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Abstract
It is well known that, under very weak assumptions, multiobjective optimization
problems admit (1 + ε, . . . , 1 + ε)-approximation sets (also called ε-Pareto sets)
of polynomial cardinality (in the size of the instance and in 1

ε
). While an approxima-

tion guarantee of 1 + ε for any ε > 0 is the best one can expect for singleobjective
problems (apart from solving the problem to optimality), even better approximation
guarantees than (1+ ε, . . . , 1+ ε) can be considered in the multiobjective case since
the approximation might be exact in some of the objectives. Hence, in this paper, we
consider partially exact approximation sets that require to approximate each feasible
solution exactly, i.e., with an approximation guarantee of 1, in some of the objec-
tives while still obtaining a guarantee of 1 + ε in all others. We characterize the
types of polynomial-cardinality, partially exact approximation sets that are guaran-
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6 C. Bazgan et al.

teed to exist for general multiobjective optimization problems. Moreover, we study
minimum-cardinality partially exact approximation sets concerning (weak) efficiency
of the contained solutions and relate their cardinalities to the minimum cardinality of
a (1 + ε, . . . , 1 + ε)-approximation set.

Keywords Multiobjective optimization · Approximation · Efficient set · Intractability

1 Introduction

Many real-world optimization problems require taking into account multiple conflict-
ing objective functions. Since solutions that optimize all objectives simultaneously do
usually not exist, the solutions of interest are the so-called efficient (or Pareto opti-
mal) solutions. A solution is called efficient if any other solution that is better in some
objective is worse in at least one other objective. The images of the efficient solutions
in the objective space are called nondominated points. A main goal in multiobjective
optimization is to determine the set of all nondominated points (the nondominated
set) and, for each of them, one corresponding efficient solution. One major difficulty,
however, is intractability, that is, the fact that the nondominated set (and the efficient
set) may be exponentially large for discrete problems (see, e.g., Ehrgott 1998), and
typically infinite for continuous problems.

This provides a strongmotivation to considerapproximations ofmultiobjective opti-
mization problems. Approximations for general multiobjective problems have been
investigated since the 1990s (Safer 1992; Safer and Orlin 1995). Their existence and
cardinality for general multiobjective problems have been systematically investigated
in the seminal work of Papadimitriou and Yannakakis (2000). They show that, for any
instance of a multiobjective optimization problem with a constant number of positive-
valued, polynomial-time computable objective functions and any ε > 0, there exists
a (1+ ε, . . . , 1+ ε)-approximation set (also called a (1+ ε)-approximation set or an
ε-Pareto set) whose cardinality is fully polynomial, i.e., polynomial in the encoding
length of the instance and 1

ε
. Additionally, they prove that a (1 + ε)-approximation

set can be computed in (fully) polynomial time for every ε > 0 if and only if a certain
auxiliary problem Gapδ (the gap problem) can be solved in (fully) polynomial time
for every δ > 0.

It has been observed, however, that (1+ ε)-approximation sets are far from unique
and different (1 + ε)-approximation sets can differ significantly in their cardinality.
Consequently, further work has focused on the computation of (1+ ε)-approximation
sets whose cardinality can be bounded relative to the cardinality of a smallest
(minimum-cardinality) (1+ ε)-approximation set for the given instance (Vassilvitskii
and Yannakakis 2005; Koltun and Papadimitriou 2007; Diakonikolas and Yannakakis
2009; Bazgan et al. 2015).

While an approximation guarantee of 1 + ε for any ε > 0 is the best solution
quality one can expect for singleobjective problems (apart from solving the problem
to optimality), even better approximation guarantees than (1 + ε, . . . , 1 + ε) can be
considered in themultiobjective case since the approximationmight be partially exact,
i.e., exact in some of the objectives (and (1 + ε)-approximate in the others). In fact,
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Approximating multiobjective optimization problems 7

it has recently been shown in Herzel et al. (2021b) that, under similar assumptions
as in Papadimitriou and Yannakakis (2000), there exist fully-polynomial-cardinality
one-exact (1 + ε)-approximation sets that achieve an approximation guarantee of 1
in one of the objective functions (without loss of generality the first one) and 1+ ε in
the others.

In this paper, we systematically investigate which types of partially exact approxi-
mation sets of polynomial cardinality are guaranteed to exist for generalmultiobjective
problems. In particular, we show that, for any constant number p of objective functions
and any k ≤ � p

2 �, polynomial-cardinality (1+ε)-approximation sets exist that approx-
imate each feasible solution exactly in k of the objectives if we allow the objectives
in which the approximation is exact to differ between different feasible solutions. We
call these quasi-k-exact (1+ ε)-approximation sets. Their existence contrasts the fact
that the efficient and nondominated sets are already intractable for many biobjective
problems, which implies that polynomial-cardinality (1 + ε)-approximation sets that
are exact in the same objectives for all solutions can in general be exact in at most one
objective (Herzel et al. 2021b). We obtain our general result by providing a general
existence proof that generalizes the existence proofs for (1 + ε)-approximation sets
and one-exact (1+ ε)-approximation sets provided in Papadimitriou and Yannakakis
(2000) and Herzel et al. (2021b), respectively.

Moreover, we investigate the question of (weak) efficiency of the solutions
contained in minimum-cardinality partially exact (1 + ε)-approximation sets of
different types and relate their cardinalities to the minimum cardinality of a (1 + ε)-
approximation set for a given instance. In particular, we show that, for every instance,
the minimum cardinality of a quasi-1-exact (1+ ε)-approximation set equals the min-
imum cardinality of an ordinary (1+ ε)-approximation set.1 This contrasts the result
from Herzel et al. (2021b) stating that, for any positive integer n, there exist instances
for which the minimum cardinality of a one-exact (1 + ε)-approximation set is more
than n times larger than theminimum cardinality of an ordinary (1+ε)-approximation
set. By generalizing the corresponding proof from Herzel et al. (2021b), however, we
show that, for any positive integer n, there also exist instances for which the minimum
cardinality of a quasi-2-exact (1 + ε)-approximation set is more than n times larger
than the minimum cardinality of an ordinary (1 + ε)-approximation set.

Finally, we present several results concerning the polynomial-time computability of
partially exact approximation sets. In particular, we show that the (fully) polynomial-
time solvability of the gap problem does not suffice for the computation of any type
of partially exact approximation set in general.

While we focus on results that are applicable to general multiobjective optimization
problems under weak assumptions, there also exists a large body of work on approxi-
mations for specificmultiobjective problems. For an up-to-date survey on both general
and problem-specific approximation results, we refer to Herzel et al. (2021a).

1 We sometimes use the term ordinary (1 + ε)-approximation set to refer to (1 + ε)-approximation sets
if we want to explicitly distinguish them from the more demanding partially exact (1 + ε)-approximation
sets.
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8 C. Bazgan et al.

