
Mathematical Methods of Operations Research (2023) 98:75–91
https://doi.org/10.1007/s00186-023-00825-0

ORIG INAL ART ICLE

Contractive approximations in average Markov decision
chains driven by a risk-seeking controller

Gustavo Portillo-Ramírez1 · Rolando Cavazos-Cadena2 · Hugo Cruz-Suárez1

Received: 8 November 2022 / Revised: 24 June 2023 / Accepted: 28 June 2023 /
Published online: 5 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
This work concerns with Markov decision processes on a denumerable state space. It is
assumed that the performance of a control policy is measured by the average criterion
associated with a risk-seeking controller with constant risk-sensitivity coefficient. The
structural assumptions on the model ensure that the optimal average cost is constant,
but it is possible that the optimalty equation does not admit a solution. In this context, a
risk-sensitive version of the classical discounted approach is used to obtain convergent
approximations to the optimal average cost, and to determine nearly optimal stationary
policies.

Keywords Risk-lover decision maker · Exponential utility · Contractive operator ·
Fixed point · Hölder’s inequality

Mathematics Subject Classification 93E20 · 93C55 · 60J05

1 Introduction

This note concerns with Markov decision chains evolving on a denumerable state
space. The one-step cost function is bounded and the performance of a control policy
is measured by the average criterion associated with a risk-seeking decision maker.
The structural conditions on the transition law ensure that the optimal average cost is
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constant, but do not guarantee that the optimality equation admits a solution. In this
framework, the following problem is addressed:

• To obtain convergent approximations to the optimal average cost, and to determine
approximately optimal stationary policies using the fixed points of a family of
contractive operators.

The main conclusions on this problem, which are stated in Theorem 3.1 of Sect. 3,
represent an extension of the classical ‘discounted approach’ in the risk-neutral case
(Hernández-Lerma 1989; Arapostathis et al. 1993), and extend to the present frame-
work results established in Saucedo-Zul et al. (2020), where a risk-averse version of
this problem was analyzed.

The study of Markov decision chains endowed with a risk-sensitive average cri-
terion can be traced back, at least, to the seminal paper by Howard and Matheson
(1972), where Markov decision chains with finite state space were analyzed, and the
optimal average cost was characterized via an optimality equation. The interest on this
topic has been motivated by applications, for instance, in finance (Bäuerle and Rieder
2011, 2014; Stettner 1999; Pitera and Stettner 2016), revenue management (Barz and
Waldmann 2007), and the theory of large deviations (Borkar and Meyn 2002). Models
with finite or denumerable state space are considered, for instance, in Sladký (2008,
2018), Cavazos-Cadena (2009, 2018) whereas Markov decision chains on a Borel
states space are analyzed in Di Masi and Stettner (1999, 2000, 2007), Jaśkiewicz
(2007), Jaśkiewicz and Nowak (2014) and Shen et al. (2013).

Stochastic games with risk-sensitive criteria are studied in Basu and Ghosh (2014).
The remainder of the paper is organized as follows. In Sect. 2 the decision model is

formally described, the average criterion is defined, and the main structural assump-
tions on the model are stated. In Sect. 3 a family of contractive operators is introduced,
and the main result of the paper is stated as Theorem 3.1. The technical instruments
that will be used to establish that result are established in Sect. 4, and the proof of the
main result is presented in Sect. 5 before the concluding remarks.

Notation Throughout the remainder N denotes the set of non-negative integers and,
given a topological space S, the Banach space of all bounded functions H : S →
R is denoted by B(S); the supremum norm of H ∈ B(S) is denoted by ‖H‖ :=
supx∈S |H(x)|. On the other hand, every (in)equality involving random variables holds
almost surely with respect to the underlying probability measure.

2 Decisionmodel

Let M := (S, A, {A(x)}x∈S,C, [px,y(a)]) be a Markov decision chain, a model
for a dynamical system whose components are as follows: The state space S is a
denumerable set endowed with the discrete topology, the metric space A is the action
set whereas, for each state x ∈ S, A(x) ⊂ A is the class of admissible actions (controls)
at state x . On the other hand C : K → R is the cost function, where K = {(x, a) | x ∈
S, a ∈ A(x)} is the family of admissible pairs and, finally, [px,y(a)]x,y∈S,a∈A(x) is
the controlled transition law. The interpretation of M is is as follows: At each time
t ∈ N the decision maker observes the state of the system Xt = x ∈ S, and then picks
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and applies an action At = a ∈ A(x). As a consequence of such an intervention, (i)
a cost C(x, a) is incurred, and (ii) the system moves to a new state Xt+1 ∈ S where,
regardless of the previous states and actions, the event [Xt+1 = y] is observed with
probability px,y(a), where

∑
y∈S px,y(a) = 1; this is the Markov property of the

decision process.

Assumption 2.1 (i) For every x ∈ S, A(x) is a compact subset of A.
(ii) For each x, y ∈ S, the mappings a �→ px,y(a) and a �→ C(x, a) are continuous

in a ∈ A(x).
(iii) The cost function is bounded, i.e., C ∈ B(K).

Policies A control policy is a rule for choosing actions, which at each decision time
n ∈ N may depend on the current state as well as the previous states and actions.
More formally, for each n ∈ N define the space Hn of possible histories up to time
n by H0 := S and Hn := K

n × S for n = 1, 2, 3, . . .; a generic elements of Hn is
denoted by hn = (x0, a0, x1, a1, . . . , xn−1, an−1, xn), where (xk, ak) ∈ K for k < n
and xn ∈ S. With this notation, a control policy π = {πn} is a sequence of stochastic
kernels πn on A given Hn , satisfying that πn(A(xn)|hn) = 1, for each hn ∈ Hn and
n ∈ N. The family of all policies is denoted by P . Next, set F := ∏

x∈S A(x), which
is compact metric space, by Assumption 2.1, and consists of all functions f : S → A
satisfying f (x) ∈ A(x) for every x ