
Mathematical Methods of Operations Research (2023) 98:111–153
https://doi.org/10.1007/s00186-023-00830-3

ORIG INAL ART ICLE

Bin stretching with migration on two hierarchical machines

Islam Akaria1 · Leah Epstein1

Received: 3 May 2022 / Revised: 19 June 2023 / Accepted: 11 July 2023 /
Published online: 19 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In this paper, we consider semi-online scheduling with migration on two hierarchical
machines, with the purpose of minimizing the makespan. The meaning of two hierar-
chical machines is that one of the machines can run any job, while the other machine
can only run specific jobs. Every instance also has a fixed parameter M ≥ 0, known as
the migration factor. Jobs are presented one by one. Each new job has to be assigned to
a machine when it arrives, and at the same time it is possible to modify the assignment
of previously assigned jobs, such that the moved jobs have a total size not exceeding
M times the size of the new job. The semi-online variant studied here is called bin
stretching. In this problem, the optimal offline makespan is provided to the scheduler
in advance. This is still a non-trivial variant for any migration factor M > 0. We
prove tight bounds on the competitive ratio for any migration factor M . The design
and analysis is split into several cases, based on the value of M , and on the result-
ing competitive ratio. Unlike the online variant with migration for two hierarchical
machines, this case allows an online fully polynomial time approximation scheme.

Keywords Hierarchical machines · Competitive ratio · Migration factor ·
Semi-online scheduling

1 Introduction

In this work, we study semi-online scheduling on two hierarchical machines. Jobs are
presented one by one, over a list. Each job j has a positive size (or processing time)
p j , and a hierarchy g j ∈ {1, 2}. The hierarchy corresponds to the grade of service
(GoS), which this job requires. There are twomachines to be used for processing these
jobs, where the speeds of the machines are unit, but the machines are different with

B Leah Epstein
lea@math.haifa.ac.il

Islam Akaria
islam.akaria@gmail.com

1 Department of Mathematics, University of Haifa, Haifa, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00830-3&domain=pdf
http://orcid.org/0000-0002-6761-8521

112 I. Akaria, L. Epstein

Fig. 1 The tight competitive ratio R for the bin stretching,which is the semi-online variant of our hierarchical
scheduling problem with known makespan, as a function of the migration factor M

respect to their capabilities. The first machine m1 or machine 1 can run any job, while
the second machine m2 or machine 2 cannot run jobs of hierarchy 1, and it can only
receive jobs of hierarchy 2. A limited amount of migration is allowed, and when a job
arrives, the algorithm may reassign some jobs, as long as their total size is (at most)
proportional to the processing time of the arriving job. Specifically, there is a fixed
parameter M > 0, called migration factor, and when a job j arrives, the total size of
moved jobs cannot exceed M · p j .

The completion time (or load) of a machine is the total size of its jobs, and the
makespan is defined in a standard way as the maximum load over all machines. The
goal is to schedule the input jobs so as to minimize the maximum completion time,
that is, the goal is to minimize the makespan. We use the usual measure for online
algorithms, called the competitive ratio, for the analysis. The competitive ratio is the
worst case ratio between the makespan of an online or a semi-online algorithm and
the makespan of an optimal offline algorithm (for the same input).

Differently from the purely online version, we consider a semi-online model. In
this semi-online variant, the optimal offline makespan is known in advance, and for
convenience, we assume that its value is 1, by scaling. The variant is called bin stretch-
ing. Thus, the total size of jobs does not exceed 2, and the total size of jobs of GoS 1
does not exceed 1. These simple properties are not restrictive, but they are used in the
analysis of algorithms.

In this study, we consider all possible finite and positive migration factors.We show
tight bounds on the competitive ratio for every possible M > 0, which divides the
problem into four cases, based on different values of the migration factor. The specific
competitive ratios for the different cases are stated below and appear as a graph in
Fig. 1.

Our algorithmwill obviously schedule all jobs with hierarchy 1 to the first machine.
In fact, our algorithms will never migrate jobs in this case. The reason for this is that
such jobs can be arbitrarily small (and a larger job can be replacedwith very small jobs,
essentially without changing the input). Thus, the algorithms examine the migration
option only in cases where a new jobwith hierarchy 2 arrives.We study the pure online
variant of our scheduling problem in another article (Akaria and Epstein 2022), where
the problem is similar, but the algorithm does not know the optimal offline makespan

123

Bin stretching with migration on two hierarchical machines 113

in advance. That work still deals with two hierarchical machines and jobs arriving one
by one over a list, but the optimal offline makespan changes frequently as additional
jobs are presented. We note that in the current work, where we deal with bin stretching
or the semi-online problemwith known optimal cost, we find that the competitive ratio
tends to 1 as M grows. This is in contrast to the online case with migration (Akaria and
Epstein 2022), where the competitive ratio cannot be smaller than a fixed constant, no
matter how large M is. Specifically, in the pure online problem (Akaria and Epstein
2022), the best possible competitive ratio is 3

2 = 1.5 for M ≥ 1, and it is strictly larger
for smaller M . In fact, it is exactly 5

3 for M ≤ 1
3 (Park et al. 2006; Jiang et al. 2006;

Akaria and Epstein 2022), and it is equal to 1 + 1
M+1 for 1+√

5
2 ≤ M ≤ 1.

The tight bound for online bin stretching on two hierarchical machines and the case
M = 0, which is 3

2 , follows from earlier work (Park et al. 2006) (see also Wu et al.
2012). In Park et al. (2006), the variant where the total size of all jobs is known in
advance is studied. For this last model it is not hard to see that any algorithm is also
valid for the case where the optimal offlinemakespan is known in advance (see below),
and the lower bound on the competitive ratio, presented in that work, is simple, and
the proof is valid for the case of known makespan (we show this later as a special
case of the case M < 1

2). Knowing the cost of an optimal solution allows us to design
better algorithms in terms of their competitive ratios (compared to the case where
the makespan may be arbitrary), but it does not simplify the design of an algorithm,
and often the design becomes more advanced (see Graham 1966; Kellerer et al. 1997;
Azar and Regev 2001; Epstein et al. 2001; Epstein 2003 for a comparison between
algorithms with and without the knowledge of the cost of an optimal solution and
without it, for two machines).

The two similar semi-online problems, bin stretching (Azar and Regev 2001;
Epstein 2003; Böhmet al. 2017b, a;Gabay et al. 2017;Kellerer andKotov 2013;Gabay
et al. 2015), and scheduling with known total size (Kellerer et al. 1997; Angelelli et al.
2004; Cheng et al. 2005; Albers and Hellwig 2012; Kellerer et al. 2015), were both
studied, in particular, for identical machines. It is not hard to see that knowing the
makespan is a stronger assumption compared to knowing the total size, so an algo-
rithm for the latter can be used for the former (with an unchanged competitive ratio),
and a lower bound construction for the competitive ratio of the former can be used for
the latter. The issue of the relation between the two models was addressed specifically
(see Lee and Lim 2013). For two identical machines, there is essentially no difference
between the two variants (Azar and Regev 2001; Kellerer et al. 1997), but for a general
number of machines, it was proven that the two models are different (Albers and Hell-
wig 2012; Böhm et al. 2017b). It follows from previous work (Park et al. 2006; Wu
et al. 2012) that for two hierarchical machines (without migration) the two variants
are also very similar. In the last section, we address the same question for the problem
studied here, and show that the competitive ratio for any migration factor M will be
bounded away from 1, that is, it will not get closer to 1 as M grows (the limit of the
function for M growing to infinity is not 1), as it is the case for bin stretching.

Online scheduling with migration, where it is allowed to migrate jobs whose total
size is proportional to the size of an arriving job, was first proposed by Sanders et al.
(2009), who studied the problem on identical machines (without hierarchies). That

123

114 I. Akaria, L. Epstein

work contains in particular a linear timeonline polynomial time approximation scheme,
which is a family of online algorithms with migration, such that the competitive ratio
can be arbitrarily close to 1 for sufficiently large migration factors. The required
migration factor increases as the competitive ratio is closer to 1, and it is exponential
in the value 1

ε
, where ε is the competitive ratio minus 1. For two identical speed

machines, it is known that the required migration factor is polynomial in 1
ε
(Wakrat

2012), and given the results here, one can also obtain such a scheme for bin stretching
and two hierarchical machines. Seeing this algorithm as an offline algorithm, this gives
us a fully polynomial time approximation scheme (FPTAS), though for the offline
problem, this result is not new (Horowitz and Sahni 1976). However, as explained
above, this is possible since the optimal offline makespan is known in advance, and
not possible for online algorithms with migration (Akaria and Epstein 2022). Job
migration in scheduling according to this migration model has been studied further for
other variants of scheduling and other combinatorial optimization problems (Skutella
and Verschae 2016; Epstein and Levin 2014, 2009, 2019; Gálvez et al. 2020; Berndt
et al. 2020; Levin 2022).

Aswe explain above, the case of identical machines allows an online approximation
scheme for any m, and this is not the case for hierarchical machines. Moreover, the
lower bound will hold for any m ≥ 2 (see a definition for multiple machines below)
by constructing the input used for two machines without defining any jobs that can
run on machines with indices larger than 2. However, one can still improve the result
without migration by usingmigration form ≥ 2 as we show here. For themore general
machine model of restricted assignment (where every job has a subset of machines
where it can run), migration is not helpful at all for two machines (Akaria and Epstein
2022). Here, we show not only that bin stretching for two hierarchical machines has
an online approximation scheme, but also that the migration factor is polynomial in 1

ε
.

As explained above, we show that such a scheme is not possible for the similar variant
of known total size of jobs.

The online hierarchical scheduling problem for multiple machines, or scheduling
with grades of service (GoS) was first proposed by Bar-Noy et al. (2001), where
an algorithm whose competitive ratio is a constant was designed. Each job, as well
as each machine, has a hierarchy associated with it. A job can be scheduled on a
machine only when its hierarchy is no higher than that of the machine. There are
further studies of different hierarchical variants of online and semi-online scheduling
problems. The work of Park et al. (2006), mentioned above, contained a study of the
case of two machines for online and semi-online algorithms, while the work of Jiang
et al. (2006) contained a study of the case of two machines for online algorithms
(including a preemptive variant). Wu et al. (2012) investigated semi-online versions
for two hierarchical machines. Specifically, they showed tight bounds of (1 + √

5)/2
for the case where the largest processing time of any job is known in advance. There
are also multiple studies of the online hierarchical scheduling problem for parallel
machines, its special cases where there cannot be a large number of hierarchies (Zhang
et al. 2009; Crescenzi et al. 2004; Jiang 2008; Tan and Zhang 2011; Lim et al. 2011;
Lee et al. 2014), and semi-online variants with known total size of jobs (Lee et al.
2014). There is vast literature focusing on semi-online hierarchical scheduling on two

123

Bin stretching with migration on two hierarchical machines 115

machines. Xiao et al. (2019) investigated several variants of the problem (including
the case where total size of low-hierarchy is known, and the case where the total size
of each hierarchy is known, see also Luo and Xu 2014; Chen et al. 2015). There is
work on other semi-online models and hierarchical machines, such as bounded sizes
and combined information (Liu et al. 2011; Luo and Xu 2016; Zhang et al. 2015).
There is also work for similar variants with different objectives (Qi and Yuan 2019;
Luo and Xu 2015). It is worth noting that such models of semi-online scheduling were
also studied for other scheduling problems without hierarchies (see for example He
and Zhang 1999; Tan and He 2002; Dósa and He 2004; Min et al. 2011).

Our work deals with a setting where there are two machines. This models many
home offices and small businesses. Moreover, hierarchical machines model a situation
where one of the two computers cannot run tasks of a certain type, for example, due to
memory limitations. The goal of migration is to obtain better solutions at the expense
of allowing some changes in the schedule. Our results show that the exact amount
of migration is important, since increasing the migration factor allows one to obtain
a better performance. Interestingly, many of our algorithms apply a migration step
only once, and this already allows them to obtain an improved performance. This last
property is of interest from a real-life point of view, since changes to the solution are
time consuming. The assumption of the knowledge of the optimal offline makespan
is a model of situations where one knows what to expect from an input, but does not
know the specific input.
Roadmap The paper is organized as follows. We provide definitions and notation in
the second section. In the other sections, we discuss the problem and split it into four
cases with respect to the value of the migration factor M (see Fig. 1 for a specification
of the bounds). Obviously, the competitive ratio as a function of M is monotonically
non-increasing. We design and analyze four algorithms, and we also prove a matching
lower bound on the competitive ratio for each case, obtaining tight bounds for all finite
values of M . The first case is M ≥ 5

2 , for which the tight bound on the competitive
ratio as a function of M is 2M+5

2M+3 . In the second case, 3
4 ≤ M < 5

2 , the tight bound
is on the competitive ratio is 1.25, achieved by an algorithm whose migration factor
does not exceed 3

4 , while the lower bound of 1.25 on the competitive ratio will hold
for any semi-online algorithm with M ≤ 2.5. In the third case, 1

2 ≤ M < 3
4 , we

prove a tight bound of 2− M by presenting two algorithms defined over two different
domains in the interval [12 , 3

4), and proving a lower bound on the competitive ratio for
any algorithm and the suitable value of M . In the last case, 0 ≤ M < 1

2 , we show that
this case is equivalent to the case without migration, by presenting a lower bound of
3
2 on the competitive ratio for any online algorithm whose migration factor is below
1
2 . The idea for the lower bound is similar to that which was presented in Park et al.
(2006), and the algorithm presented in that work (with migration factor M = 0) can
be used, since this is an algorithm for known total size. At the end of the fourth case,
we show that if replacing the assumption of known makepsan with the assumption of
known total size, the problem would have been different, unlike the case M = 0, for
which the two problems are known to be similar (Park et al. 2006; Wu et al. 2012).

123

116 I. Akaria, L. Epstein

2 Preliminaries

Throughout the paper we will use the following notation. Every job will be denoted
by its index in {1, 2, . . . , n}, and it will be presented to the online algorithm in this
order, where the number of jobs n is not known in advance. Each job j (also denoted
by J j) is an ordered pair J j = (p j , g j) (or J j : (p j , g j)), such that p j > 0 is the
processing time and g j ∈ {1, 2} is the grade of service (GoS or hierarchy) of job j . A
job with hierarchy g j can be assigned to any machine in {1, . . . , g j }.

The set of jobs with GoS 1 is denoted by X , and by definition, these jobs are always
assigned to machine 1. We let Y be the set of jobs with GoS 2, that are assigned to the
second machine by a fixed algorithm at a certain point in time during the run of the
algorithm. Similarly, the set of jobs with GoS 2 that are scheduled on the first machine
at a certain time (by the same algorithm) is denoted by Z . Note that jobs of hierarchy
2, which are assigned to a machine at a certain time, could have been scheduled to
that machine by the algorithm at their arrival times, or they might have been assigned
to the other machine, but they were migrated to this machine at a later time. Any job
may be migrated multiple times. Our algorithms will use an additional variable, W .
This variable denotes a subset of jobs with GoS 2 selected by the algorithm, where
the algorithm may migrate it or it may keep it assigned to the second machine.