2 Preliminaries

Multiobjective optimization problems can contain objective functions that are to be
minimized or maximized (or even a combination of both). However, we only consider
the case ofminimization problems in this article, i.e., all objectives are to beminimized.
This is without loss of generality here since all our arguments can be straightforwardly
adapted to the case where some or all objective functions are to be maximized.

Definition 2.1 (Multiobjective optimization problem) A multiobjective optimization
problem � is given by a set of instances. Each instance I consists of a (finite or
infinite) set X I of feasible solutions and a vector f I = ( f I1 , . . . , f Ip ) of p objective

functions f Ii : X I → Q for i = 1, . . . , p to be minimized. The feasible set X I might
not be given explicitly.

Here, the number p of objective functions in a multiobjective optimization prob-
lem � is assumed to be constant. Moreover, as is common in the context of
approximation of multiobjective optimization problems, we assume that the objective
functions take only positive, rational values and are polynomial-time computable (cf.
Papadimitriou and Yannakakis 2000; Vassilvitskii and Yannakakis 2005; Diakoniko-
las and Yannakakis 2009; Herzel et al. 2021b). Additionally, we use the following
standard assumption:2

Assumption 1 For any multiobjective optimization problem �, there exists a polyno-
mial P such that, for any instance I of �, there exists a polynomial-time computable
value MI ≤ P(enc(I )) such that enc( f Ii (x)) ≤ MI for any x ∈ X I and any
i ∈ {1, . . . , p}. Here, enc(I ) denotes the encoding length of the instance I and
enc( f Ii (x)) denotes the encoding length of the value f Ii (x) ∈ Q>0 in binary. This,
in particular, implies that, for any instance I and any objective function value f Ii (x),

we have 2−MI ≤ f Ii (x) ≤ 2M
I
. Also, any two values f Ii (x) and f Ii (x ′) differ by at

least 2−2MI
if they are not equal.

In the following, we sometimes blur the distinction between the problem � and a
concrete instance I = (X I , f I ) and we drop the superscript I indicating the depen-
dence on the instance in X I , f I , MI , etc. whenever the instance is clear from the
context.

For multiobjective optimization problems, the solutions of interest are the so-called
efficient solutions for which any other solution that is better in some objective is worse
in at least one other objective:

2 Given the previously-stated assumptions on the objective functions, this general assumption also used in
Vassilvitskii and Yannakakis (2005), Diakonikolas and Yannakakis (2009), and Herzel et al. (2021b) holds
for large classes of problems—in particular, for combinatorial problems. Together with the previously-
stated assumptions, it guarantees the existence of all versions of approximation sets considered here and in
Papadimitriou and Yannakakis (2000), Vassilvitskii and Yannakakis (2005), Diakonikolas and Yannakakis
(2009), and Herzel et al. (2021b). We note, however, that specific types of approximation sets can also exist
for some classes of problems for which this assumption does not formally hold (e.g., for multiobjective
linear programming problems, see Papadimitriou and Yannakakis 2000).
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Approximating multiobjective optimization problems 9

Definition 2.2 For an instance I of a multiobjective optimization problem, a solu-
tion x ∈ X dominates another solution x ′ ∈ X (denoted as x � x ′) if fi (x) ≤ fi (x ′)
for i = 1, . . . , p and fi (x) < fi (x ′) for at least one i . Moreover, a solution x ∈ X
strictly dominates another solution x ′ ∈ X if fi (x) < fi (x ′) for i = 1, . . . , p. A
solution x ∈ X is called (weakly) efficient if it is not (strictly) dominated by any other
solution x ′ ∈ X . In this case, we call the corresponding image f (x) ∈ f (X) ⊆ Qp a
(weakly) nondominated point. The set XE ⊆ X of all efficient solutions is called the
efficient set (or Pareto set) and the set YN := f (XE) of nondominated points is called
the nondominated set. Similarly, the set XWE ⊆ X of all weakly efficient solutions is
called the weakly efficient set and the set YWN := f (XWE) of weakly nondominated
points is called the weakly nondominated set.

One way to circumvent the problem that the nondominated set often has cardinality
exponential in the input size (see, e.g., Ehrgott 1998) is the concept of approximation.
Here, instead of requiring to select at least one corresponding efficient solution for
each nondominated point, the requirement is relaxed so that each image point is only
required to be dominated “approximately” by some image of a selected solution. This
idea is formalized as follows:

Definition 2.3 Let (X , f ) be an instance of a multiobjective optimization problem and
let α = (α1, . . . , αp) ∈ Rp with αi ≥ 1 for all i ∈ {1, . . . , p}. We say that a feasible
solution x ∈ X α-approximates another feasible solution x ′ ∈ X if fi (x) ≤ αi · fi (x ′)
for all i ∈ {1, . . . , p}.

When fixing a desired vector α of approximation guarantees (or a set of possible
desired vectors), approximation as in Definition 2.3 can equivalently be expressed as
a relation R ⊆ X × X , where (x, x ′) ∈ R (also denoted as x Rx ′) if and only if x ′ is
α-approximated by x for some desired vector α. In the following, we consider general
approximate dominance relations that are monotonic in the following sense:

Definition 2.4 Let (X , f ) be an instance of a multiobjective optimization problem.
A relation R ⊆ X × X is called monotonic if fi (x) ≤ fi (x ′) for all i ∈ {1 . . . , p}
implies that x Rx ′.

Note that any monotonic relation R is, in particular, reflexive, i.e., x Rx for all
x ∈ X . We are particularly interested in the following monotonic approximate domi-
nance relations, which give rise to ordinary (1+ ε)-approximation sets as introduced
in Papadimitriou and Yannakakis (2000) and the different types of partially exact
approximation sets considered here:

Definition 2.5 Let (X , f ) be an instance of a multiobjective optimization problem and
let ε > 0. We define the following relations on X × X :

• (1 + ε)-dominance: x �ε x ′ :⇔ x α-approximates x ′, where αi = 1 + ε for
all i ∈ {1, . . . , p},

• one-exact (1 + ε)-dominance: x �1
ε x ′ :⇔ x α-approximates x ′, where α1 = 1

and αi = 1 + ε for all i ≥ 2,
• two-exact (1 + ε)-dominance: x �1,2

ε x ′ :⇔ x α-approximates x ′, where α1 =
α2 = 1 and αi = 1 + ε for all i ≥ 3,
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10 C. Bazgan et al.

• quasi-k-exact (1 + ε)-dominance: x �(k)
ε x ′ :⇔ x α-approximates x ′ for some α

where k components αi are equal to 1 and the other p − k are equal to 1 + ε,
• one-exact, quasi-k-exact (1+ ε)-dominance: x �1,(k)

ε x ′ :⇔ x α-approximates x ′
for some α where α1 = 1, k − 1 of the other components αi are equal to 1, and
the remaining p − k are equal to 1 + ε.3

The relations �1
ε , �1,2

ε , �(k)
ε , and �1,(k)

ε will also be referred to as partially exact
(approximate dominance) relations in the following.

Given an approximate dominance relation, approximation sets for multiobjective
optimization problems are defined as follows:

Definition 2.6 Let (X , f ) be an instance of a multiobjective optimization problem
and let R be a relation on X × X . A set P ⊆ X of feasible solutions is called an
R-approximation set for (X , f ) if, for any feasible solution x ′ ∈ X , there exists a
solution x ∈ P such that x Rx ′ (i.e., x R-dominates x ′).

For ε > 0, R-approximation sets for the relations�ε,�1
ε ,�1,2

ε ,�(k)
ε , and�1,(k)

ε are
referred to as (ordinary) (1+ε)-approximation sets, one-exact (1+ε)-approximation
sets, two-exact (1+ ε)-approximation sets, quasi-k-exact (1+ ε)-approximation sets,
and one-exact, quasi-k-exact (1 + ε)-approximation sets, respectively.

In the following, we will often use that, since monotonic relations R are reflexive,
R-approximation sets for monotonic relations correspond to R-dominating sets for X ,
i.e., to subsets P ⊆ X of feasible solutions such that any feasible solution x ′ /∈ P is
R-dominated by some solution x ∈ P . This correspondence, in particular, holds for
the monotonic relations �ε, �1

ε , �1,2
ε , �(k)

ε , and �1,(k)
ε .

We are interested in approximation sets whose cardinality is bounded by a poly-
nomial in the encoding length of the given instance (X , f ). For the relations �ε, �1

ε ,

�1,2
ε , �(k)

ε , and �1,(k)
ε that depend on a given value ε > 0, we are specifically inter-

ested in approximation sets whose cardinality is fully polynomial, i.e., polynomial in
the encoding length of the instance and in 1

ε
.

3 Existence of approximation sets

We start by investigating the existence of R-approximations of (fully) polynomial car-
dinality under weak assumptions on the approximate dominance relation R. For the
(1+ε)-dominance relation R =�ε, this is established in the seminalwork of Papadim-
itriou and Yannakakis (2000), who show the existence of (1 + ε)-approximations of
fully polynomial cardinality O((M

ε
)p−1).

We now generalize the existence proof from Papadimitriou and Yannakakis (2000)
to more demanding approximate dominance relations R that refine �ε, which, as
shown afterwards in Theorem 3.2, include the partially exact approximate dominance
relations �1

ε and �(k)
ε .

3 Note that this means that �1,(k)
ε = �1

ε ∩ �(k)
ε as subsets of X × X .
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Approximating multiobjective optimization problems 11

Theorem 3.1 Let (X , f ) be an instance of a p-objective optimization problem and let
ε > 0. Consider a monotonic relation R′ defined on X×X and let R :=�ε ∩ R′(so R-
approximation sets correspond to (1+ ε)-approximation sets that are simultaneously
R′-approximation sets). If there exists a constant c (independent of the instance size
and 1

ε
) such that every nonempty subset X ′ ⊆ X admits an R′-dominating set PX ′ ⊆

X ′ of cardinality at most c, then there exists an R-approximation set of cardinality
O((M

ε

)p−1)
.

Proof Consider the hyperrectangle [2−M , 2M ]×· · ·×[2−M , 2M ], in which all images
of feasible solutions are contained.We create a grid by subdividing this hyperrectangle
into smaller hyperrectangles such that, in each dimension, the ratio of the larger to the
smaller coordinate is 1 + ε (see Fig. 1 on Page 9 for an illustration). Thus, the total

number of subdivisions in each dimension is �log1+ε

(
2M

2−M

)
� = �log1+ε

(
22M

)�. By
the assumption on R′, any subset X ′ of feasible solutions admits an R′-dominating
set PX ′ ⊆ X ′ of cardinality at most c. Moreover, any two solutions x and x ′ with
images in the same hyperrectangle of the grid satisfy x �ε x ′ by construction of the
grid. Thus, if X ′ is the preimage of a nonempty hyperrectangle of the grid (i.e., X ′ is the
set of all solutions x ∈ X with images in this hyperrectangle), then the R′-dominating
set PX ′ is actually an R-dominating set for X ′. Consequently, forming the union of
the sets PX ′ over all subsets X ′ that are preimages of nonempty hyperrectangles of
the grid yields an R-approximation set. Moreover, since R is monotonic, it suffices to
consider only weakly nondominated nonempty hyperrectangles.

To bound the cardinality of this R-approximation set, we note that, for each hyper-
rectangle [l1, u1] × · · · × [l p, u p] of the grid, we have ui = (1 + ε) · li for all
i ∈ {1, . . . , p}, so the vectors l = (l1, . . . , l p) and u = (u1, . . . , u p) of lower and
upper bounds of the hyperrectangle lie on a straight line through the origin. Calling
the set of all hyperrectangles of the grid whose bounds lie on the same straight line
through the origin a diagonal, we see that (1) at most one hyperrectangle on each
diagonal is weakly nondominated and nonempty, and (2) the number of diagonals is
inO(

p ·⌈log1+ε

(
22M

)⌉p−1) = O((M
ε

)p−1). Hence, since the cardinality of the con-
structed R-approximation set is at most c times the number of weakly nondominated
nonempty hyperrectangles and c is a constant, its cardinality is also inO((M

ε

)p−1). �
We remark that the proof of Theorem 3.1 also yields an R-approximation set of

(fully) polynomial cardinality if the cardinality of the R′-dominating set PX ′ for each
subset X ′ ⊆ X is only required to be polynomial in the instance size (and in 1

ε
) instead

of constant. In this case, the cardinality of the obtained R-approximation set would be
upper bounded by O((M

ε

)p−1) times the worst-case cardinality of PX ′ taken over all
preimages X ′ of weakly nondominated nonempty hyperrectangles of the grid.

The following theorem shows that the general result in Theorem 3.1, in particular,
yields existence results for (1+ε)-approximation sets, one-exact (1+ε)-approximation
sets, and quasi-k-exact (1 + ε)-approximation sets of fully polynomial cardinality.
Here the existence results for (1 + ε)-approximation sets and for one-exact (1 + ε)-
approximation sets, which are already known from Papadimitriou and Yannakakis
(2000) and Herzel et al. (2021b), respectively, follow immediately from the theorem.
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12 C. Bazgan et al.

The result concerning quasi-k-exact (1+ε)-approximation sets, however, has not been
shown in the literature before and requires a more involved proof, which is illustrated
in Fig. 1.

