure P* ~ P by

1 .
that £(y'L) = K—e*“;c > 0. Using Lemmas 4.2 and 4.4, we conclude that
0
&(y'L) is a P*-martingale, and hence Ep- (k) = xoe“’ for ¢ € [0, T]. It follows
that E(J, Zi,dK,) = Zy [ Ep- (1) dK, = Zoky J| e dK, = Zye.
Seventh step. We have

V =xe *(e* . Kr —e™ . K)

V()+ (e—o:A(eocA 'KT _eo:A K,)) K4 (e—aA(euA 'KT _eaA K))
—e4+V_ -(y'L4+0ad)—x-K—(Va)- 4
=a+(/)T-S’—K-K,
where we used partial integration in the sense of Jacod & Shiryaev (1987),
1.4.49 and the fact that (V_a)-A4 = (Vo) A because 4, =t is continuous.
Moreover, k and hence V" are non- negatlve Together, it follows that (¢, x) is
an adm1551ble portfoho/consumptlon palr with wealth process V. Note that ¢°

is well-defined, since ¢"-S = (p',...99)" - (S',...,89). In view of Lemma
2.4, the proof is complete. U

Remarks.

1. If Conditions 1-3 in Theorem 3.1 resp. 3.2 are met and ¢ € € is defined by

i

¢, ===

t d
§(y'L), fori=1,....d, ¢):= L o, dSs — Zgo;S;
i=1
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for 1€ (0, T], then ¢ is an optimal portfolio for terminal wealth and its
discounted wealth process equals e&(y'L).

2. In the framework of the remark at the end of Section 2, Theorems 3.1, 3.2
hold for T = oo as well. Only the proof of the sixth step has to be slightly
modified.

1
Theorem 3.3 (Exponential utility). Let u(x) = 1 —Ee’px for some p € (0, ).

Suppose that there exists some y € [0, oo)d such that

L. [|xe "™ — h(x)|F(dx) < o0
2.

b— pey+ J(xe”’fx - h(x))F(dx) = 0. (3.4)
Let

1 T, T,
o= —gchy - ;Je‘” Y™ — 1 — py'x)F(dx).

For any n € N define a stopping time

t
T, :inf{te]R+ . instig —n or J

1 (Kr — K, )y dLs < —n}
=1,..., 0

and processes k), V" g by

T
e—oa | sdK;
KSﬂ) = fO S + yTL[T” _|_ OCZ,
Kr

T
Vs B K e ),
o

. i
o= g (Kr — K)o 1,)(1) fori=1,....d,

(3.5)

for t €0, T). Then (¢, x"™) € B has wealth process V™) for any n € N and we
have

lim E(JTu(K§">)dK,) ~ sup E(JTu(K,)dK,).

e 0 (p,x)eB 0

Proof. First step: If (5, ¢, F) denotes the triplet of the Lévy process y 'L relative
to some truncation function /2 : R — IR, then we have F(G) = [ 16(y"x)F(dx)
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for Ge # and |( |x|? Lo,o)([x]) + 1 5 c(|x))F(dx) < oo for any d > 0. Since
yTh(x) — h(y"x) is bounded and 0 in a neighbourhood of 0, it follows
that [|yTh(x) — h(yx)|F(dx) < . Moreover J1xe |1 5 (|x|) ( X) <
by Condition 1, and therefore [|e™7*(e’* — 1 — px)|1 0.0¢ ([XDF =[[1-
(l + px)efp"'\l[o’ P c(|x)F(dx) < 0. A second order Taylor expansmn yields
—1—px=0(x?) and hence P (el — 1 px) = O(x*) for x — 0.
Together it follows that f|e*1’V Y(ePrX — 1 — pyTx)|F(dx) = [|e (et — 1 —
px)|F(dx) < oo. Hence, o is well deﬁned
Second step: We set k = (& — ocjo sdK)K7' + y'L + oA, where A4, := t.
Define Z := e and N := —py L° + (e 7™ — 1) % (uL — vE). We will show
that Z = ¢ P &(N). An application of Ito s formula (cf. Lernma 4.1) yields

that Z = Zy + e 7" - (—pyTL — poAd + %chyA + (e‘”Tx — 1+ py'x) = ,uL>

It remains to show that
P’ T
=py'L—prd+ ZylepA+ (e = 14 pylx) w

= —py L+ (e — 1) (u* = vh). (3.6)
Note that

L =L+ h(x)* (u" —vE) + (x — h(x)) * u* + b4 (3.7)

