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Abstract
In this paper, we present an outer approximation algorithm for computing the
Edgeworth–Pareto hull of multi-objective mixed-integer linear programming prob-
lems (MOMILPs). It produces the extreme points (i.e., the vertices) as well as the
facets of the Edgeworth–Pareto hull. We note that these extreme points are the extreme
supported non-dominated points of a MOMILP. We also show how to extend the con-
cept of geometric duality for multi-objective linear programming problems to the
Edgeworth–Pareto hull of MOMILPs and use this extension to develop the algorithm.
The algorithm relies on a novel oracle that solves single-objective weighted-sum prob-
lems and we show that the required number of oracle calls is polynomial in the number
of facets of the convex hull of the extreme supported non-dominated points in the case
of MOMILPs. Thus, for MOMILPs for which the weighted-sum problem is solvable
in polynomial time, the facets can be computedwith incremental-polynomial delay—a
result that was formerly only known for the computation of extreme supported non-

B Markus Sinnl
markus.sinnl@jku.at

Fritz Bökler
fritz.boekler@uos.de

Sophie N. Parragh
sophie.parragh@jku.at

Fabien Tricoire
fabien.tricoire@wu.ac.at

1 Institute of Computer Science, Osnabrück University, Osnabrück, Germany

2 Institute of Production and Logistics Management/JKU Business School, Johannes Kepler
University Linz, Linz, Austria

3 Institute of Business Analytics and Technology Transformation/JKU Business School, Johannes
Kepler University Linz, Linz, Austria

4 Institute for Transport and Logistics Management, Vienna University of Economics and Business,
Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00847-8&domain=pdf
http://orcid.org/0000-0002-7950-6965
http://orcid.org/0000-0002-7428-9770
http://orcid.org/0000-0003-1439-8702
http://orcid.org/0000-0002-3700-5134


264 F. Bökler et al.

dominated points. Our algorithm can be an attractive option to compute lower bound
sets within multi-objective branch-and-bound algorithms for solvingMOMILPs. This
is for several reasons as (i) the algorithm starts from a trivial valid lower bound set
then iteratively improves it, thus at any iteration of the algorithm a lower bound set
is available; (ii) the algorithm also produces efficient solutions (i.e., solutions in the
decision space); (iii) in any iteration of the algorithm, a relaxation of the MOMILP
can be solved, and the obtained points and facets still provide a valid lower bound set.
Moreover, for the special case of multi-objective linear programming problems, the
algorithm solves the problem to global optimality. A computational study on a set of
benchmark instances from the literature is provided.

Keywords Multi-objective optimization · Outer approximation · Mixed-integer
programming

1 Introduction andmotivation

Let A ∈ Qm×n ,C ∈ Qp×n ,b ∈ Qm , p ≥ 2 andn = n1+n2. LetX = {x ∈ Zn1×Rn2 :
Ax ≥ b}, where we assume that X �= ∅. We are interested in multi-objective mixed-
integer linear programming problems (MOMILPs) which can be defined as follows:

min Cx (MOMILP)

s.t. x ∈ X ,

where we assume that {Ci x : x ∈ X } is bounded from below for each row Ci of C .
Note that if n1 = 0, the problem is called a multi-objective linear programming prob-
lem (MOLP) and for n2 = 0, it is called a multi-objective integer linear programming
problem (MOILP).

For k ∈ N, let Rk≥0 := {z ∈ Rk : z ≥ 0}, i.e., Rk≥0 is the non-negative orthant of
dimension k. Let f (X ) = {Cx : x ∈ X }. For (MOMILP) we define

Q+ := conv f (X ) + R
p
≥0,

the Edgeworth–Pareto hull (Lotov et al. 2004; Ehrgott et al. 2016) that is a finitely
generated rational polyhedron (see Lemma 1). In this work, we are interested in com-
puting the extreme points (i.e., vertices) and facets ofQ+. The setQ+ is illustrated in
Fig. 1 for two objectives (y1 and y2). The extreme points are the red points with the
black circles around them.

Our work is motivated by the fact that many practical problems involve several,
often conflicting objectives, such as profitability or cost versus environmental con-
cerns (Demir et al. 2014; Ramos et al. 2014; Eskandarpour et al. 2021) or customer
satisfaction (Braekers et al. 2016). This means that there is, in the general case, no sin-
gle optimal solutionwhich optimizes all objectives simultaneously but a set of trade-off
solutions which are better (according to some criteria) than other feasible solutions
but incomparable among each other. A popular concept of optimality in this context
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Fig. 1 Exemplary illustration of
the polyhedron
Q+ = conv(Q) + R2≥0. (Color
figure online)

is Pareto optimality (Ehrgott 2005). A solution is called Pareto optimal (or efficient)
if no objective function value can be improved without deteriorating another (for a
formal definition of Pareto optimality and other concepts discussed in the introduction,
we refer to Sect. 2). The images of these solutions in the space of objective function
values (the objective space or criterion space) are called non-dominated points and
they together form the non-dominated frontier or Pareto frontier. In multi-objective
optimization, we usually aim to identify the non-dominated frontier and to identify at
least one efficient solution for each non-dominated point. Depending on the concrete
type ofmulti-objective problem, this task can present with several sources of difficulty:
ForMOLP, the non-dominated frontier contains an infinite number of points, as all the
points between two extreme points of the non-dominated frontier are also contained
in the non-dominated frontier. However, all the extreme points of the non-dominated
frontier can be found by solving weighted-sum scalarizations of the MOLP and with
these extreme points the remaining points (and associated solutions) can be recovered.
For MOILP, there exist non-supported non-dominated points, which cannot be found
using any weighted-sum scalarization. Finally, in case of MOMILP, both issues can
occur. Figure2 gives exemplary non-dominated frontiers with two objectives for each
of the three problem types.

We note that the extreme points of Q+ coincide with the extreme supported non-
dominated points of MOMILP.

1.1 Solutionmethods for multi-objective programming problems

Due to these different sources of difficulty, different types of solution algorithms exist
for these problem families:

For MOLP, solution algorithms relying on solving a series of weighted-sum scalar-
izations are very popular. They originate in the seminal works (Aneja and Nair 1979;
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Fig. 2 Exemplary non-dominated frontiers for MOLPs, MOILPs and MOMILPs (two objectives). The
non-dominated frontiers consist of the points and the lines. The red points are supported and the blue points
are non-supported. (Color figure online)

Cohon 1978; Dial 1979) for the bi-objective case. Solution methods for MOLP can
be classified as inner approximation (IA) or outer approximation (OA) methods. We
note that they usually rely on some form of duality to work, thus existing methods
are mostly restricted to MOLP or some other convex multi-objective programming
problems. However there are some recent works (Özpeynirci and Köksalan 2010;
Przybylski et al. 2010, 2019; Halffmann et al. 2020) which can be classified as IA
approaches capable of dealing with MOMILP. Naturally, IA approaches cannot com-
pute non-supported non-dominated points, but similar to the OA approach we present
in this work, they aim to compute a representation of the Edgeworth–Pareto hull of a
MOMILP. We give a detailed overview over existing work in Sect. 3.

For the purpose of computing a complete non-dominated frontier representation,
existing solution algorithms can be classified into two groups, namely decision space
algorithms and objective space algorithms. Objective space algorithms are of an iter-
ative nature and add constraints in the objective space to cut off already discovered
non-dominated points. The most popular objective space method is probably the ε-
constraint method (Chankong and Haimes 2008), which is restricted to MOILPs.
However, there exist objective space methods which are also suitable for MOMILPs
with two objectives, such as the triangle-splitting method (Boland et al. 2015), the
boxed-line method (Perini et al. 2020), the search-and-remove method (Soylu 2018)
or the method by Rasmi and Türkay (2019).

