
Mathematical Methods of Operations Research (2024) 100:221–262
https://doi.org/10.1007/s00186-023-00843-y

ORIG INAL ART ICLE

A fast and robust algorithm for solving biobjective mixed
integer programs

Diego Pecin1 · Ian Herszterg2 · Tyler Perini3 · Natashia Boland2 ·
Martin Savelsbergh2

Received: 30 January 2023 / Revised: 14 November 2023 / Accepted: 20 November 2023 /
Published online: 12 January 2024
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may
apply 2024

Abstract
Wepresent a fast and robust algorithm for solving biobjectivemixed integer linear pro-
grams. Two existingmethods are studied: ε-TabuMethod and the Boxed LineMethod.
By observing structural characteristics of nondominated frontiers and computational
bottlenecks, we develop enhanced versions of each method. Limitations of the cur-
rent state of test instances are observed, and a new body of instances are generated
to diversify computational standards. We demonstrate efficacy with a computational
study. The enhancement to ε-Tabu Method offers an average speed-up factor of 3 on
some instances; the enhancement to Boxed Line Method offers an average speed-up
factor of 18 on some instances. A hybrid, two-phase method is designed to leverage
the strengths of eachmethodwith its corresponding enhancement, thus having a robust
approach to a wider range of instances; it outperforms on all instances with a typical
speed-up factor of 2–3. We also demonstrate that it is capable of producing a high-
quality approximation of the nondominated frontier in a fraction of the time required
to produce the complete nondominated frontier.

B Tyler Perini
tyler.perini@rice.edu

1 Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands

2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, USA

3 Mathematics Department, United States Naval Academy, Annapolis, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00843-y&domain=pdf
http://orcid.org/0000-0002-8502-8111

222 D. Pecin et al.

Graphic Abstract

Keywords Biobjective mixed integer program · Criterion space search ·
Approximation

1 Introduction

In multiobjective optimization, the goal is to generate a set of solutions that induces
the nondominated frontier (NDF), also known as the Pareto front (Pareto 1996). The
NDF is the set of nondominated points (NDPs), where an NDP is a vector of objective
values evaluated at a feasible solution with the property that there exists no other feasi-
ble solution that is at least as good in all objective values and is better in at least one of
them. This paper focuses on multiobjective mixed integer linear programs (MOMIPs)
defined by: continuous and integer variables, linear constraints, and two linear objec-
tive functions; it also focuses on exact algorithms which produce the complete NDF.

Multiobjective integer linear programming problems have been studied for many
decades; see, for example, the surveys of Ehrgott and Gandibleux (2000), Gandibleux
(2006), Stidsen et al. (2014) and Halffmann et al. (2022). In this paper, we restrict
our discussion to criterion space search methods, in which the search for the NDF
operates in the space of the vectors of objective values, known as the criterion space.
These methods benefit from advances in single-objective mathematical programming
solvers, since single-objective linear programs (LPs) and integer linear programs (IPs)
are repeatedly solved.

To date, there is a rich history of criterion space search algorithms for generating the
NDF of biobjective (pure) IPs (Chankong et al. 2008; Ralphs et al. 2004; Boland et al.
2015a; Dai and Charkhgard 2018) and/or more objectives (Sylva and Crema 2004;
Przybylski et al. 2010b; Kirlik and Sayın 2014; Klamroth et al. 2015; Dächert and

123

A fast and robust algorithm for solving biobjective mixed… 223

Fig. 1 The nondominated
frontier of a BOMIP with
minimization objectives. The
shaded regions represent the
images of feasible solutions with
a common integer part. The
nondominated frontier is
darkened

Klamroth 2015; Boland et al. 2016, 2017; Tamby and Vanderpooten 2020). Themixed
integer case poses quite different challenges. One challenge is that MOMIP frontiers
can have a complex structure. The frontier of a biobjective mixed integer program
(BOMIP), for example, can contain open, half-open, and closed line segments, in
addition to isolated points (see Fig. 1 for an NDF of a BOMIP). The presence of these
open, half-open, and closed line segments introduces many numerical challenges in
the implementation of algorithms for generating the NDF of a BOMIP. In the last
decade, several computationally effective, criterion space algorithms have appeared
for BOMIPs (Boland et al. 2015b; Soylu and Yıldız 2016; Fattahi and Turkay 2018;
Soylu 2018; Perini et al. 2019; Emre 2020).1

Recent work in MOMIPs includes generalizing to three or more objectives (Rasmi
et al. 2017; Rasmi and Türkay 2019; Pettersson and Ozlen 2019; Ceyhan et al. 2023)
and/or nonlinear objective functions (Cabrera-Guerrero et al. 2021; Diessel 2022;
Eichfelder et al. 2023b).

Two-phase algorithms have played an important role in biobjective (pure) IPs;
see, for example, Przybylski et al. (2010b) and Dai and Charkhgard (2018). The
computational improvement of our two-stage approach (over the component methods)
alignwith the recent two-stage application of balanced boxmethod and the ε-constraint
method (Dai and Charkhgard 2018).

Our work also contributes to expanding the library of BOMIP test instances; deeper
investigation of generating instances for MOMIPs has only gained recent attention
(Eichfelder 2023a).

In this paper, we offer the following contributions:

1. We extend and merge ideas from two BOMIP algorithms, namely the ε-Tabu
Method (Soylu and Yıldız 2016) and the Boxed Line Method (Perini et al. 2019).
The result is a two-stage hybridization whose performance is fast and, importantly,
robust for generating the NDF of a BOMIP; it is robust in the sense that its two

1 See Halffmann et al. (2022) for a more complete listing.

123

224 D. Pecin et al.

hyperparametersmaybe tuned so that itworkswell across awide range of instances
with different characteristics.

2. We demonstrate that the algorithm can produce a high-quality subset of the NDF
in a fraction of the time it takes to generate the complete NDF. We rigorously
explore this approximation of the NDF of a BOMIP and propose metrics to assess
the quality of such an approximation.

3. We augment existing classes of test instances (from two pre-existing classes to four
classes, total), which diversifies the set of test instances for BOMIP algorithms
and justifies our claim that the algorithm is robust to a wide range of structural
properties of the NDF.

4. We publish the code for this algorithm on GitHub (Pecin et al. 2022), which
provides a widely applicable and highly efficient BOMIP algorithm with just two
tunable hyperparameters.

The remainder of the paper is organized as follows. In Sect. 2,we introduce notation,
key definitions, and review existing methods, including the ε-Tabu Method and the
BoxedLineMethod. InSect. 3,wepropose enhancements to the ε-TabuMethod and the
Boxed Line Method, which improve their performance and robustness. In Sect. 4, we
present the two-stage algorithm that merges ideas from these two methods. In Sect. 5,
we discuss how the algorithm can be used to quickly produce an approximation of the
NDF and metrics that assess the quality of that approximation. In Sect. 6, we present
the results of a thorough computational study (full details included in the Appendices).
We conclude in Sect. 7 with some final remarks.

2 Definitions and overview of component methods

We consider the biobjective mixed integer linear program (BOMIP)

min
x∈X

{z(x) := (z1(x), z2(x))} (1)

where z1(x), z2(x) are linear in x and the feasible region X ⊆ Z
nI ×R

nC is assumed
to be nonempty and bounded. To differentiate between the integer and continuous
components of x ∈ X , we use the convention x = (xI , xC) where xI ∈ Z

nI and
xC ∈ R

nC . Let the projections of X onto the set of integer and real vectors be defined
as XI := {xI ∈ Z

nI : (xI , xC) ∈ X , xC ∈ R
nC } and XC := {xC ∈ R

nC : (xI , xC) ∈
X , xI ∈ Z

nI }, respectively. The feasible region X lies in the decision space, RnI+nC .
The image of X under z(·), denoted by Y := {y ∈ R

2 : y = z(x), x ∈ X }, lies in the
criteria space, R2.

For x1, x2 ∈ X , if zi (x1) ≤ zi (x2) for i = 1, 2 and z(x1) �= z(x2), then z(x1)
dominates z(x2). If xN ∈ X and there does not exist x ∈ X such that z(x) dominates
z(xN), then z(xN) is a nondominated point (NDP) and xN is efficient. The union of
all NDPs is the nondominated frontier (NDF), which we denote by N . Hereon, we
focus on biobjective optimization, since our methods depend on a natural ordering of
points in the NDF.

123

A fast and robust algorithm for solving biobjective mixed… 225

A single NDP of (1) can be found by solving single-objective IPs2 X for example
with lexicographic optimization or a weighted scalarization. The lexicographic IP
hierarchically minimizes two objectives in turn. We denote the case of minimizing
z1(x) and then z2(x) by

η = lexmin{(z1(x), z2(x)) : x ∈ X }. (2)

Solving (2) requires solving two IPs in sequence: η1 = min{z1(x) : x ∈ X } and then
η2 = min{z2(x) : z1(x) ≤ η1, x ∈ X } are solved, resulting in an NDP η = (η1, η2)

of (1). In practice, the second IP tends to solve very quickly. For given vector λ ∈ R
2+,

we refer to

min{λT z(x) : x ∈ X } (3)

as the scalarized IP with respect to λ (Zadeh 1963). If xλ is an optimal solution to (3)
with positive λ, then z(xλ) is an NDP of (1) (Geoffrion 1968). Not every NDP in the
NDF can be found by such an IP: if, for a given NDP z(xN), there exists positive vector
λ such that xN is an optimal solution to (3), then the NDP is supported; otherwise,
the NDP is unsupported.

The NDF can be described by nondominated line segments, vertical gaps, and
horizontal gaps. Define L(z1, z2) to be the line segment connecting endpoints z1, z2 ∈
R
2, where the endpoints are ordered from left to right so that z11 ≤ z21. The line segment

may be open at both ends, half-open, or closed. Thus

{ξ z1 + (1 − ξ)z2 : 0 < ξ < 1} ⊆ L(z1, z2) ⊆ {ξ z1 + (1 − ξ)z2 : 0 ≤ ξ ≤ 1}.

For each i = 1, 2, we refer to the endpoint zi of L(z1, z2) as closed if zi belongs to the
line segment, i.e., if zi ∈ L(z1, z2), and as open otherwise. In the case that z1 = z2,
the line segment L(z1, z2) consists of a single NDP. If all the points in L(z1, z2) are
nondominated and L(z1, z2) is maximal with respect to set inclusion, then we call
L(z1, z2) a nondominated line segment (NLS).3

TheNDFmaybedescribed as afinite sequence ofNLSs, L(y1, z1), . . . , L(yK , zK),
say, for some K ≥ 1, with zk1 ≤ yk+1

1 and zk2 ≥ yk+1
2 for all k = 1, . . . , K − 1, and

for which

y11 < y21 < · · · < yK1 and y12 > y22 > · · · > yK2 .

Agapmay appear between second and first endpoints, respectively, of two consecutive
NLSs in the NDF: for some k, it may be that zk1 < yk+1

1 , which is a gap in the
horizontal direction, and/or zk2 > yk+1

2 , which implies a gap in the vertical direction.
In the case that zk1 < yk+1

1 , we define the interval (zk1, y
k+1
1) ⊂ R to be a horizontal

2 We use the term integer program (IP) to refer to any single-objective problem that has integer variables,
including mixed integer linear programs.
3 A NLS is maximal with respect to set inclusion if neither endpoint can be extended and still contain only
NDPs.

123

226 D. Pecin et al.

gap. In this case, there exists no NDP p with p1 ∈ (zk1, y
k+1
1) and zk must be an

NDP and hence must be a closed endpoint. In the case that zk2 > yk+1
2 , we define the

interval (yk+1
2 , zk2) ⊂ R to be a vertical gap. In this case, there exists no NDP p with

p2 ∈ (yk+1
2 , zk2) and yk+1 must be an NDP and hence a closed endpoint. If there is a

horizontal gap but no vertical gap between zk and yk+1, then yk+1 must be an open
endpoint, and if there is a vertical gap but no horizontal gap between zk and yk+1, then
zk must be an open endpoint.

Given xI ∈ XI , the BOLP obtained from fixing the integer variables to xI is called
the slice problem for xI (Belotti et al. 2013). We call the NDF of a slice problem,
which consists of a connected set of closed line segments, a slice.4 The NDF of a slice
problem for xI is called the slice for xI . Common methods for solving the BOLP slice
problem include dichotomic search (Aneja and Nair 1979) (see “Appendix A.1” for
reference) or parametric simplex (Yu and Zeleny 1975) which return the slice for one
xI . The NDF of the BOMIP is contained in the union, over all xI ∈ XI , of the slice for
xI . The NDF consists of all points in this union that are not dominated by any other
point in the union.

2.1 �-Tabumethod

The ε-Tabu Method (εTM) is an extension of the ε-constraint method for biobjective
IPs (Haimes 1971;Chankong et al. 2008),which requires additional no-good or “Tabu”
constraints for continuous portions of the frontier, and generates a BOMIP frontier
from left to right (or vice-versa). An abbreviated pseudocode (Algorithm 1) is included
in “Appendix A”; for more details see Soylu and Yıldız (2016).

To initialize, εTMsolves a lexicographic IP to find the upper leftNDPof the frontier,
zL = lexmin{(z1(x), z2(x)) : x ∈ X }. Next, εTM repeats two steps: (1) solve the
slice problem for the current integer solution, and (2) check (sequentially from left
to right) whether each line segment in the resulting slice is dominated or not using a
(modified) lexicographic IP. Once a line segment is found to be dominated, then return
to (1) with the solution of the dominating image.