2
and _pyTbA — po(A = — %chyA — (eipy-rx -1+ pyTh(X)) * VL by Equation

(3.4). Summing up the terms on the left-hand side of Equation (3.6), w
obtain —py L — py'h(x)  (u" = vE) + (e — 1 4 py'h(x))  u* (6"” *
—1+ pyh(x)) * vE, which equals the right-hand side of Equation (3.6).
Third step: Since N is a local martingale, Z is a positive local martingale.
By Lemma 4.4, Z is even a martingale.
Fourth step: Fix ie{l,...,d}. Equation (3.4) yields pciyA =b'A+
(xie?’' — hi(x)) % vE. Therefore,

[L',N] = (L",N) + Y AL!AN,

s<-

d
=—pY_ LMLy + Y AL (e 1)
j=1 s<-

=—b'4— (xie”’VTx —hi'(x)) vl + (x"e’m'Tx —x')xut
= —bA+ (x'e ™ = hi(x)) « (1t = vE) + (h(x) — x7) * u*.

In view of the canonical representation of the semimartingale L (cf. Equation
(3.7)), this implies that L'+ [L', N] is a local martingale. Hence, S'Z =
SeZo+ (ZS")_ - L'+ (S8'Z) -N+(S'Z)_-[L',N] is a local martingale as
well.
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dP ZT' It
P~ 7,
we set f:=—py and Y(x):=e?” ¥ then <(Z¢ L' =Z_-(N¢ L=
(Z (VB Z_ ) A and Z, = Z, Y(x) for pL-almost all (z,x), which implies
YZ_ = MP (Z|#) in the sense of Jacod & Shiryaev (1987), 111.3.15/16. Since
Lisa Levy process and f, Y are deterministic, it follows from Girsanov’s
theorem for semimartingales (cf. Jacod & Sh1ryaev (1987), 111.3.24) that L is a
P*-Lévy process as well. The calculation in the fifth step shows that L'Z =
Z -L'+Z -N+Z_-[L',N] is a local martingale for i = 1,...,d. There-
fore, yTL is a P*-local martingale (cf. Jacod & Shiryaev (1987), 1I1.3.8b).
Since it is a P*- -Lévy process, it is even a P*—martmgale (cf Lemma 4.4).
Hence Ep- (K,) = Ko + at. It follows that E( fo Z, dK,) = Z, fo Ep(r;) dK; =
ZQ(K()KT —+ o .fO [th = Zye.

Sixth step: Fix n € N. Obviously, (p)"- S, > —n for r < T, and A(( ()T

~§)T —Kr Z, | 7 because AL > —1fori=1,...,d. Therefore, (p")"- S
is bounded from below. Similarly, one shows that x" is bounded from below.
Seventh step: We have

Fifth step: Define a probability measure P* ~ P by

Vo = kW (Kp —K)+o(d-Kr — A-K — A(Kp — K))
— V" 4 (Kp =K ) k™ — k" K+ ad - (Kr — K) — ad(Kr — K)
— et (@5 — k™. K,

where we used partial integration in the sense of Jacod & Shiryaev (1987),
1.4.49 and the fact that A(Kr — K) =4 - (Kr — K) + (Kr — K_) - 4. Since
V(T" ) =0, it follows that (¢, k™) is an admissible portfolio/consumption
pair with wealth process V.

Eighth step: Since e = Z is a martingale, it is of class (D) on [0, T].
A simple calculation shows that the family (e 7 ”) N and hence also
(e"), _ of real-valued measurable functions on @ x [0, 7] is uniformly
integrable with respect to the finite measure P ® K. For n — oo we have

k" — ik (P ® K)-almost everywhere, which implies that fe’I”‘ (P®K)

— je Pd(P® K) for n— oo. Therefore, lim, . E( fo dK,) =
fo u(r;) dK;). In view of Lemma 2.4, the proof is complete. O
Remarks.

1. By considering the case K = 17, ), we obtain the corresonding statement
for the terminal wealth problem.

2. Intuitively, one may regard the limiting portfolio/consumption pair
(p(®), k(*)) as optimal for exponential utility — even if the constraint
y€[0,0)" is not met. However, the trading strategy ¢(*) is not admissible
because its gain process is not bounded from below. Our way out is to
approximate ¢(®) by stopping. This works well if all components of y are
non-negative or if the jump measure F has compact support (i.e., S is
locally bounded). But this method fails if some of the assets with un-
bounded jumps are sold short.
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It is possible to get around this problem by defining admissibility differ-
ently. However, the reasonable choice of the set of trading strategies is a
very delicate point, as it should be at the same time economically mean-
ingful and allow for elegant mathematical theorems. In our case, a conve-
nient set of portfolios would contain ¢(*) without affecting the validity of
Lemma 2.4.

We have not taken this path in order to avoid an ad-hoc definition which is
only suitable to this particular setting. Nevertheless, we feel that the ques-
tion of admissibility deserves some attention and is still wanting a satis-
factory answer in this context.