Theorem 3.2 For any instance (X , f ) of a p-objective optimization problem and any
ε > 0, there exists an R-approximation set of cardinality O((M

ε
)p−1)

(1) for R =�ε ((1 + ε)-approximation set),
(2) for R =�1

ε (one-exact (1 + ε)-approximation set),

(3) for R =�(k)
ε for any k ≤ � p

2 � (quasi-k-exact (1 + ε)-approximation set).

Proof (1) Choosing R′ := X × X in Theorem 3.1 yields R =�ε. Moreover, R′ is
clearly monotonic and, for any nonempty subset X ′ ⊆ X , any solution x ∈ X ′
constitutes an R′-dominating set, so the result follows from Theorem 3.1.

(2) Choosing R′ := {(x, x ′) ∈ X × X : f1(x) ≤ f1(x ′)} in Theorem 3.1 yields
R =�1

ε . Again, R
′ is clearly monotonic. Moreover, given any nonempty sub-

set X ′ ⊆ X , any solution x ∈ X ′ such that f1(x) = minx ′∈X ′ f1(x ′) constitutes an
R′-dominating set (note that, by Assumption 1, the number of possible images is
finite, so the minimum is guaranteed to exist).

(3) Given k ≤ � p
2 �, choosing

R′ := {(x, x ′) ∈ X × X : f j (x) ≤ f j (x
′) for at least k objectives f j },

in Theorem 3.1 yields R =�(k)
ε . Since R′ is clearly monotonic, it remains to show

that there exists an R′-dominating set of constant cardinality for any nonempty
subset X ′ ⊆ X . To show this, we use a result from Alon et al. (2006) about
dominating sets in k-majority tournaments. A k-majority tournament is a directed
graph on a finite vertex set V where, given 2k−1 linear orders of V , there exists a
directed arc from u to v if and only if u is ranked higher than v in at least k of the
orders. The result from Alon et al. (2006) states that any k-majority tournament
admits a dominating set of cardinality O(k log k).
In our situation, given some nonempty subset X ′ ⊆ X , each objective f j defines a
reflexive, transitive, and strongly connected order on f (X ′) by ranking f (x) higher
than f (x ′) if and only if f j (x) ≤ f j (x ′). This order can be made antisymmetric
(i.e., turned into a linear order) by breaking ties within any subset of elements
that have the same f j -value via an arbitrary linear order on this subset. Since
k ≤ � p

2 �, this construction yields p ≥ 2k − 1 linear orders on f (X ′). Moreover,
by Assumption 1, the number of possible images the objective space is finite, so
f (X ′) is a finite set. Consequently, the directed graph on f (X ′) in which there
exists a directed arc from f (x) to f (x ′) if and only if f (x) is ranked higher
than f (x ′) in at least k of the orders is finite and contains a k-majority tournament
on f (X ′) (since, in case that p > 2k − 1, the additional p − 2k + 1 linear orders
only lead to additional arcs in the graph). Consequently, by the result of Alon et al.
(2006), the graph contains a dominating set of constant cardinalityO(k log k). By
construction of the graph, choosing one corresponding solution x for each image
in this dominating set yields an R′-dominating set for X ′.

�
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Approximating multiobjective optimization problems 13

Fig. 1 Existence of quasi-k-exact (1 + ε)-approximation sets of fully polynomial cardinality. For each
weakly nondominated nonempty hyperrectangle in the objective space as in the proof of Theorem 3.1, a
dominating set for the supergraph of a k-majority tournament defined on the images in the hyperrectangle is
selected to obtain a quasi-k-exact (1+ε)-approximation set. There exists at most one weakly nondominated
nonempty hyperrectangle in each diagonal of the grid. A quasi-k-exact (1 + ε)-approximation set is given
by preimages of the bold points. Weakly nondominated nonempty hyperrectangles are indicated by shaded
boxes. One diagonal is indicated by the bold lines. The constructed supergraph of a k-majority tournament
is illustrated for one hyperrectangle

In the remainder of this section, we show that the existence results for one-exact
(1 + ε)-approximation sets and quasi-k-exact (1 + ε)-approximation sets with k =
� p
2 � from Theorem 3.2 are tight in the sense that polynomial-cardinality (1 + ε)-

approximation sets with additional exact components do not exist in general. This is
made precise for the case of one-exact (1 + ε)-approximation sets in the following
theorem.

Theorem 3.3 There exist instances of p-objective combinatorial optimization prob-
lems, including the multiobjective versions of shortest path, minimum spanning tree,
assignment, minimum s-t-cut, knapsack, and traveling salesman, that do not admit
a polynomial-cardinality one-exact, quasi-2-exact (1 + ε)-approximation set for
any ε > 0.

Proof Thebiobjective versions of all of these problems are known to be intractable, i.e.,
there exist instances for which the cardinality of the nondominated set is exponential
in the instance size. From such an intractable biobjective instance, construct a p-
objective instance where objective f1 corresponds to the first objective function of the
biobjective instance and the other p − 1 objective functions correspond to the second
objective function of the biobjective instance. Then, at least one solution corresponding
to each nondominated point of the biobjective instance is required in any one-exact,
quasi-2-exact (1 + ε)-approximation set of the p-objective instance. �
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14 C. Bazgan et al.

The above theorem shows that, for many important problems, one-exact (1 + ε)-
approximation sets are the best polynomial-cardinality partially exact approximation
sets one can hope for when requiring to be exact in one fixed objective. In fact,
we are not aware of many (non-trivial) problems that admit polynomial-cardinality
one-exact, quasi-2-exact (1 + ε)-approximation sets. One notable exception is the
biobjective minimum cut problem, for which it is known that the cardinality of the
efficient set is polynomial in the instance size (Aissi et al. 2015). Since the efficient
set corresponds to a two-exact (1 + ε)-approximation set in the biobjective case, this
in particular shows the existence of a polynomial-cardinality one-exact, quasi-2-exact
(1 + ε)-approximation set.

We now consider quasi-k-exact (1+ ε)-approximation sets, that is, approximation
sets that approximate each feasible solution exactly in k objectives (and with a factor
of (1 + ε)-approximate in all other objectives), but allow the objectives in which
the approximation is exact to differ depending on the approximated solution. Here, a
similar argument as in the proof of Theorem 3.3 shows that, for many multiobjective
combinatorial optimization problems, polynomial-cardinality quasi-k-exact (1 + ε)-
approximation sets for k > � p

2 � are not guaranteed to exist for all instances.

Theorem 3.4 There exist instances of many p-objective combinatorial optimization
problems, including the multiobjective versions of shortest path, minimum spanning
tree, assignment,minimums-t-cut, knapsack, and traveling salesman, that donot admit
a polynomial-cardinality quasi-k-exact (1 + ε)-approximation set for any k > � p

2 �
and any ε > 0.

Proof As noted in the proof of Theorem 3.3, the biobjective versions of all of these
problems are known to be intractable. From such an intractable biobjective instance,
construct a p-objective instance where the first � p

2 � objectives corresponds to the first
objective of the biobjective instance and the other � p

2 � objectives correspond to the
second objective function of the biobjective instance. Then, for k > � p

2 �, at least
one solution corresponding to each nondominated point of the biobjective instance is
required in any quasi-k-exact (1 + ε)-approximation set of the p-objective instance.
�

Figure2 summarizes the known tractability and intractability results for different
types of approximation sets.

4 Minimum-cardinality approximation sets

Theorem 3.2 implies that an asymptotic upper bound for the minimum cardinality of
an ordinary, a one-exact, and a quasi-k-exact (1+ ε)-approximation set with k ≤ � p

2 �
is inO( (M

ε

)p−1 )
and it is easy to see that this bound is tight, i.e., there exist instances

where even a minimum-cardinality ordinary (1 + ε)-approximation set consists of

�
( (M

ε

)p−1 )
solutions. For a specific instance, however, as pointed out in Vassilvitskii

andYannakakis (2005) andDiakonikolas andYannakakis (2009), theremight still exist
(1 + ε)-approximation sets of vastly different cardinalities. This motivates to study
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Approximating multiobjective optimization problems 15

Fig. 2 Tractability and intractability results for different types of approximation sets. An arrow indicates
that one type of approximation set fulfills the requirements of the other. The dashed line marks the boundary
between tractability and intractability in general p-objective optimization problems. New results obtained
in this paper are shown in bold. The result on (1 + ε)-approximation sets is shown in Papadimitriou and
Yannakakis (2000), and the results on one-exact and two-exact (1 + ε)-approximation sets are shown in
Herzel et al. (2021b)

properties of (1 + ε)-approximation sets of minimum cardinality. Moreover, it raises
the question whether the minimum possible cardinality can increase for a specific
instance when considering partially exact (1 + ε)-approximation sets. As shown in
Herzel et al. (2021b), this is indeed the case when considering one-exact (1 + ε)-
approximation sets: for any positive integer n, there exist instances for which the
minimum cardinality of a one-exact (1 + ε)-approximation set is more than n times
larger than the minimum cardinality of an ordinary (1 + ε)-approximation set.

Hence, in this section, we systematically study minimum-cardinality ordinary and
partially exact (1+ ε)-approximation sets. In Sect. 4.1, we first investigate the (weak)
efficiency of solutions in minimum-cardinality approximation sets and show that
minimum-cardinality ordinary (1+ ε)-approximation sets and quasi-1-exact (1+ ε)-
approximation sets can consist of dominated solutions only. For minimum-cardinality
one-exact (1 + ε)-approximation sets, however, we show that one contained solution
must be weakly efficient, but not more than one in general. Afterwards, in Sect. 4.2,
we relate the minimum cardinalities of different types of partially exact approximation
sets to the minimum cardinality of an ordinary (1 + ε)-approximation set. Here, we
show that requiring the (1+ε)-approximation set to be quasi-1-exact never changes the
minimum cardinality for any instance. In contrast, for any positive integer n, there exist
instances for which requiring to be one-exact or quasi-2-exact increases the minimum
cardinality by more than a factor of n.

4.1 Efficiency of minimum-cardinality approximation sets

In this subsection, we investigate the question of (weak) efficiency of solutions in
minimum-cardinality ordinary and partially exact (1 + ε)-approximation sets.
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16 C. Bazgan et al.

Since any dominated solution in any type of partially exact or ordinary (1 + ε)-
approximation set can always be replaced by an efficient solution dominating itwithout
impairing the obtained approximation guarantee, it follows that there always exist
minimum-cardinality (1+ ε)-approximation sets of each type that consist of efficient
solutions only. In contrast, it is well known that, even in the biobjective case, there are
ordinary (1 + ε)-approximation sets of minimum cardinality that consist of strictly
dominated solutions only. The following proposition generalizes this result to quasi-
1-exact (1 + ε)-approximation sets.

Proposition 4.1 For any ε > 0, there is an instance of a biobjective optimization
problem that admits a quasi-1-exact (1+ε)-approximation set of minimum cardinality
consisting of strictly dominated solutions only.

Proof The proof is illustrated in Fig. 3. Consider a biobjective optimization problem
instance consisting of six feasible solutions x1, x2, x3, x4, x5, x6 with

f1(x
1) = 1, f2(x

1) = (1 + ε)2,

f1(x
2) = 1 + ε

2 , f2(x
2) = (1 + ε) · (1 + ε

4

)
,

f1(x
3) = (1 + ε) · (

1 + ε
4

)
, f2(x

3) = 1 + ε
2 ,

f1(x
4) = (1 + ε)2, f2(x

4) = 1,

f1(x
5) = 1 + ε, f2(x

5) = (1 + ε) · (1 + ε
2

)
,

f1(x
6) = (1 + ε) · (

1 + ε
2

)
, f2(x

6) = 1 + ε.

First, observe that there is no solution that �ε-dominates the five other solutions,
which means that any (quasi-1-exact) (1 + ε)-approximation set consists of at least
two solutions. However, even though x5 and x6 are strictly dominated by x2 and x3,
respectively, the set {x5, x6} is a quasi-1-exact (1 + ε)-approximation set: x1 is (1 +
ε, 1)-approximated by x5, x2 is (1 + ε, 1)-approximated by x6, x3 is (1, 1 + ε)-
approximated by x5, and x4 is (1, 1 + ε)-approximated by x6. �

For one-exact (1+ ε)-approximation sets, the definition implies that each such set
must contain at least one weakly efficient solution, namely a solution with minimum
f1-value. The following result, however, shows that, even in the biobjective case,
there are minimum-cardinality one-exact (1 + ε)-approximation sets in which all
other solutions are strictly dominated.

Proposition 4.2 For any ε > 0 and any positive integer n ∈ N+, there exists an
instance of a biobjective optimization problem that admits a one-exact (1 + ε)-
approximation set of minimum cardinality n + 1 in which all but one of the solutions
are strictly dominated.

Proof Given ε > 0 and n ∈ N+, let δ > 0 so that (1 + δ)2n = 1 + ε and consider the
following instance of a biobjective optimization problem: The feasible set is given as
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Approximating multiobjective optimization problems 17

Fig. 3 Illustration of the instance constructed in the proof of Proposition 4.1. The set {x5, x6} is a minimum-
cardinality quasi-1-exact (1 + ε)-approximation set. The regions that are approximated by x5 and x6 are
indicated by a solid and a dashed line, respectively

X := {x0, . . . , xn, x̄1, . . . , x̄n, x̃0, . . . , x̃n} and

f1(x
0) := 1, f2(x

0) := (1 + ε)n,

f1(x
i ) := 3i + 1, f2(x

i ) := (1 + ε)n−i · (1 + δ)i ,

f1(x̄
i ) := 3i, f2(x̄

i ) := (1 + ε)n−i · (1 + δ)i−1,

f1(x̃
i ) := 3i + 2, f2(x̃

i ) := (1 + ε)n−i · 1

(1 + δ)i
,

which implies that

f2(x̄
i ) = 1

1 + δ
· f2(x

i ) = 1

1 + ε
· f2(x

i−1), and (1)

f2(x̃
i ) = 1

(1 + δ)2i
· f2(x

i ). (2)

We now show that {x0, x1, . . . , xn} is a minimum-cardinality one-exact (1 + ε)-
approximation set, even though x0 is the only solution in this set that is not strictly
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18 C. Bazgan et al.

dominated. To this end, first note that

f1(x
0) < f1(x̄

1) < f1(x
1) < f1(x̃

1)

< f1(x̄
2) < f1(x

2) < f1(x̃
2)

< . . .

< f1(x̄
n) < f1(x

n) < f1(x̃
n). (3)

Thus, x0 is not �1
ε-dominated by any other solution, so x0 must be contained in every

one-exact (1 + ε)-approximation set. Moreover, the following statements hold:

• x̄ i strictly dominates xi for i ≥ 1,
• xi �1

ε x̃ i for i ≥ 1 (by (2) and (3)),
• xi �1

ε x̄ i+1 (by (1) and (3)), and, therefore, also xi �1
ε xi+1 for 0 ≤ i ≤ n − 1,

• Neither xi , nor x̄ i , nor x̃ i �1
ε-dominates x̃ i+1 for 0 ≤ i ≤ n − 1 since

f2(x̃
i+1) = 1

(1 + ε) · (1 + δ)
· f2(x̃

i )

<
1

1 + ε
· f2(x̃

i ) <
1

1 + ε
· f2(x̄

i ) <
1

1 + ε
· f2(x

i ).

• Neither xi , nor x̄ i , nor x̃ i �1
ε-dominates x̃ j for 0 ≤ j < i ≤ n (by (3))

• Neither xi , nor x̄ i , nor x̃ i �1
ε-dominates x̃ j for i + 2 ≤ j ≤ n since

f2(x̃
j ) < f2(x̃

i+1) <
1

1 + ε
· f2(x̃

i ) <
1

1 + ε
· f2(x̄

i ) <
1

1 + ε
· f2(x

i ).

In total, this implies that {x0, x1, . . . , xn} is a one-exact (1 + ε)-approximation
set, even though x0 is the only solution in this set that is not strictly dominated.
Moreover, for each i ∈ {1, . . . , n}, in order to �1

ε-dominate x̃ i , at least one of
the three solutions xi , x̄ i , and x̃ i must be contained in any one-exact (1 + ε)-
approximation set. Consequently, any one-exact (1 + ε)-approximation set has
cardinality at least n + 1.

�
The final result of this subsection, which will be used when analyzing the minimum

cardinality of quasi-1-exact (1 + ε)-approximation sets in the following subsection,
states that any (1+ ε)-approximation set consisting only of weakly efficient solutions
must actually be quasi-1-exact.

Proposition 4.3 Any (1+ ε)-approximation set in which all solutions are weakly effi-
cient is a quasi-1-exact (1 + ε)-approximation set.

Proof Let P be a (1+ε)-approximation set in which all solutions are weakly efficient.
Let x ′ ∈ X be an arbitrary feasible solution and let x ∈ P be a solution that �ε-

dominates x ′. If x ′ is not �(1)
ε -dominated by x , i.e., we do not have fi (x) ≤ fi (x ′) for

any i ∈ {1, . . . , p}, we immediately obtain that x is strictly dominated by x ′, which
contradicts the weak efficiency of x . �
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4.2 Relations betweenminimum cardinalities

We now relate the minimum cardinalities of different types of partially exact approx-
imation sets to the minimum cardinality of an ordinary (1 + ε)-approximation set.

Concerning one-exact (1+ε)-approximation sets, it is shown inHerzel et al. (2021b)
that, for any positive integer n, there exist biobjective problem instances for which the
minimum cardinality of a such a set is more than n times larger than the minimum
cardinality of an ordinary (1 + ε)-approximation set. In contrast to this, we now use
Proposition 4.3 to show that requiring a quasi-1-exact (1+ε)-approximation set instead
of only an ordinary (1+ε)-approximation set never changes the minimum cardinality
for any instance.

Theorem 4.4 Forany instanceof amultiobjective optimizationproblemandany ε > 0,
there exists a minimum-cardinality ordinary (1+ε)-approximation set that is quasi-1-
exact. In particular, the minimum cardinalities of an ordinary (1+ ε)-approximation
set and of a quasi-1-exact (1 + ε)-approximation set coincide for every instance.

Proof Let P∗ be a smallest ordinary (1+ ε)-approximation set. Turn P∗ into a quasi-
1-exact (1 + ε)-approximation set P ′ of the same cardinality that consists of weakly
efficient solutions only by replacing any strictly dominated solution x ∈ P∗ by a
weakly efficient solution that strictly dominates it (this does not impair the approx-
imation guarantee). By Proposition 4.3, the set P ′ is then indeed a quasi-1-exact
(1 + ε)-approximation set. �

Contrasting the result on the minimum cardinality of quasi-1-exact (1 + ε)-
approximation sets shown inTheorem4.4,wenowshow that, for any positive integern,
there exist instances for which the minimum cardinality of a quasi-2-exact (1 + ε)-
approximation set is more than n times larger than the minimum cardinality of an
ordinary (1 + ε)-approximation set—even in the case of three objectives (p = 3).
The proof of the following theorem generalizes the construction used in the proof of
Theorem 2 in Herzel et al. (2021b).

Theorem 4.5 For any ε > 0 and any positive integer n ∈ N+, there exist instances of
3-objective optimization problems such that |P(2),∗| > n · |P∗|, where P(2),∗ denotes
a minimum-cardinality quasi-2-exact (1 + ε)-approximation set and P∗ denotes a
minimum-cardinality ordinary (1 + ε)-approximation set.

Proof Given ε > 0 and n ∈ N+, we construct an instance of a 3-objective optimization
problemwith |P(2),∗| = n+1and |P∗| = 1as follows:The feasible set is given as X :=
{x0, . . . , xn} and, for j = 0, . . . , n, we define f (x j ) = (

f1(x j ), f2(x j ), f3(x j )
)
via

f (x j ) :=
(
1 + n − j

n
· ε, 1 + n − j

n
· ε, (1 + ε)2 j+1

)
.