The latter step involves searching for the leftmost NDP “below” the line segment.
If such an NDP is found, then εTM updates the rightmost endpoint of the line segment
using the vertical projection of the new NDP onto the line segment; the line segment
from the leftmost endpoint to the projected point is a NLS. Then, εTM processes the
slice to which the new NDP belongs. If, on the other hand, no such NDP is found,
then the full line segment is a NLS. Hence, εTM adds it to the frontier and proceeds to
check the next line segment in the slice. If all line segments in the slice are confirmed
to be nondominated, then εTM searches for the leftmost NDP “to the right” of the
slice. If such an NDP is found, it defines the next slice. If no such NDP is found, the
complete NDF has been found and εTM finishes.

If an NDF contains many consecutive NLSs from the same slice, as is the case
in some benchmark instances, then it may be advantageous (more efficient) to check

4 Note that our definition of a slice differs from Belotti et al. (2013), where it is defined as the feasible set
for the slice problem as opposed to the resulting NDF.

123

A fast and robust algorithm for solving biobjective mixed… 227

whether a set of consecutive line segments from a slice is dominated or not. This new
enhancement is presented in more detail in Sect. 3.1.

2.2 Boxed linemethod

TheBoxedLineMethod (BLM) (Perini et al. 2019) extended theBalancedBoxMethod
(Boland et al. 2015a), which solves biobjective pure IPs, to handle continuous vari-
ables. Multiple variants of BLM were presented. The basic variant, described next is
also summarized by pseudocode (Algorithm 2) in “Appendix A”.5 To initialize, BLM
solves two lexicographic IPs to find the upper left and lower right NDPs of the frontier.
These define a rectangular region, or “box”, that is added to a queue. The outer loop
of BLM iteratively processes boxes in this queue until it is empty; once an iteration
completes and the queue remains empty, the algorithm terminates.

The first step in processing a box is to search for the leftmost NDP in the lower half
of the box. This is achieved by solving a lexicographic IP constrained to the region of
the criterion space below a horizontal line that splits the box. If the NDP found lies
strictly below the split line, the outer loop solves a mirrored lexicographic IP to find
the rightmost NDP that is in the box and to the left of the NDP already found. Up to
two new boxes are added to the queue with a newfound NDP as a corner point6; boxes
with a width/height smaller than some numerical tolerance are discarded.

Otherwise, the NDP lies on the split line and it must be that the split line intersects
a NLS whose endpoints are yet unknown. To find these endpoints, BLM will first
generate an overestimate (i.e., a superset) of the NLS by computing a line segment
from a slice that contains the NDP. The inner loop is invoked to refine this line seg-
ment, eliminating dominated sections of it until it is proved to be a NLS. The original
inner loop procedure in BLM accomplishes this by solving weighted-sum scalariza-
tion IPs. Computational experiments have revealed that solve times for these IPs are
unpredictable and can sometimes be (too) long. To eliminate this unpredictability, we
present replacement IPs in Sect. 3.2.

BLMquickly partitions the criterion space into regions that are empty or dominated
and boxes that are unexplored. If an iteration of the outer loop begins processing a
box with area X , the sum of the areas of the new boxes added to the queue is at most
X/2. Furthermore, since each box can be processed independently, BLM is easily
parallelizable. These strengths facilitate a rapid approximation of the NDF.

An additional variant, the recursive variant, of BLM is included during our com-
putational study; it is described in detail in Perini et al. (2019).

2.3 Diversity of methods and singularity of instances

The literature onBOMIP algorithms has diverged farmore than the set of test instances
with which to compare. The original algorithm to solve BOMIP was the Triangle

5 Readers are recommended to use Fig. 7 as a reference, and to seek Perini et al. (2019) for further details.
6 The other corner point originates from original box. For instance, supposewithin the original box, defined
by corner points zL and zR , NDPs z� and zr are found such that the images ordered from left-to-right are
zL , z�, zr , zR . Then one new box is defined by zL and z�; the other is defined by zr and zR .

123

228 D. Pecin et al.

Splitting Algorithm (TSA) (Boland et al. 2015b); however, direct comparison to TSA
has been ill-advised for reasons including the use of a relative error tolerance, as
discussed in Fattahi and Turkay (2018) and Perini et al. (2019). The One-Direction
Search (ODS) algorithm (Fattahi and Turkay 2018) is very close in design and spirit
to εTM, and so we do not discuss it further. The computational study for the Search-
and-Remove (SR) algorithm (Soylu 2018) compared SR against TSA and εTM on
instances from Boland et al. (2015b). Emre (2020) presents a BOMIP method using
the Pascoletti-Serafini scalarization, and the computational comparisons (although not
directly on the same machine) are with SR and ODS.

The algorithms tested in this paper are coded efficiently for large-scale instances.
The library of large-scale, linear instances from Boland et al. (2015b) remain the
standard for computational experimentation of BOMIP algorithms. While randomly
generated, their NDFs have a consistent, monolithic structure, as first discussed in
Perini et al. (2019). We argue that this simplicity of NDF structure leads to a lack in
understanding of the robustness of algorithms to different structural characteristics.

3 Enhancements

This section presents enhancements for both component methods.

3.1 An enhanced implementation of the�-Tabumethod

An enhanced implementation of εTM, denoted by εTM-PWL, solves a single lexico-
graphic IP based on a mixed integer programming model of piecewise linear (PWL)
functions. This single IP simultaneously considers multiple line segments of a slice.
That is, rather than investigating the line segments one by one, from “left to right”,
we investigate them simultaneously, by solving a single lexicographic IP.

Suppose that from NDP z0 = z(x0), the slice problem is solved for x0I to generate
a representative list of K ≥ 1 line segments {L(z0, z1), L(z1, z2), . . . , L(zK−1, zK)}
ordered from left to right.7 To check a single line segment, say L(zi , zi+1), where zi

is known to be nondominated, εTM solves the following lexicographic IP:

ẑ = lexmin (z1(x), z2(x))

s.t. z1(x) ≤ λzi1 + (1 − λ)zi+1
1 ,

z2(x) ≤ λzi2 + (1 − λ)zi+1
2 ,

xI �= x0I ,

x ∈ X , 0 ≤ λ ≤ 1, (4)

where xI �= x0I represents a no-good constraint. If (4) is feasible, then ẑ is the leftmost
NDP from a different slice that dominates some part of the line segment L(zi , zi+1).

7 Note that the number of line segments, K , is readily determined from the method used to solve the slice
problem, e.g., dichotomic search. Section6.2 also gives an empirical estimate of the mean observed K
value.

123

A fast and robust algorithm for solving biobjective mixed… 229

For εTM-PWL, we propose a new formulation that considers a set of (at most)
K line segments in the slice simultaneously and models the piecewise linear slice
function using binary variables (see, for example, Wolsey and Nemhauser 2014). Let
K > 0 be the first hyperparameter we introduce.8 We introduce K binary variables,
yi for i = 1, . . . , K where yi is associated with L(zi−1, zi), and K + 1 continuous
variables, λi for i = 0, . . . , K , one for each of the end points of the line segments.
The following minimization problem computes the “left-most” point from a different
slice that dominates any of the line segments:

ẑ1 = min z1(x) (5a)

s.t.
K∑

i=0

λi = 1 (5b)

K∑

i=1

yi = 1 (5b)

λ0 ≤ y1 (5b)

λi ≤ yi + yi+1 ∀i = 1, . . . , K − 1 (5b)

λK ≤ yK (5b)

z1(x) =
K∑

i=0

λi z
i
1 (5c)

z2(x) ≤
K∑

i=0

λi z
i
2 (5d)

xI �= x0I , x ∈ X
yi ∈ {0, 1} ∀i = 1, . . . , K

0 ≤ λi ≤ 1 ∀i = 0, . . . , K

In a feasible solution of this model, yi = 1 indicates that the NDP found is “below”
line segment L(zi−1, zi). Constraints (5b), together with the binary constraints on yi
variables, ensure that at most two convex multipliers (λi variables) may be positive,
the rest must be zero, and that any positive values must be consecutive: yi = 1 for
exactly one i , which forces y j = 0 for all j �= i and hence λ j = 0 for all j /∈ {i−1, i}.
Since λi−1 +λi = 1, (

∑K
j=0 λ j z

j
1,

∑K
j=0 λ j z

j
2) is a convex combination of the points

zi−1 and zi , and hence is a point on the i th line segment, L(zi−1, zi).
Constraints (5c) and (5d) thus ensure that the image z(x) either dominates or coin-

cides with a point on this line segment, while the objective function ensures that x
gives the left-most such image. If the IP is infeasible, then the slice is nondominated
(as there exists no feasible solution “below” its frontier). Otherwise the IP is feasible,
and solving

8 We discuss choosing the value of K in Sect. 6.2. If there are fewer than K line segments in a given slice,
then the algorithm easily adapts to this, so we do not discuss this case further.

123

230 D. Pecin et al.

Table 1 Average and maximum relative increase in total running time of the variations of εTM for all sets
of instances

Algorithm Average Max

Historical Relaxed Rand Bent Historical Relaxed Rand Bent

εTM 1.87 1.10 0.00 0.00 2.14 1.33 0.00 0.00

εTM-PWL 0.00 0.00 0.64 1.93† 0.00 0.00 0.65 2.57†

Zero indicates the superior method: the enhancement is superior on the historical and relaxed instances,
but not for the Rand and Bent instances. †—on one instance of the set, the runtime limit of 86,400s was
exceeded

ẑ2 = min{z2(x) : z1(x) ≤ ẑ1, xI �= x0I , x ∈ X },

ensures that the result, ẑ, is a NDP. By construction, there is a unique i ∈ {1, . . . , K }
such that zi−1

1 < ẑ1 ≤ zi1. Then L(z j−1, z j) is a NLS for all j = 1, . . . , i − 1 and
L(zi−1, z̃) is a NLS, where z̃ is the vertical projection of ẑ onto L(zi−1, zi).

The proposed formulation adds K + 3 new constraints and 2K + 1 new variables
(of which K are binary). Note that one may decide to work with a partial slice, i.e.,
with the left-most K̂ < K line segments obtained when solving the slice problem.
That is, stop solving the slice problem after K̂ line segments have been found and
check if that portion of the frontier is dominated. If no dominated point is found, then
resume solving the slice problem starting from the (K̂ + 1)-th point in the frontier,
and repeat the process until we find either a dominating point or we reach the end
of the frontier. Observe that when K̂ = 1, this enhancement collapses to the original
εTM. Although we treat the hyperparameter K as a fixed value, it could instead be
dynamically obtained and adjusted throughout the execution of the algorithm, as in
Herszterg (2020).

The computational results of this enhancement are reported in Sect. 6.2 and sum-
marized in Table 1.

3.2 A purely lexicographic boxed linemethod

Recall that in the basic variant of BLM, the line generation procedure returns a line
segment from a slice, which is then refined to the nondominated portion of the line
segment by the inner loop that solves one or more scalarized IPs (see Perini et al.
2019 for details). Experiments with BLM have revealed that solving scalarized IPs
can be computationally expensive; they are typically more expensive than solving
a lexicographic IP (and sometimes much more expensive). Figure2 shows for three
instances (described in more detail in Sect. 6.1) all lexicographic and scalarized IPs
solved during the execution of the basic variant of BLM. The x-axis represents the
area of the active box when the IP is solved, and the y-axis represents the solve time
of the IP. We observe that for all lexicographic IPs, the solve time is in the order
of a few seconds, whereas for some of the scalarized IPs, the solve time is close to
500s. Furthermore, for some instances (Rand and Bent), a correlation of at least 0.7
indicates that the solve time for scalarized IPs increases with box size, and hence BLM

123

A fast and robust algorithm for solving biobjective mixed… 231

Fig. 2 Comparing solve times of lexicographic IP (6) (left) and scalarized IPs (right) across instances
with respect to the area of boxed regions. Times are measured during BLM (basic variant) and plotted as
points. Correlation coefficients are given in the upper left of each graph. Note that only one lexicographic
IP is solved on the Bent instance, so the correlation is not well defined even though it is marked as 0. The
correlation is at least 0.7 for scalarized IPs solved on the generated instances, i.e., Rand and Bent; elsewhere,
the correlation is negligible

123

232 D. Pecin et al.

performance suffers early when boxes are still large. This suggests that a variant of
BLM that only solves lexicographic IPs (i.e., avoids solving scalarized IPs) may be
faster on average or, at least, have more “stable” solve times.