We let x j , y j , z j , and w j denote the total sizes of the jobs of X , Y , Z , and W ,
respectively, at time j , that is, just after job j was scheduled (and all migrations
corresponding to the arrival of j have been performed). We let x0 = y0 = z0 = w0 =
0, since the sets are empty, before any job was presented to the algorithm.

Thus, the loads ofm1 andm2, after j was assigned, are x j + z j and y j , respectively.
We sometimes let X j , Y j , Z j , and Wj denote the sets X , Y , Z , and W (respectively)
just after j was assigned, for clarity. The maximum processing time and the second
maximum processing time out of the processing times of the jobs of Y j−1 are denoted
by pmax Y

j and pmax Y ,2
j , and the suitable jobs are denoted by jmax Y , jmax Y ,2, respec-

tively. Each of these values is defined to be zero if it is not well-defined (which happens
in the case |Y j−1| ≤ 1).

We let T1 and T2 be the completion times (or loads) at the end of the input of the first
and the second machine respectively, for the algorithm, i.e. the makespan is equal to
max{T1, T2}. We call those loads final. We also let OPTj denote the makespan of an
optimal offline solution OPT just after job j was scheduled. For a complete input with
n jobs, we have T1 = xn + zn and T2 = yn . For any input I , let c∗(I), cAlg(I) denote
the makespan of an optimal solution and the solution of algorithm Alg, respectively.
In particular, we have c∗(I) = OPTn . The competitive ratio for input I is therefore
cAlg(I)
c∗(I) , and the competitive ratio of Alg is the supremum of these values over all
possible instances I .

An illustration of the definitions is provided in Fig. 2. The form of W is according
to Algorithm A defined in Sect. 3.

123

Bin stretching with migration on two hierarchical machines 117

Fig. 2 An illustration of the sets X , Y , X , and W , the selection of W by Algorithm A, and the resulting
migration action

3 The case M ≥ 2.5

In this section, we prove a tight bound on the competitive ratio for the semi-online
problem and the case M ≥ 2.5. Let us define a value μ, which is a function of M , by
μ = 2

2M+3 , where 0 < μ ≤ 1
4 (and 1

μ
≥ 4). The tight bound on the competitive ratio

for this case of the problem is equal to 1+μ = 1+ 2
2M+3 , where this value tends to 1

for M growing to infinity, and it is never exceeds 5
4 . The algorithm whose competitive

ratio is 1+ μ is based on keeping the final completion time of the second machine in
the interval [1 − μ, 1 + μ]. It is obvious that if this is achieved, the completion time
for the first machine will not exceed 1 + μ, because as mentioned earlier, the sum
of all jobs is not greater than 2. After we complete the analysis of our algorithm, we
will prove a lower bound on the competitive ratio for every algorithm that is equal to
1+μ. As a result, we get a tight bound of 1+μ on the competitive ratio for this case,
where μ is the above function of M .

One of the ideas of this algorithm and our other algorithms is that the second
machine should not be underfull, since the first machine may receive jobs that cannot
be assigned to the second machine. Due to the migration option, if the algorithm
encounters a situation where a job of GoS 2 is large and cannot be assigned in a
suitable way, our algorithms will try to migrate jobs, exploiting the fact that the new
job is large, and a large total size can be moved.

3.1 An algorithm

Algorithm A
Let X = ∅, Y = ∅, Z = ∅;
Repeat until all jobs have been assigned:

123

118 I. Akaria, L. Epstein

1. Receive job j with p j and g j ;
2. If g j = 1 holds or y j−1 ≥ 1 − μ holds (or both hold), schedule j on the first

machine and update: X ← X ∪ { j}, or Z ← Z ∪ { j}, respectively.
return to step 1.

3. If y j−1 + p j ≤ 1 + μ holds, schedule j on the second machine and update:
Y ← Y ∪ { j},
return to step 1.

4. Let W be a subset of Z ∪ Y ∪ { j} of maximum total size not exceeding 1 (which
is found by solving a subset sum problem). Update the schedule such that all jobs
of W are assigned to the second machine, and all other jobs are assigned to the
first machine. Update Y ← W , Z ← {Z ∪ Y ∪ { j}}\W , return to step 1.

Examples for this algorithm are provided in “Appendix A.1”. The last step of the
algorithm is applied when the new job is relatively large. In this case the algorithm
tries to imitate an optimal solution. The algorithm applies a procedure that searches
for a subset W with a compatible total size, in order to maintain the balance of the
machines, such that the completion times will not exceed 1 + μ immediately after
step 4 is applied (in fact, they will not exceed 1 in this case, as we show in the proof
of Lemma 3.4). Steps 2 and 3 deal with simple cases, where the new job has GoS
1, or the job can be assigned without any migration such that no machine will have
completion time above 1 + μ. For the cases with a job with a grade of service 2, this
will be obvious, while the case where the grade of service of the new job is 1 will
be analyzed. In particular, if the section condition of step 2 is satisfied, all new jobs
can be assigned to the first machine without any migration. Step 4 is the case where
jobs of GoS 2 should be rearranged, such that the schedule is more similar to that
of the current optimal solution. We present examples for the action of this algorithm
and the other algorithms in the appendix. We show that for this algorithm (only), the
rearrangement step may be applied multiple times.

Note that the running time of this algorithm is exponential due to the last step
where the subset sum problem is solved. It can be found by a slow exact algorithm.
By applying a fully polynomial time approximation scheme for this problem rather
than an exact algorithm, we can obtain a polynomial running time at the expense of
a slightly larger competitive ratio. Now, we prove an upper bound on the competitive
ratio, and analyze its migration factor.

Consider a fixed optimal offline solution OPT , and let o ji denote the load of mi

in this solution for i = 1, 2, after j jobs were assigned. We have o ji ≤ 1, since the
final optimal offline makespan is 1.

Lemma 3.1 After j jobs have been assigned by the algorithm, the load of the second
machine y j is at least min{1 − μ, o j2}.
Proof Assumeby contradiction that there is an index j forwhich y j < min{1−μ, o j2},
and that j is the minimum index for which this holds. Consider the most recent time
before time j , j ′ ≤ j , that a job of GoS 2 was assigned by the algorithm not by
applying step 3, if such a time exists.

If there is no such j ′, this means that for jobs {1, 2, . . . , j} it holds that all jobs of
GoS 2 are assigned by step 3 to machinem2 (this set may contain any number of jobs,

123

Bin stretching with migration on two hierarchical machines 119

and it could be empty), while machine m1 has exactly the jobs of GoS 1. Machine m2
has a subset of jobs with GoS 2 in any solution including the optimal one, while the
algorithm assigns all these jobs to m2, and therefore y j ≥ o j2 ≥ min{1 − μ, o j2}.

If there was an assignment of a job j ′ ≤ j whose grade of service is 2 by step 2, and
there was no assignment by step 4 (or by step 2) up to and including job j , this means
that y j ′−1 ≥ 1− μ, and the load of m2 could not decrease until time j (since step 4 is
not applied, there was no migration, and loads are monotonically non-decreasing as a
function of the job index, starting from time j ′ − 1), so y j ≥ y j ′−1 ≥ 1 − μ.

Finally, assume that step 4 was applied for job j ′ ≤ j , and afterwards no job with
GoS 2 was assigned by step 2 (or by step 4) up to and including time j . Machine m1
received a set of jobs of GoS 2 in the application of step 4 for job j ′. When step 4
is performed, machine m2 receives a set of jobs of maximum size not exceeding 1
out of all possible subsets of already existing jobs of GoS 2. Since the optimal offline
makespan at termination is 1, the optimal makespan at this time is also at most 1,
and therefore m2 has a set of jobs of total size at most 1 in optimal solutions, that is,
o j ′2 ≤ 1, and since one of the options for W is the set of jobs of m2 in the optimal
solution at this time, we find y j ′ = w j ′ ≥ o j ′2. If j ′ = j , we are done (since we
already reach a contradiction), and otherwise, according to the assumption we have
that y j < min{1 − μ, o j2}. By the choice of j ′, all jobs in { j ′ + 1, . . . , j} whose
GoS is 2 are assigned by step 3. Thus, the jobs assigned to machine m2 at time j (the
jobs of the set Y j) are exactly those of Wj ′ together with all jobs of GoS 2 among
{ j ′ +1, . . . , j}. Let the total size of this last set of jobs be denoted by λ ≥ 0. Based on
the optimal solution, we find that among jobs 1, 2, . . . , j ′ there is a subset of jobs of
GoS 2 whose total size is at least o j2 −λ, where o j2 −λ ≤ 1 since o j2 ≤ 1 and λ ≥ 0.
This subset could have been chosen as Wj ′ and therefore w j ′ ≥ o j2 − λ. However,
the current load of m2 for the algorithm after j is assigned satisfies y j = w j ′ + λ.
Combining with y j < o j2 gives o j2 > y j = w j ′ + λ ≥ o j2, which is a contradiction.

��
Corollary 3.2 After j ≥ 1 jobs have been assigned, the load of the first machine is at
most 1 + μ.

Proof By Lemma 3.1, we have y j ≥ min{1 − μ, o j2}. We also have x j + y j + z j =
o j1 + o j2, which is the total size of the first j jobs. We bound from above the load of
m1, which is equal to x j + z j as follows. If y j ≥ 1−μ, using x j + y j + z j ≤ 2, we get
x j + z j ≤ 2− y j ≤ 1+ μ. If y j ≥ o j2, we get x j + z j = o j1 + o j2 − y j ≤ o j1 ≤ 1,
since an optimal solution for a sub-input has makespan not exceeding 1. ��
Lemma 3.3 After j jobs have been assigned, the load of the second machine is at most
1 + μ.

Proof We prove the claim by induction. Obviously, it holds for j = 0 since y0 = 0. If
y j = y j−1, we are done. Otherwise, one of steps 3 and 4 was applied. If j is assigned
in step 3, then we have y j = y j−1 + p j ≤ 1 + μ. Otherwise, y j = w j ≤ 1. ��
Lemma 3.4 For every M ≥ 2.5, the migration factor of the algorithm is at most
M = 1

μ
− 3

2 .

123

120 I. Akaria, L. Epstein

Proof The only step where jobs may be migrated is step 4, and in this case the GoS
of the new job j is 2 (g j = 2). Note that j was not assigned to any machine prior to
this step and therefore it is not migrated but only other jobs of Wj may be migrated.

We analyze the loads of the two machines before and after the reassignment. By
the action of the algorithm, y j = w j ≤ 1, and w j ≥ o j2 (which holds by definition).
Moreover, by the choice of Wj such that w j ≥ o j2, we find that the resulting load of
m1 will be at most o j1 + o j2 − y j = o j1 + o j2 − w j ≤ o j1 ≤ 1. Thus, both loads
will be at most 1 for the algorithm after the assignment of j is completed.

Before the application of step 4, since step 3 is not applied, it holds that y j−1+ p j >

1 + μ, and we have x j−1 + z j−1 ≤ 2 − y j−1 − p j ≤ 1 − μ. Since step 2 was not
applied and g j = 2, it was the case that y j−1 < 1 − μ, so we have that both loads
were at most 1 − μ. We note the case where one of the machines already has a total
size of at least 1 − μ is in fact easy in the process of assigning a job of GoS 2.

Let i ∈ {1, 2} be the machine that has j after the reassignment. The load of machine
i will be at most 1, and the total size of jobs migrated from the other machine m3−i is
at most 1 − p j . Since the load of mi before the migration is at most 1 − μ, this is an
upper bound on the total size of jobs migrating to m3−i . We find that the total size of
migrated jobs does not exceed 2 − p j − μ.

We bound the value p j from below. Since step 3 was not applied, we have y j−1 +
p j > 1 + μ. Using y j−1 < 1 − μ as well, we have p j > 1 + μ − y j−1 > (1 +
μ) − (1 − μ) = 2 · μ. Thus, the migration factor for the step of assigning j is below
2−p j−μ

p j
<

2−3μ
2μ = 1

μ
− 3

2 . ��
We conclude with the following theorem.

Theorem 3.5 The competitive ratio for Algorithm A is at most 1 + μ = 1 + 2
2M+3 =

2M+5
2M+3 , and its migration factor is at most M.

Proof The proof follows directly from the lemmas and corollary above. ��

3.2 A lower bound on the competitive ratio of the case where M ≥ 2.5

Theorem 3.6 The competitive ratio for every algorithm when M ≥ 2.5 is at least
1 + μ = 1 + 2

2M+3 .

Proof Wedefine an input basedon the actions of a givendeterministic online algorithm.
Let the first two jobs of the input be J1 = (1 − γ, 2) and J2 = (1 − 2γ, 2), where γ

is a constant such that 0 < γ < μ ≤ 1
4 (whose value is close to μ).

Consider the schedule of the online algorithm after the first two jobs were presented
and all migrations were performed. If both jobs are assigned to the same machine by
the algorithm at this time, the makespan is 2 − 3γ ≥ 5

4 ≥ 1 + μ. In this case there
are also very small jobs of GoS 2 and total size 3γ (for example, 3M jobs of size γ

M
each), so the makespan of an optimal solution is indeed 1, and the first two jobs cannot
be migrated, since the migration factor would be at least 1−2γ

γ
M

= M · (1
γ

− 2) > 2M .

If the algorithm scheduled the first job on the first machine, and it scheduled the
second job on the second machine, the input proceeds with a third job J3 = (2γ, 1).

123

Bin stretching with migration on two hierarchical machines 121

Fig. 3 The schedules produced by an online algorithm with migration factor M ≥ 2.5 in the main cases
of the proof of Theorem 3.6, represented as a decision tree. Some of the cases where both large jobs are
assigned to the same machine as a result of migration are omitted

The optimal offline cost now is exactly 1. This job cannot cause the migration of both
previous jobs simultaneously as 2−3γ

2γ = 1
γ

− 3
2 > 1

μ
− 3

2 = M . If it causes the
migration of one existing job, there will be a machine of load 2 − 3γ > 1 + μ, and
the situation is as in the case where the two jobs were assigned to the same machine.
Finally, if there is no migration, the first machine has a load of 1+ γ , as J3 cannot be
assigned to m2. As mentioned earlier, an optimal solution has a makespan of 1, since
it swaps the machines of the first two jobs.

If the algorithm schedules the first job on the secondmachine, and the second job on
the first machine, we continue to the next jobs in the input that are J3 = (2γ, 2), J4 =
(γ, 1). Once again, none of these jobs can cause the migration of more than one job
out of the first two jobs, and the migration of just one job results in a makespan above
1 + γ . Consider the schedule after termination. Machine m1 has jobs J2 and J4. If it
also has J3, its load is 1+γ . Otherwise,m2 has J1 and J3, and its load is 1+γ , so the
makespan of the algorithm is 1 + γ in both cases, An optimal solution can schedule
J1 and J4 on m1 and the other two jobs on m2.