Note that this implies that

fi (x
0) > fi (x

1) > · · · > fi (x
n) for i = 1, 2,
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but

f3(x
j ) = 1

(1 + ε)2
· f3

(
x j+1) <

1

1 + ε
· f3

(
x j+1)

for j = 0, . . . , n − 1. Consequently, no solution �(2)
ε -dominates any other solution,

which implies that P(2),∗ = X with cardinality n + 1. The solution x0 with f (x0) =
(1 + ε, 1 + ε, 1 + ε), however, �ε-dominates all other solutions, so {x0} is a (1+ ε)-
approximation set. �

5 Computation of approximation sets

After studying the existence of (fully) polynomial-cardinality approximation sets and
the impact of using partially exact approximate dominance relations on the minimum
cardinality of approximation sets, we now consider the computability of such sets.

In the literature, several auxiliary problems have been defined for the computation
of (fully) polynomial-cardinality approximation sets (Papadimitriou and Yannakakis
2000; Vassilvitskii and Yannakakis 2005; Diakonikolas and Yannakakis 2009; Herzel
et al. 2021b),which are also used in the following. Thefirst such problem,whose (fully)
polynomial-time solvability has been shown to characterize the (fully) polynomial-
time compatibility of (1 + ε)-approximation sets in Papadimitriou and Yannakakis
(2000) is the gap problem:

Definition 5.1 (Gap Problem) Given an instance (X , f ) of a p-objective optimization
problem, a point b ∈ Qp, and some δ > 0, the problem Gapδ(b) is the following:
Either return a feasible solution x ∈ X with fi (x) ≤ bi for i = 1, . . . , p, or answer
correctly that there does not exist any feasible solution x ′ such that fi (x ′) ≤ bi

1+δ
for

all i = 1, . . . , p.

The following auxiliary problem, which scalarizes the multiobjective problem via
budget constraints on all but one objective function, is widely used both in practice
and in the theoretical literature on multiobjective optimization:

Definition 5.2 (Budget-Constrained Problem) Given an instance (X , f ) of a multi-
objective optimization problem and bounds bi > 0, i = 2, . . . , p, for all objective
functions except the first one, the problem Constrained(b2 . . . , bp) is the following:
Either answer that there does not exist a feasible solution x ′ ∈ X with fi (x ′) ≤ bi for
i = 1, . . . , p, or return a feasible solution that minimizes f1 among all such solutions,
i.e., return x ∈ X with

f1(x) = opt1(b2, . . . , bp) := min
x ′∈X

{ f1(x ′) : fi (x
′) ≤ bi for i = 2, . . . , p}, and

fi (x) ≤ bi , i = 2, . . . , p.

Note that Constrained, which is also often referred to as the ε-constrained prob-
lem in the literature, is hard to solve even for the biobjective version of most relevant
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problems such as shortest path. A way to circumvent the hardness of Constrained is
to consider solutions that violate the given bounds slightly, while requiring an objec-
tive value that is at least as good as the objective value of any solution that respects
the bounds (Diakonikolas and Yannakakis 2009):

Definition 5.3 (DualRestrict) Given an instance (X , f ) of a multiobjective opti-
mization problem, bounds bi > 0, i = 2, . . . , p, for all objective functions except the
first one, and some δ > 0, the problem DualRestrictδ(b2, . . . , bp) is the following:
Either answer that there does not exist a feasible solution x ′ ∈ X with fi (x ′) ≤ bi for
i = 1, . . . , p, or return x ∈ X with

f1(x) ≤ opt1(b2, . . . , bp)

fi (x) ≤ (1 + δ) · bi , i = 2, . . . , p.

Note that Constrained can be viewed as the limit case where δ = 0 in
DualRestrict.

The auxiliary problems Constrained and DualRestrict can also be defined
such that, instead of the first one, some other objective is to be optimized subject to
budgets on the remaining objectives. In the following, we sometimes indicate which
objective is optimized by an upper index. For example, DualRestricti denotes the
DualRestrict problem with a bound on all objectives but the i-th one.

As shown in Papadimitriou and Yannakakis (2000), a (1 + ε)-approximation set
can be computed in (fully) polynomial time for every ε > 0 if and only if the aux-
iliary problem Gapδ(b) can be solved in (fully) polynomial time for every vector b
and every δ > 0. Hence, a natural question is whether (fully) polynomial-time solv-
ability of Gapδ(b) is also sufficient for the (fully) polynomial-time computability of
partially exact (1 + ε)-approximation sets. The following theorem gives a negative
answer to this question even for biobjective problems and the least-demanding type of
partially exact (1 + ε)-approximation sets. The proof is partly similar to the proof of
Theorem 1 in Vassilvitskii and Yannakakis (2005), where it is shown that polynomial-
time algorithms only generating solutions by solving Gapδ(b) cannot approximate
the minimum cardinality of an ordinary (1 + ε)-approximation set to a factor better
than 3 in the biobjective case (such algorithms are called generic in Vassilvitskii and
Yannakakis 2005).

Theorem 5.4 There exists no polynomial-time algorithm that returns a quasi-1-exact
(1 + ε)-approximation set for every biobjective problem instance and every ε > 0,
and generates feasible solutions only by solving Gapδ(b) for points b of polynomial
encoding length and polynomial values of 1

δ
.

Proof Given some (rational) ε > 0, consider two instances I1, I2 with feasible
sets X I1 = {x1} and X I2 = {x1, x2} and the objective function values given by

f (x1) =
(
1 + 1

l(ε)
, 1 + 1

l(ε)

)
, f (x2) = (1, 1) ,
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where l(ε) is a positive integer that is exponential in the input size and in 1
ε
. We show

that no algorithm that generates feasible solutions only by solving Gapδ(b) for values
δ ≥ 1

l(ε) can distinguish between the two instances (i.e., detect whether x2 is part of
the feasible set). Since any smaller value of δ would be exponential in the input size
and in 1

ε
by definition of l(ε), and any quasi-1-exact (1 + ε)-approximation set for

instance I2 must include x2, this will show the claim.
So consider a call of Gapδ(b) for some point b and some δ ≥ 1

l(ε) . We distinguish

two cases in order to show thatGapδ(b) can always return either x1 or NO as a correct
answer for both instance I1 and instance I2. If bi ≥ fi (x1) for i = 1, 2, then Gapδ(b)
can return x1 for both instances. Otherwise, we have b j < f j (x1) = 1 + 1

l(ε) for

some j ∈ {1, 2}. Using that δ ≥ 1
l(ε) , this implies that

f j (x
2) = 1 ≥ 1 + 1

l(ε)

1 + δ
>

b j

1 + δ
.