Decision space methods are usually multi-objective extensions of the classical
branch-and-bound algorithm (B&B) for single-objective mixed-integer programming.
All recent successful implementations of multi-objective B&B algorithms rely on
lower bound sets (Ehrgott and Gandibleux 2007), see, e.g., Gadegaard et al. (2019),
Parragh and Tricoire (2019), De Santis et al. (2020), Forget et al. (2022b), Adel-
gren and Gupte (2022), Parragh et al. (2021) and Eichfelder et al. (2023) but they
are typically either restricted to two objectives or they only address the pure integer
and not the mixed integer case. Lower bound sets are sets in the objective space that
either contain the non-dominated frontier or a set of points which, together, dominate
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the non-dominated frontier. They are a natural multi-objective extension of the lower
bounds obtained by, e.g., relaxations in single-objective optimization. In a bi-objective
context, in more recent contributions, they are usually computed “from the inside” by
IA methods (e.g. Parragh and Tricoire 2019; Adelgren and Gupte 2022). Stidsen et al.
(2014) relied on solving a single weighted-sum scalarization of the linear relaxation
to obtain what is called an objective function level curve and classifies as an OA. For
tackling problems with more than two objectives, Forget et al. (2022a, b), Forget and
Parragh (2023) use an OA scheme to compute bound sets “from the outside”. They
solve the linear programming (LP) relaxation of the MOMILP using an implementa-
tion of Benson’s OA algorithm for MOLPs. The OA algorithm we are proposing can
directly obtain such a lower bound set for MOMILPs without the need of solving a
relaxation. This direct approach thus yields a potentially tighter approximation.

For a more detailed overview on solution methods for MOILPs and MOMILPs, we
refer to Halffmann et al. (2022).

1.2 Contribution

In this work, we propose an OA algorithm which computes the extreme points and
facets of Q+ for MOMILPs. Our algorithm is motivated by the OA approach of
Benson (1998) forMOLPs. It uses an oraclewhich consists of solving single-objective
weighted-sum problems. We show that our algorithm needs a number of oracle calls
which is polynomial in the number of facets of Q+.

Our algorithm closes the following research gaps:

• We show that the OA paradigm can be extended to the MOMILP setting. In order
to do this, we extend the concept of geometric duality proposed by Heyde and
Löhne (2008) for MOLPs to the MOMILP setting.

• Our OA algorithm has several attractive features to be a key ingredient in the
next generation of multi-objective B&B algorithms: Compared to IA algorithms,
which need to be run to termination, our algorithm provides a valid lower bound
set at any iteration. We also note that IA termination cases are subject to numerical
instability. Moreover, as our OA directly operates on the MOMILP and not on the
LP-relaxation of it (as for example the OA used in Forget et al. (2022a, b) does), it
can potentially providemuch tighter bound sets. In fact, the algorithmalso provides
a valid lower bound set when the oracle is called with any relaxation of the original
problem, such as the LP-relaxation, potentially augmented with valid inequalities.
This opens perspectives for multi-objective branch-and-cut algorithms. Finally,
next to providing a lower bound set at any point of its execution, each oracle call
may also produce a new efficient solution. This makes it attractive to use within
multi-objective B&B also from the primal side.

• Wealso provide some results on theoretical runtime and close some open questions
in this regard: Even for structurally simple MOLPs, the number of extreme points
can be exponential in the size of the input (Ruhe 1988) and also for many well-
known multiobjective combinatorial optimization (MOCO) problems the number
of extreme points is super-polynomial. To separate some of the complexities of
these problemclasses, a newoutput-sensitive complexity measurehas emerged (see
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Sect. 2.3). In this context, Bökler andMutzel (2015) show that the extreme points of
the Edgeworth–Pareto hull of MOLP and MOCO (generalizing to MOMILP) can
be computed efficiently, if theweighted-sum scalarization can be solved efficiently,
i.e., in polynomial time. While there are efficient algorithms for the computa-
tion of non-dominated facets of an MOLP (Bökler 2018), no such theorem could
yet be proven for the facet computation of the Edgeworth–Pareto hulls of dis-
crete problems. Our work closes this research gap, as with the OA algorithm we
propose in this work, we are able to propose a similar theorem to the one by
Bökler and Mutzel (2015) for MOMILPs: If the weighted-sum scalarization of a
given MOMILP is solvable in polynomial time, the facets can be computed with
incremental-polynomial delay.

Moreover, we note that for MOLPs the extreme points and facets of Q+ coincide
with the non-dominated frontier. Consequently, our OA algorithm solves MOLPs to
global optimality.

Finally, we observe that computing the extreme points and facets of Q+ also cor-
responds to the problem addressed in parametric integer linear programming with
parametrization in the objective function (Geoffrion and Nauss 1977), which is an
interesting problem on its own.Moreover, a related problem is to compute the extreme
points and/or facets of the convex hull of a linear projection of a mixed-integer prob-
lem onto a small subspace. Our algorithm is also capable of computing this projection.
However, our focus in this paper will be on the optimization side.

1.3 Outline

In Sect. 2 we provide notation, definitions and other preliminaries. Section3 provides
an overview of existing inner and outer approximation schemes. Section4 provides
a general outline of OA algorithms for multi-objective optimization. They require
a point separation oracle specific to the addressed problem class. In Sect. 5 we first
present the generalization of geometric duality to the MOMILP setting in Sect. 5.1
and then propose two separation oracles for MOMILPs in Sects. 5.2 and 5.3. The
theoretical runtime of the algorithm when using the presented oracles is discussed
in Sect. 5.4. Section6 contains a computational study on instances from the literature
and also discusses implementation details. We give empirical results on the numerical
accuracy of our approach and provide a comparison with PolySCIP (Borndörfer
et al. 2016), which is an IA solver for MOMILPs. Section7 concludes the paper.

2 Notation, definitions and preliminaries

2.1 Polyhedra and faces

Given a ∈ Rn , a �= 0, and α ∈ R, the set Ha
α := {aTx = α} is called a hyperplane.

Let P = {Ax ≥ b} for A ∈ Rm×n, b ∈ Rm, m, n ∈ N. P is called a polyhedron.
A polyhedron is called rational, if there are A′ ∈ Qm×n and b′ ∈ Qm , such that
P = {A′x ≥ b′}. We say Ha

α is valid for P , if aTx ≥ α for all x ∈ P . A face of P
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is either a set P ∩ Ha
α for any valid hyperplane Ha

α , or P itself. A valid hyperplane
supports P in F if F := P ∩ Ha

α �= ∅. A face with affine dimension 0 is called
an extreme point (vertex), one with affine dimension dim P − 1 is called a facet.
Rational polyhedra are well-known to have rational-valued extreme points only. Since
for full-dimensional polyhedra, the coefficients (a, α) of a hyperplane supporting a
polyhedron in a facet are uniquely determined up to scaling, we often identify a facet
with its defining (in)equality. We denote such a hyperplane as facet supporting.

A vector r ∈ Rn is called a ray of P , if and only if for every x ∈ P and γ ≥ 0
the point x + γ r ∈ P . The set of all rays of P is called its recession cone or rec P . If
rec P = {0}, then we call P a polytope.

For two sets A, B ⊆ Rn , we write A + B = {a + b : a ∈ A, b ∈ B}. For a linear
map M ∈ Rm×n , we define M · A = {Ma : a ∈ A}. The set conv A is the convex hull
of A, the set cone A is the conical hull of A. A convex set P is a polyhedron if and
only if there exist finite sets E ⊆ Rn and D ⊆ Rn such that P = conv E + cone D.
This representation is called the generator representation of P . If a convex set has
a representation as above, it is said to be finitely generated. Observe that with these
definitions, polyhedra are always closed, convex and finitely generated.

For more background on polyhedral theory, we refer to Ziegler (2012) and Conforti
et al. (2014).