Therefore, we explore the benefits of a Purely Lexicographic Boxed Line Method
(PureLex). PureLex replaces the weighted sum scalarization IPs for refining the
initial overestimate of the line segment with lexicographic IPs.9 It does so in a way
similar to εTM, using one lexicographic IP solve per endpoint. Given a line segment
L(z1, z2) containing NDP z∗ = z(x∗) for some x∗ ∈ X in its (relative) interior, let
w
represent the gradient of L(z1, z2). PureLex solves the following lexicographic IP to
update z1:

zα = lexmin (z2(x), z1(x))

s.t.
wT z(x) <
wT z∗,
z1(x) ≤ z∗1,
z2(x) ≤ z12,

xI �= x∗
I , x ∈ X . (6)

Note that (4) and (6) both model a lexicographic optimization of two objectives over
a criterion space set with the same structure. In both cases, the criterion space set is
defined by the intersection of three half spaces: two defined by the upper bounds on
each objective and the third defined by the requirement to lie below a line (segment).
They model this common structure in two different ways. The formulation (6) rep-
resents the three half-space constraints directly. The formulation (4) expresses them
using a convex combination of the line segment endpoints, with a new continuous
variable to model the weights in the convex combination. Both formulations impose
a no-good constraint on the integer components of the solution. Unlike formulation
(4), the formulation (6) uses a strict inequality (implemented as
wT z(x) ≤
wT z∗ − ε,
for small ε > 0) to make the current line segment infeasible. In theory, therefore, the
no-good constraint is redundant. However, computational experiments have shown
that including the no-good constraint in (6) provides better numerical stability. When
running εTM where (4) is replaced with (6), experiments indicate that instances are
solved slightly faster with this new formulation (an average improvement of 1% in
computational runtime). Note also that we solve either two single-objective IPs, and
find an NDP that dominates a portion of L(z1, z∗), or one (infeasible) single-objective
IP, and prove that L(z1, z∗) is nondominated.

If (6) is infeasible, then endpoint z1 does not need to be updated. Otherwise, the
NDP zα is used to update the endpoint z1, using the horizontal projection of zα onto
L(z1, z∗), after which L(z1, z∗) is guaranteed to be nondominated. Solving the second
IP in the lexicographic minimization is needed only because zα is required to be
nondominated in order to define the next box; to update the line segment, it suffices
to solve the first IP.

9 Compare procedure LineRestriction.InnerLoop in Algorithm 2 to LineRestriction.PureLex in
Algorithm 3.

123

A fast and robust algorithm for solving biobjective mixed… 233

A similar lexicographic IP is used to update z2:

zβ = lexmin (z1(x), z2(x))

s.t.
wT z(x) <
wT z∗,
z1(x) ≤ z21,

z2(x) ≤ z∗2,
xI �= x∗

I , x ∈ X . (7)

If (7) is infeasible, then endpoint z2 does not need to be updated. Otherwise, the NDP
zβ is used to update the endpoint z2, using the vertical projection of zβ onto L(z∗, z2).
After the update, L(z∗, z2) is guaranteed to be nondominated.

Thus, PureLex identified the nondominated portion of a line segment by solving
a minimum of two and a maximum of four single objective IPs, compared to one or
more (possibly expensive) scalarized IPs solved in BLM. Algorithm 3 presents the
pseudo-code of PureLex.

4 A hybrid, two-phase algorithm

Reviewing the logic of εTM, we see that it is likely to solve fewer single-objective IPs
than PureLex, because when it shortens a line segment to its nondominated portion,
it does so by solving either one (infeasible) IP or two single-objective IPs (one if
the entire line segment belongs to the frontier and two when the line segment has to
be shortened). However, solving fewer single-objective IPs will not always results in
shorter solve times, because run time also depends on the time it takes to solve the
single-objective IPs, which is impacted by the size of the box. The plots in Fig. 3 show
a clear correlation between the solve time of a single-objective IP and the area of the
active box. This explains, in part, why (as we shall see from the results in Sect. 6)
εTM is more effective than PureLex when the frontier lies in a “small” region of the
criterion space, i.e, when the initial box B(zL , zR) is “small”. Another contributing
factor is the fact that the frontier in a small region of the criterion space is likely to
have fewer horizontal gaps, which is beneficial for εTM. Whenever εTM encounters
a horizontal gap in the frontier, it needs to solve a lexicographic IP to find a new
“starting” point, i.e., a new slice, which requires solving a lexicographic IP (and this
lexicographic IP is not restricted to a small part of the box, which is usually the case
when εTM determines whether a line segment belongs to the frontier or needs to be
shortened).

This suggests that an algorithm that switches from PureLex to εTM at some point
during the generation of the frontier may be able to exploit the respective strengths of
these methods and allay their respective weaknesses. We propose such an algorithm,
which we call SPureLex, as follows. SPureLex starts by executing PureLex to
quickly decompose the criterion space into many small as-yet unexplored boxes, and,
then, when the total as-yet unexplored area of the criterion space becomes small, i.e.,
less than a fraction ρ (0 < ρ < 1) of the area of the initial box B(zl , zU), it switches

123

234 D. Pecin et al.

Fig. 3 The area of the box and the solve time for the lexicographic IPs solved by εTM, separated by instance,
are plotted as points. The resulting correlation coefficient is in the upper left of each graph

to εTM to rapidly generate the frontier in the remaining boxes (defining the as-yet
unexplored area of the criterion space). Early computational experiments indicated
that small values for ρ were ideal; in Sect. 6, we use ρ = 0.005. Algorithm 4 presents
the pseudo-code of SPureLex. We call SPureLex- PWL the variant of SPureLex
using the εTM-PWL method.

5 Approximating amixed integer nondominated frontier

In the literature on multiobjective optimization, an approximation of the NDF can
take any of several different forms. Here, we use it to describe a subset of the NDF. In
particular, we compare the parts of the NDF discovered by alternative exact algorithms
prior to their completion. To do so, we require metrics that measure the quality of such
an approximation. We introduce the following metrics illustrate the progress of the
algorithms as well as the quality of the improvement of approximation:

1. The as-yet unexplored area of the criterion space (i.e., the area of the criterion space
that may still contain parts of the frontier) as a fraction of the area of the initial box
B(zL , zR);

2. The fraction of isolated NDPs found;
3. The fraction of NLSs found;
4. The fraction of the total length of the NLSs found; and
5. The fraction of slices that contribute to the frontier found.

Note that metrics 2, 3, 4, and 5 are relative to the complete nondominated frontier,
which is assumed to be known.

When computing the complete NDF, the order in which boxes are processed is
immaterial. However, processing the boxes in the queue in nonincreasing order of

123

A fast and robust algorithm for solving biobjective mixed… 235

their area has two advantages when computing an approximation of the NDF: (1) it
often introduces diversification, in the sense that different parts of the criterion will be
explored, and (2) as a feature of the BLM design (see Sect. 2.2), the unexplored area
of the criterion space reduces as fast as possible. Therefore, terminating the algorithm
after a fixed amount of time, or terminating the algorithm when the unexplored area
of the criterion space drops below a certain threshold (e.g., below some fraction of the
area of the initial box B(zL , zU)), are both effective strategies to quickly produce a
high-quality approximation of the NDF.

6 Computational study

The goal of our computational study is twofold. First, it demonstrates the efficacy of
εTM-PWL and SPureLex. Second, it investigates SPureLex’s ability to efficiently
produce high-quality approximations to the NDF. All algorithms are coded in C++
and solve the linear and integer programs using IBM CPLEX Optimizer 12.6. All
experiments were conducted in a single thread of a dedicated Intel Xeon ES-2630
2.3GHz with 50B RAM, running Red Hat Enterprise Linux Server 7.4. Runtime limit
was chosen to be 86,400s.

6.1 Test instances

While the algorithms presented work for general integer variables, our test instances
are restricted to binary variables. Four sets of instances were used: (1) the five largest
instances (C320) from the benchmark instances proposed byMavrotas andDiakoulaki
(1998), which we refer to as “Historical”, (2) five modified versions of these instances,
whichwe refer to as “RelaxedHistorical”, (3) three large randomly generated instances
using the generation scheme proposed by Perini et al. (2019), which we refer to as
“Rand”, and (4) three new randomly generated instances, which we refer to as “Bent”.

The framework for the Historical instances, originally published by Mavrotas and
Diakoulaki (1998), includes: half of the variables are binary and half are continuous; a
randomly generated objective vector; and a set of knapsack constraints (the number of
which equals the number of variables) with randomly generated coefficients and right
hand sides. Each binary variable appears in exactly one knapsack constraint; half of the
constraints include only continuous variables. In addition, a constraint ensures that no
more than a third of the binary variables can be set to 1. This framework was adapted
to the biobjective case in Boland et al. (2015b) by generating an additional objective
vector. This set of instances has since been used in many published studies of BOMIP
algorithms, including Soylu and Yıldız (2016), Fattahi and Turkay (2018), Soylu
(2018), and Perini et al. (2019). We use the largest instances in this set.10 All instances
in the set share similar features: relatively few integer solutions contribute to the NDF,
each of which produces a slice with many short line segments, and little dominance
between slices. This structure poses complications from an accuracy perspective, due

10 For reference, the largest instances have 320 constraints and 320 variables, where half of the variables
are binary and half are continuous.

123

236 D. Pecin et al.

to numerical rounding errors (see Fattahi and Turkay 2018; Perini et al. 2019 for
further discussion).

To increase diversity in the benchmark data set, we modify the Historical instances
by relaxing the constraints, as follows. First, the constraints involving only continuous
variables are removed. Second, the proportion of binary variables that can be set to 1
is increased from a third to a half. These modifications maintain the same number of
integer and continuous variables (160 each) while reducing the number of constraints
by approximately half. In four of the five instances, this relaxation had the effect of
increasing the number of distinct integer solutions whose slice (at least in part) appears
in theNDF by about 21%on average, while decreasing the number of NLSs per integer
solution in the NDF by between 20–34%, with an average of 26%. In the case of the
historical instance numbered 24, its NDF structure barely changed: its ratio of NLSs
per integer solution was reduced by less than 2% in the relaxed version. Thus, we omit
it. The remaining four instances constitute the set we call Relaxed Historical.

Perini et al. (2019) introduced the instance generation scheme that produces the
Rand instances to complement the Historical instances. For example, their ratio of
NLSs per integer solution in the NDF is an order of magnitude less than for the
Historical instances. The Rand instances were designed with the slices and final NDF
in mind, then the BOMIP was “reverse-engineered.” The slices in criterion space
include: (1) a long line segment traversing from the top left to the bottom right of
the NDF and (2) boundaries of cones with vertices that dominate (a point in) the line
segment (see Fig. 4a). The NDF alternates between portions of the long line segment
and boundaries of each cone, which includes many intersections. Classes of these
instances are defined by the number of vertices or cones chosen to dominate the long
line segment, which we simply call n. We include three relatively large instances of
size n = 7, 500 in this study, labeled “A”, “B”, and “C.” Each of the n vertices is
chosen randomly, so NDFs from instances of the same size still vary.

Here we introduce a slight modification to the structure of the Rand instances that
results in significant differences in computational comparison of BOMIP algorithms.
The slice consisting of the long line segment is replaced with a “bent” line segment,
i.e., two line segments, whose gradients have small difference, joined at a central
vertex (see Fig. 4b). Note that this slice is now a cone, but one that is much wider than
the cones associated with other integer solutions. Details of the method for generating
the Bent instances are given in “Appendix B”. Computationally, the slight difference
in gradient vectors in the two line segments that form the “bent” line segment makes it
much more difficult for algorithms that solve scalarized IPs. Our computational study
uses three instances, with n = 5000, 7500, and 10,000, respectively.

6.2 Computing exact frontiers

We start by evaluating the benefits of the PWL enhancement to εTM. The results are
summarized in Table 1. Here, for each set of instances, we report the average and
maximum relative increase in running time of the algorithm over that of whichever
algorithm is best for the instance: εTM or εTM-PWL. Specifically, if Ti denotes the
running time for εTM on the i th instance in a set, and T PWL

i denotes the running time

123

A fast and robust algorithm for solving biobjective mixed… 237

Fig. 4 Random cone width instances (Perini et al. 2019) and the new Bent instances for n = 2

for εTM-PWL on the same instance, then in the row of Table 1 for the εTM method,
we will report

1
N

∑

i

Ti − T ∗
i

T ∗
i

and max
i

Ti − T ∗
i

T ∗
i

in the “Average” and “Max” columns corresponding to that set of instances, where
N is the number of instances in the set and T ∗

i := min{Ti , T PWL
i } is the best of the

two runtimes. A zero relative increase indicates that the algorithm was best for every
instance in the set; a positive value indicates that the algorithm was not best for at
least one instance in the set. A high value indicates that the alternative algorithm gives
a speed-up of a factor of one plus this value, on average (e.g., for a value of 1.87,
the speed-up factor is 2.87). For the exact running times of the algorithms and other
performance metrics, please refer to “Appendix C” (Tables 4, 5).

Recall that the NDF of a Historical instance is composed of many small line seg-
ments but is defined by a small number of integer solutions. On average, the number
of integer solutions defining the frontier of the Historical instances is about 370, and
each contributes about 45 line segments. Hence, we set the hyperparameter K to 50
in our computational experiments. The enhancements were specifically designed to
exploit that situation, and explains why the enhanced versions of εTM perform so well
on this set of instances. The same is true for the Relaxed set of instances, to a lesser
extent. In all Historical and Relaxed instances, the enhanced version was faster, with
average speed-up factor of around 2–3.

Unfortunately, these impressive gains are not observed for the Rand and Bent
instances. Rather than the NDF of these instances being determined by a few inte-
ger solutions contributing many line segments, they are determined by many integer

123

238 D. Pecin et al.

Table 2 Average and maximum relative increase of total running time of the variations of BLM for all
instance sets

Algorithm Average Max
Historical Relaxed Rand Bent Historical Relaxed Rand Bent

BLM-basic < 0.01 0.10 0.62 18.31‡ < 0.01 0.18 0.65 33.02‡

BLM-recursive 0.02 0.01 0.05 18.11§ 0.05 0.06 0.08 32.44§

PureLex 0.16 0.07 0.00 0.00 0.24 0.19 0.00 0.00

§—on two instances of the set, the runtime limit of 86,400s was exceeded. ‡—on three instances of the set,
the runtime limit of 86,400s was exceeded

solutions contributing few line segments. Hence, K was fixed to 1 in our computa-
tional experiments. The overhead that comes with setting up and solving an integer
program to determine the “left-most” segment of a slice that is nondominated is too
large when slices consist of only a few line segments. For the largest Bent instance,
the variant of εTM with the enhancement is unable to solve the instance within 24h.

Next, we evaluate the benefits of the variant of BLM in which only lexicographic
IPs are solved, PureLex. The results are summarized in Table 2, which again gives
statistics for each set of instances for the increase in running time of each variant
relative to that of the best BLM variant for the instance.

The PureLex variant is clearly the most robust, being not much slower than the
best in the cases where it is not best. For the Rand and Bent instances, the PureLex
variant substantially outperforms the basic version. It also outperforms the recursive
variant on the Bent instances: BLM-recursive struggles to solve the Bent instances
within the 24h time limit for each, whereas PureLex can solve all of them in less
than 3h. For the Historical and Relaxed instances, the recursive variant of BLM is
faster than PureLex, but not by much. Note that BLM-recursive is faster than BLM
on all but the Historical instances, and on those is not much slower; BLM-recursive
is the most robust of the BLM variants prior to this work.

Finally, we compare the performance of the two best performing variants of εTM
and BLM with two variants of the hybrid, two-phase method: SPureLex with ρ =
0.005 and SPureLex- PWL with ρ = 0.005. The results can be found in Table 3.

The first thing to observe is that the PWL enhancement to εTM still has a significant
impact on the performance of the hybrid, two-phase method, SPureLex, even though
εTM is only used to find (part of) the NDF in a box that is relatively small (i.e., when
the area is less than half a percent of the area of the original box). The second thing
to observe is that PureLex performs well on the Historical instance and outperforms
SPureLex−0.005, although not bymuch. Finally, as expected, we see that the version
of SPureLex that does not use the enhanced version of εTM outperforms the one that
does, as the benefits of using the enhancement are insufficient to overcome the overhead
incurred when using the enhancement. However, the difference is very small. These
results indicate that SPureLex- PWL−0.005, the hybrid, two-phase method that uses
PureLex in the first phase and used the enhanced version of εTM in the second phase,
is the most robust and efficient method for solving BOMIPs.

123

A fast and robust algorithm for solving biobjective mixed… 239

Table 3 Average and maximum increase in total running time of various solution methods relative to the
fastest of the methods for the instance, for all instance sets

Algorithm Average Max
Historical Relaxed Rand Bent Historical Relaxed Rand Bent

εTM 2.50 2.03 19.26 9.41 2.74 3.89 19.32 12.68

εTM-PWL 0.22 0.45 32.23 27.89† 0.29 1.44 32.46 32.12†

BLM-Recursive 1.26 1.13 2.32 57.92§ 1.39 2.37 2.41 100.55§

PureLex 1.56 1.20 2.13 2.11 1.81 2.17 2.14 2.16

SPureLex−0.005 2.17 1.89 0.00 0.00 2.42 3.47 0.00 0.00

SPureLex- PWL−0.005 0.00 0.00 0.02 0.02 0.00 0.00 0.03 0.03

†—one instance of the group exceeded the time limit of 86,400s. §—two instances of the group exceeded
the time limit of 86,400s

It is interesting to observe that, compared to the variants of BLM, the number of
times the Same-Integer-Solution enhancement is invoked by the variants of the hybrid,
two-phase method is small. This indicates that a more careful tuning of the point at
which the hybrid, two-phase methods switches methods may have some pay-off. By
switching too early, the algorithm may miss out on opportunities to invoke the Same-
Integer-Solution enhancement.

Overall, εTM solves the smallest number of IPs for these instances. However,
because solving lexicographic IPs for large-area boxes can be costly (as shown in
Fig. 3), even though εTM solves significantly fewer IPs than PureLex, εTM takes
more time as it solves several IPs in large-area boxes. This happens because εTM
generates the nondominated frontier from left-to-right, and solves a lexicographic IP
with respect to as-yet unprocessed portion of the line segment.

6.3 Computing approximate frontiers

Next, we compare the performance, in terms of their ability to produce high-quality
approximations of the NDF, of εTM, the recursive variant of BLM, PureLex, and
SPureLex with ρ = 0.005. Rather than enforcing early termination of an algorithm
to obtain an approximation of the NDF, we report statistics of the approximation of
the NDF at different points in time during the execution of the algorithms. We do this
for three instances, one from each of the set of Historical, Bent, and Rand instances:
21, Bent7500.A, and Rand7500.A, respectively. The results are representative of what
happens for the other instances in the corresponding set. Figure5 summarizes the
following statistics with respect to time (seconds) on a log scale: Area, the resolved
area as a percentage of the initial box B(zL , zR); INDP, the percentage of isolated
NDPs found; NLS, the percentage of the NLSs found; fTNLS, the fraction of the
total length of NLSs found; and, Slice, the percentage of slices that contribute to the
frontier found. Tables 6, 7, 8 and 9 in “Appendix D” report more statistics.

We observe that, as expected, PureLex and SPureLex produce a high-quality
approximation of theNDFmuchmore quickly than εTM. In less than 10min,PureLex
and SPureLex have exploredmore than 99.5%of the area of B(zL , zU), whereas εTM

123

240 D. Pecin et al.

Fig. 5 Approximation results for εTM, the recursive variant of BLM, PureLex, and SPureLex with
ρ = 0.005. Percentages are plotted on the y-axis; time (in s) is plotted on the x-axis on a log scale. There
are no isolated NDPs in the NDF of the Historical instance, so this space is blank. No approximation metrics
are reported for the recursive variant (blue) of BLM on the Bent instance

123

A fast and robust algorithm for solving biobjective mixed… 241

has explored a little more than 5% for the Historical instance, and 1% or less for Rand
and Bent instances.

Especially for Rand and Bent instances, multiplemetrics illustrate how slowly εTM
advances at the beginning (from an approximation perspective) but speeds up towards
the end. This is due, in part, to the fact that in the beginning, the boxes cover a large
area in criterion space, and the lexicographic IPs are time-consuming. As the area
of the boxes decreases, the lexicographic IPs are solved faster, and, consequently,
the statistics improve more rapidly. For the Historical instance, this is less noticeable
because the solve times for the lexicographic IPs tend to be smaller (as the generated
line segments are small).

Even though the recursive variant of BLM can be competitive when it comes to pro-
ducing the complete nondominated frontier, it is not the ideal candidate for producing
approximations. For the Historical instance, there is never any recursion, so the algo-
rithm produces high-quality approximations throughout the execution. However, on
the Rand instance, the first reported data point occurs late during the execution because
the algorithm runs deep into recursion and only reports approximation metrics once it
has returned to depth level zero. This is also the reason why no approximation metrics
are reported for the Bent instance (since the entire execution time is spent on the first
recursion without returning to depth level zero). After the algorithm returns to depth
level zero for the first time, it quickly approximates the rest of the frontier, but the
depth of recursion and resulting lag time of reporting makes the recursive variant of
BLM less effective for approximating nondominated frontiers.

Another interesting observation is that PureLex and SPureLex quickly find a
large fraction of the slices that contribute to the frontier for the Historical instance.
This is a consequence of the structure of the nondominated frontier, in which each slice
contributes many nondominated line segments to the frontier, and, because PureLex
and SPureLex quickly decompose the criterion space into small boxes, they tend to
find NDPs from different slices. Also observe from the Historical instance, however,
that once SPureLex switches to εTM, the algorithm discovers new slicesmore slowly,
at a rate comparable to εTM on the same instance. This is the trade-off: sometimes the
switch from PureLex to εTM improves performance (e.g., Rand and Bent instances),
and sometimes it worsens performance (e.g., Historical instances).

By unifying the two disparate algorithms into a two-phase hybrid approach, with
just two hyperparameters to tune (ρ and K), SPureLex is robust to a wider variety of
instances than either of the component algorithms. Tuning the first hyperparameter can
be informed by some information about the NDF, i.e., how many NLS are expected
per slice in the frontier, and/or it can be dynamically updated as the procedure evolves.
We found that the second hyperparameter performs well for small values, e.g. ρ =
0.005, but this could be more rigorously tested via parameter tuning. Altogether, these
results show that also when it comes to finding approximate nondominated frontiers,
SPureLex (or one of its variants) is fast and robust and the algorithm of choice.

123

242 D. Pecin et al.

7 Final remarks

The algorithm presented and analyzed in this paper shows how structural observations
of aNDFand computational bottlenecks can lead to tactical enhancements to algorithm
design. Evidence included in this work calls for a more diverse range of test instances
to test and improve robustness of multiobjective algorithms.

Acknowledgements This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1650044.

Declarations

Conflict of interest This material is based upon work supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE-1650044. The authors have no competing interests to
declare that are relevant to the content of this article.

Appendix A: Algorithms

Appendix A.1: Dichotomic search

We present the classic method of dichotomic search as an instructive example to
highlight a procedure for solving the slice problem for a fixed integer solution xI . This
procedure was co-discovered and published by Cohon (1978) and Aneja and Nair
(1979). See Ehrgott (2005) or Przybylski et al. (2010a) for a detailed summary of the
procedure, which is illustrated here and in Fig. 6.

Dichotomic search iteratively solves the scalarized IP (3) to discover all extreme
supported ND (ESND) images. At each step of the procedure, a pair of ESND images
are compared: either they are certified as adjacent on the convex hull of Y , or a new
ESND image is found which proves them to be nonadjacent. The procedure is initial-
ized with the left-most and right-most ND images, say yr = lexmin{(f1(x), f2(x)) :
x ∈ X } and ys = lexmin{(f2(x), f1(x)) : x ∈ X }. Then the (positive) gradient vector
for the line between yr and ys is computed, denoted by λ, and used as theweight vector
for the weighted sum scalarization. Figure6a illustrates this subproblem. One of two
cases occur:

First, if the optimal value of (3) with respect to λ is less than λT yr = λT ys , then
a new ESND image has been found. Denote the image by yt . Now, two new pairs of
images must be tested for adjacency: (yr , yt) and (yt , ys); see Fig. 6b. Second, if the
optimal value of (3) with respect to λ is equal to λT yr = λT ys , then no new ESND
image has been found. The two images, yr and ys , are certified as adjacent.

Dichotomic search is generally implemented recursively, and it terminates when
the full set of ESND images are found and all adjacencies are certified. The expected
output from dichotomic search is the set of line segments belonging to the slice for xI ,
i.e., the NDF for the slice problem. In the algorithms that follow, the function denoted
ComputeSlice is assumed to use dichotomic search.

123

A fast and robust algorithm for solving biobjective mixed… 243

Fig. 6 Dichotomic search for a slice problem, adapted from Przybylski et al. (2010a)

Algorithm 1 ε-Tabu Method
1: Yt ← ∅ the set of all line segments of the slice x̄ t

2: Y ∗ ← ∅ the set of all Pareto line segments
3: x̄1 ← lexmin{z1(x), z2(x)}, find the first solution and slice
4: Y1 ←ComputeSlice(x̄1), via dichotomic search
5: t ← 1
6: l ← 0
7: for each line segment [yl , yl+1] ∈ Yt from left to right do
8: x̄ t+1 ← check if [yl , yl+1] is dominated by another slice using a modified lexicographic IP with Tabu constraints
9: if x̄ t+1 exists then
10: Yt+1 ←ComputeSlice(x̄ t+1) starting from zLt+1, the upper-left corner of the slice x

t+1 dominating [yl , yl+1].
11: if zLt+1 lies on [yl , yl+1] then
12: Y ∗ ← Y ∗ ∪ {[yl , zLt+1]}
13: else
14: y′ ←verticalProjection(zLt+1, [yl , yl+1])
15: Y ∗ ← Y ∗ ∪ {[yl , y′)}
16: end if
17: t ← t + 1
18: l ← 0
19: else
20: Y ∗ ← Y ∗ ∪ {[yl , yl+1]}
21: end if
22: end for
23: return Y ∗

Appendix A.2: Boxed linemethod

See Fig. 7 for an illustration of the Boxed Line Method.
Key component functions include: (1) element() returns an element from the

input list/set. (2) LineGen is a restricted version of dichotomic search that only
computes one line segment from the slice (if input is z∗, then it returns a line segment
containing z∗ from the slice of z∗I). (3) LineRestriction.InnerLoop performs
a while loop which restricts the line segment generated from LineGen by updating
the endpoints when an endpoint is dominated; it returns the ND portion of the line
segment containing z∗.

123

244 D. Pecin et al.

Fig. 7 Outer loop procedure for BLM, adapted from Perini et al. (2019)

Appendix B: Instance generation

Here we elaborate on the details of the generation of the Bent instances. The nondom-
inated frontier is bounded within zi (x) ∈ [−k, k] for i = 1, 2, and we choose large
enough k, e.g. k = 1.5 ∗ (n + 1), in order to avoid numerical issues. We define the
“unbent” line segment as L = {(x1, x2) ∈ R

2 : x1 + x2 = 0,−k ≤ xi ≤ k for i =
1, 2}. The NDPs are chosen from a line segment that is shifted downward from L by d,
and from left to right, an NDP is chosen a horizontal distance of 2d +1 away from the
previous NDP in order to avoid the cones from simultaneously dominating a portion
of L (this only holds for bounding θ1, θ2 as done in the next step).