Because all optimal schedules for the above inputs have makespan 1, while the
algorithm always has makespan not below 1 + γ , by letting γ tend to μ, we get a
lower bound of 1 + μ on the competitive ratio of any online algorithm.

The diagram of Fig. 3 describes the difficult cases of the aforementioned input. ��

4 The case 3
4 ≤ M < 5

2

In this section, we prove a tight bound on the competitive ratio for the same semi-
online problem, but with a different value for the migration factor M , which will now

123

122 I. Akaria, L. Epstein

satisfy 3
4 ≤ M < 5

2 . The tight bound on the competitive ratio for this case of the
problem is equal to 1.25. The proof of a tight bound for this problem in this case is
divided into two parts as in the previous case. In the first part we present Algorithm
B, whose competitive ratio is 1.25 and its migration factor does not exceed 3

4 . The
second part is a lower bound of 1.25 on the competitive ratio for any online algorithm
with M ≤ 2.5. This part was already proved in the previous section, since this is the
lower bound for the case M = 2.5, and we do not repeat it here.

The idea behind this algorithm is similar to that of Algorithm A, except that Algo-
rithm B maintains the load of machine m2 such that it will not exceed 1.25, and such
that the final load will be within a fixed interval [0.75, 1.25]. Due to this property
(the lower bound on the load of m2), the final load of machine m1 will not exceed
1.25. Now, we present the algorithm and analyze it, and prove an upper bound on the
competitive ratio. This algorithm and all further algorithms have polynomial running
times.

4.1 An algorithm

Algorithm B
Let X = ∅, Y = ∅, Z = ∅, W = ∅;
Repeat until all jobs have been assigned:

1. Receive job j with p j and g j ;
2. If g j = 1 holds or y j−1 ≥ 0.75 holds (or both), assign j to the first machine and

update: X ← X ∪ { j}, or Z ← Z ∪ { j}, respectively.
return to step 1.

3. If y j−1 + p j ≤ 1.25 holds, assign j to the second machine and update: Y ←
Y ∪ { j},
return to step 1.
In the remaining cases Y j−1 is non-empty.

4. If p j ≥ 0.75 holds, sort the jobs in Y by non-increasing size, and update W to
be the maximum length prefix of the sorted list with total size at most 0.75 · p j

(where W may be empty).

4.1. If y j−1 − w j + p j > 1.25 holds, assign j to the first machine and update:
Z ← Z ∪ { j}.

4.2. Otherwise, migrate the jobs of W to the first machine, assign j to the second
machine and update: Y ← (Y\W) ∪ { j} and Z ← Z ∪ W .

return to step 1.
5. If p j+ pmax Y

j > 1.25 holds, assign j to the firstmachine and update: Z ← Z∪{ j}.
Otherwise (in the case p j + pmax Y

j ≤ 1.25), apply the next steps:

5.1. If pmax Y
j ≥ y j−1

2 holds, update W ← Y \ { jmax Y }.
5.2. If 0.25 ≤ pmax Y

j <
y j−1
2 holds, update W ← { jmax Y }.

5.3. If pmax Y
j < 0.25 holds (which is the remaining option), sort the jobs of Y

by non-increasing size and update W to be the minimum length prefix of the
sorted list with total size at least 0.25, and the entire list Y if no such prefix

123

Bin stretching with migration on two hierarchical machines 123

exists. If w j > 0.75 · p j holds, update W ← Y \ W , and otherwise keep W
unchanged.

5.4. No matter how W was computed, migrate all jobs of W to the first machine,
assign j to the secondmachine and update:Y ← (Y\W)∪{ j} and Z ← Z∪W .

return to step 1.

Examples for this algorithm are provided in “Appendix A.2”. The idea of the first
three steps in Algorithm B is the same idea of the Algorithm A. In the last steps, step
4 and 5, when Algorithm B is forced to migrate jobs, the idea is different. In these
steps, the algorithm tries to find a subsetW of Y (in polynomial time), such that it can
migrate this set to machine m1. Jobs are only migrated from machine m2 to machine
m1. The algorithm attempts to find such a subset of jobs that their total size satisfies the
following property forw j : γ j ≤ w j ≤ 0.75 · p j , where we let γ j = y j−1+ p j −1.25.
The value γ j is a lower bound on the total size that has to be migrated from the second
machine to obtain y j ≤ 1.25, in order to allow j to be scheduled on the second
machine. If step 4 is reached, by the condition of step 3 (which does not hold), γ j is
strictly positive (and so is y j−1 which is implied by p j ≤ 1, and this is the reason
that in steps 4, 5 it is assumed that Y j−1 is non-empty). Specifically, in the analysis
of cases 4,5, we will use the property y j−1 > 0, on which we base the assumptions
Y j−1 = ∅ and pmax Y

j > 0.
The way the algorithm selectedW is based on the required migration factor of 0.75,

and the correctness is based in particular on the next fact. No input can have three jobs
for which the total processing time of every subset of two jobs out of the three is greater
than 1. This holds since the optimal offline cost is 1, and by the pigeonhole principle
that states that there is a machine that receives at least two of these three jobs. In both
steps 4 and 5, if the algorithm does not find a set W as required, then job j will be
assigned to machine m1 (this is tested in advance in both steps). In what follows, we
prove that for each input, once the algorithm enters step 4 or step 5, it will never enter
any of those steps again. In both cases (no matter whether there is a suitable subsetW
or not) the final load of the two machines will be at most 1.25.

In the next lemma we discuss step 4, and the case where the new job is assigned
to the first machine, which is done since the condition y j−1 − w j + p j > 1.25 holds
by the first option of this case. Due to the action of case 4, if W is non-empty, it holds
that 0 < pmax Y

j ≤ 0.75 · p j .

Lemma 4.1 Consider step 4. If j is assigned to the first machine and Wj is not empty,

then it holds that p j + pmax Y ,2
j > 1 and pmax Y

j + pmax Y ,2
j > 0.75 · p j > 0.5 (and

p j + pmax Y
j > 1 holds as well).

Proof We start with the properties which hold for any job j assigned to machine m1
in step 4. Since this step is applied, we have p j ≥ 0.75. Since step 2 was not applied,
we have y j−1 < 0.75. Since step 3 was not applied, we have y j−1 + p j > 1.25.

The condition for assignment of j to the first machine is y j−1 − w j + p j > 1.25.
By this condition, we get that w j < y j−1 + p j − 1.25 holds. By using w j < y j−1 +
p j − 1.25 and y j−1 < 0.75, we have w j < p j − 0.5. By using p j ≤ 1, we find
w j < p j − p j

2 = p j
2 . By the same property, we also have y j−1 − w j > 0.25, so

123

124 I. Akaria, L. Epstein

there is at least one job of Y j−1 that was not included inWj . In particular, we find that
pmax Y ,2
j is well-defined (the second largest job is an actual job and the value is not

zero), since Wj and Y j−1 \ Wj are non-empty (for Wj this is one of the conditions of
the lemma).

Let Jk be the first job (with the maximum processing time) in Y\W according to
the sorted list of Y j−1 (which was used to find Wj). Let α ≥ 2 be the index of k in the
list for Y j−1 (it holds that α = 1, since W is non-empty). Every job among the first α
jobs of this list has size at least pk , so w j ≥ (α − 1) · pk .

Consider the case α ≥ 3, whereWj consists of at least two jobs, andw j ≥ 2 · pk (or
equivalently, pk ≤ w j

2). In this case, we havew j + pk ≤ 3·w j
2 andw j + pk > 0.75 · p j

(by the choice ofW), yielding w j >
p j
2 , which is a contradiction to a property proved

earlier.
Thus,we are leftwith the caseα = 2. In particular, pk = pmax Y ,2

j , and byw j+pk >

0.75 · p j we obtain that pmax Y
j + pmax Y ,2

j > 0.75 · p j > 0.5, as p j ≥ 0.75. Since

w j = pmax Y
j , we get pmax Y

j < p j − 0.5, or alternatively, p j − pmax Y
j > 0.5, and we

also use pmax Y
j + pmax Y ,2

j > 0.5, where we already proved the last inequality. Taking
the sum of the two inequalities provides the first property of the lemma. It also holds
that p j + pmax Y

j > 1, because pmax Y
j ≥ pmax Y ,2

j . ��
Lemma 4.2 For any job j satisfying p j ≤ 0.5, j is assigned in step 2 or step 3. Once
the property y j ≥ 0.75 holds for some job j , all jobs (of any size and GoS) arriving
after j will be scheduled in step 2.

Proof We start with the first part. If g j = 1, j is assigned in step 2.
Consider the case g j = 2. If prior to the arrival of j it holds that y j−1 ≥ 0.75, it is

also assigned in step 2. Thus, we are left with the case g j = 2 and y j−1 < 0.75. In
this case, y j−1 + p j < 1.25, and therefore j is assigned in step 3.

The second part holds because once y j ≥ 0.75 holds, it can be shown inductively
that every job is assigned in step 2 (to m1), and the property will hold after the
assignment. ��
Lemma 4.3 For every input, the algorithm enters step 4 at most once. Furthermore, if
the algorithm enters step 4, it will assign all future jobs in steps 2 and 3.

Proof If step 4 was not applied at all during the execution, we are done. Otherwise,
let j be the first job for which the algorithm enters step 4, where in particular, we have
p j ≥ 0.75. Since step 4 is reached, step 3 was not applied and y j−1 + p j > 1.25
holds. Recall that in this case Y j−1 is non-empty.

If j is assigned to machine m1 and W is empty, the first job in the sorted order
satisfies pmax Y

j > 0.75 · p j > 0.5. Since both j and an earlier job (the largest job

of the current set Y) have sizes above 1
2 , two jobs of sizes above 0.5 have arrived

already. The input can contain at most two such jobs, so any job that arrives after j
has a processing time of at most 0.5, and by the previous lemma, every such job is
assigned in step 2 or step 3.

If j is assigned to machine m1 and W is not empty, then by the second property of
Lemma 4.1, the set Y j−1 contains two jobs whose total processing time is greater than

123

Bin stretching with migration on two hierarchical machines 125

0.75 · p j > 0.5. None of the two jobs can be scheduled on the same machine with j
in any optimal solution by the first property of Lemma 4.1. Any optimal solution has
one machine with j , whose size is above 1

2 , and another machine with two jobs that
arrived before j , where their total size is also above 1

2 . Thus, each job that arrives after
j has processing time less than 0.5 (since any job that arrives after j should be with
scheduled with j or with the above two largest jobs of Y j−1 in any optimal solution),
and once again all further jobs are scheduled in a step prior to step 4, by the first part
of Lemma 4.2.

Finally, if j is assigned to machine m2, no matter what the exact properties of W
are, we get y j ≥ p j ≥ 0.75, and by the second part of Lemma 4.2, this means that all
jobs will be assigned in step 2. ��

In what follows, let � denote the total size of jobs of GoS 1 in the entire input.

Lemma 4.4 If step 5 is applied for a new job j , and it holds that p j + pmax Y
j ≤ 1.25,

then the algorithm always manages to update W such that γ j ≤ w j ≤ 0.75 · p j and
w j < 0.5, and after assigning j , the makespan will not exceed 1.25. If afterwards m1
receives only jobs of GoS 1, then its load will remain at most 1.25.

Proof Consider job j that is assigned in step 5. The assumption of the lemma is
p j+pmax Y

j ≤ 1.25, and the setW is computed by the algorithm. Since j is not assigned
in an earlier step, and due to the assignment in step 5, we have 0.5 < p j < 0.75,
y j−1 < 0.75, and p j+y j−1 > 1.25. So 0.5 < y j−1 < 0.75holds aswell. In particular,
Y j−1 is non-empty, as it holds for every assignment in steps 4 and 5. Additionally,
we have γ j = y j−1 + p j − 1.25 < 0.75 + 0.75 − 1.25 = 0.25. We first show
that in all three options of case 5 for assigning j to the second machine, we have
γ j ≤ w j ≤ 0.75 · p j and w j < 0.5.

Now, if pmax Y
j ≥ y j−1

2 holds, the algorithm updates W to be Y \ { jmax Y }, and in

this case we get w j = y j−1 − pmax Y
j ≤ y j−1

2 < 3
8 < 0.75 · p j . On the other hand

γ j = y j−1 + p j − 1.25 = (w j + pmax Y
j) + p j − 1.25, this yields γ j ≤ w j as

pmax Y
j + p j ≤ 1.25.

If 0.25 ≤ pmax Y
j <

y j−1
2 holds, the algorithm updates W to contain only { jmax Y },

i.e w j = pmax Y
j , and in this case we get γ j < 0.25 ≤ w j <

y j−1
2 < 3

8 < 0.75 · p j .

Finally, if pmax Y
j < 0.25, the algorithm sorts the jobs of Y by non-increasing size

and updates W to be the minimum length prefix of the sorted list with total size at
least 0.25. Since pmax Y

j < 0.25 (so all jobs of Y j−1 are smaller than 0.25), while
y j−1 > 0.5, the algorithm initially updates W to be of total size in [0.25, 0.5). Since
0.5 < y j−1 < 0.75, the total size of the jobs of the complement set is smaller than 0.5.
Therefore, no matter whetherW is the original one or the complement, bothw j < 0.5
and y j−1 − w j < 0.5 will hold.

Ifw j ≤ 0.75·p j , the setW is notmodified further, andwe are done alsowith respect
to this property of W . Otherwise, the algorithm updates W to be its complement set
with respect to Y . Since y j−1 < 0.75 ≤ 3p j

2 , for the partition of Y j−1, at least one of

the two subsets has total size atmost
3p j
4 , and therefore the total size of the complement

set is smaller than 0.75 · p j , and for the final and possibly modified set W , we get

123

126 I. Akaria, L. Epstein

w j ≤ 0.75 · p j . On the other hand γ j = y j−1+ p j −1.25 < (0.5+w j)+ p j −1.25 =
w j + p j − 0.75. Since p j < 0.75 we get γ j < w j .

To prove the last part, note that j will be assigned to machine m2, and recall that
we have γ j ≤ w j ≤ 0.75 · p j where the algorithm migrates W to machine m1. Thus,
after assigning j we get y j = p j + y j−1 − w j ≤ p j + y j−1 − γ j = 1.25.

As for the load of the first machine, we have y j−1 + p j > 1.25, and therefore the
total size of jobs whose GoS is 1 is below 0.75. We have z j−1 + y j−1 + p j ≤ 2− �.
If the first machine only receives jobs of GoS 1 after j was assigned, its load is at most
� + z j−1 + w j ≤ 2 − (y j−1 + p j) + w j < 2 − 1.25 + 0.5 = 1.25. ��
Lemma 4.5 For every input, the algorithm enters step 5 at most once. Furthermore, if
the algorithm enters step 5, all further jobs will be assigned in steps 2 and 3.