2.2 Multi-objective optimization

For y, y′ ∈ Rp, the relations y = y′, y ≤ y′, and y < y′ apply component-wise.
We call the set Q := f (X ) the feasible set in the objective space. A point y ∈ Q
is non-dominated, if and only if there is no ŷ ∈ Q with ŷ ≤ y and y �= ŷ. We
call the point y I ∈ Rp with y I

i = min{yi : y ∈ Q}, i = 1, . . . , p the ideal point.
Note that not every MOMILP has an ideal point. However in this work as in most
other works dealing with MOMILPs, we always assume an ideal point exists except
for Sect. 5.1. A feasible solution x ∈ X is called efficient, if and only if Cx is non-
dominated. A feasible solution x is a supported efficient solution, if and only if there is
a w ∈ Rp with w > 0, such that x is an optimal solution to the weighted-sum problem
or weighted-sum scalarization:

min
{
wTCx : x ∈ X

}
(WSUM)

For every supported efficient solution x , we call y = Cx a supported non-dominated
point. A point y ∈ Q is an extreme supported non-dominated point if it is a supported
non-dominated point which cannot be obtained as the convex combination of other
supported non-dominated points.

Supported non-dominated points can also be characterized by the Edgeworth–
Pareto hull: A point y ∈ Q is an extreme supported non-dominated point if and
only if it is an extreme point of Q+ (Ehrgott et al. 2016). In our problem setting, we
are interested in the facets of Q+ as they provide us with a lower bound set; as well
as in efficient solutions x such that Cx is an extreme point of Q+, as they provide us
with primal solutions. Note that in the context of MOLP and linear vector optimiza-
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tion in general, the Edgeworth–Pareto hull is usually called the upper image (Löhne
2011). The different name can be motivated by the fact that in MOLP the image Q
is already convex and the additional convex hull operation in the definition of the
Edgeworth–Pareto hull is superfluous.

For more background on multi-objective optimization in general, we refer to, e.g.,
Chinchuluun and Pardalos (2007) and Ehrgott (2005).

Lemma 1 From the definition of Q+ we get the following facts:

1. recQ+ = R
p
≥0

2. Q+ is a rational polyhedron.

Proof 1. It is clear that every extreme ray of Rp
≥0 is an extreme ray of Q+. The

existence of any other extreme ray ofQ+ is a contradiction to the assumption that
an ideal point exists.

2. For everyMOMILP, the set convX is a rational polyhedron (Conforti et al. 2014).
Because C is a linear map, we have C(convX ) = conv(CX ) = convQ. Hence,
the set convQ is a linear image of convX and thus is a polyhedron. As the matrix
C consists of rational entries only, convQ is also rational. Together with (1.),
adding R

p
≥0 preserves this property. 
�

2.3 Running times and output-sensitive complexity

Since the number of facets and extreme points of the Edgeworth–Pareto hull (also
called parametric complexity) of many problems can grow exponentially in the input
size, the traditional aim of a polynomial running time for algorithms computing this
entities is not useful. Instead, we usually regard an algorithm as efficient, if its running
time can be bounded by a polynomial in the input and the output size. We call such
an algorithm an output-polynomial time algorithm.

A more restrictive notion is an incremental-polynomial delay algorithm: The kth-
delay of an enumeration algorithm is defined as the time between producing the kth
and (k+1)th output, including the time to produce the first output and the time after the
last output until termination. In the incremental-polynomial delay model, we require
the kth delay to be bounded by a polynomial in the input size and k. In contrast to
output-polynomial time algorithms, incremental-polynomial delay algorithms are not
allowed to print all outputs at the end, but at certain time points there have to be updates.
However, the model still allows the delays between the outputs to grow depending on
the size of the output so far.

This is remedied by the most restrictive model we discuss: A polynomial delay
algorithm is an enumeration algorithm where every delay is bounded by a polynomial
in the input size.

Naturally, a polynomial delay algorithm is an incremental-polynomial delay algo-
rithm and an incremental-polynomial delay algorithm is also an output-polynomial
algorithm but the reverse implications do not hold in general. See also Bökler et al.
(2017) for a more in-depth exposition of the subject.
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3 State-of-the-art

In this section, we provide an overview of existing IA and OA algorithms for multi-
objective optimization problems. Since Q+ is a polyhedron, there are two general
ways to represent it: by its generators or by inequalities. In the first representation, it
suffices to compute the extreme points, since as we assume Q+ to be bounded from
below, it does not contain a line and the extreme rays ofQ+ are always the unit vectors.
In a multi-objective or parametric optimization setting, the extreme point representa-
tion is more compelling, since it provides us with objective value vectors of efficient
solutions. In our setting however, we are more interested in computing inequality
representations. In bi-objective problems, there is not much of a difference between
these representations, but with a higher number of objectives, the computational cost
of switching between them grows exponentially in the worst case.

To the best of our knowledge, the first works that were concerned with computing
extreme points ofQ+ of MOMILP were independently conducted by Aneja and Nair
(1979), Cohon (1978), and Dial (1979). It is usually referenced as the dichotomic
approach today and only works in the bi-objective case. The dichotomic approach can
be implemented with polynomial delay (Bökler et al. 2017). For biobjective MOLP
there exists an even more efficient algorithm that runs in polynomial delay and needs
only polynomial space in the input size (Bökler et al. 2017).

In the seminal work of Benson (1998), the first outer approximation algorithm for
solving MOLPs in the objective space is given. It forms the basis of the open source
vector linear programming solver bensolve (Löhne and Weißing 2017). Its key
idea is that Q+ can be approximated from the “outside”, by iteratively intersecting
the current approximation with face supporting halfspaces, until the approximation S
is equal to Q+. Initially, the approximation S = y + R

p
≥0, where y is the ideal point,

and an interior point r̂ ∈ intQ+ are required. Then, in each step a point that lies on the
intersection of the boundary ofQ+ and the line connecting one of the current extreme
points y∗ of S and r̂ is determined. It is used to obtain a supporting hyperplane of
Q+, by solving an LP, or to prove that y∗ is an extreme point of Q+. This algorithm
is capable of computing the extreme points of an MOLP in output-polynomial time
and the facets even with incremental-polynomial delay (Bökler 2018).

Extending the work by Benson, Ehrgott et al. (2012) develop a dual algorithm based
on the geometric duality theory of MOLP by Heyde and Löhne (2008). It operates
in a dual space of the objective space. In this dual space, Heyde and Löhne define a
lower image D that is geometrically dual to the upper imageQ+. The dual algorithm
can then be described as a version of Benson’s outer approximation algorithm for
D. This dual algorithm has a crucial property that makes it more attractive in theory
and practice: instead of solving an involved LP to find separating hyperplanes, in this
representation, it suffices to solve weighted-sum LPs (Bökler and Mutzel 2015).

In spite of its dual description, the dual algorithm can be described as operating
in the objective space in the following way: The initial dual outer approximation is
essentially a non-dominated extreme point y of the problem with an attached non-
negative orthant in the objective space, i.e., y +R

p
≥0. Due to geometric duality theory,

choosing an extreme point of the current dual outer approximation is the same as
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choosing a facet of the current inner approximation in the objective space. Finding a
new supporting hyperplane in dual space is again equivalent to finding a new supported
point in the objective space. In this view, the dual of Benson’s algorithm is also the
first instance of an inner approximation for MOLP with a general number of objective
functions. It computes the extreme points of an MOLP with incremental-polynomial
delay and the facets in output-polynomial time (Bökler 2018). Interestingly, the outer
approximation is thus more efficient in computing facets and the inner approximation
is more efficient in computing extreme points.

Very recently, Csirmaz (2021) introduced a unifying perspective on inner and outer
approximation schemes for MOLP, giving skeletal algorithms for both. Each scheme
starts from an initial approximation S of Q+. Then, the inner (outer) approximation
scheme relies on a plane (point) separating oracle determining if an extreme point
(facet) is already part of Q+. If yes, it is marked as final, otherwise, S is updated.
The output to either scheme is Q+ in double description format (i.e., extreme points
and facets of Q+). More details on the outer approximation perspective is given in
Sect. 4. Csirmaz (2021) shows that Benson’s algorithm and its variants follow the outer
approximation scheme whereas the dual variant of Ehrgott et al. (2012) falls into the
described inner approximation scheme.

While Benson’s algorithm and its variants address the multi-objective linear
case, some algorithms for obtaining the extreme supported non-dominated points of
MOMILPs have also been proposed in the past years. To the best of our knowledge,
none of them approximates Q+ from the outside and as such classifies as an OA
algorithm. Przybylski et al. (2010) propose a recursive scheme that resorts to solving
bi-objective problems via dichotomic search derived from the weights associated with
extreme points of a given facet of the weight-set polytope. The weight set is the set
of all eligible weights in a weighted-sum scalarization. Decomposing it into weight-
set components, for which a given extreme supported image is optimal, results in a
weight-set decomposition. Computing this decomposition motivates the development
of the proposed scheme. Przybylski et al. (2010) show that theirmethodworks for three
objectives and in theory also for more. An enumerative procedure is due to Özpeynirci
and Köksalan (2010). It relies on what the authors call stages which are defined by p
points. In each step, the normal weight vector to the hyperplane H defined by a given
stage R is used in the weighted-sum scalarization of the MOMILP to obtain a new
point y. If y corresponds to one of the points of R, R is identified as a facet defining
stage. Otherwise, the new point y is added to the set of non-dominated points and the
list of to be explored stages is updated with y. A main drawback of the method is that
it requires the generation of dummy points to initialize the search.

Bökler andMutzel (2015) propose IA algorithms for MOCO problems. Their work
builds on the dual variant of Benson’s algorithm, observing that the LPs that need to
be solved in the MOLP case can be replaced by solving weighted-sum problems of
the original MOCO problem, showing that the geometric duality theory for MOLP by
Heyde and Löhne (2008) can also be applied to non-convex problems if the interest lies
in the Edgeworth–Pareto hull of the problem. Bökler and Mutzel (2015) show that for
every fixed number of objectives and MOCO problem with a polynomially solvable
weighted-sum scalarization, the extreme points can be computed with incremental-
polynomial delay. This result can be straightforwardly extended to MOMILPs under
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the assumption that an ideal point exists: By the same arguments of the classic proof
that (the decision version of) MOMILP ∈ NP, we see that the encoding lengths of
optimal extreme point solutions of the integer hull remain polynomially bounded in
the input size. Optimizing over the integer hull of an MOMILP thus is analogous to
the combinatorial case.

Borndörfer et al. (2016) develop a general purpose solver named PolySCIP for
MOILP and MOLP with an arbitrary number of objectives as part of the constraint
integer programming suite SCIP. To compute the extreme supported non-dominated
points of MOILP and MOLP, they rely on a lifted weight space polyhedron. For the
special case ofMOLP, this polyhedron is also implicitly defined by Luc (2011) in their
parametric duality. It is shown by Dörfler and Löhne (2018) that it is equivalent to
the geometric dual polyhedron by Heyde and Löhne (2008). Hence in this case, the
lifted weight space polyhedron shares the duality properties of the geometrically dual
polyhedron. However, in Borndörfer et al. (2016) it is used without any theoretical
considerations. In the MOILP case, the lifted weight space polyhedron is an algorith-
mically easier to exploit tool compared to the weight set decomposition introduced by
Przybylski et al. (2010). However, no duality characteristics are known for it and also
no extensions to MOMILPs. Algorithmically, PolySCIP employs a dual Benson
outer approximation algorithm on this lifted weight space/dual space, extending the
work of Bökler and Mutzel (2015) from MOCO to MOILP. Hence, PolySCIP also
falls into the category of IA algorithms.

Even more recently, Halffmann et al. (2020) have proposed an IA algorithm
for three-objective mixed integer linear programs, with the purpose of determining
the weight-set decomposition. It relies on solving bi-objective subproblems via the
dichotomic approach. Finally, building on thework ofÖzpeynirci andKöksalan (2010)
and Przybylski et al. (2010), Przybylski et al. (2019) have also proposed a new IA
algorithm for MOMILPs. In each step, it generates the convex hull of the previously
identified extreme supported non-dominated points. Then, a yet unexplored facet is
chosen and used to define the next weighted-sum scalarization to be solved. The solu-
tion may either be a new extreme supported non-dominated point or identify the facet
to be (partially) part of Q+.

Our OA algorithm relies on the idea of cutting a point from a polyhedron by a
hyperplane in a generic fashion. While this has not yet been used to generate the
Edgeworth–Parto hull of MOMILPs in the objective space, it is at the core of Fenchel
cuts (Boyd 1993, 1994). These are generic cuts developed for single-objective integer
programming, where they are used to cut-off infeasible LP relaxation solutions in
decision space. Their generalization to local cuts (Applegate et al. 2001; Chvátal et al.
2013) is also well known in the single-objective domain. Applications of the local
cut paradigm in the single-objective domain include Avella et al. (2010) where it is
used to find generic cuts for the generalised assignment problem and Kaparis and
Letchford (2010) where it is used in the context of the knapsack problem. In our work,
we transfer these developments, including the LPs used for generic separation, from
the single-objective domain to the multi-objective domain.

Finally we note that for multi-objective mixed integer convex optimization prob-
lems, an outer approximation based B&B algorithm has recently been proposed by
DeSantis et al. (2020). In the lower bound computation, building on theworkofEhrgott
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et al. (2011) and Löhne et al. (2014), a convex relaxation-based outer approximation
is used. It relies on the computation of supporting hyperplanes. This computation is
steered by the available local upper boundswithin the B&B algorithm. Eichfelder et al.
(2023) generalize the ideas of De Santis et al. (2020) to the non-convex case. Also
here the computation of the outer approximation is steered by local upper bounds,
i.e., in the fathoming step of the B&B scheme. It relies on a relaxation of the original
problem. The computation of the complete Edgeworth–Pareto hull via a cutting plane
method is not the aim of their study.

4 The outer approximation algorithm

In this section, we give an outline of the general OA algorithm. Moreover, we do this
in terms of the oracle view by Csirmaz (2021) and generalize this view fromMOLP to
MOMILP. The key ingredient in implementing such algorithms for concrete problem
classes like MOLPs or MOMILPs is the specification and implementation of a point
separating oracle for the respective problem class.

Definition 2 (Point separating oracle) A point separating oracle for a polyhedron P ⊂
Rp is a black box algorithm which takes as input a point y∗ ∈ Rp and returns a tuple
(status, H).
The output is as follows: i) (inside,∅), if y∗ ∈ P , or ii) (outside, H), where H is
a supporting hyperplane H = {y ∈ Rp : wT y = α} of P such that wT y∗ < α and
wT ŷ ≥ α for each ŷ ∈ P (i.e., H separates y∗ from P).

Note that in the corresponding definition ofCsirmaz (2021) a point separating oracle
must give back a hyperplane H which induces a facet of P . In our definition we do
not make this restriction. Naturally, the convergence-behaviour of an OA algorithm
depends on the used point separating oracle. In the original work by Benson (1998)
for MOLP, the supporting hyperplanes to Q+ were only face supporting. The first
facet supporting hyperplane producing oracles were given in Bökler (2018); Csirmaz
(2021) for MOLP. Hence, we are interested in facet supporting hyperplanes and we
show in Sect. 5 that our two proposed point separating oracles for MOMILPs produce
facets of Q+.

Remark 3 Note that the point separating oracle must be called for Q+ even though a
complete description of Q+ is of course only known at the end of the outer approx-
imation algorithm. However, as we show in Sect. 5, given a MOMILP instance, we
can construct point separating oracles for Q+ without having a complete description
of Q+ available.

TheOAalgorithm is described inAlgorithm1.The approximationsS = S0 ⊃ S1 ⊃
. . . usedwithin the algorithmare considered to be stored in a double description format,
i.e., as extreme points and facets. The algorithm starts with an initial approximation
S. This initial approximation consists of the ideal point y I together with the non-
negative orthant, i.e., S := y I + R

p
≥0. It proceeds in an iterative fashion by checking

the extreme points y∗ of the current approximation Si for containment in Q+ using
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the point separating oracle. This checking of the extreme points is done repeatedly
until for some Si ′ the oracle answers with status inside for each extreme point, which
means Si ′ = Q+.

Algorithm 1 Generic OA algorithm for MOMILPs

input: MOMILP instance inst , initial approximation S := y I + R
p
≥0 specified by double description

(extreme points and facets)
output: Q+ specified by double description
1: S0 ← S
2: extremePoints(Q+) ← ∅
3: i ← 0
4: while ∃ y∗ ∈ extremePoints(Si ) : y∗ /∈ extremePoints(Q+) do
5: (status, wT y = α) ← point SeparatingOracle(y∗, inst)
6: if status = inside then
7: extremePoints(Q+) ← extremePoints(Q+) ∪ {y∗}
8: else
9: Si+1 ← Si ∩ {y ∈ Rp : wT y ≥ α}
10: i ← i + 1
11: end if
12: end while
13: Q+ ← Si
14: return Q+

An iteration of the OA algorithm is illustrated in Fig. 3. It shows the image of all
feasible solutions to an MOILP as green dots. Figure3a depicts the initial approxima-
tion S0, consisting of the ideal point y I and Rp

≥0, in green. Then, the point separating
oracle is called and the hyperplane H is returned which separates y I from Q+, as
shown in Fig. 3b. The new approximation S1 has two extreme points depicted, i.e.,
extremePoints(S1) = {y A, yB}. An oracle call for the extreme point filled with
green, y A, will return inside, since it belongs toQ+, whereas for the second extreme
point yB , the oracle will produce a new hyperplane, separating yB from Q+.

Remark 4 It is easy to see, that at any point of the algorithm, we have Q+ ⊆ Si .
Moreover, the algorithm still gives ans OA of Q+ when the point separating oracle
does not separatewith respect toQ+ but to any superset S(Q+) ⊃ Q+. Thismeans that
Q+ can be replaced with any relaxation of the polyhedronQ+ in the point separating
oracle when the goal is to obtain lower bound sets for multi-objective algorithms
needing such lower bound sets.

Remark 5 Let us briefly discuss the key running-time insights of the general OA algo-
rithm. Let us therefore assume, that a point separating oracle is available, produces
facets only, and its running time is a constant as a simplification. In this case, it is easy
to see that for every extreme point ofQ+ obtained by the algorithm, i.e., the situation
of the first if-branch, we ask the point separating oracle once. And for every facet of
Q+ obtained by the algorithm, i.e., the situation of the else-branch, we also ask the
oracle once. Moreover, for every facet of Q+ we have to employ a vertex enumer-
ation algorithm that incurs a running time of O( f � p

2 � + f log f ) when there are f
facets already present (Chazelle 1993). No facet and no extreme point is found twice.
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Fig. 3 An iteration of the outer approximation algorithm

Thus, we see that the overall running time is polynomial in the number of facets and
extreme points of Q+, and the running time of the point separating oracle, assuming
the number of objectives to be a constant.

5 Separation oracles for MOMILP

5.1 Geometric duality for Edgeworth–Pareto hulls of MOMILP

The techniques we use in this paper are heavily influenced by the theory on MOLP.
Note that for this subsection only, we forgo the assumption that an ideal point exists.
This is because for the geometric duality of MOLP and—as we will see—for the
geometric duality ofMOMILP, this assumption is not necessary. ForMOLP, a duality
theory (Heyde and Löhne 2008) exists that is built around a polyhedron D, the lower
image, that is geometrically dual toQ+ (which is the upper image polyhedron in case of

MOLP). To define D, let for w ∈ Rp−1, λ(w) :=
(
w1, . . . , wp−1, 1 − ∑p−1

i=1 wi

)
∈

Rp. For a feasible MOLP with A ∈ Qm×n, b ∈ Qm , and C ∈ Qp×n , the lower image
is defined as

D :=
{ (

w1, . . . , wp−1, α
) ∈ Rp :

wi ≥ 0,
p−1∑
i=1

wi ≤ 1, uT A = λ(w)TC, u ∈ Rm, α ≤ bTu

}
.

The following characterization of D was already given by Heyde and Löhne (2008),
we state it here for the sake of completeness. It characterizes the lower image inde-
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pendently of A, b, and C but only with respect to the upper image polyhedron Q+ in
the following way.

Proposition 6 Let a feasible MOLP be given. Let Q+ be defined as above. Then

D =
{ (

w1, . . . , wp−1, α
) ∈ Rp :

wi ≥ 0,
p−1∑
i=1

wi ≤ 1,∀y ∈ Q+ : α ≤ λ(w)T y

}

holds.

Proof We assume the MOLP to be given by A ∈ Qm×n, b ∈ Qm , and C ∈ Qp×n . Let
ẑ = (ŵ1, . . . , ŵp−1, α̂) ∈ D. By the definition of D, for ẑ there exists a û ∈ Rm with
ûT A = λ(ŵ)TC and α ≤ bTû. Consequently, û is feasible for the dual of (WSUM) of
the givenMOLP with weight λ(ŵ). Moreover, bTû is the dual objective value of û and
is asserted to be at least α̂. By weak duality, we have α̂ ≤ bTû ≤ λ(ŵ)T y for every
feasible y ∈ Q. Observe that for any v, v′ ∈ Rp, we have v ≤ v′ �⇒ wTv ≤ wTv′
for every w ∈ Rp with w ≥ 0. Hence, α̂ ≤ λ(ŵ)T y is also true for every y ∈ Q+.

Let now ẑ = (ŵ1, . . . , ŵp−1, α̂) be a member of the right set. As α̂ ≤ λ(ŵ)T y for
every y ∈ Q+, this is also true for every y ∈ Q that minimizes λ(ŵ)T y over Q. Let
ŷ be such a minimizer. Note that λ(ŵ)T ŷ is thus the optimal value of (WSUM) with
weight λ(ŵ). Let û be an optimal solution to the dual of (WSUM). Then we have
α̂ ≤ λ(ŵ)T ŷ = bTû by strong duality. Using û as u, we see that ẑ ∈ D.


�
Note that this characterization of a lower image is purely geometric. Our goal is to

apply the geometric duality theory ofMOLP to Edgeworth–Pareto hulls ofMOMILPs.
To this end, we show that for everyMOMILP, there is aMOLP so that the upper image
of the latter coincides with the Edgeworth–Pareto hull of the former.

Lemma 7 Let a feasible MOMILP be given. Let the Edgeworth–Pareto hull of this
MOMILP be Q+ ⊆ Rp. There exists a MOLP with upper image Q+ such that Q+ =
Q+.

Proof We construct the MOLP in the following way: As Q+ is finitely generated
and thus polyhedral, there exists a finite hyperplane representation {A′x ≥ b′} of
it. Let C ′ be the p × p identity matrix. Recall that recQ+=R

p
≥. Then the problem

min{C ′x : A′x ≥ b′} is an MOLP with upper image Q+. 
�
This lemma justifies the definition of a generalized lower image for MOMILP.

Definition 8 LetQ+ be the Edgeworth–Pareto hull of an instance of a MOMILP. The
generalized lower image of the MOMILP is defined as:

D :=
{
(w1, . . . , wp−1, α) ∈ Rp :

123



278 F. Bökler et al.

wi ≥ 0,
p−1∑
i=1

wi ≤ 1,∀y ∈ Q+ : α ≤ λ(w)T y

}

By replacing theMOMILPby the correspondingMOLP,we can apply the geometric
duality theory of MOLP to Edgeworth–Pareto hulls of a MOMILP. In particular, there
exists an inclusion reversing one-to-one map from the k-dimensional faces of Q+ to
the K-maximal (p − k − 1)-dimensional faces of D. Where K-maximal means the
faces aremaximal for the ordering x ≤K y ⇐⇒ x p ≤ yp ∧∀i ∈ [p−1] : xi = yi for
x, y ∈ D. Observe thatK-maximality is only needed for faces of dimension larger than
0, as every extreme point ofD isK-maximal. This can be easily seen as (0, . . . , 0,−1)
is an extreme ray of D. From this, we obtain the following important corollaries.