3. One can observe some qualitative differences between the power and loga-
rithmic case on the one hand and exponential utility one the other hand.
Let us consider the terminal wealth problem for simplicity. For power and
logarithmic utility, a constant fraction of wealth is invested in each of the
assets, whereas a constant amount of money is assigned to each security
in the exponential case. Moreover, the discounted wealth process is an
exponential Lévy process for power and logarithmic utility and a Lévy
process for exponential utility.

4. In his pioneering paper, Merton (1969) obtained optimal portfolio/
consumption pairs for continuous Lévy processes, i.e. F = 0. Framstad et
al. (1999) treated the case F(IRY) < oo for power utility. This result was
extended to a larger class of jump measures by Benth et al. (1999).

5. As noted in the introduction, utility maximazation problems are linked by
duality to the choice of an equivalent local martingale measure. In this
paper, this dual measure appears in the application of Lemma 2.4. Piecing
together results from He & Pearson (1991a,b), Karatzas et al. (1991),
Kramkov & Schachermayer (1999), Bellini & Frittelli (1997), Schacher-
mayer (1999), this measure also minimizes a certain distance functional.
For u(x) = 1 — e, this is the relative entropy. It gives rise to the minimum
entropy martingale measure which has been determined by Miyahara
(1999) and Chan (1999) in an exponential Lévy process setting.

Theorem 3.4 (Exponential Utility, 7" = oo0). Suppose that, in addition to the
conditions in Theorem 3.3, we have fooc tdK, < oo. Let 0 > 0. There exists some

T' € Ry such that if T, K ),V o) are defined as above but relative to T'
instead of T, then (p") IC ") e B has wealth process V") and for large n

E(J u(KS'”)dK,) > sup E(J u(Kt)dK,> - 4.
0 (p,x)eP 0

Proof Deﬁne x as in the proof of Theorem 3.3. For fixed #y € [1, 00) define
Z
~ P by 5= Zt". The fifth step in the proof of Theorem 3.3 shows that «
0
is a P*-Lévy process and x — oA is a P*-martingale on [0, 7). One easily
shows that E(Zi|r/|) = ZoEp-(|r1]) < Zo(t + 1)sup,epo, 1 Ep-(Ires]) < (¢ +1)
(E(Z\|y"Li|) + |«|) and E(Zux;) = ZoEp-(x;) = Zo(Ko—i-oct) for te0,1).
Therefore the equation E(jOTZ,K, dK,) = fo (Zk,) dK, = Zo(koKT +
ocjo tdK,) Zoe holds for 7= oo as well. By Lemma 2.4, it follows that
SUP (g5 e E( fo u(r,) dK,) < E( fo u(rc;) dK).
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0 »
Choose T’ so large that K, — Ky < 3P and exp <I];oc I tth)
T

, ) .
E(—foTexp(—pKt) dK;) > E(— ;" exp(—pr,) dK;) — 3P Define « in the same
way as «, but relative to 7" instead of 7 and 0 on (7', o). Since o < 0, we

have &, > x; + Kif; sdK; for t € [0, T’] and hence E(—foTlexp(—pz%,) dK,) >
T

exp <% j;o,tdK,)E(foréxp(pzct) dK,). The claim follows now as in the
T
last three steps of the above proof, applied to T’ instead of T = oo. O

4 Appendix

In this appendix, we summarize results from stochastic calculus that
are needed in the previous section. Truncation functions #h,hg;, hyy on
R, RY, RY*!, respectively, are supposed to be fixed. We begin with a simple
reformulation of It&’s formula.

Lemma 4.1 (Ité’s formula). Let U be an open subset of RY and X a U-valued
semimartingale such that X_ is U-valued as well. Moreover, let f : U — R be a
function of class C?. Then f(X) is a semimartingale, and we have

t d ot
F(X) = f(Xo) + L Df(X ) dX. + % 3 L D2 (X )d(X, X,

i,j=1
F] o e = ) - DA W () (48)
[0, xR

forany te Ry. Here, Df = (D1f,...,Daf) and (Dif)
and second derivatives of f, respectively.

ij=1,..a denote the first

Proof. This follows immediately from Jacod (1979), (2.54). Note that
U, cnl0, Ry] = Ry if X_ is U-valued. O

The following lemma shows how stochastic and usual exponentials of Lévy
processes relate to each other. A proof can be found in Goll & Kallsen (1999),
Lemma 5.7.