Proof If the algorithm does not apply step 5, we are done. Otherwise, let j be the first
job for which the algorithm applies step 5. Since previous steps were not applied for
j , we have 0.5 < p j < 0.75 and y j−1 + p j > 1.25. If p j + pmax Y

j > 1.25, it holds

that pmax Y
j > 0.5. Therefore, since there are already two jobs of sizes above 0.5, due

to the optimal offline makespan of 1, any job that arrives after j has a processing time
of at most 0.5. This means the algorithm will assign all future jobs in steps 2 and 3
(see Lemma 4.2). If p j + pmax Y

j ≤ 1.25, then by Lemma 4.4, j will be assigned to
machine m2, and w j < 0.5, so we get y j = y j−1 + p j − w j ≥ 1.25 − 0.5 = 0.75.
Therefore, the algorithm will assign all further jobs by step 2. ��
Corollary 4.6 For every input, the algorithm will not enter both steps 4 and 5.

Proof If the algorithm assigns j in step 4, then by Lemma 4.3 it assigns all further
jobs in steps 2 and 3. If the algorithm assigns j in step 5, the situation is similar, by
Lemma 4.5. Thus, after one of steps 4 and 5 is applied, none of these steps is applied
again. ��
Lemma 4.7 After assigning a job, j , in step 4, the makespan is at most 1.25. The load
of m1 will not exceed 1.25 even if it receives additional jobs of GoS 1 in the future.

Proof By Corollary 4.6, the algorithm never entered step 4 or 5 before j is presented.
Therefore, machine m1 has no jobs of GoS 2. This holds since jobs of GoS 2 are not
assigned to m1 in step 3, and for step 2, once such a job is assigned to m1, all future
jobs (for both hierarchies) will be assigned by the same step to the same machine, and
the algorithm would not have reached step 4.

Since previous steps were not applied but step 4 is applied, we have p j ≥ 0.75,
y j−1 < 0.75, and y j−1 + p j > 1.25.

Now, if j is assigned to machine m2, we have a subset W such that y j−1 + p j −
1.25 = γ j ≤ w j ≤ 0.75 · p j that the algorithm migrated it to machine m1, so we get
0.75 ≤ p j ≤ y j = y j−1 + p j − w j ≤ 1.25, and x j + z j ≤ 2 − y j ≤ 1.25.

If j is assigned to machine m1, it holds that y j = y j−1 < 0.75, and we have
y j−1 − w j + p j > 1.25. Assume that W is empty. For an assignment in step 4, the
set Y j−1 is non-empty, so already the first job in the sorted order was too large, and
pmax Y
j > 0.75 · p j > 1

2 holds. Otherwise, by Lemma 4.1, Y j−1 contains a pair of jobs

123

Bin stretching with migration on two hierarchical machines 127

whose total processing time is greater than 0.75 · p j , and the total size of each of them
together with j is above 1. In the case where W is empty, a single job plays the role
of these two jobs.

In any optimal solution, one machine has j , and the other machine has jobs of GoS
2 with total size above 0.75 · p j , and therefore each machine has jobs of total size
above 0.75 · p j of GoS 2. This implies that the total size of jobs of GoS 1 is at most
1−0.75 · p j , since only one machine may have such jobs, and thus� ≤ 1−0.75 · p j .
As long as machine 1 does not get other jobs of GoS 2, it has jobs of GoS 1 and the
set Z j = { j}, and its load is at most p j + � ≤ 1 − 0.75 · p j + p j ≤ 1.25. ��
Lemma 4.8 In step 5, if p j + pmax Y

j > 1.25, then after assigning j the makespan is
at most 1.25. If afterwards m1 receives only jobs of GoS 1, then its load will remain
at most 1.25.

Proof Similarly to Lemma 4.7, by Corollary 4.6, the algorithm never entered step 4
or 5 before j , and machine m1 has only jobs of GoS 1 (the set of such jobs may be
empty). Since the largest job of Y j−1 and job j are assigned to different machines in
any optimal solution (as their total size is above 1), the total size of jobs whose GoS is 1
is at most max{1− p j , 1− pmax Y

j }, and this is an upper bound on�, which we used to
denote the total size of jobs of GoS 1 in the entire input. Once again y j = y j−1 < 0.75,
so it remains to bound the load of the first machine, including all jobs of GoS 1.

We have � + z j = � + p j . If max{1 − p j , 1 − pmax Y
j } = 1 − p j , we get

� + z j ≤ 1. Otherwise, � + z j ≤ 1 − pmax Y
j + p j < 2 · p j − 0.25. In this case it

holds that p j ≤ 0.75, and therefore � + z j < 1.25. ��
Theorem 4.9 The competitive ratio for algorithm B is at most 1.25.

Proof Since the optimal offline cost is 1, we show by induction that the makespan
never exceeds 1.25. The base case is before any job was assigned. We assume that just
before job j (for j ≥ 1) is assigned, the makespan does not exceed 1.25. We already
showed that the makespan will not exceed 1.25 after an assignment by step 4 or 5. If
j is assigned in step 2 and y j−1 ≥ 0.75, we have y j = y j−1 ≤ 1.25 by the induction
hypothesis and x j + z j ≤ 2 − y j ≤ 1.25. If j is assigned by step 3, the property is
satisfied by induction and by the condition of this case. We are left with the case that
j is assigned by step 2 while y j−1 < 0.75, in which case g j = 1 holds. If z j = 0, we
get x j ≤ 1, since the total size of jobs of GoS 1 does not exceed 1, so we assume that
z j > 0. This means that one of steps 4, 5 was applied in the past. In all cases for steps
4 and 5 we saw that as long as m1 only receives jobs of GoS 1, its load remains no
larger than 1.25. Thus, we consider the case that it received a job of GoS 2 afterwards,
which could only happen in step 2. At the time of assignment, the total size of jobs
in Y was at least 0.75. When only steps 2 and 3 are applied, the total size of jobs of
Y cannot decrease, and when a job whose GoS is 2 was assigned to m1, this means
that the total size for Y was at least 0.75. Thus, y j−1 ≥ 0.75, which contradicts the
condition of the case. ��
Lemma 4.10 The migration factor of the algorithm is at most 3

4 .

123

128 I. Akaria, L. Epstein

Proof The only two steps where jobs may be migrated, step 4 and 5. In step 4, W is
migrated, and it is selected such that its total size does not exceed 0.75 · p j . For step
5, a similar property was proved in Lemma 4.4. ��

5 The case 1
2 ≤ M < 3

4

In this section, we prove a tight bound of 2− M for the case M ∈ [12 , 3
4). In the end of

this analysis, we will show a lower bound on the competitive ratio for any algorithm.
The upper bound on the competitive ratio is shown by presenting two algorithms (C
and D) defined over two different domains of the migration factor of this case. The
idea behind both algorithms is similar to the previous algorithms, but still we present
two distinct algorithms. The algorithms use different approaches of determiningW in
order to migrate jobs to m1, and maintain a load for m2 that is not greater than 2− M .
In the domain 1

2 ≤ M < 2
3 , Algorithm C finds a subset W of Y , whose migration

will fulfill the required properties. In the domain 2
3 ≤ M < 3

4 , the Algorithm D finds
a subset W of Y also, but the two algorithms differ in size of this subset, which is
stemmed from the property that the migration factor is larger and the competitive
ratio is smaller. We present the proof of the bounds of the competitive ratios, and the
migration factors, after presenting them. We begin with Algorithm C with a migration
factor in the interval [12 , 2

3):

5.1 An algorithm for the case 1
2 ≤ M < 2

3

Algorithm C
Let X = ∅, Y = ∅, Z = ∅, W = ∅;
Repeat until all jobs have been assigned:

1. Receive job j with p j and g j ;
2. If g j = 1 holds or y j−1 ≥ M holds (or both), assign j to the first machine and

update: X ← X ∪ { j}, or Z ← Z ∪ { j}, respectively.
return to step 1.

3. If y j−1 + p j ≤ 2 − M holds, assign j to the second machine and update: Y ←
Y ∪ { j},
return to step 1.

4. If pmax Y
j > M · p j holds, assign j to the first machine and update: Z ← Z ∪ { j}.

return to step 1.
5. Sort the jobs in Y by non-increasing size, and updateW to be the minimum length

prefix of the sorted list with total size at least p j + y j−1 − (2− M) (or letW = Y
if not such subset exists). Migrate all jobs of W to the first machine, and assign j
to the second machine, and update: Y ← (Y \ W) ∪ { j} and Z ← Z ∪ W .
return to step 1.

Examples for this algorithm are provided in “Appendix A.3”. The idea of the first
three steps of Algorithm C is similar to the idea of its predecessors. It handles small
jobs and ensures that the load of the second machine load is at most 2− M . In the last

123

Bin stretching with migration on two hierarchical machines 129

steps, step 4 and step 5, Algorithm C relies on the fact that in each input there cannot
be three jobs such that the total processing time of each pair of jobs (out of these three
jobs) exceeds 1. Similarly to Algorithm B, we prove that Algorithm C may apply step
4 or 5, but not both, so such a step (one of these two steps) is applied at most once
for every input. Then, we prove that if Algorithm C enters step 5, then it will always
be able to find a subset W of Y such that γ j ≤ w j ≤ M · p j , where γ j in the case
1
2 ≤ M < 3

4 is equal to y j−1 + p j − (2− M). The value γ j is again a lower bound on
the total size that has to be migrated from the second machine to obtain y j ≤ 2 − M ,
which allows the algorithm to schedule j on the second machine.

Note that the if the algorithm reaches step 4 (and it applies this step or step 5), it
holds that y j−1 < M (since step 2 was not applied) and y j−1 + p j > 2 − M (since
step 3 was not applied), which implies that p j > 2 − 2 · M ≥ 2

3 (by the condition of
the case for M). In this case, we will have M · p j ≥ M · (2− 2M) > 4

9 . The property
y j−1 + p j > 2 − M implies that the set W is always selected such that its total size
is at least y j−1 + p j − (2 − M). We also have pmax Y

j ≤ M · p j if step 5 is applied.
We will show precisely that W is selected appropriately.

Lemma 5.1 In step 5, the algorithm always manages to update W such that γ j ≤
w j ≤ M · p j .

Proof Suppose that the algorithm enters step 5. The selected set has total size at least
γ j = p j + y j−1 − (2 − M) since such a subset exists, and therefore γ j ≤ w j holds.
It is left to show that w j ≤ M · p j holds. By pmax Y

j ≤ M · p j , we can consider the
following two cases:

1. γ j ≤ pmax Y
j ≤ M · p j .

2. pmax Y
j < γ j .

In the first case, W will consist of one job, which is the largest job in Y , i.e γ j ≤
w j = pmax Y

j ≤ M · p j . In the second case pmax Y
j < γ j holds, and we use the

following properties.

1. y j−1 > γ j , because p j+M−2 ≤ 1+ 2
3−2 = − 1

3 yields γ j < γ j−p j+(2−M) =
y j−1.

2. M + 2 < 4 − 2M , because M < 2
3 .

3. (2 − M) · p j + 2 · y j−1 < M + 2, because y j−1 < M, p j ≤ 1.

The concatenation of the last two properties gives (2−M)· p j +2 · y j−1 < 4−2M .
We get (2 − M)p j + 2y j−1 < 4 − 2M ⇔ 2(p j + y j−1 − 2 + M) < Mpj ⇔
2γ j < M · p j . Every job scheduled on the second machine (any job of Y j−1) has a
size of less than γ j , (because pmax Y

j < γ j). Therefore, a minimum length prefix of
the sorted list with total size at least γ j will have a total size of at most 2γ j < M · p j .

��
Lemma 5.2 For any job j satisfying p j ≤ 2 − 2M, j is assigned in step 2 or step
3. Once the property y j ≥ M holds for some job j , all jobs arriving after j will be
scheduled in step 2.

123

130 I. Akaria, L. Epstein

Proof The proof is the same as the proof of Lemma 4.2, taking into account the
different parameters.

If g j = 1, j is assigned in step 2. If prior to the arrival of j it holds that y j−1 ≥ M ,
it is also assigned in step 2. Thus, we are left with the case g j = 2 and y j−1 < M . In
this case, y j−1 + p j < 2 − M , and therefore j is assigned in step 3. ��
Lemma 5.3 For every input, the algorithm enters the union of steps 4 and 5 at most
once.

Proof If none of these steps is applied, we are done. Otherwise, let j be the first job
for which step 3 is considered but not applied. Since steps 2 and 3 were not applied,
it holds that p j > 2 − 2M .

If the algorithm enters step 4, i.e. pmax Y
j > M · p j > M(2 − 2M). We have

(2−2M)+ M(2−2M) > 1 and 2(2−2M) > 1, since (2−2M)+ M(2−2M) =
2(1−M)(1+M) = 2(1−M2) ≥ 2(1−4/9) > 1 and M < 2

3 . Therefore, later in the
input no job with processing time more than 2 − 2M will arrive (because a machine
that will get two of the three largest will have load above 1), so by Lemma 5.2, the
algorithm will not reach step 4 or step 5.

If pmax Y
j ≤ M · p j , then j will be assigned in step 5 to machine m2, and in this

case we get y j ≥ p j > 2 − 2M ≥ M . Therefore, by Lemma 5.2 all jobs that arrive
after j will be assigned to the first machine by step 2. ��
Lemma 5.4 If job j is assigned in step 4 or step 5, after assigning j , the makespan is
at most 2− M. If m1 will only get jobs of GoS 1 afterwards, its load will never exceed
2 − M.

Proof In this case j has GoS 2, and it holds that y j−1 < M and y j−1 + p j > 2− M ,
since the conditions of steps 2 and 3 do not hold. By Lemma 5.3, the algorithm never
entered step 4 or 5 before j . Therefore, machine m1 has only jobs of GoS 1 (or it
may be empty), by Lemma 5.2. If pmax Y

j > M · p j , we have two jobs whose total
size is above 1 which must be assigned to different machines in any optimal solution
(in the proof of Lemma 5.3, we saw that p j + M · p j > 1). Thus, the total size of
jobs with GoS 1 (recall that it is denoted by �) is at most max{1 − p j , 1 − pmax Y

j }.
Step 4 is applied, and since y j = y j−1 < M < 2 − M , we analyze m1. We have
� + z j = � + p j . If p j ≤ pmax Y

j , we get � + p j ≤ 1. Otherwise, � + p j ≤
1 − pmax Y

j + p j < 1 + p j − M · p j = 1 + (1 − M)p j ≤ 2 − M , since p j ≤ 1.

If pmax Y
j ≤ M · p j , step 5 is applied. The algorithm will assign j to machine

m2, and by Lemma 5.1 it will migrate a subset W of size at least γ j , so we get:
y j = y j−1 − γ j + p j ≤ 2− M , and x j + z j ≤ 2− y j ≤ 2− p j < 2− (2− 2M) =
2M < 2 − M . Since steps 4 and 5 will not be applied again, the set Y will always
have job j , so the load of m1 will never exceed 2 − p j < 2 − M (no matter which
jobs it will receive). ��
Theorem 5.5 The competitive ratio for algorithm C is at most 2 − M.