Corollary 9 Let a MOMILP be given. Let Q+ be its Edgeworth–Pareto hull and D
its generalized lower image. For every extreme point (ŵ1, . . . , ŵp−1, α̂) of D, the
hyperplane

{
y ∈ Rp : λ(ŵ)T y = α̂

}
is facet supporting to Q+.

Corollary 10 For every feasible MOMILP, D is finitely generated.

Note that the definition of the generalized lower image is very similar to the lifted
weight space as defined in Borndörfer et al. (2016). But our generalized lower image
applies to themore general problem class ofMOMILP.Moreover, our characterization
allows to apply the geometric duality theory to this generalized lower image.

5.2 A first point separating oracle

Let wi be the coefficient of objective i, i = 1, . . . , p in the desired hyperplane H ,
and α be the right-hand-side of H . A point separating oracle can then be defined as
follows.

(Sep-y∗) min (y∗)Tw − α

s.t . yTw − α ≥ 0 ∀y ∈ Q (FEAS)
∑

i=1,...,p

wi = 1 (WSUM1)

wi ≥ 0 i = 1, . . . , p (WSUM2)

α∈ R

The LP (Sep-y∗) encodes that (w, α) should induce a separating hyperplane by
enforcing that all y ∈ Q should be on the non-negative side of the hyperplane using
constraints (FEAS). Constraint (WSUM1) is a normalisation constraint for the coef-
ficients of the obtained hyperplane. It will be used in the proofs later on. We note
that the LP (Sep-y∗) shares similarities with the LPs used in local cut separation for
single-objective mixed-integer linear programming (see, e.g., Applegate et al. (2001),
Chvátal et al. (2013) for general references on local cut separation). In particular, it
has the same structure as the LP used in Avella et al. (2010) for separating (local) cuts
for the single-objective generalized assignment problem.
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If the objective function value of the optimal solution (ŵ, α̂) of (Sep-y∗) is negative
for a given y∗, we get that y∗ /∈ Q+ and (ŵ, α̂) gives the coefficients of the corre-
sponding separating hyperplane. In the following, we first show that the LP above
models a separating hyperplane that is facet supporting to Q+ and then we show that
an algorithm exists to compute an optimal solution to it.

Let us first prove that an optimal solution to this LP always encodes a separating
hyperplane.

Lemma 11 Let y∗ ∈ Rp and (ŵ, α̂) be an optimal solution to (Sep-y∗). We have
(y∗)Tŵ − α̂ < 0 if and only if y∗ /∈ Q+.

Proof If (y∗)Tŵ− α̂ < 0, then ŵT(y∗) < α̂ and ŵT y ≥ α̂ for all y ∈ Q by constraints
(FEAS).

Since wi ≥ 0, this is also true for all y ∈ Q+. In other words, H ŵ,̂α :={
y ∈ Rp : ŵT y = α̂

}
separates y∗ from Q+ and thus y∗ /∈ Q+. If y∗ is not in Q+,

then by the hyperplane separation theorem, there exists (at least) a hyperplane Hw∗,α∗
,

separating y∗ fromQ+, i.e., (w∗)T(y∗) < α∗ and (w∗)T y ≥ α∗ for all y ∈ Q+. More-
over, we can assume w∗ to be normalized, i.e.,

∑p
i=1 w∗

i = 1. As recQ+ = R
p
≥0, we

can also assume all w∗
i to be at least 0. Consequently, (w∗, α∗) is a feasible solution

to (Sep-y∗) and its value (y∗)Tw∗ − α∗ is strictly smaller than 0 and an upper bound
on the optimal value. 
�
Let us now show why the hyperplanes are facet supporting. In the following lemma
we make use of the fact that we can always assume a theoretical or practical (single-
objective) LP solver to deliver an optimal extreme point solution in decision space to
a (single-objective) LP if one exists. For the theoretical reasoning, see Grötschel et al.
(1993).

Lemma 12 For every optimal extreme point solution (ŵ, α̂) of (Sep-y∗), we have

H ŵ,̂α :=
{

y ∈ Rp : ŵT y = α̂
}

is facet supporting for Q+. Moreover, the feasible set of (Sep-y∗) is finitely generated.

Proof We show that the feasible set of (Sep-y∗) is isomorphic toD. Then both claims
follow immediately from Corollaries 9 and 10.

To this end, we see that for every feasible solution (w1, . . . , wp, α) of (Sep-y∗),
the constraints (FEAS) can also be written as yTw ≥ α for all y ∈ Q+ as in D. Let
therefore y ∈ Q+. There is y′ ∈ Q with y′ ≤ y. If y ∈ Q, then this is clear. If y /∈ Q,
the existence of such a y′ follows from the definition of Q+. With (FEAS), we have
y′Tw ≥ yTw ≥ α.

Withwp = 1−∑p−1
i=1 wi , it is now easy to construct an affine isomorphism between

the feasible set of (Sep-y∗) and D. 
�
Note that as mentioned before, Q is of course not known when calling the

point separating oracle. Moreover, (Sep-y∗) has an infinite number of inequali-
ties. To deal with this obstacle and solve (Sep-y∗), we use the ellipsoid method
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in theory (Grötschel et al. 1993). To do so, we observe that the constraints (FEAS)
can be separated by using a weighted-sum scalarization of the original MOMILP:
Given a solution (ŵ, α̂), there exists a violated constraint (FEAS), if and only if
min

{
ŵT y : y ∈ Q} = min

{
ŵTCx : x ∈ X }

< α̂. The ellipsoid method thus guaran-
tees that (Sep-y∗) can be solved correctly in finite time.

Remark 13 While the ellipsoid method is a strong theoretical tool, it is not practically
competitive. Hence for the practical implementation, we make use of the traditional
cutting-plane approach. The ellipsoid method, however, can also give us a guaran-
tee on the number of oracle calls, the cutting-plane approach cannot. See Sect. 5.4
for more details on the running time analysis and Sect. 6.2 for more details on the
implementation.

Concluding this section, we arrive at the following theorem.

Theorem 14 Computing an optimal solution to (Sep-y∗) using the ellipsoid method is
a point separating oracle that provides us with facet supporting inequalities.

5.3 A target cut-like separation oracle

Another separation oracle can be defined as follows. This oracle follows the target-
cut paradigm introduced in Buchheim et al. (2008) for single-objective mixed-integer
linear programming. In the description below, we assume that all points encountered
in the separation process are≥ 1 (component-wise). This is without loss of generality,
as we can always add a large constant to all points. In Sect. 6.2 we describe how we
do this in our implementation. The oracle is given by the following LP.

(TSep-y∗) min (y∗)Tw
s.t . yTw ≥ 1 ∀y ∈ Q (TFEAS)

wi ≥ 0 i = 1, . . . , p (TWSUM)

If an optimal solution ŵ of (TSep-y∗) has an objective value smaller than 1, ŵT y ≥ 1
gives a separating hyperplane. Otherwise, we return inside. Similar to constraints
(FEAS) of (Sep-y∗), we propose to solve (TSep-y∗) using a cutting-plane approach,
where constraints (TFEAS) are separated by solving weighted-sum problems.

The reason why this algorithm is a point separating oracle is analogous to Lemma
11: We see that for any feasible solution ŵ with objective value (y∗)Tŵ < 1, the
hyperplane {x ∈ Rp : wTx = 1} again separates y∗ from Q+, as long as Q ⊆
R

p
≥0. Moreover, in case the minimum value is at least 1, then there is no separating

hyperplane, hence y∗ ∈ Q+.
To prove that an optimal extreme point solution corresponds in fact to a facet

supporting inequality, we observe that the feasible set of (TSep-y∗) is a polar dual
polyhedron to Q+.
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Theorem 15 Computing an optimal solution to (TSep-y∗) using the ellipsoid method
is a point separating oracle that provides us with facet supporting inequalities.