Lemma 4.2 (Exponential Lévy processes). 1. Let L be a real-valued Lévy
process with characteristic triplet (b, ¢, F). Then the process Z := e* is of the
form &(L) for some Lévy process L whose triplet (b, c, F) is given by

b=b+ % + J(h(ex — 1) — h(x))F(dx),
F(G) = Jlg(e" — 1)F(dx) for Ge A.
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2. Let L be a real-valued Lévy process with characteristic triplet (b,c, F )

Suppose that Z := &(L) is positive. Then Z = el for some Lévy process L
whose triplet (b ¢, F) is given by

h=bh— % + J(h(log(l +x)) — h(x))F(dx),

c=c,

F(G) = JIG(log(l +x))F(dx) for Ge A.

The effect of discounting on the triplet of a Leévy process is considered
below. Note that many terms vanish if L is very simple (e.g. LY = r¢ for
reR).

Lemma 4.3 (Discounting). Let S be a R valued semimartingale of the form
Si=Si&(L") for some R -valued Lévy process with characteristic triplet

_ _ Sl Sd
(b,¢,F). Then the discounted process (Sl, .. .,Sd) = §7...,§) is of the
form S = S’éé”(L") for an R?-valued Lévy process L with triplet (b, c, F) given

by

i i T ; 1+ x! 1+ x4
i i 0 ~0i ~00 i
bi=h — B~ ¢ +de+1 (hd<1 Sl |

fhf"lﬂ(xo,.. )JrhdH( ,...,xd)>FI(d(xO,...,xd)), (4.9)
=l - — %+ &, (4.10)
F(G)—J L 5 Y 4.11)

=)\ T X .

fori,je{l,....d},teR,, Ge B,
i

Proof. Applying Itd’s formula to f(x?,..., x9) — % yields

o 1 .\ . Si _ 1 . .
i_ Qi i L — — 0 ‘LO— 0 =i0 A
=S+ () <<s9>25> ((sef e >

S 042500 |
+<(SO) (S%)°¢ ) A

i i i i _
i (S(I—HC)—S——LSix’HL St S°x°> w il

SO(1+x0) S0 80 (89)*

o o f . . 1 i . =
S(’)+S’<L’LO+(COOC’O)«A+<1I;C()1x’+x°> *ﬂL>,
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where A4,:=t So, S'=Si&(L)) for L' =L —L°+ (0 —c®) -4+

L+ i 0 I i 7i g0, 1AL i
(1+x0 1 —x"+x" ) *xu~.Since AL' = AL' — AL +1+AL0 1 —4L"+
14 AL 1+ x! 14 x4
0 _ , L _
AL —m—l, we have v ([O,l]XG)—1G<m— ,...7W

—1] * vtZ for te R, G € #? and hence vl = 1 ® F, where F is as in Equa-

tion (4.11). Moreover, we have (L"¢,L/¢y = (LH¢ L/¢y — (L L%y~
(L%¢ L)<y + (L% L%y = ¢V - 4 with ¢/ as in Equation (4.10). From the
canonical semimartingale representation of L (cf. Jacod & Shiryaev (1987),
11.2.34), we have that L' = L€ + L%¢ 4 (b — b + &% — &) - 4 + (b} (x) —
i i 14X
() (0 =)+ (55
hand, the canonical representation of L yields

1—hly(x) +h2+1(x)> « uE. On the other

i i i i 1‘|‘X1 1+Xd I I
Ll:L['C+Bl+h(ll<m_1"“7m_1 *(,Ll _V)

1+ x' 1+ x! 14 x4 7
—1-h——1,...,———1 .
+<1—|—x0 hd(l—i—xo U 4 X0 ))*,u
By Goll & Kallsen (1999), Proposition 5.3, this implies B’ = (b’ — b° +

~ iy ; 1+ x! 1+ x4 ; =
COOfCO)~A+ <hd<1_’_xol’,l_i_x01> hd+1(x)+h2+l(x)> *VL:

b'- A, where b' is as in Equation (4.9). The assertion follows from Jacod &
Shiryaev (1987), 11.4.19. O

Finally, we cite some statements concerning the integrability of Lévy
processes.

Lemma 4.4. Let L be a real-valued Lévy process.

1. If L is a local martingale, then it is a martingale.

2. If E(efn) < oo for some ty € (0, 0), then e® is of class (D) on any interval
[0,7, re R,.

3. If et is a local martingale, then it is a martingale.

Proof.

1. cf. Sidibé (1979)
1 .

2. Leta:= t—log(E(eL’O)). It is easy to show that E(el) = e“ for any € R,
0

and that (eL'*‘”),E]R+ is a martingale. Therefore, it is of class (D) on any
interval [0,]. Since (e“),., is bounded on any interval [0, ], it follows
that e’ is of class (D) on [0, 7] as well.

3. A positive local martingale is a supermartingale (cf. Jacod (1979), (5.17)),
which implies E(e') < oo. In view of Statement 2 and Jacod & Shiryaev
(1987), 1.1.47c, the claim follows. O
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