123

A fast and robust algorithm for solving biobjective mixed… 245

Algorithm 2 Boxed Line Method (Basic)
1: procedure LineRestriction.InnerLoop(z∗, L , R)
2: (z1, z2,
wT) ← LineGen(z∗, L, R) limited dichotomic search which generates endpoints and gradient of one line

segment containing z∗ from slice of z∗I
3: zα ← z1, zβ ← z2 label endpoints temporarily

4: x̄ ← argmin{
wT z(x) : z2(x) ≤ zα2 , z1(x) ≤ zβ1 } check if NDP dominates line segment

5: while
wT z(x̄) <
wT z∗ do
6: z(x̄) dominates a portion of line segment, so update either endpoint zα or zβ

7: end while
8: return (zα, zβ , z1, z2)
9: end procedure

10: procedure BoxLineMethod(L , R)
11: N ← ∅ nondominated line segments
12: Q ← B(L, R) initial region defined by box L, R
13: while Q �= ∅ (outer loop) do
14: B(zL , zR) ←element(Q)

15: Q ←setminus(Q, B(zL , zR))

16: μ ← (zL2 , zR2)/2 horizontal line between zL , zR

17: z∗ ← lexmin{(z1, z2) : z2(x) ≤ μ} find NDP in lower half
18: if μ > z∗2 (NDP below horizontal line) then

19: Q ← Q ∪ B(z∗, zR) add lower region to the queue
20: ẑ ← lexmin{(z2, z1) : z1(x) ≤ z∗1 − ε}
21: Q ← Q ∪ B(zL , ẑ) add upper region to the queue
22: else (NDP on horizontal line)
23: (ẑ1, ẑ2, z1, z2) ←LineRestriction.InnerLoop(z∗, zL , zR)

24: N ← N ∪ [z1, z2]
25: Q ← Q ∪ B

(
ẑ2, zR

)
add lower region to the queue

26: Q ← Q ∪ B
(
zL , ẑ1

)
add upper region to the queue

27: end if
28: end while
29: return N
30: end procedure

Given corner point (a, b), a cone in criteria space is generally defined by {z ∈ R
2 :

θ1z1 + (1 − θ1)z2 ≥ θ1a + (1 − θ1)b, θ2z1 + (1 − θ2)z2 ≥ θ2a + (1 − θ2)b}, where
θ1 ∈ [34 , 1] and θ2 ∈ [0, 1

4]. Let π be the probability that a cone is orthogonal (i.e.,
θ1 = 1 and θ2 = 0); U (a, b) denotes a uniformly randomly generated value in the
open interval (a, b), and we use π = 0.05.

The “bent” line segment has corner point (a0, b0) = (−d/4,−d/4), which may be
dominated or nondominated, θ01 = (k + d/4)/(2k), and θ02 = (k − d/4)/(2k). Then
the bent line segment L̂ fits the previous definition for a cone while substituting the
corner point (a0, b0), θ01 , and θ02 . Let the generated NDPs be {(ai , bi)}i=1,2,...,n and
their cones be defined by {(θ i1, θ i2)}i=1,2,...,n . We then have the following BOMILP for
the Bent instance:

123

246 D. Pecin et al.

Algorithm 3 PureLex algorithm
1: procedure LineRestriction.PureLex(z∗, L , R)
2: (z1, z2,
wT , w_known) ← LineGen(z∗, L, R) to generate endpoints and gradient of one line segment containing z∗
3: M ← ∅ to hold found NDPs
4: zα ← z1, zβ ← z2 to label endpoints temporarily
5: if w_known then
6: zα ← lexmin(z2(x), z1(x)) lexicographic IP (6)
7: if f easible then
8: M ← M ∪ {zα}
9: z1 ←horizontalProjection(zα, Line(z1, z∗))

10: z1_open
11: end if
12: zβ ← lexmin(z1(x), z2(x)) lexicographic IP (7)
13: if f easible then
14: M ← M ∪ {zβ }
15: z2 ←verticalProjection(zβ , Line(z∗, z2))
16: z2_open
17: end if
18: end if
19: return (zα, zβ , z1, z2, M)

20: end procedure

21: procedure BoxLineMethod(L , R)
22: N ← ∅ nondominated line segments
23: Q ← B(L, R) initial region defined by box L, R
24: while Q �= ∅ do
25: B(zL , zR) ←element(Q)

26: Q ←setminus(Q, B(zL , zR))

27: μ ← (zL2 , zR2)/2 horizontal line between zL , zR

28: z∗ ← lexmin{(z1, z2) : z2(x) ≤ μ} find NDP in lower half
29: if μ − z∗2 > ε then

30: Q ← Q ∪ B(z∗, zR) add lower region to the queue
31: ẑ ← lexmin{(z2, z1) : z1(x) ≤ z∗1 − ε}
32: Q ← Q ∪ B(zL , ẑ) add upper region to the queue
33: else
34: (ẑ1, ẑ2, z1, z2, M) ←LineRestriction.PureLex(z∗, zL , zR)

35: N ← N ∪ M ∪ line(z1, z2)

36: Q ← Q ∪ B
(
ẑ2, zR

)
add lower region to the queue

37: Q ← Q ∪ B
(
zL , ẑ1

)
add upper region to the queue

38: end if
39: end while
40: return N
41: end procedure

minimize (x1, x2) (8)

s.t. θ i1x1 + (1 − θ i1)x2 ≥ θ i1ai + (1 − θ i1)bi − 2k(1 − yi) ∀i (9)

θ i2x1 + (1 − θ i2)x2 ≥ θ i2ai + (1 − θ i2)bi − 2k(1 − yi) ∀i (10)
n∑

i=0

yi = 1 (11)

−k ≤ xi ≤ k ∀i = 1, 2 (12)

y ∈ {0, 1}n+1. (13)

123

A fast and robust algorithm for solving biobjective mixed… 247

Algorithm 4 SPureLex algorithm
1: procedure PhaseTwo(Q)
2: N ′ ← ∅
3: while Q �= ∅ do
4: B(zL , zR) ←element(Q)

5: Q ←setminus(Q, B(zL , zR))

6: N ′ ← N ′∪ εTM(B(zL , zR)) finds NDF with εTM or enhanced εTM
7: end while
8: return N ′
9: end procedure

10: procedure PhaseOne(L , R)
11: N ← ∅ nondominated line segments
12: Q ← B(L, R) initial region defined by box L, R
13: totalV olume ← volume(B(L, R))

14: unsolved ← totalV olume
15: while Q �= ∅ do
16: B(zL , zR) ← element(Q) is the box with largest volume
17: if (unsolved − volume(B(zL , zR)))/totalV olume ≤ ρ then
18: N ← N∪ PhaseTwo(Q)
19: return N
20: end if
21: Q ←setminus(Q, B(zL , zR))

22: unsolved ← unsolved − volume(B(zL , zR))

23: μ ← (zL2 , zR2)/2 horizontal line between zL , zR

24: z∗ ← lexmin{(z1, z2) : z2(x) ≤ μ} find NDP in lower half
25: if μ − z∗2 > ε then

26: Q ← Q ∪ B(z∗, zR) add a new region to the queue
27: ẑ ← lexmin{(z2, z1) : z1(x) ≤ z∗1 − ε}
28: Q ← Q ∪ B(zL , ẑ)
29: else
30: (ẑ1, ẑ2, z1, z2, M) ←LineRestriction.PureLex(z∗, zL , zR)

31: N ← N ∪ M ∪ line(z1, z2)

32: Q ← Q ∪ B
(
zL , ẑ1

)
add to queue

33: Q ← Q ∪ B
(
ẑ2, zR

)
add to queue

34: end if
35: end while
36: return N
37: end procedure

Algorithm 5 Randomized Cone-Width NDP Generation
1: d = k/(n + 1) − 0.5
2: a1 = −k + 0.5d
3: b1 = −a1 − d
4: for i = 2, ..., n do
5: ai = ai−1 + 2d + 1
6: bi = −ai − d
7: end for

123

248 D. Pecin et al.

Algorithm 6 Randomized Theta Generation
1: thetalist= ∅
2: for i = 1, 2, ..., n do
3: if U (0, 1) ≤ π then
4: θ1 = 1
5: θ2 = 0
6: else
7: θ1 = U (34 , 1)

8: θ2 = U (0, 1
4)

9: end if
10: thetalist.append((θ1, θ2))
11: end for

Appendix C: Computational results

In Tables 4 and 5, we report the following statistics: the number of NDPs output by
the algorithm (nNDP), the number of different integer solutions, i.e., the number of
different slices appearing in the NDF (nIPF), the total time to discover the NDF (TT),
the total time spent solving IPs (IPT), the total time spent solving LPs (LPT), the total
number of IPs solved (nIP), the total number of lexicographic IPs (nLex), the total
number of IPs solved during line restriction, i.e., as part of solving solving (6) and (7)
in PureLex and SPureLex and as part of solving (7) in our implementation of εTM,
(RLIP); the total number of scalarized IPs solved (nScal), the total number of IPs
solved as part of the same-integer-solution enhancement, i.e., one such IP is solved
per box with corner points generated by the same integer solution, (nSIS), the total
number of LPs solved (nLP), the number of boxes processed (nBox), and, finally, the
number of boxes with z∗ on the horizontal split line, (nZL). The best time per instance
is in bold. When not applicable, an entry in the tables is marked with “–”.

Appendix D: Approximation results

In Tables 6, 7, 8, and 9, we report the following statistics:TP, the point in time (during
the execution of the algorithm) that the statistics were collected; fINDP, the fraction of
the number of isolatedNDPs found; fNLS, the fraction of the number of nondominated
line segments found; fTNLS, the fraction of the total length of nondominated line
segments found; fA, the resolved area of the initial box B(zL , zR) as a fraction; and,
fSlice, the fraction of slices that contribute to the frontier found. When not applicable,
an entry in the tables is marked with “–”.