5.4 Theoretical running time

Let us first analyze the most general version of the OA algorithm. Using the method-
ology of Bökler (2018), we observe the following corollary:

Corollary 16 The OA algorithm with the point separating oracles from Sect.4 produces

the next facet in time O
(

k� p
2 �(TO + k log k)

)
, where TO is the running time of the

point separating oracle and k ∈ N is the number of facets already computed.

Both our new point separating oracles show that a point separating oracle can be
implemented by solving a sequence of weighted-sum scalarizations. Themajor advan-
tage of solving weighted-sum scalarizations over other known methods to implement
the oracle model is that no new constraints are added to the oracle problem and thus
the structural properties of the feasible sets remain untouched. It remains to be shown,
however, that the number of weighted-sum scalarizations that need to be solved does
not grow too fast. The problems (Sep-y∗) and (TSep-y∗) are linear programming
problems and thus only weakly polynomial-time algorithms are known to solve them.
Consequently, we have to take a closer look at the numbers in the definition of the
feasible sets of (Sep-y∗) and (TSep-y∗). In both LPs, the only crucial numbers come
from the constraints (FEAS) and (TFEAS). In both cases due to geometric or polar
duality, the subset of necessary constraints come from extreme points of Q+ as they
are exactly the constraints that define facets of the respective feasible sets.

For MOMILPs in general, the encoding length of the numbers defining extreme
points of Q+ can be bounded by a polynomial in the input size: Let us consider the
feasible set X of a given MOMILP instance. It is well known that the encoding length
of extreme points of convX are bounded by a polynomial in the size of the encoding of
A and b (Conforti et al. 2014). The encoding length of the image of each such feasible
extreme point under the objective function is thus also polynomially bounded in the
encoding length of A, b, and C , since the image can be computed by a matrix–vector
product. For a rigorous proof of the latter statement, see Bökler (2018). We can thus
derive a general bound on the number of oracle calls in the ellipsoid method based on
the encoding length of the input MOMILP.

Lemma 17 Let a MOMILP be given. An optimal extreme point of (Sep-y∗) and
(TSep-y∗) can be computed with a number of weighted-sum calls that grows at most
polynomially in p and the encoding length of A, b, and C.

Proof Using the methodology of Grötschel et al. (1993), we compute an optimal
extreme point solution to the LPs (Sep-y∗) or (TSep-y∗) in polynomial time by using
the ellipsoidmethod and employing a roundingmechanism to reach anoptimal extreme
point solution in decision space. The ellipsoid method has a running time polynomial
in the number of variables (p+1 or p) and the encoding length of extreme points of the
input polyhedron, i.e., the feasible set of (Sep-y∗) or (TSep-y∗). The encoding length
of the extreme points of the feasible sets of (Sep-y∗) and (TSep-y∗) are polynomially
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bounded in the encoding length of their facets. The facets of the feasible set of (Sep-
y∗) and (TSep-y∗), in turn, correspond to the extreme points of Q+. With the above
considerations on the extreme points of Q+, these encoding lengths are polynomial
in the encoding length of A, b, and C .

The separation oracle in the invocation of the ellipsoid method is implemented by
a solver for the weighted-sum problem. The weighted-sum solver is hence called only
polynomially many times. 
�

For the special case of polynomial-time solvable weighted-sum scalarizations, we
arrive at an even stronger result.

Theorem 18 If the weighted-sum problem for a given MOMILP is polynomial-time
solvable, then the facets of Q+ can be computed with incremental-polynomial delay.

Proof This result follows directly, since the separation-oracle calls in the ellipsoid
method are now polynomial-time solvable and thus the whole point separating oracle
takes only polynomial time in the input encoding. 
�

This theorem complements the work by Bökler andMutzel (2015), where the same
result was shown for linear combinatorial optimization problems and extreme point of
Q+ instead of facets. It is easy to see that their result can also be applied toMOMILPs.

6 Computational experiments

The proposed OA algorithms are implemented in Python using CPLEX 12.10
as LP/mixed integer linear programming-solver and the parma polyhedral
library (ppl)(Bagnara et al. 2008) for vertex enumeration. In this section, we
first describe the instances used in our computational experiments in Sect. 6.1, fol-
lowed by a discussion of implementation details in Sect. 6.2 and results in Sect. 6.3.
The runs were made on a single core of an Intel Xeon E5-2670v2 machine with 2.5
GHz and 3 GB of RAM, and we used a time limit of 600s.

6.1 Instances

We use instance sets from the literature. The sets are as follows.

• AP-MOO: These aremulti-objective assignment instances from themulti-objective
optimization library (moolibrary),1 with three objectives. The number of
agents and tasks is identical and ranges from 5 to 40, in increments of 5. The
objective function coefficients are random integers in the range [1, 20]. There are
100 instances in the set. They were proposed in Kirlik and Sayın (2014); simi-
lar instances were also used in experiments for IA algorithms in Özpeynirci and
Köksalan (2010), Przybylski et al. (2010, 2019).

• KP-MOO: These are multi-objective knapsack instances from the moolibrary
with three to five objectives. Both profits and weights are random integers from

1 Available at http://home.ku.edu.tr/~moolibrary/.
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the interval [1, 1000]. The budget is calculated as half the total weight of all items,
rounded up to the next integer. There are 160 instances in the set: 100 instances
with three objectives (10–100 items), 40 with four (10–40 items), and 20 with five
(10–20 items). Like the set AP-MOO, these instances are proposed in Kirlik and
Sayın (2014) and similar instances are also used in experiments for IA algorithms
in Özpeynirci and Köksalan (2010), Przybylski et al. (2010, 2019).

6.2 Implementation details

6.2.1 Instance transformation and offset calculation

We first transform the instances to minimization form by flipping the objective coef-
ficients for all objectives which are maximization. We then compute y I by solving
miny∈Q eT

i y for unit-vector ei . If the value of y I is negative for an objective j , we add
the constant −y I

j + 1 to the respective objective to ensure that all points encountered
in the separation process are component-wise≥ 1 as needed for (TSep-y∗). Moreover,
instead of using the value of one on the right-hand-side of constraints (TWSUM), we
fix the value to the sum of the components of the ideal point (after adding the constant
−y I

j + 1 to objectives j with negative value). This proved to be more numerically
stable in preliminary computations.

6.2.2 Separation

For the initial approximation S, the ideal point y I can be obtained by solving
miny∈Q eT

i y for unit-vector ei . In our implementation of the oracles, we use a cutting-
plane approachwhich is illustrated inAlgorithm 2 for the first oracle, the second oracle
is implemented in a similar fashion.

We initialize the separation LPs by adding constraints (FEAS), resp., (TFEAS)
induced by the solutions obtained for the p problems used for calculating the ideal
point. When separating constraints (FEAS), resp., (TFEAS), we use tolerance ε for
checking violation. Once a constraint (FEAS), resp., (TFEAS) is added to the sepa-
ration LP, we leave it there for the remainder of the algorithm (i.e., for all subsequent
separation oracle calls). In the separation LPs, the numerical emphasis param-
eter of CPLEX is turned on, and the feasiblity and optimality tolerances are set to
1e-9, i.e., the most accurate value possible. When checking the result of the separation
oracle (i.e., the objective value of the separation LP against zero, resp., one), we also
use tolerance ε.