Proof We use induction again. We saw that an assignment in step 4 or in step 5 is valid
in terms of the competitive ratio. So is an assignment in step 3, and an assignment in

123

Bin stretching with migration on two hierarchical machines 131

step 2 due to a load of M or more for m2. Once again we are left with the case where
a job j with g j = 1 is assigned to m1. If steps 4 and 5 were never applied, and m1
has a job of GoS 2, this means that the load of m2 is at least M and it never decreases.
If one of steps 4 and 5 was applied, but all jobs assigned to m1 later have GoS 1, the
load will not exceed 2 − M . Otherwise, the situation is similar to the case that none
of these steps is applied, since a job of GoS 2 is assigned after m2 already has load of
M or more, so m1 will have a load of at most 2 − M . ��
Lemma 5.6 The migration factor of the algorithm is at most M.

Proof Theonly stepwhere jobsmaybemigrated is step5.ByLemma5.1, the algorithm
always manages to update W such that w j ≤ M · p j , as required. ��

5.2 An algorithm for the case 2
3 ≤ M < 3

4

We consider Algorithm D, whose migration factor is in the interval [23 , 3
4). The struc-

ture of Algorithm D is based on principles similar to the previous algorithms. The
algorithm tries to load machine m2 until its load reaches the interval [M, 2 − M],
while it keeps the load on machine m1 relatively small, that is, not exceeding 2 − M .
As in the last two algorithms, the migration is performed in this algorithm only from
machine m2 to machine m1. The manner of selecting the subset W is similar to its
predecessors, but the selection analysis is more complex. In analyzing the selection
of subset W in Algorithm D, we do not only consider the largest job in Y , but also the
second largest job. Now, we present the algorithm and analyze it.

Algorithm D
Let X = ∅, Y = ∅, Z = ∅;
Repeat until all jobs have been assigned:

1. Receive job j with p j and g j ;
2. If g j = 1 holds or y j−1 ≥ M holds (or both), assign j to the first machine and

update: X ← X ∪ { j}, or Z ← Z ∪ { j}, respectively.
return to step 1.

3. If y j−1 + p j ≤ 2 − M holds, assign j to the second machine and update: Y ←
Y ∪ { j},
return to step 1.

4. If p j ≥ M holds, sort the jobs in Y by non-increasing size, and update W to be
the maximum length prefix of the sorted list with total size at most M · p j (which
may be empty).

4.1. If y j−1 − w j + p j > 2 − M holds, assign j to the first machine and update:
Z ← Z ∪ { j}.

4.2. Otherwise, migrate the jobs of W to the first machine, assign j to the second
machine and update: Y ← (Y\W) ∪ { j} and Z ← Z ∪ W .

return to step 1.
5. Sort the jobs of Y by non-increasing size and updateW to be the minimum length

prefix of the sorted list with total size at least M
3 , or the entire set if no such prefix

exists.

123

132 I. Akaria, L. Epstein

5.1. If w j > min{ 2M3 , M · p j } holds, update W ← Y \ W .
5.2. If y j−1 − w j + p j > 2 − M holds, assign j to the first machine and update:

Z ← Z ∪ { j}.
5.3. Otherwise, migrate the jobs of W to the first machine, assign j to the second

machine and update: Y ← (Y\W) ∪ { j} and Z ← Z ∪ W .

return to step 1.

Examples for this algorithm are provided in “Appendix A.4”. First, we analyze step
4 of AlgorithmD, and the first job j assigned by this step, if it exists. By the condition
of assignment by step 4, p j ≥ M holds. We divide the analysis into two cases:

1. Job j is assigned to machine m2.
2. Job j is assigned to machine m1.

In both cases we prove that the makespan is at most 2 − M . We start with the first
case.

Lemma 5.7 In step 4, if the algorithm assigns j to the second machine, then the final
load of the two machines will be at most 2 − M.

Proof By the condition of assignment of j to m2, we have y j = y j−1 − w j + p j ≤
2 − M . Due to the size of j , we have y j ≥ p j ≥ M . From this moment onwards, the
new jobs will be scheduled on the first machine by step 2, so the final load of machine
m2 will be at least M and at most 2 − M , and the final load of machine m1 will be at
most 2 − M . ��
Lemma 5.8 If j is assigned to m1 in step 4, it holds that |W | ≤ 1 and |W | < |Y |.
Proof IfW = Y , we have w j = y j−1 and y j−1 −w j + p j = p j ≤ 1 ≤ 2−M . Thus,
in the case W = Y , j is assigned to m2.

IfW ≥ 2, while |Y | > |W |, letting k = |W | (where k ≥ 2), we have the following.
The first job of Y (in the sorted order) that is not in W is not larger than any job of W ,
so w j ≥ k · x , where x is the size of that job. Since w j + x > M · p j (as the next job
was not included in W) and x ≤ w j

k , we have k+1
k · w j > M · p j and by k ≥ 2, we

get w j > 2
3 · M · p j .

On the other hand, ifwe show thatw j ≥ 2M−2+p j , wewill have y j−1−w j+p j ≤
y j−1−2M+2 ≤ 2−M , since y j−1 < M . This would imply that j is assigned tom2.
It if sufficient to show that 23 ·M · p j ≥ 2M−2+ p j , and by rearranging, it is sufficient
to show that (1 − 2M

3) · p j ≤ 2 − 2M holds. Since p j ≤ 1 and 1 − 2M
3 > 1

2 > 0
for M < 3

4 , it is sufficient to show that 1− 2M
3 ≤ 2 − 2M , or equivalently, 4M

3 ≤ 1,
which holds since M ≤ 3

4 . ��
Recall that γ j is a lower bound on the total size of migrated jobs, and therefore

γ j = y j−1 + p j − (2 − M) in the current case.

Lemma 5.9 Assume that j is assigned in step 4. If it holds that pmax Y
j < γ j , and

pmax Y
j + pmax Y ,2

j > M · p j , then p j + pmax Y ,2
j > 1 holds (and p j + pmax Y

j > 1

holds as well). Moreover, if pmax Y
j > M · p j , then p j + pmax Y

j > 1 holds. In both
situations, the total size of all jobs of GoS 1 is at most 1 − M · p j .

123

Bin stretching with migration on two hierarchical machines 133

Proof We start with the first property. Let us assume (by contradiction) that the con-
ditions hold but p j + pmax Y ,2

j ≤ 1. We get (by y j−1 < M which holds since step 2
was not applied for j):

M · p j < pmax Y
j + pmax Y ,2

j < γ j + 1 − p j = y j−1 + M − 1 < 2M − 1

i.e. M · p j < 2M − 1. Therefore M2 < 2M − 1, which holds since p j ≥ M (since j
is assigned in step 4). This is a contradiction, because M2 −2M +1 = (M −1)2 ≥ 0.
Thus, we find that p j + pmax Y ,2

j > 1 holds, and it also holds that p j + pmax Y
j > 1,

because pmax Y
j ≥ pmax Y ,2

j .

If we have pmax Y
j > M · p j , we get p j + pmax Y

j > (M + 1) · p j ≥ M(M + 1) ≥
2
3 · 5

3 > 1.
In both cases, there is a job or a pair of jobs that cannot be assigned to the machine

of j in any optimal solution. In the first case those are the two largest jobs of Y , and in
the second case it is the largest job of Y . If j is assigned to m1 in an optimal solution,
the total size of other jobs of m1 is at most 1 − p j ≤ 1 − M · p j since M < 1, and
there are no other jobs whose GoS is 1. Otherwise, the upper bound on jobs of GoS 1
is 1 − M · p j due to the size of the largest job or two largest jobs of Y that cannot be
assigned to m2 in this case (where in the first situation, this is based on a pair of jobs
and in the second situation it is based on one job). ��
Lemma 5.10 In step 4, if the algorithm assigns j to the first machine, then the loads
of the two machines immediately after the assignment of j will not exceed 2− M, and
if m1 will only get jobs of GoS 1 afterwards, its final load after the assignment of all
jobs will be at most 2− M. Moreover, further jobs will assigned by steps 2 and 3, and
the final makespan will not exceed 2 − M.

Proof By Lemma 5.8, we have |W | ≤ 1, and Y has at least one other job. If W is
empty, this means that already pmax Y

j > M · p j holds. In this case, the load of m1 is
at most the total size of jobs of GoS 1 plus p j , which is at most 1 − M · p j + p j by
Lemma 5.9. We have 1 − M · p j + p j = 1 + p j (1 − M) ≤ 2 − M by p j ≤ 1. The
upper bound on the load of m1 is valid not only after j is assigned to it but also as
long as this machine receives only jobs of GoS 1.

If W consists of one job, then pmax Y ,2
j + pmax Y

j > M · p j holds, and due to the

assignment to m1, it holds that pmax Y
j = w j < γ j . By Lemma 5.9, the analysis for

m1 is as in the previous case (since the two largest jobs of Y act as a single job). This
completes the analysis for m1, and the load of m2 is unchanged in the assignment of
j , and it remains below M < 1.
Finally, we consider the loads of the machines after additional jobs arrive. Since

a job of size at least M was assigned to m1 (job j), all further jobs of GoS 2 can be
assigned in step 3 if they are not assigned in step 2, and such an assignment will not
increase the loads above 2 − M . An assignment of a job of GoS 2 in step 2 means
that the load of m2 is already at least M , so after such an assignment is performed, all
further jobs are assigned in step 2, keeping the load of m1 not larger than 2− M (and
keeping the load of m2 unchanged). ��

123

134 I. Akaria, L. Epstein

For the analysis of an assignment of a job j in step 5, the case where in particular
it holds that p j < M , we will first prove some auxiliary lemmas. Note that if step 5 is
applied (and the previous steps were not), we have p j < M , and y j−1 + p j > 2− M ,
which implies y j−1 > 2 − 2M > 2M

3 and y j−1 > 2 − 2M > 1
2 by M < 3

4 . The set
W indeed has a total size above M

3 , since y j−1 > M
3 .

Lemma 5.11 In step 5, given a set of jobs which is a subset of {1, 2, . . . , j −1}, whose
total size is at most M

2 , it is possible to migrate these jobs.

Proof Since j is not assigned in steps 2 and 3, we have p j > 2 − 2M . The proof
follows immediately from the inequality: p j > 2 − 2M > 1

2 , so M · p j ≥ M
2 . ��

Lemma 5.12 In step 5, y j−1 > 2M
3 and p j > 2M

3 hold.

Proof In this case y j−1 < M and p j < M hold since previous steps were not applied.
If one of them has value of at most 2M

3 , we get y j−1 + p j < 2M
3 + M = 5M

3 <
5
3 · 3

4 = 1.25, which is a contradiction, because the algorithm considered step 3 for j
and did not apply it, i.e. y j−1 + p j > 2 − M > 1.25. ��

Note that for step 5 we found two constraints for p j which are p j > 2M
3 and

p j > 2 − 2M . The second one is stronger than the first one, since M < 3
4 .

Lemma 5.13 In step 5, if the algorithm migrates jobs from m2, and schedules j on
m2, and we have M

3 ≤ y j − p j ≤ 2M
3 , then M ≤ y j ≤ 2 − M.

Proof Wewill use the following properties.Wehave 2−2M < p j < M since previous
steps were not applied, and M < 3

4 , which implies 8M
3 < 2. We test the result of such

a possible migration. It holds that p j + 2M
3 ≤ 2 − M , since p j ≤ M ≤ 3

4 . On
the other hand M

3 + p j > M
3 + (2 − 2M) > M . Thus, the migration is applied,

y j ≤ p j + 2M
3 ≤ 2 − M and y j ≥ M

3 + p j > M . ��
Lemma 5.14 In step 5, if the algorithm migrates jobs from m2, where the total size of
these jobs is in the interval [M3 , 2M

3], and it schedules j on m2, then as a result we get
M ≤ y j ≤ 2 − M.

Proof We will use the following properties. We have y j−1, p j < M and p j + y j−1 >

2 − M , since previous steps were not applied, and M < 3
4 , which implies 8M

3 < 2.
If the algorithm tries to migrate a total size which is no less than M

3 , then we get
p j + y j−1 − M

3 ≤ 2M − M
3 = 5M

3 < 2 − M . If the algorithm tries to migrate
a total size of jobs which is no more than 2M

3 , then we get p j + y j−1 − 2M
3 ≥

2 − M − 2M
3 > M . Thus, the migration is applied, y j ≤ p j + y j−1 − M

3 < 2 − M ,
and y j ≥ p j + y j−1 − 2M

3 > M . ��
Lemma 5.15 In step 5, if the algorithm assigns j to machine m2, then the final
makespan will be at most 2 − M, and the migration factor is not violated.

123

Bin stretching with migration on two hierarchical machines 135

Proof In this case the algorithm checks if migration ofW would violate the migration
factor, and replaces it with Y \W if it would. By Lemma 5.11, and since y j−1 < M , at
least one of these sets can be migrated without violating the migration factor, since the
total size of the set with the smallest total size out of W and Y \W is below M

2 . Thus,
if the original W cannot be migrated, its complement can be migrated with respect to
the migration factor. Recall that y j−1 > 2M

3 by Lemma 5.12, and the set W is first
defined to have a total size of at least M

3 . Consider the following cases:
Case 1: pmax Y

j ≤ 2M
3 . In this case, the algorithm initially updates W such that

M
3 ≤ w j ≤ 2M

3 (no matter whether there is migration or not). The lower bound on w j

is based on the total size of Y and on the action of the algorithm. For the upper bound,
we find that if the largest job of Y is of size at least M

3 , thenW initially consists of this
job. Otherwise all jobs have sizes below M

3 , and when the last job is added, the total
size is below M

3 . Thus, the tested condition for w j is only a comparison to M · p j .
Recall that it is assumed in this lemma that there is migration, so the two options are
migration of the initially defined W or migration of Y \ W .

If w j ≤ M · p j , the algorithm migrates W to m1 and schedules j on m2, so by
Lemma5.14we getM ≤ y j ≤ 2−M . Otherwise, the algorithmupdatesW to beY\W ,
migrates it to m1 and schedules j on m2. In the last case, we get M ≤ y j ≤ 2− M by
Lemma 5.13. This holds since y j − p j is exactly the total size of jobs of W , before
W is replaced with its complement.

Case 2: pmax Y
j > 2M

3 , in this case, the algorithm first selectsW to be the maximum
size job in Y . After this, since the total size forW is too large, the algorithm updatesW
to be Y \W , migrates it tom1 (since we assume that there is migration), and schedules
j on m2. Thus, we get y j = p j + pmax Y

j > 2M
3 + 2M

3 > M (see Lemma 5.12), and
by the condition of assignment of j to m2, we have y j = y j−1 + p j − w j ≤ 2 − M .

In all cases we found that M ≤ y j ≤ 2 − M holds, so all jobs arriving after j will
be scheduled on the first machine by step 2, and we get: M ≤ T2 = y j ≤ 2− M , and
T1 = 2 − T2 ≤ 2 − M . ��
Lemma 5.16 In step 5, if the algorithm assigns j to machine m1, then pmax Y

j + p j >

2 − M.

Proof The analysis is related to the proof of Lemma 5.15, but here we analyze the
case where j is assigned to m1, which means that y j−1 − w j + p j > 2 − M holds.