123

A fast and robust algorithm for solving biobjective mixed… 249

Ta
bl
e
4

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
va
ri
ou

s
so
lu
tio

n
m
et
ho

ds

In
st
an
ce

A
lg
or
ith

m
nN

D
P

nI
PF

T
T

IP
T

L
PT

nI
P

nL
ex

R
L
IP

nS
ca
l

nS
IS

nL
P

nB
ox

nZ
L

H
is
to
ri
ca
l

21
15

,6
36

29
5

10
05

0.
9

75
40

.9
25

05
.9

15
,9
23

43
15

,8
37

0
0

86
,9
52

1
0

22
18

,8
25

41
0

12
92

5.
5

10
01

1.
8

29
09

.0
19

,2
05

24
19

,1
57

0
0

98
,1
30

1
0

23
ε
T
M

16
,4
20

34
3

11
19

2.
4

82
64

.4
29

23
.6

16
,7
52

25
16

,7
02

0
0

10
2,
40

7
1

0

24
18

,4
71

45
7

13
83

4.
5

10
85

9.
3

29
71

.3
18

,9
68

36
18

,8
96

0
0

10
1,
21

3
1

0

25
13

,2
16

33
7

83
65

.9
60

85
.1

22
78

.0
13

,5
18

21
13

,4
76

0
0

79
,1
27

1
0

21
15

,6
36

29
5

33
70

.1
87

1.
1

24
95

.5
63

4
43

54
8

0
0

86
,9
52

1
0

22
18

,8
25

41
0

41
14

.2
10

56
.6

30
53

.7
84

6
24

79
8

0
0

98
,1
30

1
0

23
ε
T
M
-P
W
L

16
,4
20

34
3

40
62

.1
10

51
.5

30
06

.4
71

5
25

66
5

0
0

10
2,
40

7
1

0

24
18

,5
07

46
0

48
29

.1
17

26
.5

30
98

.6
11

78
36

11
06

0
0

10
1,
94

4
1

0

25
13

,2
16

33
7

32
02

.3
87

7.
1

23
22

.6
69

7
21

65
5

0
0

79
,1
27

1
0

21
15

,7
25

29
4

64
62

.0
50

14
.4

14
46

.4
65

52
13

74
0

27
37

10
67

45
,1
93

24
27

13
53

22
18

,8
56

41
0

78
20

.4
60

93
.7

17
25

.4
82

21
17

72
0

32
92

13
85

53
,6
63

31
23

17
16

23
B
L
M
-R

ec
ur
si
ve

16
,4
63

34
3

72
01

.1
55

95
.2

16
04

.6
70

97
14

98
0

29
59

11
42

47
,5
27

26
26

14
75

24
18

,5
63

46
0

95
12

.4
76

25
.7

18
85

.2
96

35
20

63
0

39
37

15
72

57
,4
80

36
21

20
69

25
13

,2
48

33
7

54
82

.0
42

61
.4

12
19

.5
64

17
13

11
0

27
86

10
09

39
,4
07

22
88

12
56

21
15

,6
85

29
4

70
25

.3
56

49
.8

13
74

.2
79

18
15

98
34

93
0

12
29

41
,6
43

28
13

15
77

22
18

,8
24

41
0

89
33

.6
72

87
.5

16
44

.4
10

,1
26

20
46

44
63

0
15

71
49

,9
56

35
83

19
90

23
Pu

re
L
ex

16
,4
39

34
3

79
51

.3
63

82
.1

15
67

.7
86

56
17

37
38

59
0

13
23

43
,8
78

30
47

17
14

24
18

,5
26

46
0

11
85

9.
4

10
03

3.
4

18
24

.1
12

,7
08

24
64

58
16

0
19

64
54

,4
59

44
14

25
15

25
13

,2
30

33
7

59
70

.9
48

32
.2

11
37

.4
76

04
15

33
33

51
0

11
87

35
,5
26

26
88

14
78

21
15

,6
52

29
5

89
64

.6
75

85
.0

13
76

.3
16

,0
46

19
6

15
,6
42

0
12

44
,4
67

29
5

14
8

22
18

,8
12

41
0

11
83

7.
0

99
53

.2
18

80
.0

19
,6
18

17
7

19
,2
62

0
2

61
,6
37

29
8

14
5

23
Sp

u
re

L
ex

−0
.0
05

16
,4
28

34
3

10
10

0.
1

83
97

.5
16

99
.1

17
,1
45

16
6

16
,8
11

0
2

50
,2
20

28
0

13
9

24
18

,4
57

45
7

12
84

1.
0

10
82

9.
5

20
07

.5
19

,2
34

19
1

18
,8
45

0
7

62
,8
06

29
8

14
7

123

250 D. Pecin et al.

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

A
lg
or
ith

m
nN

D
P

nI
PF

T
T

IP
T

L
PT

nI
P

nL
ex

R
L
IP

nS
ca
l

nS
IS

nL
P

nB
ox

nZ
L

25
13

,2
16

33
7

73
70

.1
60

90
.6

12
76

.7
13

,8
39

17
2

13
,4
87

0
8

43
,1
22

28
7

13
9

21
15

,6
52

29
5

27
01

.0
11

93
.9

15
05

.2
15

22
19

6
11

18
0

12
44

,4
67

29
5

14
8

22
18

,8
12

41
0

34
60

.2
14

30
.1

20
27

.7
17

31
17

7
13

75
0

2
61

,6
37

29
8

14
5

23
SP

u
re

L
ex

-
PW

L
−0

.0
05

16
,4
28

34
3

31
59

.2
12

96
.0

18
61

.1
15

50
16

6
12

16
0

2
50

,2
20

28
0

13
9

24
18

,4
82

46
0

42
16

.2
19

61
.6

22
51

.8
20

56
19

1
16

67
0

7
63

,1
57

29
8

14
7

25
13

,2
16

33
7

25
86

.3
11

46
.8

14
37

.8
15

54
17

2
12

02
0

8
43

,1
22

28
7

13
9

R
el
ax
ed

hi
st
or
ic
al

N
-2
1

14
,9
02

36
7

65
29

.1
45

10
.9

20
14

.6
15

,2
49

14
15

,2
21

0
0

93
,3
64

1
0

N
-2
2

15
,5
02

42
6

60
54

.9
42

29
.6

18
21

.6
15

,9
06

25
15

,8
56

0
0

86
,9
55

1
0

N
-2
3

ε
T
M

15
,1
62

49
0

71
02

.3
46

50
.0

24
48

.5
15

,6
43

15
15

,6
13

0
0

11
0,
08

2
1

0

N
-2
4

15
,4
80

39
2

70
17

.7
53

58
.5

16
55

.5
15

,8
79

36
15

,8
07

0
0

70
,3
51

1
0

N
-2
5

11
,5
47

38
7

46
50

.3
33

80
.9

12
66

.5
11

,9
19

30
11

,8
59

0
0

60
,9
53

1
0

N
-2
1

14
,9
02

36
7

32
56

.9
73

3.
3

25
19

.9
75

3
14

72
5

0
0

93
,3
64

1
0

N
-2
2

15
,5
02

42
6

28
67

.8
67

4.
6

21
89

.9
88

0
25

83
0

0
0

86
,9
55

1
0

N
-2
3

ε
T
M
-P
W
L

15
,1
68

49
1

35
12

.4
89

0.
2

26
18

.3
10

21
15

99
1

0
0

11
0,
33

3
1

0

N
-2
4

15
,5
01

39
4

30
06

.4
89

8.
2

21
04

.9
88

3
36

81
1

0
0

70
,6
81

1
0

N
-2
5

11
,5
50

38
7

22
83

.9
70

9.
3

15
72

.0
82

6
30

76
6

0
0

60
,9
57

1
0

N
-2
1

14
,9
13

36
6

44
99

.6
33

07
.8

11
90

.0
66

70
14

16
0

27
54

10
84

43
,0
14

24
71

13
68

N
-2
2

15
,5
21

42
5

43
03

.4
31

56
.9

11
44

.5
82

50
16

75
0

35
85

13
15

47
,1
03

29
69

16
42

N
-2
3

B
L
M
-r
ec
ur
si
ve

15
,1
83

49
1

50
44

.3
38

37
.3

12
05

.1
91

72
19

49
0

38
42

14
32

48
,8
49

33
66

19
31

N
-2
4

15
,5
45

39
2

50
13

.9
37

19
.6

12
92

.4
77

34
15

96
0

33
27

12
15

47
,1
82

27
99

15
88

N
-2
5

11
,5
60

38
7

39
53

.8
30

35
.6

91
6.
4

68
14

14
52

0
28

62
10

48
36

,0
37

24
78

14
14

N
-2
1

14
,8
96

36
6

42
34

.4
33

77
.3

85
5.
5

85
45

17
24

38
27

0
12

70
40

,2
28

29
65

16
79

N
-2
2

15
,5
03

42
5

47
10

.2
36

88
.0

10
20

.3
96

90
19

31
43

28
0

15
00

42
,1
86

34
10

18
99

123

A fast and robust algorithm for solving biobjective mixed… 251

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce

A
lg
or
ith

m
nN

D
P

nI
PF

T
T

IP
T

L
PT

nI
P

nL
ex

R
L
IP

nS
ca
l

nS
IS

nL
P

nB
ox

nZ
L

N
-2
3

Pu
re
L
ex

15
,1
64

49
1

60
21

.2
48

91
.1

11
27

.9
11

,9
83

23
83

54
85

0
17

32
45

,1
36

41
01

23
75

N
-2
4

15
,5
13

39
3

50
09

.1
40

41
.4

96
6.
0

99
64

19
52

45
68

0
14

92
43

,7
13

34
33

19
54

N
-2
5

11
,5
47

38
7

42
11

.6
34

50
.6

75
9.
2

87
44

17
41

39
81

0
12

81
33

,1
45

30
04

17
06

N
-2
1

14
,8
86

36
7

59
65

.0
49

55
.0

10
06

.5
15

,3
97

17
8

15
,0
31

0
10

46
,4
96

31
4

15
6

N
-2
2

15
,4
87

42
6

64
05

.0
51

31
.1

12
70

.1
16

,3
15

19
3

15
,9
25

0
4

53
,9
21

33
4

16
8

N
-2
3

SP
u
re

L
ex

−0
.0
05

15
,1
47

49
0

63
77

.2
50

58
.8

13
14

.7
16

,2
22

17
3

15
,8
75

0
1

54
,6
82

31
7

15
8

N
-2
4

15
,4
66

39
2

69
25

.4
57

42
.8

11
78

.9
16

,3
35

19
3

15
,9
45

0
4

49
,0
52

31
3

15
5

N
-2
5

11
,5
53

38
7

44
39

.5
36

84
.4

75
2.
2

12
,4
20

18
1

12
,0
55

0
3

36
,6
23

29
8

14
5

N
-2
1

14
,8
89

36
7

13
35

.2
63

6.
1

69
7.
9

17
42

17
8

13
76

0
10

45
,9
41

31
4

15
6

N
-2
2

15
,4
70

42
6

25
24

.8
10

29
.9

14
92

.3
19

62
19

7
15

64
0

4
51

,6
08

33
4

16
8

N
-2
3

SP
u
re

L
ex

-
PW

L
−0

.0
05

15
,1
49

49
1

30
20

.3
13

22
.4

16
95

.3
20

11
17

3
16

64
0

1
53

,3
27

31
7

15
8

N
-2
4

15
,4
76

39
4

28
23

.0
12

95
.5

15
24

.9
18

83
19

3
14

93
0

4
47

,7
56

31
3

15
5

N
-2
5

11
,5
49

38
7

19
96

.9
98

9.
3

10
05

.5
17

30
18

1
13

65
0

3
36

,3
28

29
8

14
5

123

252 D. Pecin et al.

Ta
bl
e
5

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
va
ri
ou

s
so
lu
tio

n
m
et
ho

ds
fo
r
th
e
R
an
d
an
d
B
en
ti
ns
ta
nc
es

In
st
an
ce

A
lg
or
ith

m
nN

D
P

nI
PF

T
T

IP
T

L
PT

nI
P

nL
ex

R
L
IP

nS
ca
l

nS
IS

nL
P

nB
ox

nZ
L

R
an
d

A
22

,5
02

75
01

36
29

6.
0

35
48

1.
4

67
5.
1

37
,1
41

36
9

36
,4
03

0
1

36
,4
03

0
0

B
ε
T
M

22
,5
08

75
01

36
22

2.
6

35
41

5.
6

66
9.
5

37
,1
38

38
2

36
,3
74

0
1

36
,3
65

0
0

C
22

,5
06

75
01

36
08

6.
3

35
28

6.
2

66
3.
6

37
,1
38

38
1

36
,3
76

0
1

36
,3
70

0
0

A
22

,5
01

75
01

58
94

4.
1

58
12

4.
7

66
8.
2

30
,0
10

36
9

29
,2
72

0
1

36
,4
03

0
0

B
ε
T
M
-P
W
L

22
,5
00

75
01

59
38

3.
5

58
56

3.
4

67
0.
1

30
,0
13

38
2

29
,2
49

0
1

36
,3
65

0
0

C
22

,5
02

75
01

59
77

6.
6

58
91

0.
1

71
0.
7

30
,0
11

38
1

29
,2
49

0
1

36
,3
70

0
0

A
22

,5
02

75
01

61
01

.1
32

65
.4

26
48

.3
44

,5
13

53
03

0
33

,9
07

52
75

11
0,
26

6
1

52
49

B
B
L
M
-R

ec
ur
si
ve

22
,5
02

75
01

58
98

.9
30

88
.8

26
23

.6
44

,5
30

53
81

0
33

,7
68

53
43

11
0,
20

5
1

53
07

C
22

,5
04

75
01

57
78

.7
30

04
.2

25
89

.2
44

,4
93

52
59

0
33

,9
75

52
28

11
0,
03

3
1

51
99

A
22

,5
02

75
01

56
00

.5
26

67
.8

27
27

.5
11

6,
51

5
21

,8
96

72
,7
23

0
21

,8
34

11
5,
99

4
79

54
21

,7
66

B
Pu

re
L
ex

22
,5
02

75
01

55
90

.9
26

61
.6

27
22

.4
11

6,
35

7
21

,8
50

72
,6
57

0
21

,7
97

11
5,
84

9
79

39
21

,7
42

C
22

,5
02

75
01

56
03

.5
26

63
.7

27
32

.3
11

6,
37

5
21

,8
49

72
,6
77

0
21

,7
97

11
5,
87

9
79

60
21

,7
47

A
22

,5
02

75
01

17
90

.9
86

5.
2

82
1.
7

38
,3
57

58
3

37
,1
91

0
43

4
38

,0
84

40
21

3

B
Sp

u
re

L
ex

−0
.0
05

22
,5
02

75
01

17
82

.6
86

3.
7

81
6.
3

38
,3
53

59
4

37
,1
65

0
43

4
38

,0
42

42
21

5

C
22

,5
02

75
01

17
86

.6
86

6.
0

81
3.
1

38
,3
54

59
7

37
,1
60

0
43

4
38

,0
32

46
21

1

A
22

,5
02

75
01

18
32

.3
90

4.
3

81
0.
0

31
,3
43

58
3

30
,1
77

0
43

4
38

,0
84

40
21

3

123

A fast and robust algorithm for solving biobjective mixed… 253

Ta
bl
e
5

co
nt
in
ue
d

In
st
an
ce

A
lg
or
ith

m
nN

D
P

nI
PF

T
T

IP
T

L
PT

nI
P

nL
ex

R
L
IP

nS
ca
l

nS
IS

nL
P

nB
ox

nZ
L

B
SP

u
re

L
ex

-
PW

L
−0

.0
05

22
,5
02

75
01

18
20

.3
90

1.
0

80
4.
3

31
,3
51

59
4

30
,1
63

0
43

4
38

,0
42

42
21

5

C
22

,5
02

75
01

18
37

.8
90

9.
7

81
0.
4

31
,3
46

59
7