Consequently, for both instances, there exists no solution with j-th objective value
less than or equal to

b j
1+δ

, so Gapδ(b) can return NO. This shows that an algorithm

that generates feasible solutions only by solvingGapδ(b) for values of δ ≥ 1
l(ε) cannot

detect whether x2 is part of the feasible set as claimed. �
Theorem 5.4 shows that harder-to-solve auxiliary problems than the gap problem

must be used for computing partially exact (1+ ε)-approximation sets in polynomial
time.WenowuseProposition 4.3 to show that, for biobjective problems, several known
algorithms for computing (small-cardinality) (1+ε)-approximation sets based on such
auxiliary problems actually yield quasi-1-exact (1 + ε)-approximation sets.

Theorem 5.5 (1) For biobjective optimization problems forwhichConstrained1 and
Constrained2 are solvable in (fully) polynomial time, a quasi-1-exact (1 + ε)-
approximation set withminimum cardinality can be computed in (fully) polynomial
time for every instance.

(2) For biobjective optimization problems for which DualRestrict1δ or
DualRestrict2δ is solvable in (fully) polynomial time, a quasi-1-exact (1 + ε)-
approximation set with cardinality at most twice the cardinality of a smallest
quasi-1-exact (1 + ε)-approximation set can be computed in (fully) polynomial
time for every instance.

Proof (1) If Constrained1 and Constrained2 are solvable in (fully) polynomial
time, an ordinary (1 + ε)-approximation set with minimum cardinality can be
computed in (fully) polynomial time for every instance by a greedy procedure as
shown inDiakonikolas andYannakakis (2009). Since this set contains only weakly
efficient solutions (Bazgan et al. 2017), it is actually a quasi-1-exact (1 + ε)-
approximation set of minimum cardinality by Proposition 4.3.

(2) If DualRestrict1δ or DualRestrict2δ is solvable in (fully) polynomial time, an
ordinary (1+ε)-approximation set with cardinality at most twice the cardinality of
a smallest ordinary (1+ε)-approximation set (which equals theminimumcardinal-
ity of a quasi-1-exact (1+ε)-approximation set by Theorem 4.4) can be computed
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in (fully) polynomial time for every instance as shown in Diakonikolas and Yan-
nakakis (2009) and Bazgan et al. (2017). Moreover, the (1 + ε)-approximation
sets returned by the algorithms in Diakonikolas and Yannakakis (2009) and Baz-
gan et al. (2017) contain only weakly efficient solutions (Bazgan et al. 2017).
Consequently, by Proposition 4.3, these sets are actually quasi-1-exact (1 + ε)-
approximation sets.

�

Examples of biobjective optimization problems for which DualRestrict1δ or
DualRestrict2δ is solvable in polynomial time include, e.g., biobjective shortest
path and biobjective spanning tree (Diakonikolas and Yannakakis 2009). We remark
that, as shown in Herzel et al. (2021b), the same results as in Theorem 5.5 can be
achieved even for one-exact (1+ ε)-approximation sets, but modified algorithms tar-
geted specifically at the computation of one-exact (1 + ε)-approximation sets are
necessary in this case. Moreover, it has been shown in Herzel et al. (2021b) that, for
general p-objective problems, one-exact (1+ ε)-approximation sets can be computed
in (fully) polynomial time if and only if DualRestrict1δ(b2, . . . , bp) can be solved
for any choice of the bounds b2, . . . , bp and any δ > 0 in (fully) polynomial time.

We finish this section by considering the case where all feasible solutions are given
explicitly in the input. For this case, we now present two related approaches for the
polynomial-time computation of R-approximation sets for approximate dominance
relations R as in Theorem 3.1 under the assumption that checking whether a given
solution x ∈ X R′-dominates another given solution x ′ ∈ X (for R′ as in the theorem)
is possible in polynomial time. This class of relations, in particular, includes quasi-k-
exact (1 + ε)-dominance for any k ≤ � p

2 � as well as one-exact (1 + ε)-dominance
and ordinary (1 + ε)-dominance.

Thefirst approach is based directly on the proof ofTheorem3.1.Given that checking
whether a given solution x ∈ X R′-dominates another given solution x ′ ∈ X (for R′
as in the theorem) is possible in polynomial time, we can generate the directed graph
corresponding to the approximate dominance relation R′ in eachweakly nondominated
nonempty hyperrectangle considered in the proof in polynomial time and compute
a dominating set in each of these graphs. While computing a minimum-cardinality
dominating set isNP-hard in general, a simple greedy algorithmcan be used to compute
a dominating set that is larger by at most a factor 1 + log|V |, where V denotes the
vertex set (Johnson 1974). This yields a polynomial-cardinality set in our situation
since |V | is bounded by |X | in all cases, which is polynomial in the input size since X
is given explicitly in the input.

A second related approach, which additionally yields a bound on the cardinality of
the obtained R-approximation set, consists of constructing the directed graph on X
corresponding to the approximate dominance relation R (which is possible in polyno-
mial time given that R′-dominance of solutions can be checked in polynomial time)
and to compute a dominating set of cardinality at most 1 + log|X | times the mini-
mum cardinality of dominating set in this graph using the algorithm from Johnson
(1974). The resulting set then corresponds to an R-approximation set of cardinality at
most 1 + log|X | times the minimum cardinality of an R-approximation set.
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6 Conclusion

In this paper, we explore the borderline between tractability and intractability when
approximating multiobjective optimization problems using more demanding approx-
imate dominance relations than (1 + ε)-dominance. We show that, under very weak
assumptions, there always exist (1 + ε)-approximation sets of fully polynomial car-
dinality such that every feasible solution is, in fact, 1-approximated with respect to
at least half of the objectives functions if we allow these objective functions to differ
between different feasible solutions. If a polynomial-cardinality approximation set is
required to be exact in one specified objective function, however, exactness cannot be
ensured in a second objective function in general, even if this second objective function
is allowed to differ depending on the approximated solution. This leads to the “frontier
of intractability” being located in between one-exact (1 + ε)-approximation sets and
one-exact, quasi-2-exact (1 + ε)-approximation sets and in between quasi-� p

2 �-exact
(1 + ε)-approximation sets and quasi-(� p

2 � + 1)-exact (1 + ε)-approximation sets.
While first positive and negative results concerning the polynomial-time com-

putability of quasi-k-exact (1 + ε)-approximation sets have been obtained in Sect. 5,
an important question for future research is to obtain further computability results
that extend beyond the biobjective case or the situation where the feasible set is given
explicitly in the input. Specifically, since both the polynomial-time computability of
ordinary (1+ε)-approximation sets and of one-exact (1+ε)-approximation sets have
been characterized by the polynomial-time solvability of certain auxiliary problems
(Gap andDualRestrict, respectively), it would be interesting to investigate whether
a similar characterization via an auxiliary problem can also be obtained for quasi-k-
exact (1+ε)-approximation sets for k ≤ � p

2 �. As our results shown, such an auxiliary
problem would have to be strictly harder to solve than Gap.
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