We use ppl with integer numbers as input, as using fractional numbers leads to
(more) numerical instabilities. In order to do so, we scale each (w, α) obtained from
the separation oracle by 109 and take the integer part of the obtained number. When
checking if a point y∗ ∈ extremePoints(Si ) is inQ+, we proceed as follows: When
a point y∗ is within tolerance value ε to a point in y′ ∈ extremePoints(Q+) for
each coordinate, we consider y∗ = y′ and do not call the separation oracle for it. For
each Si , we check the points in the order in which they are made available by ppl.
Moreover, when updating the outer approximations, we use a slightly different strategy
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Algorithm 2 Cutting-plane algorithm for the first point separating oracle
input: MOMILP instance inst , point y∗ ∈ Rp

output: (status, H)

1: L P ← (Sep-y∗) without constraints (FEAS) � add some constraints (FEAS) to avoid unboundedness
of L P in the first iteration of the cutting-plane approach

2: L P ← L P ∪ constraints (FEAS) for the solutions y obtained when calculating the ideal point y I

3: violated ← true
4: do
5: violated ← f alse
6: (ŵ, α̂) ← optimal solution obtained when solving L P

7: ŷ ← optimal solution obtained when solving min
{
ŵTCx : x ∈ X

}

8: if ŵT ŷ < α̂ then
9: violated ← true
10: L P ← L P ∪

{
ŷTw ≥ α

}

11: end if
12: while violated
13: if ŵT y∗ − α̂ ≥ 0 then
14: return (inside, ∅)

15: else
16: return (outside, ŵT y∗ = α̂)

17: end if

compared to the outline in Algorithm 1: We do not immediately calculate Si ∩ H and
move to Si+1 once we discovered a y∗ /∈ extremePoints(Q+); instead, we check
all y∗ ∈ extremePoints(Si ), collect the obtained separating hyperplanes, and then
add them all at the same time to obtain the next outer approximation. This approach
turned out to be faster and more numerically stable in preliminary computations.
Finally, we also add every point found when separating (FEAS), resp., (TFEAS) to
extremePoints(Q+), as these points are obtained from the solution of a weighted-
sum problem. This means that these points are supported non-dominated points and
thus they can be extreme points of Q+. Note that by doing this it can happen that
extremePoints(Q+) contains some points which are not extreme points, but this
does not matter for the correctness of the algorithm.

6.3 Results

6.3.1 Numerical accuracy of our approach and the influence of "

The focus in the implementation of our algorithms is to find a good balance between
numerical accuracy and speed. We note that IA algorithms can suffer from numerical
issues, for example in Przybylski et al. (2019) different versions of the same IA algo-
rithm are tested, and some versions cannot find the complete set of extremes points
for some instances. In our computational study, we use the open-source IA solver
PolySCIP (Borndörfer et al. 2016; Maher et al. 2017) for comparison. As experi-
ments show (see below), there are some instances were PolySCIP does not find all
extreme points; moreover, we observed in PolySCIP’s output that in some cases it
also reports some weakly-dominated points as part of the set of extremes points. In
OA, numerical issues can lead to missing cut-off points, which do not belong to Q+.
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However, even if we miss some of these points, the obtained solution is still a valid
outer approximation.

To investigate the influence of different values of ε on the performance and accu-
racy of our approach, we first consider the instance set AP-MOO. Since the assignment
problem has a totally unimodular constraint matrix, it can be solved as a linear pro-
gramming problem and thus we can obtain the extreme points of Q+ by using the
multi-objective LP solver bensolve. Table 1 shows the number of extreme points of
Q+ obtained by our OAwith both oracles (columns |Q̃+|), and the number of extreme
points when these points are rounded to the next integer (columns |Q+|, recall that
AP-MOO has integer coefficients, thus all extreme points have integer values). We
considered ε = 1e − 3 and ε = 1e − 5 for both oracles. We also report the number
of extreme points obtained by bensolve and PolySCIP and the run time of the
methods (column t[s]). The results are aggregated by instance size. To allow for a
meaningful comparison, we only report results for instance sizes were all approaches
terminate within the time limit for all instances of this size.

The results show that for instances with size up to 30, all methods give a consistent
number of extreme points. For instances of size 35, the size of |Q+| obtained by
the OA is consistent with bensolve considering both oracles when ε = 1e − 5.
For instances of size 40, the number of extreme points obtained by the OA and by
bensolve becomes inconsistent, but only by a small amount. This is not surprising
as with larger instances size, the size of |Q+| also grows, and thus the potential for
numerical inaccuracies increases as well. We observe that the number of non-rounded
extreme points (|Q̃+|) also stays fairly consistent for smaller-sized instances, and for
all sizes is about three times as large as the number of points after rounding. Regarding
the run time, using ε = 1e−3 is about twice as fast as using ε = 1e−5.

6.3.2 Results for instance set KP-MOO

Table 2 shows the results for instance set KP-MOO obtained by our algorithms and by
PolySCIP. Our algorithms are run with ε = 1e−5. In this table, we give the number
of rounded extreme points (columns |Q+|), the number of facets (columns #fac) and
the runtime (columns t [s]). We see that the number of points is quite similar for all
three methods, however, as the instances become larger for p = 3 and for p = 4, 5
in general, the numbers differ. This is not unexpected, as both larger instances and
more objectives could have a negative effect on numerical accuracy. In particular, as
for a larger number of objectives, the number of facets is growing considerably. We
observe that for the number of facets, the difference is larger compared to the number
of points. This could be explained by the fact that |Q+| is the rounded set of points,
which exploits that the instance coefficients are integer. Thus, numerical inaccuracies
are corrected by the rounding, e.g., multiple slightly fractional points are likely to
be rounded to the same integer point. The runtime-performance of both separation
oracles is quite similar.
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Table 2 Results for instances KP-MOO with p = 3, 4, 5 (separated by horizontal lines) aggregated by
number of items

Size (Sep-y∗) (TSep-y∗) PolySCIP

#fac |Q+| t [s] #fac |Q+| t [s] |Q+| t [s]

10 11.1 5.0 0.2 11.1 5.0 0.1 5.0 7.8

20 30.2 14.1 0.4 29.9 14.1 0.3 14.1 4.4

30 56.4 26.2 0.9 56.6 26.2 0.8 26.1 3.5

40 77.6 36.3 1.5 78.0 36.3 1.4 35.9 3.6

50 105.8 48.4 2.2 106.1 48.6 2.0 48.7 2.5

60 150.9 69.5 3.7 150.9 69.5 3.2 69.7 3.0

70 201.4 92.5 5.7 203.2 92.7 5.0 92.5 2.4

80 252.4 114.4 8.1 249.7 114.5 6.8 114.3 3.1

90 311.2 141.9 11.4 309.7 141.6 9.1 141.8 3.5

100 388.9 177.7 16.2 391.6 177.7 12.9 176.7 7.4

10 27.2 6.6 0.2 26.5 6.6 0.2 6.6 0.7

20 169.7 30.2 2.2 170.0 30.2 2.0 30.0 1.1

30 378.7 61.2 7.2 375.6 61.1 5.9 60.2 1.4

40 908.3 136.7 25.5 915.1 136.9 19.2 133.5 2.5

10 108.2 10.2 0.9 109.3 10.1 0.9 10.0 0.5

20 661.4 38.9 15.1 650.7 38.9 11.6 38.1 1.0

7 Conclusion

We present the first outer-approximation algorithm to compute the extreme points and
facets for multi-objective mixed-integer linear programming problems (MOMILPs).
The algorithm is based on an extension of the concept of geometric duality for
MOLPs to MOMILPs. We show that the number of weighted-sum mixed-integer
oracles needed to compute these extreme points and facets can be bounded poly-
nomially by the size of the output and the input for the MOMILPs. Moreover, for
MOMILPs with polynomial-time computable weighted-sum scalarizations, the facets
of the Edgeworth–Pareto hull can be computed with incremental polynomial delay.
We provide a computational study on instances from the literature. In this study, we
investigate the numerical accuracy of our method and also include a comparison with
PolySCIP, which is an inner approximation algorithm for MOMILPs. We conjec-
ture that existing and future multi-objective B&B methods can benefit from partial
bound set computation which now is possible with our proposed method. Future work
should address general strategies for dealing with numerical instabilities and define
appropriate threshold values especially for the general mixed integer case. It should
also investigate the efficacy of this approach in practical B&B algorithms. Investi-
gating possible extensions of our approach to non-linear settings could also be an
interesting avenue for further research. Finally, studying potential consequences and
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implications of our theoretical results for related areas such as parametric integer linear
programming could also be an interesting topic.
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