30
,1
52

0
43

4
38

,0
32

46
21

1

B
en
t

50
00

.A
15

,0
03

50
01

60
04

.5
56

05
.0

33
9.
9

24
,7
72

23
9

24
,2
94

0
0

24
,2
95

1
0

75
00

.A
ε
T
M

22
,5
02

75
01

18
92

0.
8

18
05

8.
4

71
6.
8

37
,1
42

37
0

36
,4
02

0
0

36
,4
03

1
0

10
00

0.
A

30
,0
04

10
,0
01

42
41

3.
0

40
94

7.
7

11
89

.7
49

,5
28

49
0

48
,5
48

0
0

48
,5
46

1
0

50
00

.A
15

,0
03

50
01

21
48

3.
9

21
10

5.
3

31
5.
4

20
,0
56

23
9

19
,5
78

0
0

24
,2
95

1
0

75
00

.A
ε
T
M
-P
W
L

22
,5
02

75
01

60
42

4.
9

59
55

7.
6

70
7.
7

30
,0
09

37
0

29
,2
69

0
0

36
,4
03

1
0

10
00

0.
A

–
–

–
–

–
–

–
–

–
–

–
–

–

50
00

.A
15

,0
03

50
01

84
91

5.
2

83
82

6.
7

98
6.
1

29
,5
59

49
96

0
19

,5
67

2
69

,9
79

49
94

49
94

75
00

.A
B
L
M
-R

ec
ur
si
ve

–
–

–
–

–
–

–
–

–
–

–
–

–

10
00

0.
A

–
–

–
–

–
–

–
–

–
–

–
–

50
00

.A
15

,0
03

50
01

25
39

.1
11

99
.5

12
48

.6
77

,6
07

14
,6
20

48
,3
67

0
58

75
77

,4
99

14
,5
78

14
,5
32

75
00

.A
Pu

re
L
ex

22
,5
02

75
01

57
64

.6
27

01
.7

28
56

.4
11

6,
39

3
21

,8
30

72
,7
33

0
85

12
11

5,
96

9
21

,7
98

21
,7
60

10
00

0.
A

30
,0
02

10
,0
01

96
81

.7
45

27
.0

48
10

.1
15

5,
07

0
29

,2
02

96
,6
66

0
11

,6
60

15
4,
87

2
29

,1
26

29
,0
44

50
00

.A
15

,0
03

50
01

83
6.
2

40
2.
1

38
6.
8

25
,9
88

44
9

25
,0
90

0
39

25
,9
69

42
8

21
2

75
00

.A
Sp

u
re

L
ex

−0
.0
05

22
,5
02

75
01

18
24

.5
88

2.
5

83
8.
0

38
,3
50

58
6

37
,1
78

0
45

38
,0
41

43
4

20
8

10
00

0.
A

30
,0
02

10
,0
01

31
00

.2
15

04
.2

14
16

.8
50

,7
11

70
4

49
,3
03

0
52

50
,2
86

43
6

21
6

50
00

.A
15

,0
03

50
01

84
1.
9

41
3.
4

37
6.
3

21
,3
00

44
9

20
,4
02

0
39

25
,9
69

42
8

21
2

75
00

.A
SP

u
re

L
ex

-
PW

L
−0

.0
05

22
,5
02

75
01

18
76

.8
92

3.
9

83
5.
5

31
,3
22

58
6

30
,1
50

0
45

38
,0
41

43
4

20
8

10
00

0.
A

30
,0
02

10
,0
01

32
06

.9
15

83
.1

14
21

.9
41

,3
19

70
4

39
,9
11

0
52

50
,2
86

43
6

21
6

123

254 D. Pecin et al.

Ta
bl
e
6

A
pp

ro
xi
m
at
io
n
re
su
lts

fo
r
ε
T
M

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

21
16

.2
6

16
.2
6

99
.5
82

67
3

–
0.
24

0.
30

0.
42

0.
68

34
.1
0

34
.1
0

99
.4
33

12
0

–
0.
33

0.
38

0.
57

0.
68

68
.3
4

68
.3
4

97
.5
47

61
0

–
0.
66

0.
77

2.
45

1.
02

12
8.
22

12
8.
22

93
.5
96

49
8

–
1.
74

1.
97

6.
40

2.
03

26
3.
72

26
3.
73

89
.9
51

49
6

–
3.
33

3.
52

10
.0
5

3.
05

51
2.
45

51
2.
46

85
.3
18

20
6

–
5.
88

6.
46

14
.6
8

5.
42

10
24

.2
6

10
24

.2
9

77
.4
67

32
1

–
11

.0
2

11
.1
9

22
.5
3

9.
83

20
57

.0
3

20
57

.0
8

63
.7
77

42
0

–
20

.8
2

20
.0
8

36
.2
2

18
.3
1

40
96

.5
8

40
96

.6
8

40
.3
77

15
4

–
38

.8
6

37
.0
6

59
.6
2

34
.5
8

81
92

.2
9

81
92

.5
0

2.
24

82
51

–
82

.5
1

85
.2
0

97
.7
5

81
.3
6

96
90

.8
7

96
91

.1
3

0.
00

00
00

–
10

0.
00

10
0.
00

10
0.
00

10
0.
00

B
en
t7
50

0.
A

16
.7
7

16
.7
7

99
.9
77

82
6

0.
55

%
0.
02

0.
01

0.
02

0.
03

34
.5
4

34
.5
4

99
.9
09

08
4

0.
55

%
0.
05

0.
04

0.
09

0.
05

64
.1
2

64
.1
2

99
.8
00

14
6

0.
55

%
0.
11

0.
10

0.
20

0.
11

13
0.
20

13
0.
21

99
.5
75

41
9

0.
82

%
0.
22

0.
21

0.
42

0.
23

25
8.
36

25
8.
37

99
.1
52

93
5

1.
64

%
0.
44

0.
41

0.
85

0.
44

51
4.
80

51
4.
82

98
.2
25

61
9

2.
46

%
0.
90

0.
88

1.
77

0.
91

123

A fast and robust algorithm for solving biobjective mixed… 255

Ta
bl
e
6

co
nt
in
ue
d

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

10
27

.3
3

10
27

.3
8

96
.3
04

85
8

3.
01

%
1.
88

1.
88

3.
70

1.
88

20
49

.6
5

20
49

.7
6

92
.1
63

82
4

5.
19

%
4.
01

4.
05

7.
84

4.
01

40
99

.8
5

41
00

.1
3

83
.3
02

60
0

9.
02

%
8.
74

8.
87

16
.7
0

8.
75

81
92

.2
2

81
92

.9
6

63
.0
73

38
0

18
.5
8%

20
.5
9

20
.8
6

36
.9
3

20
.6
0

16
38

4.
52

16
38

6.
97

10
.4
73

01
7

66
.1
2%

67
.6
5

67
.4
0

89
.5
3

67
.6
4

17
97

7.
38

17
98

1.
29

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

R
an
d7

50
0.
A

18
.8
5

18
.8
5

99
.9
79

68
9

0.
27

%
0.
02

0.
01

0.
02

0.
03

33
.1
5

33
.1
5

99
.9
53

67
5

0.
27

%
0.
04

0.
02

0.
05

0.
04

70
.8
3

70
.8
3

99
.8
87

78
9

0.
27

%
0.
07

0.
06

0.
11

0.
07

13
1.
37

13
1.
37

99
.7
68

73
9

0.
27

%
0.
13

0.
12

0.
23

0.
13

25
9.
62

25
9.
62

99
.5
39

28
8

0.
55

%
0.
24

0.
23

0.
46

0.
24

51
2.
96

51
2.
97

99
.0
61

22
4

0.
55

%
0.
48

0.
47

0.
94

0.
48

10
28

.2
1

10
28

.2
3

98
.0
98

27
2

1.
09

%
0.
96

0.
96

1.
90

0.
97

20
50

.2
4

20
50

.2
9

96
.1
53

76
5

1.
37

%
1.
96

1.
96

3.
85

1.
96

41
00

.0
9

41
00

.2
0

92
.2
80

88
7

3.
55

%
3.
95

3.
95

7.
72

3.
95

81
95

.0
5

81
95

.3
2

84
.2
32

51
7

10
.6
6%

8.
23

8.
18

15
.7
7

8.
24

16
38

5.
06

16
38

5.
68

65
.9
10

19
9

23
.2
2%

18
.8
2

18
.7
4

34
.0
9

18
.8
2

32
76

8.
88

32
77

1.
07

18
.8
45

57
7

59
.0
2%

56
.6
0

56
.5
4

81
.1
5

56
.6
1

35
78

9.
02

35
79

3.
24

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

123

256 D. Pecin et al.

Ta
bl
e
7

A
pp

ro
xi
m
at
io
n
re
su
lts

fo
r
Pu

re
L
ex

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

21
16

.2
2

16
.2
2

2.
06

02
36

–
0.
10

0.
22

89
.7
6

3.
06

36
.1
5

36
.1
5

0.
69

49
05

–
0.
20

0.
32

94
.8
9

5.
78

65
.8
8

65
.8
8

0.
16

52
57

–
0.
39

0.
49

97
.4
1

10
.8
8

12
8.
38

12
8.
38

0.
04

37
96

–
0.
79

0.
98

98
.7
3

21
.4
3

25
7.
16

25
7.
17

0.
01

05
80

%
–

1.
53

1.
94

99
.3
8

39
.8
0

51
3.
99

51
4.
00

0.
00

24
59

–
3.
86

5.
01

99
.7
1

65
.9
9

10
24

.4
5

10
24

.4
7

0.
00

07
49

–
14

.0
3

15
.6
8

99
.8
6

80
.6
1

20
49

.8
9

20
49

.9
6

0.
00

01
72

–
43

.2
2

46
.5
3

99
.9
6

89
.8
0

41
00

.5
6

41
00

.7
1

0.
00

00
11

–
82

.9
3

87
.1
2

10
0.
00

96
.9
4

67
77

.2
0

67
77

.4
6

0.
00

00
00

–
10

0.
00

10
0.
00

10
0.
00

10
0.
00

B
en
t7
50

0.
A

16
.0
0

16
.0
1

0.
38

98
99

0.
27

%
0.
19

0.
13

94
.7
4

0.
11

32
.0
1

32
.0
2

0.
02

43
30

1.
64

%
0.
71

0.
46

98
.6
2

0.
47

64
.0
8

64
.1
1

0.
00

60
02

2.
46

%
1.
78

1.
07

99
.4
6

1.
45

12
8.
03

12
8.
10

0.
00

14
83

5.
46

%
3.
94

2.
89

99
.7
7

1.
95

25
6.
12

25
6.
30

0.
00

03
48

8.
74

%
8.
41

5.
09

99
.9
0

6.
76

51
2.
01

51
2.
40

0.
00

00
74

19
.4
0%

17
.0
9

12
.5
9

99
.9
6

8.
32

10
24

.1
6

10
25

.0
0

0.
00

00
16

43
.4
4%

34
.7
2

27
.6
2

99
.9
9

11
.8
1

20
48

.1
4

20
49

.9
5

0.
00

00
02

86
.0
7%

68
.9
2

58
.9
7

10
0.
00

15
.1
7

40
96

.2
2

41
00

.1
1

0.
00

00
00

10
0.
00

%
10

0.
00

85
.2
8

10
0.
00

10
0.
00

54
42

.1
2

54
47

.4
3

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

123

A fast and robust algorithm for solving biobjective mixed… 257

Ta
bl
e
7

co
nt
in
ue
d

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

R
an
d7

50
0.
A

16
.0
6

16
.0
6

0.
09

74
90

0.
27

%
0.
35

0.
20

97
.2
8

0.
27

32
.2
6

32
.2
7

0.
02

42
60

1.
37

%
0.
87

0.
54

98
.8
7

0.
55

64
.2
5

64
.2
9

0.
00

59
85

1.
64

%
1.
94

1.
09

99
.5
1

1.
68

12
8.
19

12
8.
27

0.
00

14
76

3.
83

%
4.
10

2.
55

99
.7
8

2.
53

25
6.
19

25
6.
38

0.
00

03
48

8.
47

%
8.
48

4.
77

99
.9
0

7.
28

51
2.
00

51
2.
44

0.
00

00
80

17
.7
6%

17
.1
6

10
.8
1

99
.9
6

10
.0
5

10
24

.1
8

10
25

.1
1

0.
00

00
16

36
.8
9%

34
.6
0

22
.6
1

99
.9
8

16
.3
7

20
48

.0
3

20
49

.9
3

0.
00

00
02

74
.5
9%

69
.3
4

46
.4
7

10
0.
00

26
.1
3

40
96

.0
2

40
99

.7
6

0.
00

00
00

10
0.
00

%
10

0.
00

79
.4
9

10
0.
00

10
0.
00

54
20

.8
7

54
26

.2
6

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

123

258 D. Pecin et al.

Ta
bl
e
8

A
pp

ro
xi
m
at
io
n
re
su
lts

fo
r
SP

u
re

L
ex

w
ith

ρ
=

0.
00

5

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

21
16

.5
7

16
.5
7

2.
06

02
36

–
0.
10

0.
22

89
.7
6

3.
05

32
.4
6

32
.4
6

0.
75

22
81

–
0.
19

0.
31

94
.5
1

5.
42

65
.8
0

65
.8
0

0.
17

33
92

–
0.
38

0.
48

97
.3
3

10
.5
1

12
9.
53

12
9.
53

0.
04

85
28

–
0.
75

0.
90

98
.6
5

20
.3
4

25
6.
90

25
6.
90

0.
01

26
39

–
1.
44

1.
85

99
.3
4

37
.9
7

51
2.
32

51
2.
33

0.
00

69
56

–
4.
45

5.
37

99
.5
1

48
.8
1

10
24

.3
3

10
24

.3
6

0.
00

69
56

–
9.
61

10
.2
9

99
.5
3

51
.1
9

20
48

.0
2

20
48

.0
8

0.
00

69
56

–
21

.0
8

22
.9
4

99
.5
8

54
.9
2

40
96

.3
9

40
96

.5
2

0.
00

69
56

–
42

.2
0

43
.4
9

99
.6
6

66
.1
0

81
92

.2
3

81
92

.5
1

0.
00

69
56

–
89

.1
1

88
.5
2

99
.9
1

91
.1
9

91
20

.4
0

91
20

.7
2

0.
00

00
00

–
10

0.
00

10
0.
00

10
0.
00

10
0.
00

B
en
t7
50

0.
A

16
.0
7

16
.0
7

0.
38

99
44

0.
27

%
0.
16

0.
12

94
.1
6

0.
07

32
.0
7

32
.0
8

0.
02

43
30

1.
64

%
0.
66

0.
42

98
.5
6

0.
47

64
.2
4

64
.2
7

0.
00

60
09

2.
46

%
1.
67

1.
00

99
.4
2

1.
37

12
8.
10

12
8.
27

0.
00

59
85

4.
92

%
4.
92

4.
13

99
.5
1

4.
61

25
6.
09

25
6.
57

0.
00

59
85

12
.3
0%

11
.7
9

11
.0
5

99
.5
4

11
.6
4

51
2.
00

51
3.
25

0.
00

59
85

28
.4
2%

25
.5
3

24
.9
1

99
.5
9

25
.5
0

10
24

.0
0

10
26

.8
1

0.
00

59
85

56
.5
6%

52
.9
3

52
.6
2

99
.7
0

52
.7
3

19
07

.7
8

19
13

.4
9

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

123

A fast and robust algorithm for solving biobjective mixed… 259

Ta
bl
e
8

co
nt
in
ue
d

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

R
an
d7

50
0.
A

16
.1
3

16
.1
4

0.
09

74
90

0.
27

%
0.
35

0.
20

97
.2
8

0.
27

32
.0
5

32
.0
7

0.
02

42
60

1.
37

%
0.
86

0.
53

98
.8
5

0.
55

64
.0
1

64
.0