In the case where pmax Y
j ≤ 2M

3 , we saw in the proof of Lemma 5.15 that initially

W is chosen such that its total size is in [M3 , 2M
3]. No matter whether W is modified

or not, by Lemma 5.13 and Lemma 5.14, the situation y j−1 − w j + p j > 2− M will
not be encountered.

Thus, we deal with the case pmax Y
j > 2M

3 . In this case W first contains the largest

job of Y , and then it is modified. Thus, w j = y j−1 − pmax Y
j . An assignment to m1

therefore means that pmax Y
j + p j > 2 − M . ��

Lemma 5.17 In step 5, if the algorithm assigns j to machine m1, then the final
makespan will be at most 2 − M.

123

136 I. Akaria, L. Epstein

Proof It holds that y j−1 + p j > 2 − M , since the condition of step 3 does not hold.
Therefore, since the total size of jobs does not exceed 2, every job k that arrives after
j has pk < M , and thus the algorithm will not apply step 4 for any job k > j . It still
might apply step 5 again, which we exclude next.

By Lemma 5.16, pmax Y
j + p j > 2 − M holds. Since p j < M (since step 4 was

not applied), we have pmax Y
j > 2− 2M > 1

2 . For every job k such that the algorithm

applies step 5 for it, it also holds that pk > 2 − 2M > 1
2 . If step 5 is applied with

k > j , this means that there are three jobs of sizes above 1
2 , which is impossible for

an optimal solution of makespan 1.
Therefore, all jobs k > j are assigned in steps 2 and 3. We already have two jobs

whose total size is above 1 which must be assigned to different machines in an optimal
solution. Thus, the total size of jobs with GoS 1 is at most max{1 − p j , 1 − pmax Y

j }.
If machine m1 will only receive jobs with GoS 1 until the end of the input, then
T1 = xn + p j . If p j ≤ pmax Y

j , we get x j + p j ≤ 1. Otherwise, x j + p j ≤ 1 −
pmax Y
j + p j < 1 + p j − (2 − M − p j) < 3M − 1 ≤ 2 − M , since p j < M and

M ≤ 3
4 . If machine m1 receives a job with GoS 2 later, then the load of machinem2 is

at least M , and it never decreases. In both cases we get T1 ≤ 2− M and T2 ≤ 2− M .
��

Theorem 5.18 The competitive ratio for algorithm D is at most 2−M, and the migra-
tion factor is not larger than M.

Proof Weshowed that the competitive ratio is valid if step 4 or 5 is reached.Assignment
of a job of GoS 2 by step 3 does not allow m2 to have a load above 2 − M . If no jobs
of GoS 2 are assigned to m1, this machine has a load of at most 1. Otherwise, m2 has
a load of at least M , and m1 will not have a load above 2 − M .

As for the migration factor, we observe that jobs are only migrated in steps 4 and 5,
while in step 4 by definition we have that the total size of W does not exceed M · p j .
For step 5, this was proved in Lemma 5.15. ��

5.3 A lower bound on the competitive ratio of the case where 1
2 ≤ M < 3

4

Theorem 5.19 The competitive ratio for every algorithm when 1
2 ≤ M < 3

4 is at least
2 − M.

Proof Let ε > 0 be a small constant such that ε < 0.1, such that 1
ε
is an integer. The

input starts with the first job J1 = (M + ε, 2) (where M + ε < 1). If the algorithm
schedules the first job on the first machine, then there is a job of the form (1, 1). It
will not be possible to migrate the first job as M+ε

1 > M . An optimal solution assigns
the second job to m1 and the first job is assigned to m2, and the makespan is 1. The
algorithm will have a load of 1 + M + ε > 2 − M for m1 (since M ≥ 1

2 and ε > 0).
If the algorithm schedules the first job on the second machine, then the second job

is J2 = (1, 2), and it will not be possible to migrate the first job since M+ε
1 > M .

The optimal offline makespan is 1 which is achieved by assigning the first two jobs to
different machines. If the algorithm schedules the second job on the second machine

123

Bin stretching with migration on two hierarchical machines 137

(so both jobs are assigned to the same machine), we will get a competitive ratio of
1 + M + ε > 2 − M again.

If the algorithm schedules the second job on the first machine, then there is a third
job J3 = (1− M − ε, 1). This job cannot cause the migration of J2 or of J1, since it is
smaller (as 1− M ≤ 1

2). Thus, m1 will have both J2 and J3, and a load of 2− M − ε.
An optimal solution assigns J2 to m2 and the other jobs to m1, for a makespan of 1.
The competitive ratio 2 − M − ε tends to 2 − M by letting ε tend to zero. ��

6 The case 0 ≤ M < 1
2 and comments

In this section we show that the case where M < 1
2 is equivalent to the case without

migration, by adapting the lower bound construction. Recall that an algorithm of
competitive ratio 1.5 without migration is known (Park et al. 2006). This is the last
remaining case, and we remind the reader that the results for all values of M were
summarized in Fig. 1.

Theorem 6.1 The competitive ratio for every algorithm when M < 1
2 is at least 1.5.

Proof The first job is defined by J1 = (0.5, 2). If the online algorithm schedules it on
the first machine, then there is a job J2 = (1, 1). Since M < 1

2 , the first job cannot be
migrated. An optimal solution schedules the first job on the second machine (and has
a makespan of 1 due to the second job), while the algorithm schedules both on the first
machine, and the competitive ratio is 1.5. Otherwise (if the online algorithm schedules
the first job on the second machine), there are two additional jobs: J2 = (1, 2) and
J3 = (0.5, 1), where the sizes are such that no job can cause the migration of another
job. An optimal solution schedules the first and third jobs to the first machine, and the
second job is scheduled to the second machine, and its makespan is 1. The algorithm
must schedule the third job to the first machine. No matter whether the second job is
assigned to the first machine or the second machine, its makespan is 1.5, and this is
also the value of the competitive ratio. ��

6.1 A related variant

The following two semi-online models are related. The first one is the one where the
optimal offline makespan is given in advance, and the other one is where the total size
of jobs is provided in advance. It is known that an algorithm for the latter can be used
as an algorithm for the former with the same competitive ratio (and therefore a lower
bound on the competitive ratio for the former is a lower bound for the latter). There are
specific problems where the results for the two models are similar and problems for
which they are different (see for example Kellerer et al. 1997; Azar and Regev 2001,
and Albers and Hellwig 2012; Kellerer et al. 2015 compared to Böhm et al. (2017b)).

We show that for the scheduling problems studied here, the two variants are very
different in the sense that for M growing to infinity, the variant with known total size
has a competitive ratio not tending to 1 (as the version studied here) but it is bounded
away from 1.

123

138 I. Akaria, L. Epstein

Proposition 6.2 Any algorithm for the semi-online problem where the total processing

time is given has competitive ratio of at least
√
33−1
4 ≈ 1.18614 for any migration

factor M.

Proof First, we declare that the total processing time is 2.
The input starts with two large jobs of the form (θ, 2), where 1

2 < θ < 2
3 is a

constant satisfying 4θ2 + θ − 2 = 0, that is, θ =
√
33−1
8 ≈ 0.59307. The other jobs

will be sufficiently small so that the large jobs cannot be migrated and their initial
assignment by an online algorithm is final.

If both large jobs are assigned to m2, the remaining jobs are very small jobs (sand)
of total size 2 − 2 · θ with GoS 2. An optimal solution can split the jobs evenly such
that the makespan is 1 by assigning one large job to each machine with sand of total
size 1 − θ . The algorithm has a makespan of at least 2θ .

Otherwise (if the first machine has at least one job), the sand of total size 2 − 2θ
has GoS 1. In this case, an optimal solution cannot have makespan 1, and by assigning
both large jobs to m2, it has makespan 2θ , while the algorithm has to assign all the
sand to m1 and its makespan is at least θ + (2 − 2θ) = 2 − θ .

The competitive ratio is at least min{ 2θ1 , 2−θ
2θ }. By the equality 2−θ

2θ = 2θ and using
the approximate value of θ , we find that the competitive ratio of any algorithm and

any migration factor is
√
33−1
4 ≈ 1.18614, even if the total job size is given in advance

to the algorithm, and even if the migration factor is arbitrarily large (but fixed). ��

Declarations

Conflict of interest There are no conflicts of interest or competing interests for this work.

A Examples for the action of all algorithms

We provide a large number of examples for our algorithms. The examples cover a
multitude of cases occurring in the execution.

A.1 Algorithm A, where M ≥ 2.5

In this section, we provide three examples for Algorithm A. Two examples are for the
migration factor M = 3. In both of them step 4 is applied once. In the first example,
after applying step 4, only step 2 will be applied, and in the second example, both step
3 and step 2 are applied. The third example is for M = 20, and in that example, step
4 is performed several times.

A.1.1 Examples for Algorithm Awith M = 3

In the two examples of this section,we show the action ofAlgorithmAwith amigration
factor of M = 3. For this value of M , we have μ = 2

9 ≈ 0.2222, the value used by

123

Bin stretching with migration on two hierarchical machines 139

Fig. 4 The schedules produced by Algorithm A with migration factor M = 3 for I1 (see Sect.A.1.1) after
three, four, and six jobs, respectively have been presented, and an optimal solution (with makespan 1) for
that input. The final makespan for the algorithm is 1.12

the algorithm in step 2 is 1− μ = 7
9 ≈ 0.7778, and the value used in step 3, which is

also the competitive ratio for this algorithm, is 1 + μ = 11
9 ≈ 1.2222.

Input I1 is defined as follows:

J1 = (0.19, 2), J2 = (0.38, 2), J3 = (0.39, 1), J4 = (0.68, 2),

J5 = (0.32, 2), J6 = (0.03, 1).

The algorithm schedules the first two jobs on the second machine in step 3, and it
schedules the third job on the first machine in step 2. We get x3 = 0.39, y3 = 0.57,
and z3 = 0. When the algorithm receives the fourth job, it reaches step 4 because
1.25 = y3 + p4 > 1+ μ holds. In step 4, the algorithm updates W to be the set of the
two jobs J1 and J4, and it schedules these jobs on the second machine. The algorithm
schedules the other jobs with GoS 2 that are not in W on the first machine (this set
consists of a single job, which is J2), and we get x4 = 0.39, y4 = 0.87, z4 = 0.38.
Afterwards, the algorithm schedules the J5 on the first machine in step 2, because the
load of the second machine is already not smaller than 1 − μ, i.e. y4 ≥ 7

9 . Job J6 is
assigned by step 2 as well, because both g6 = 1 and y5 ≥ 7

9 hold. Consequently, the
final load of the first machine is 1.12, and the load of the second machine is 0.87. See
Fig. 4 for an illustration of the process of execution of the algorithm, and an optimal
solution.

In the second example, we use input I2, defined as follows:

J1 = (0.6, 2), J2 = (0.65, 2), J3 = (0.4, 2), J4 = (0.35, 1).

The algorithm schedules the first job on the second machine in step 3, and we get
x1 = 0, y1 = 0.6, z1 = 0. When the algorithm receives the second job, it reaches

123

140 I. Akaria, L. Epstein

Fig. 5 The schedules produced by Algorithm A with migration factor M = 3 for I2 (see Sect.A.1.1), and
an optimal solution (with makespan 1) for that input. The final makespan for the algorithm is 1.05

step 4 because 1.25 = y1+ p2 > 1+μ holds. In step 4, the algorithm updatesW to be
the set {J2}, schedules it on the second machine, and migrates the first job to the first
machine. We get x2 = 0, y2 = 0.65, z2 = 0.6. The algorithm schedules the third job
on the second machine in step 3 because y2 + p3 ≤ 1 + μ holds, and the fourth job
is scheduled on the first machine in step 2 because g4 = 1 (and additionally, at this
time, it holds that y3 ≥ 1 − μ). Consequently, the load of the first machine is 0.95,
and the load of the second machine is 1.05. See Fig. 5 for an illustration of the process
of execution of the algorithm, and an optimal solution.

A.1.2 An example for Algorithm Awith M = 20

In this example, we show an input where step 4 is applied three times. We define input
I3 for Algorithm A with a migration factor of M = 20. For this value of M , we have
μ = 2

43 ≈ 0.04651, the value used by the algorithm in step 2 is 1−μ = 41
43 ≈ 0.95349,

and the value used in step 3, which is also the competitive ratio for this algorithm, is
1 + μ = 45

43 ≈ 1.04651.
Input I3 is defined as follows:

J1 = (0.25, 2), J2 = (0.28, 2), J3 = (0.29, 2), J4 = (0.1, 1),

J5 = (0.26, 2), J6 = (0.27, 2), J7 = (0.49, 2), J8 = (0.06, 1).

The algorithm schedules the first three jobs on the second machine in step 3, and it
schedules J4 on the firstmachine in step 2.We get x4 = 0.1, y4 = 0.82, z4 = 0.When
the algorithm receives the fifth job, it reaches step 4 because 1.08 = y4 + p5 > 1+μ

holds. In step 4, the algorithm updatesW to be {J2, J3, J5} (the subset of Z ∪Y ∪{J5}
of maximum total size not exceeding 1), it migrates J1 to the first machine, and
it schedules W on the second machine. We get: x5 = 0.1, y5 = 0.83, z5 = 0.25.

123

Bin stretching with migration on two hierarchical machines 141

Fig. 6 The schedules produced by Algorithm A with migration factor M = 20, after three, four, five, six,
seven, and eight jobs were presented, for input I3 of Sect.A.1.2. There are migrations of J1 (when J5
arrives), of J5 (when J6 arrives), and of three jobs when J7 arrives. The final makespan for the algorithm
is 1, and the obtained solution is optimal

Afterwards, the algorithm repeats the sameprocess for job J6 (because 1.1 = y5+p6 >

1 + μ holds), it updates W to be {J2, J3, J6}, it migrates J5 to the first machine and
schedules W on the second machine, and we get: x6 = 0.1, y6 = 0.84, z6 = 0.51.
The algorithm migrates J1 and J5 a second time when it receives job J7, since 1.33 =
y6 + p7 > 1 + μ holds. Here the algorithm updates W to be {J1, J5, J7}, where
w7 = 1, it migrates all jobs in Y to the first machine, and it schedules W on the
second machine. We get: x7 = 0.1, y7 = 1, z7 = 0.84. Job J8 is assigned to the first
machine by step 2 because both g8 = 1 holds (and additionally, y7 ≥ 1− μ), and we
get: x8 = 0.16, y8 = 1, z8 = 0.84. Consequently, the loads of both machines are
equal to 1. Thus, in this specific case, the obtained solution is optimal. See Fig. 6 for
an illustration of the process of execution of the algorithm.

A.2 Algorithm B, where 0.75 ≤ M < 2.5

We provide four examples for Algorithm B. In the first one, we show the action of
this algorithm when it receives input I1 from Sect.A.1.1. In the second one, we show
the action of this algorithm in step 4 by using input I4 (which we define). In the third
example and in the fourth example, we show the action of the algorithm in step 5,
when it receives inputs I5 and I6, which we define, where the actual assignment is
performed by step 5.1 and step 5.2, respectively, for these two inputs.