4

0.
00

59
86

1.
64

%
1.
92

1.
08

99
.5
0

1.
67

12
8.
01

12
8.
19

0.
00

59
86

6.
01

%
5.
46

4.
62

99
.5
2

5.
28

25
6.
01

25
6.
52

0.
00

59
86

13
.6
6%

12
.4
7

11
.6
8

99
.5
4

12
.3
6

51
2.
00

51
3.
31

0.
00

59
86

25
.1
4%

26
.2
2

25
.6
2

99
.6
0

26
.2
6

10
24

.1
0

10
27

.1
9

0.
00

59
86

51
.6
4%

54
.0
5

53
.7
9

99
.7
1

53
.8
3

18
66

.3
5

18
72

.1
8

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

%

123

260 D. Pecin et al.

Ta
bl
e
9

A
pp

ro
xi
m
at
io
n
re
su
lts

fo
r
th
e
re
cu
rs
iv
e
va
ri
an
to

f
B
L
M

In
st
an
ce

ST
T
P

M
1
(%

)
fI
N
D
P

fN
L
S
(%

)
fT
N
L
S
(%

)
fA

(%
)

fS
lic
e
(%

)

21
18

.0
3

18
.0
3

1.
20

95
97

–
0.
14

0.
25

92
.5
0

4.
08

32
.7
6

32
.7
6

0.
69

49
05

–
0.
22

0.
34

94
.8
9

6.
12

65
.4
6

65
.4
6

0.
14

93
81

–
0.
42

0.
52

97
.5
0

11
.5
6

12
9.
23

12
9.
23

0.
07

08
27

–
0.
73

0.
77

98
.2
9

17
.0
1

25
7.
06

25
7.
06

0.
01

49
35

–
1.
53

1.
81

99
.2
7

37
.7
6

51
2.
90

51
2.
90

0.
00

33
89

–
3.
01

3.
58

99
.6
6

62
.5
9

10
56

.7
7

10
56

.7
8

0.
00

09
06

–
12

.1
1

13
.8
5

99
.8
4

79
.5
9

20
49

.0
7

20
49

.1
4

0.
00

02
49

–
38

.1
1

41
.6
3

99
.9
5

90
.1
4

40
96

.3
8

40
96

.5
5

0.
00

00
16

–
80

.3
1

84
.7
2

10
0.
00

98
.3
0

64
82

.3
2

64
82

.6
0

0.
00

00
00

–
10

0.
00

10
0.
00

10
0.
00

10
0.
00

R
an
d7

50
0.
A

11
51

.4
5

11
51

.4
7

25
.0
00

00
0

0.
27

%
0.
76

0.
55

68
.9
8

0.
93

18
35

.9
3

18
35

.9
6

4.
24

69
74

0.
27

%
0.
87

0.
60

87
.4
2

1.
09

19
16

.5
5

19
16

.6
1

4.
02

83
13

1.
37

%
2.
55

1.
95

90
.5
0

3.
05

20
42

.6
8

20
43

.0
4

1.
49

68
33

3.
55

%
6.
11

4.
87

93
.5
0

7.
16

20
71

.6
5

20
71

.8
4

1.
25

64
58

3.
55

%
6.
19

4.
91

94
.5
0

7.
28

20
96

.6
2

20
96

.8
3

1.
06

14
97

3.
55

%
6.
26

4.
94

95
.3
4

7.
37

21
19

.7
9

21
20

.0
0

1.
00

64
09

3.
55

%
6.
34

4.
98

96
.0
5

7.
49

21
32

.3
2

21
32

.5
6

0.
77

37
59

3.
55

%
6.
43

5.
02

96
.7
4

7.
61

40
96

.0
3

40
98

.8
4

0.
00

00
16

44
.5
4%

64
.1
7

51
.4
0

99
.9
9

75
.0
6

58
21

.1
4

58
26

.6
1

0.
00

00
00

10
0.
00

%
10

0.
00

10
0.
00

10
0.
00

10
0.
00

123

A fast and robust algorithm for solving biobjective mixed… 261

References

Aneja YP, Nair KP (1979) Bicriteria transportation problem. Manag Sci 25:73–78
Belotti P, Soylu B, Wiecek MM (2013) A branch-and-bound algorithm for biobjective mixed-integer pro-

grams. Optim Online
Boland N, Charkhgard H, Savelsbergh M (2015a) A criterion space search algorithm for biobjective integer

programming: the balanced box method. INFORMS J Comput 27:735–754
Boland N, Charkhgard H, Savelsbergh M (2015b) A criterion space search algorithm for biobjective mixed

integer programming: the triangle splitting method. INFORMS J Comput 27:597–618
Boland N, Charkhgard H, Savelsbergh M (2016) The l-shape search method for triobjective integer pro-

gramming. Math Program Comput 8:217–251
Boland N, Charkhgard H, Savelsbergh M (2017) The quadrant shrinking method: a simple and efficient

algorithm for solving tri-objective integer programs. Eur J Oper Res 260:873–885
Cabrera-Guerrero G, Ehrgott M, Mason AJ, Raith A (2021) Bi-objective optimisation over a set of convex

sub-problems. Ann Oper Res, 1–26
Ceyhan G, Köksalan M, Lokman B (2023) Finding the nondominated set and efficient integer vectors for

a class of three-objective mixed-integer linear programs. Manag Sci
Chankong V, Haimes YY (2008) Multiobjective decision making: theory and methodology. Courier Dover

Publications, Mineola
Cohon JL (1978) Multiobjective programming and planning. Academic Press, Cambridge
Dai R, Charkhgard H (2018) A two-stage approach for bi-objective integer linear programming. Oper Res

Lett 46:81–87
Dächert K, Klamroth K (2015) A linear bound on the number of scalarizations needed to solve discrete

tricriteria optimization problems. J Glob Optim 61:643–676
Diessel E (2022) An adaptive patch approximation algorithm for bicriteria convex mixed-integer problems.

Optimization 71:4321–4366
Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin
Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multiobjective combinatorial

optimization. OR Spectr 22:425–460
Eichfelder G, Gerlach T, Warnow L (2023a) A test instance generator for multiobjective mixed-integer

optimization
Eichfelder G, Stein O, Warnow L (2023b) A solver for multiobjective mixed-integer convex and nonconvex

optimization. J Optim Theory Appl 1–31
Emre D (2020) Exact solution algorithms for biobjective mixed integer programming problems. Ph.D.

Thesis, Bilkent University
Fattahi A, Turkay M (2018) A one direction search method to find the exact nondominated frontier of

biobjective mixed-binary linear programming problems. Eur J Oper Res 266:415–425
Gandibleux X (2006) Multiple criteria optimization: state of the art annotated bibliographic surveys, vol

52. Springer, Berlin
Geoffrion AM (1968) Proper efficiency and the theory of vector maximization. J Math Anal Appl 22:618–

630
HaimesY (1971)On a bicriterion formulation of the problems of integrated system identification and system

optimization. IEEE Trans Syst Man Cybern 1:296–297
Halffmann P, Schäfer LE, Dächert K, Klamroth K, Ruzika S (2022) Exact algorithms for multiobjective

linear optimization problems with integer variables: a state of the art survey. J Multi-Criteria Decis
Anal 29:341–363

Herszterg I (2020) Efficient algorithms for solving multi-objective optimization and large-scale transporta-
tion problems. Ph.D. Thesis, Georgia Institute of Technology

Kirlik G, Sayın S (2014) A new algorithm for generating all nondominated solutions of multiobjective
discrete optimization problems. Eur J Oper Res 232:479–488

Klamroth K, Lacour R, Vanderpooten D (2015) On the representation of the search region in multi-objective
optimization. Eur J Oper Res 245:767–778

Mavrotas G, Diakoulaki D (1998) A branch and bound algorithm for mixed zero-one multiple objective
linear programming. Eur J Oper Res 107:530–541

Pareto V (1996) Cours d’Economie Politique Professé a l’Université de Lausanne
Pecin D, Herszterg I, Perini T, Boland N, Savelsbergh M (2022) BOMIP GitHub project. https://github.

com/dppecin/BOMIP

123

https://github.com/dppecin/BOMIP
https://github.com/dppecin/BOMIP

262 D. Pecin et al.

Perini T, Boland N, Pecin D, Savelsbergh M (2019) A criterion space method for biobjective mixed integer
programming: the boxed line method. INFORMS J Comput 32:16–39

Pettersson W, Ozlen M (2019) Multi-objective mixed integer programming: an objective space algorithm.
In: AIP conference proceedings, vol 2070. AIP Publishing

Przybylski A,GandibleuxX, EhrgottM (2010a)A recursive algorithm for finding all nondominated extreme
points in the outcome set of a multiobjective integer programme. INFORMS J Comput 22:371–386

Przybylski A, Gandibleux X, Ehrgott M (2010b) A two phase method for multi-objective integer program-
ming and its application to the assignment problem with three objectives. Discret Optim 7:149–165

Ralphs TK, SaltzmanMJ,WiecekMM (2004) An improved algorithm for biobjective integer programming
and its application to network routing problems. Ann Oper Res 73:253–280

Rasmi SAB, Türkay M (2019) Gondef: an exact method to generate all non-dominated points of multi-
objective mixed-integer linear programs. Optim Eng 20:89–117

Rasmi SAB, Fattahi A, Türkay M (2017) An exact algorithm to find non-dominated facets of tri-objective
milps. In: The 12th international conference onmultiple objective programming and goal programming
(MOPGP), pp 30–31

Soylu B (2018) The search-and-remove algorithm for biobjective mixed-integer linear programming prob-
lems. Eur J Oper Res 268:281–299

Soylu B, Yıldız GB (2016) An exact algorithm for biobjective mixed integer linear programming problems.
Comput Oper Res 72:204–213

Stidsen T, Andersen KA, Dammann B (2014) A branch and bound algorithm for a class of biobjective
mixed integer programs. Manag Sci 60:1009–1032

Sylva J, Crema A (2004) A method for finding the set of non-dominated vectors for multiple objective
integer linear programs. Eur J Oper Res 158:46–55

Tamby S, Vanderpooten D (2020) Enumeration of the nondominated set of multiobjective discrete opti-
mization problems. INFORMS J Comput 33:72–85

Wolsey LA, Nemhauser GL (2014) Section I.1.4. Modeling with binary variables III: nonlinear functions
and disjunctive constraints. In: Integer and combinatorial optimization. Wiley, New York

Yu P-L, Zeleny M (1975) The set of all nondominated solutions in linear cases and a multicriteria simplex
method. J Math Anal Appl 49:430–468

Zadeh L (1963)Optimality and non-scalar-valued performance criteria. IEEETransAutomControl 8:59–60

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A fast and robust algorithm for solving biobjective mixed integer programs
	Abstract
	1 Introduction
	2 Definitions and overview of component methods
	2.1 ε-Tabu method
	2.2 Boxed line method
	2.3 Diversity of methods and singularity of instances

	3 Enhancements
	3.1 An enhanced implementation of the ε-Tabu method
	3.2 A purely lexicographic boxed line method

	4 A hybrid, two-phase algorithm
	5 Approximating a mixed integer nondominated frontier
	6 Computational study
	6.1 Test instances
	6.2 Computing exact frontiers
	6.3 Computing approximate frontiers

	7 Final remarks
	Acknowledgements
	Appendix A: Algorithms
	Appendix A.1: Dichotomic search
	Appendix A.2: Boxed line method

	Appendix B: Instance generation
	Appendix C: Computational results
	Appendix D: Approximation results
	References