Recall that the competitive ratio for this algorithm is 1.25, and the values used in
steps 2 and 3 are based on this value.

A.2.1 An example for Algorithm B, such that there is no migration

Algorithm B schedules input I1 (see Sect.A.1.1) only using steps 2 and 3, i.e. it does
not migrate any jobs. This holds because scheduling the fourth job on the second
machine would not exceed the threshold of 1.25, but the load becomes greater than
0.75, i.e. 0.75 ≤ y4 = 1.25, which keeps the machines balanced with respect to loads.

123

142 I. Akaria, L. Epstein

Fig. 7 The schedules produced by Algorithm B for input I1 of Sect.A.1.1: (1) The algorithm schedules the
first two jobs on the second machine in step 3, and the third job is scheduled on the first machine in step
2. (2) The algorithm schedules the fourth job on the second machine in step 3 and we get 0.75 ≤ y4. (3)
All other jobs will be scheduled on the first machine in step 2, and we have cB (I1) = 1.25 and c∗(I1) = 1
(which holds by assigning J4 and J5 to the second machine, and the other jobs to the first machine)

Consequently, x6 = 0.42, y6 = 1.25, z6 = 0.32, the load of the first machine is 0.74,
and the load of the second machine is 1.25. See Fig. 7 for an illustration and additional
details.

A.2.2 An example for Algorithm B, such that step 4 is applied

In this example, we define input I4 and in particular, we exhibit the action of the
algorithm in step 4 when the fifth job of I4 arrives. The input is:

J1 = (0.01, 2), J2 = (0.36, 1), J3 = (0.2, 2), J4 = (0.36, 2),

J5 = (0.79, 2), J6 = (0.28, 2).

The first four jobs are scheduled in both steps 2 (job J2) and 3 (the other three jobs),
so we get: x4 = 0.36, y4 = 0.57, and z4 = 0. In the process of assignment of the
fifth job, the algorithm reaches step 4 because y4 + p5 > 1.25 and p5 ≥ 0.75 hold.
We have 0.75 · p5 = 0.5925. In step 4, the algorithm updatesW be the set of the three
jobs J1, J3, and J4 (whose total size is 0.57), it migrates W to the first machine, and
it schedules J5 on the second machine, because y4 − w5 + p5 = p5 ≤ 1.25. We get:
x5 = 0.36, y5 = 0.79, and z5 = 0.57. The algorithm schedules the last job on the first
machine in step 2 because y5 ≥ 0.75 holds, and it updates the variables as follows:
x6 = 0.36, y6 = 0.79, z6 = 0.85. Consequently, the load of the first machine is 1.21,
and the load of the second machine is 0.79. See Fig. 8.

123

Bin stretching with migration on two hierarchical machines 143

Fig. 8 The schedules produced by Algorithm B for input I4 of Sect.A.2.2 (from the moment when the
fourth job had arrived), and an optimal solution for that input. We have cB (I4) = 1.21 and c∗(I4) = 1

A.2.3 An example for Algorithm B, such that step 5.1 is applied

In this example, we use a new input I5 to show the action of Algorithm B. In particular,
we exhibit the action of the algorithm in step 5 when the fourth job arrives. Input I5
is:

J1 = (0.2, 2), J2 = (0.36, 2), J3 = (0.07, 2),

J4 = (0.73, 2), J5 = (0.28, 1), J6 = (0.36, 2).

The first three jobs are scheduled on the second machine in step 3, and we get:
x3 = 0, y3 = 0.63, z3 = 0. In the process of assignment of the fourth job, the
algorithm reaches step 5, because 1.36 = y3 + p4 > 1.25 and 0.73 = p4 < 0.75
hold. The largest job of the current set Y is J2, and pmax Y

4 = p2 = 0.36, and together
with the fourth job, it holds that p4 + pmax Y

4 = 1.09 < 1.25, so W will be computed.
Since pmax Y

4 = p2 = 0.36 ≥ y3
2 = 0.315 holds, the algorithm defines W in step 5.1,

and it is defined to be the set of the two jobs J1 and J3. The algorithmmigratesW to the
first machine and schedules J4 on the secondmachine, and we get: x4 = 0, y4 = 1.09,
and z4 = 0.27. The algorithm schedules the last two jobs on the first machine in step
2 (for both jobs it holds that the load of the second machine is sufficiently large, and
for the fifth job the GoS is 1), and we get: x6 = 0.28, y6 = 1.09, z6 = 0.63. As a
result, the load of the first machine is 0.91, the load of the second machine is 1.09.
See Fig. 9.

123

144 I. Akaria, L. Epstein

Fig. 9 The schedules produced by Algorithm B for input I5 of Sect.A.2.3 (from the moment when the third
job had arrived), and an optimal solution for that input. We have cB (I5) = 1.09 and c∗(I5) = 1

A.2.4 An example for Algorithm B, such that step 5.2 is applied

In this example, we use a new input I6 to show the action of Algorithm B. We exhibit
the action of the algorithm in step 5 when the fourth job arrives. Input I6 is:

J1 = (0.17, 2), J2 = (0.2, 2), J3 = (0.26, 2), J4 = (0.7, 2),

J5 = (0.1, 1), J6 = (0.57, 2).

The first three jobs are scheduled on the second machine in step 3, and we get:
x3 = 0, y3 = 0.63, z3 = 0. For the fourth job, the algorithm reaches step 5 because
1.33 = y3 + p4 > 1.25 and 0.7 = p4 < 0.75 hold. The largest job of the current
set Y is J3, and pmax Y

4 = p3 = 0.26, and together with the fourth job, it holds that
p4+ pmax Y

4 = 0.96 < 1.25, soW will be computed. Since pmax Y
4 = p3 = 0.26 while

y3 = 0.63 holds, the algorithm definesW in step 5.2. The setW is defined to be the set
{J3}. Specifically, step 5.2 is applied because 0.25 ≤ pmax Y

4 <
y3
2 = 0.315 holds. The

algorithm migratesW to the first machine, and it schedules J4 on the second machine.
We get: x4 = 0, y4 = 1.07, and z4 = 0.26. Similarly to the previous examples, the
algorithm schedules the last two jobs on the first machine in step 2, and it defines its
new values as follows: x6 = 0.1, y6 = 1.07, z6 = 0.83. As a result, the load of the
first machine is 0.93, the load of the second machine is 1.07. See Fig. 10.

A.3 Algorithm C, where 0.5 ≤ M < 2
3

Here, we provide three examples for Algorithm C. In the first example, we show the
action of the algorithm when it receives input I1 of Sect.A.1.1. In the second one,
we show the action of the algorithm in step 4 by using a new input I7. In the third

123

Bin stretching with migration on two hierarchical machines 145

Fig. 10 The schedules produced by Algorithm B for input I6 of Sect.A.2.4 (from the moment when the
third job had arrived), and an optimal solution for that input. We have cB (I6) = 1.07 and c∗(I6) = 1

example, we show the action of the algorithm in step 5 when it receives input I8, which
we define.

In all three examples for this algorithm, we use M = 0.6, and thus the value used
in step 2 is 0.6, and the value used in step 3 (and the competitive ratio) is 1.4.

A.3.1 An example Algorithm C, using I1

Algorithm C with migration factor M = 0.6 schedules I1 of Sect.A.1.1 only using
the two steps 2 and 3, i.e. it does not migrate any jobs. This is because the load of the
second machine after scheduling the fourth job on this machine does not exceed the
upper bound (competitive ratio) 2−M = 1.4, and this keeps loads relatively balanced.
Consequently, x6 = 0.42, y6 = 1.25, z6 = 0.32, the load of the first machine is 0.74,
and the load of the second machine is 1.25 (see the output of Fig. 7, which belongs to
the run of another algorithm and the same input, though the output is identical).

A.3.2 An example for Algorithm C, such that step 4 is applied

In this example, we exhibit the action of the algorithm in step 4 when the third job of
our new input arrives. Input I7 is:

J1 = (0.5, 2), J2 = (0.09, 2), J3 = (0.82, 2), J4 = (0.18, 2), J5 = (0.41, 1).

Recall thatM = 0.6. The first two jobs are scheduled on the secondmachine in step
3, and we get: x2 = 0, y2 = 0.59, z2 = 0. When the third job arrives, the algorithm
reaches step 4 because pmax Y

3 = p1 = 0.5 > M · p3 = 0.492 holds. In step 4, the
algorithm schedules J3 on the first machine, and we get: x3 = 0, y3 = 0.59, and
z3 = 0.82. The algorithm schedules the fourth job on the second machine in step 3

123

146 I. Akaria, L. Epstein

Fig. 11 The schedules produced by Algorithm C with migration factor M = 0.6 for input I7 of Sect.A.3.2
(from the moment when the second job had arrived), and an optimal solution for that input. We have
cC (I7) = 1.23 and c∗(I7) = 1

because 0.77 = y3 + p4 ≤ 1.4 = 2 − M holds, and the last job on the first machine
in step 2 because g6 = 1 holds. As a result, the load of the first machine is 1.23, the
load of the second machine is 0.77. See Fig. 11.

A.3.3 An example for Algorithm C, such that step 5 is applied

In this example, we exhibit the action of the algorithm in step 5 when the fifth job of
the input arrives. Input I8 is:

J1 = (0.35, 2), J2 = (0.11, 2), J3 = (0.13, 2), J4 = (0.41, 1),

J5 = (0.82, 2), J6 = (0.18, 2).

Recall that M = 0.6. The first three jobs are scheduled on the second machine in
step 3, and the fourth job is scheduled on the first machine in step 2. At this time, we
get: x4 = 0.41, y4 = 0.59, z4 = 0. When the fifth job arrives, the algorithm reaches
step 5, because pmax Y

5 = p1 = 0.35 ≤ M · p5 = 0.492. It updates W to be {J1}
(the minimum length prefix with total size at least p5 + y4 − (2 − M) = 0.01), it
migrates W to the first machine, and it schedules J5 on the second machine. We get:
x5 = 0.41, y5 = 1.06, and z5 = 0.35. The algorithm schedules the last job on the
first machine in step 2 and updates: x6 = 0.41, y6 = 1.06, z6 = 0.35. As a result, the
load of the first machine is 0.94, the load of the second machine is 1.06. See Fig. 12.

A.4 Algorithm D, where 2
3 ≤ M < 0.75

In this part we provide six examples for Algorithm D. In the first example we show
the action of the algorithm when it receives input I1 of Sect.A.1.1. In the second and

123

Bin stretching with migration on two hierarchical machines 147

Fig. 12 The schedules produced by Algorithm C with migration factor M = 0.6 for input I8 of Sect.A.3.3
(from the moment when the fourth job had arrived), and an optimal solution for that input. We have
cC (I8) = 1.06 and c∗(I8) = 1

the third examples we show the action of the algorithm in step 4, by using inputs I9,
I10, which we define. In the last three examples, we show the action of the algorithm
in step 5 for three inputs I11, I12 and I13, which we also define here.

In all six examples, we use M = 0.7. As a result, the value used by the algorithm
in step 2 is M = 0.7, and the value used in step 3, which is also the competitive ratio
for this algorithm, is 2 − M = 1.3.

A.4.1 An example for Algorithm D, using I1

Recall that M = 0.7. Algorithm D schedules input I1 of Sect.A.1.1 only using the
two steps 2 and 3, i.e. it does not migrate any jobs. This holds because after scheduling
the fourth job on the second machine we get: x4 = 0.31, y4 = 1.25, z4 = 0, i.e. the
load of the second machine is between the two bounds M = 0.7 and 2 − M = 1.3,
so any job that arrives after J4 will be scheduled on the first machine. Consequently,
x6 = 0.42, y6 = 1.25, z6 = 0.32, and the makespan is 1.25 (see Fig. 7 again).

A.4.2 An example for Algorithm D, such that step 4.2 is applied

In this example,we exhibit the action of the algorithm in step 4where y j−1−w j+p j ≤
2 − M holds, which is tested when the fourth job in input I9 arrives. Input I9 is:

J1 = (0.54, 2), J2 = (0.14, 2), J3 = (0.32, 1), J4 = (0.78, 2), J5 = (0.22, 2).

Recall that M = 0.7. The first two jobs are scheduled on the first machine in
step 3, and the third job on the first machine in step 2. We get: x3 = 0.32, y3 =
0.68, and z3 = 0. When the fourth job arrives, the algorithm reaches step 4, because
1.46 = y3 + p4 > 2 − M = 1.3 and p4 = 0.78 ≥ M = 0.7 hold. In step 4, the

123

148 I. Akaria, L. Epstein

Fig. 13 The schedules produced by Algorithm D with migration factor M = 0.7 for input I9 of Sect.A.4.2
(from the moment when the third job had arrived), and an optimal solution for that input. We have cD(I9) =
1.08 and c∗(I9) = 1

algorithm updates W to be {J1} (the maximum length prefix with total size at most
M · p4 = 0.7 · 0.78 = 0.546, where M · p4 ≥ p1 = 0.54, but p1 + p2 = 0.68 >

0.546). We have y3 − w4 + p4 = 0.68 − 0.54 + 0.78 = 0.92 ≤ 1.3 = 2 − M .
Thus, the algorithm continues to step 4.2, and it migrates W to the first machine. The
algorithm schedules J4 on the second machine, and we get: x4 = 0.32, y4 = 0.92,
and z4 = 0.54. The algorithm schedules the fifth job on the first machine in step 2 and
it has x5 = 0.32, y5 = 0.92, and z5 = 0.76. As a result, the load of the first machine
is 1.08, the load of the second machine is 0.92. See Fig. 13.

A.4.3 An example for Algorithm D, such that step 4.1 is applied

In this example,we exhibit the action of the algorithm in step 4where y j−1−w j+p j >

2 − M holds, which holds for the fourth job arrives. Input I10 which is used for this
example is:

J1 = (0.54, 2), J2 = (0.14, 2), J3 = (0.32, 1), J4 = (0.71, 2), J5 = (0.29, 2).

Recall that M = 0.7. The first two jobs are scheduled on the second machine in
step 3, and the third job is scheduled on the first machine in step 2. At this time we
have x3 = 0.32, y3 = 0.68, and z3 = 0. When the fourth job arrives, the algorithm
reaches step 4, because p4 = 0.71 ≥ M = 0.7 holds, and it did not apply earlier
steps because 1.39 = y3 + p4 > 2 − M = 1.3 holds while y3 < M = 0.7. In
step 4, the algorithm updates W to be an empty set (the maximum length prefix
with total size at most M · p4 = 0.7 · 0.71 = 0.497 < p1 = 0.54), and we get:
y3 − w4 + p4 = 0.68 − 0 + 0.71 = 1.39 > 1.3 = 2 − M , so the algorithm
schedules J4 on the first machine, and we get: x4 = 0.32, y4 = 0.68, and z4 = 0.71.
The algorithm schedules the fifth job on the second machine in step 3 and it has

123

Bin stretching with migration on two hierarchical machines 149

Fig. 14 The schedules produced by AlgorithmDwith migration factor M = 0.7 for input I10 of Sect.A.4.3
(from themomentwhen the third job had arrived), and an optimal solution for that input.We have cD(I10) =
1.03 and c∗(I10) = 1

x5 = 0.32, y5 = 0.97, and z5 = 0.71. As a result, the load of the first machine is
1.03, the load of the second machine is 0.97. See Fig. 14.

A.4.4 An example for Algorithm D, such that both steps 5.1 and 5.3 are applied

In this example, we exhibit the action of the algorithm in step 5 where w j >

min{ 2M3 , M · p j } and yi−1 − w j + p j ≤ 2 − M hold, which happens when the
fourth input job arrives. Input I11 which is used for this example is:

J1 = (0.54, 2), J2 = (0.14, 2), J3 = (0.32, 1), J4 = (0.69, 2), J5 = (0.31, 2).

Recall that M = 0.7. The first two jobs are scheduled on the second machine in
step 3, and the third job is scheduled on the first machine in step 2. At this time, we get:
x3 = 0.32, y3 = 0.68, z3 = 0. When the fourth job arrives, the algorithm reaches
step 5 because 1.37 = y3 + p4 > 2 − M = 1.3 and p4 = 0.69 < M = 0.7 hold. In
step 5 the algorithm updatesW twice. First,W is defined as {J1} (the minimum length
prefix with total size at least M

3 = 7
30 ≈ 0.2333 ≤ p1 = w4 = 0.54). At this time, we

have: w4 > min{ 2M3 , M · p4} = min{ 7
15 ≈ 0.46667, 0.483}. The algorithm updates

W in step 5.1 again to be Y \ W = {J2}. In step 5.3, the algorithm migrates W to the
first machine, and it schedules J4 on the first machine. Step 5.2 is not applied because
y3 − w4 + p4 = 1.23 ≤ 1.3 = 2 − M holds. We get: x4 = 0.32, y4 = 1.23, and
z4 = 0.14. The algorithm schedules the last job on the first machine in step 2 and we
get: x5 = 0.32, y5 = 1.23, and z5 = 0.45. As a result, the load of the first machine
is 0.77, and the load of the second machine is 1.23. See Fig. 15.

123

150 I. Akaria, L. Epstein

Fig. 15 The schedules produced by AlgorithmDwith migration factor M = 0.7 for input I11 of Sect.A.4.4
(from themomentwhen the third job had arrived), and an optimal solution for that input.We have cD(I11) =
1.23 and c∗(I11) = 1

A.4.5 An example for Algorithm D, such that step 5.3 is applied

In this example, we exhibit the action of the algorithm in step 5 where w j ≤
min{ 2M3 , M · p j } and yi−1 − w j + p j ≤ 2 − M hold, and this happens when the
second input job arrives. Input I12 which is used for this example is:

J1 = (0.45, 2), J2 = (0.24, 2), J3 = (0.65, 2), J4 = (0.31, 1), J5 = (0.35, 2).

Recall thatM = 0.7. The first two jobs are scheduled on the secondmachine in step
3, and we get: x2 = 0, y2 = 0.69, z2 = 0. When the third job arrives, the algorithm
reaches step 5 because 1.34 = y2 + p3 > 2− M and p3 = 0.65 < M = 0.7 hold. In
step 5, the algorithm definesW to be {J1} (the minimum length prefix with total size at
least M

3 = 7
30 ≈ 0.2333 ≤ p1 = w3 = 0.45), here we get:w3 ≤ min{ 2M3 , M · p3} =

min{ 7
15 , 0.455}. In this case 0.89 = y2 − w3 + p3 ≤ 2 − M = 1.3 holds, so the

algorithm only applies step 5.3, and itmigratesW to the firstmachinewhile scheduling
J3 on the second machine. We get: x3 = 0, y3 = 0.89, and z3 = 0.45. The algorithm
schedules the last two jobs on the first machine in step 2 and it updates its variables
as follows: x5 = 0.31, y5 = 0.89, z5 = 0.8. As a result, the load of the first machine
is 1.11, the load of the second machine is 0.89. See Fig. 16.

A.4.6 An example for Algorithm D, such that both steps 5.1 and 5.2 are applied

In this example, we exhibit the action of the algorithm in step 5 where w j >

min{ 2M3 , M · p j } and yi−1 − w j + p j > 2 − M hold, and this happens when the
second input job arrives. Input I13 which is used for this example is:

J1 = (0.69, 2), J2 = (0.62, 2), J3 = (0.38, 2), J4 = (0.31, 1).

123

Bin stretching with migration on two hierarchical machines 151

Fig. 16 The schedules produced by AlgorithmDwith migration factor M = 0.7 for input I12 of Sect.A.4.5
(from the moment when the second job had arrived), and an optimal solution for that input. We have
cD(I12) = 1.11 and c∗(I12) = 1

Fig. 17 The schedules produced byAlgorithmDwithmigration factorM = 0.7 for input I13 of Sect.A.4.6,
and an optimal solution for that input. We have cD(I13) = 1.07, c∗(I13) = 1

Recall that M = 0.7. The first job is scheduled on the secondmachine in step 3, and
weget: x1 = 0, y1 = 0.69, z1 = 0.When the second job arrives, the algorithm reaches
step 5 because 1.31 = y1+ p2 > 2−M = 1.3 and p2 = 0.62 < M = 0.7 hold. In step
5, the algorithm definesW to be {J1} (theminimum length prefixwith total size at least
M
3 = 7

30 ≈ 0.2333 ≤ p1 = w2 = 0.69). Here, we get: w2 > min{ 2M3 , M · p2} =
min{ 7

15 , 0.434}, and in this case the algorithm updates W again to be Y \ W = {},
it schedules J2 on the first machine, because y1 − w2 + p2 = 1.31 > 1.3 = 2 − M
holds, and we get: x2 = 0, y2 = 0.69, z2 = 0.62. The algorithm schedules the third

123

152 I. Akaria, L. Epstein

job on the second machine in step 3, and it schedules the last job on the first machine
in step 2. We get: x4 = 0.31, y4 = 1.07, and z4 = 0.62. As a result, the load of the
first machine is 0.93, the load of the second machine is 1.07. See Fig. 17.

References

Akaria I, Epstein L (2022) Online schedulingwithmigration on two hierarchical machines. J CombinOptim
44:3535–3538

Albers S, Hellwig M (2012) Semi-online scheduling revisited. Theoret Comput Sci 443:1–9
Angelelli E, Nagy Á.B, SperanzaMG, Tuza Zs (2004) The on-line multiprocessor scheduling problem with

known sum of the tasks. J Sched 7(6):421–428
Azar Y, Regev O (2001) On-line bin-stretching. Theoret Comput Sci 268(1):17–41
Bar-Noy A, Freund A, Naor JS (2001) On-line load balancing in a hierarchical server topology. SIAM J

Comput 31(2):527–549
Berndt S, Jansen K, Klein K (2020) Fully dynamic bin packing revisited. Math Program 179(1):109–155
BöhmM, Sgall J, van Stee R, Veselý P (2017) Online bin stretching with three bins. J Sched 20(6):601–621
Böhm M, Sgall J, van Stee R, Veselý P (2017) A two-phase algorithm for bin stretching with stretching

factor 1.5. J Combinaor Optim 34(3):810–828
Chen X, Ding N, Dósa G, Han X, Jiang H (2015) Online hierarchical scheduling on two machines with

known total size of low-hierarchy jobs. Int J Comput Math 92(5):873–881
ChengTCE,KellererH,KotovV (2005) Semi-on-linemultiprocessor schedulingwith given total processing

time. Theoret Comput Sci 337(1–3):134–146
Crescenzi P, Gambosi G, Penna P (2004) On-line algorithms for the channel assignment problem in cellular

networks. Discret Appl Math 137(3):237–266
Dósa G, He Y (2004) Semi-online algorithms for parallel machine scheduling problems. Computing

72(3):355–363
Epstein L (2003) Bin stretching revisited. Acta Informatica 39(2):97–117
Epstein L, LevinA (2009)A robust APTAS for the classical bin packing problem.Math Program 119(1):33–

49
Epstein L, Levin A (2014) Robust algorithms for preemptive scheduling. Algorithmica 69(10):26–57
Epstein L, Levin A (2019) Robust algorithms for total completion time. Discret Optim 33:70–86
Epstein L, Noga J, Seiden SS, Sgall J, Woeginger GJ (2001) Randomized online scheduling on two uniform

machines. J Sched 4(2):71–92
Gabay M, Brauner N, Kotov V (2017) Improved lower bounds for the online bin stretching problem. 4OR:

Q J Belgian French Ital Oper Res Soc 15(2):183–199
Gabay M, Kotov V, Brauner N (2015) Online bin stretching with bunch techniques. Theoret Comput Sci

602:103–113
Gálvez W, Soto JA, Verschae J (2020) Symmetry exploitation for online machine covering with bounded

migration. ACM Trans Algorithms 16(4):43:1-43:22
Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Syst Tech J 45(9):1563–1581
He Y, Zhang G (1999) Semi online scheduling on two identical machines. Computing 62(3):179–187
Horowitz E, Sahni S (1976) Exact and approximate algorithms for scheduling nonidentical processors. J

ACM 23(2):317–327
Jiang Y (2008) Online scheduling on parallel machines with two GoS levels. J Comb Optim 16(1):28–38
Jiang Y, He Y, Tang C (2006) Optimal online algorithms for scheduling on two identical machines under a

grade of service. J Zhejiang Univ-Sci A 7(3):309–314
Kellerer H, Kotov V (2013) An efficient algorithm for bin stretching. Oper Res Lett 41(4):343–346
Kellerer H, Kotov V, Gabay M (2015) An efficient algorithm for semi-online multiprocessor scheduling

with given total processing time. J Sched 18(6):623–630
Kellerer H, Kotov V, SperanzaMG, Tuza Zs (1997) Semi on-line algorithms for the partition problem. Oper

Res Lett 21(5):235–242
Lee K, Hwang H-C, Lim K (2014) Semi-online scheduling with GoS eligibility constraints. Int J Prod Econ

153:204–214
Lee K, LimK (2013) Semi-online scheduling problems on a small number of machines. J Sched 16(5):461–

477

123

Bin stretching with migration on two hierarchical machines 153

Levin A (2022) Robust algorithms for preemptive scheduling on uniform machines of non-increasing job
sizes. Inf Process Lett 174:106211

LimK, LeeK, Chang SY (2011) Improved bounds for online schedulingwith eligibility constraints. Theoret
Comput Sci 412(39):5211–5224

Liu M, Chu C, Xu Y, Zheng F (2011) Semi-online scheduling on 2 machines under a grade of service
provision with bounded processing times. J Comb Optim 21(1):138–149

Luo T, Xu Y (2014) Semi-online scheduling on two machines with GoS levels and partial information of
processing time. Sci World J 2014:576234

Luo T, Xu Y (2015) Semi-online hierarchical load balancing problem with bounded processing times.
Theoret Comput Sci 607(1):75–82

Luo T, Xu Y (2016) Optimal algorithm for semi-online scheduling on two machines under GoS levels.
Optim. Lett. 10(1):207–213

Min X, Liu J, Wang Y (2011) Optimal semi-online algorithms for scheduling problems with reassignment
on two identical machines. Inf Process Lett 111(9):423–428

Park J, Chang SY, Lee K (2006) Online and semi-online scheduling of two machines under a grade of
service provision. Oper Res Lett 34(6):692–696

Qi X, Yuan J (2019) Semi-online hierarchical scheduling on two machines for l p-norm load balancing.
Asia-Pac J Oper Res 36(1):1

Sanders P, Sivadasan N, Skutella M (2009) Online scheduling with bounded migration. Math Oper Res
34(2):481–498

Skutella M, Verschae J (2016) Robust polynomial-time approximation schemes for parallel machine
scheduling with job arrivals and departures. Math Oper Res 41(3):991–1021

Tan Z, He Y (2002) Semi-on-line problems on two identical machines with combined partial information.
Oper Res Lett 30(6):408–414

Tan Z, Zhang A (2011) Online hierarchical scheduling: an approach using mathematical programming.
Theoret Comput Sci 412(3):246–256

Wakrat I (2012) Online and semi-online scheduling with reordering and reassignment. Master’s thesis,
Department of Computer Science, University of Haifa, Haifa, Israel

Wu Y, Ji M, Yang Q (2012) Optimal semi-online scheduling algorithms on two parallel identical machines
under a grade of service provision. Int J Prod Econ 135(1):367–371

Xiao M, Wu G, Li W (2019) Semi-online machine covering on two hierarchical machines with known total
size of low-hierarchy jobs. In: Proceedings of the 37th national conference of theoretical computer
science (NCTCS’19), pp 95–108

Zhang A, Jiang Y, Fan L, Hu J (2015) Optimal online algorithms on two hierarchical machines with tightly-
grouped processing times. J Comb Optim 29:781–795

Zhang A, Jiang Y, Tan Z (2009) Online parallel machines scheduling with two hierarchies. Theoret Comput
Sci 410(38–40):3597–3605

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Bin stretching with migration on two hierarchical machines
	Abstract
	1 Introduction
	2 Preliminaries
	3 The case M 2.5
	3.1 An algorithm
	3.2 A lower bound on the competitive ratio of the case where M2.5

	4 The case 34leqM<52
	4.1 An algorithm

	5 The case 12 leqM < 34
	5.1 An algorithm for the case 12 leqM < 23
	5.2 An algorithm for the case 23 leqM < 34
	5.3 A lower bound on the competitive ratio of the case where 12leqM<34

	6 The case 0leqM<12 and comments
	6.1 A related variant

	A Examples for the action of all algorithms
	A.1 Algorithm A, where M 2.5
	A.1.1 Examples for Algorithm A with M=3
	A.1.2 An example for Algorithm A with M=20

	A.2 Algorithm B, where 0.75 leqM < 2.5
	A.2.1 An example for Algorithm B, such that there is no migration
	A.2.2 An example for Algorithm B, such that step 4 is applied
	A.2.3 An example for Algorithm B, such that step 5.1 is applied
	A.2.4 An example for Algorithm B, such that step 5.2 is applied

	A.3 Algorithm C, where 0.5 leqM < 23
	A.3.1 An example Algorithm C, using I1
	A.3.2 An example for Algorithm C, such that step 4 is applied
	A.3.3 An example for Algorithm C, such that step 5 is applied

	A.4 Algorithm D, where 23 leqM < 0.75
	A.4.1 An example for Algorithm D, using I1
	A.4.2 An example for Algorithm D, such that step 4.2 is applied
	A.4.3 An example for Algorithm D, such that step 4.1 is applied
	A.4.4 An example for Algorithm D, such that both steps 5.1 and 5.3 are applied
	A.4.5 An example for Algorithm D, such that step 5.3 is applied
	A.4.6 An example for Algorithm D, such that both steps 5.1 and 5.2 are applied

	References

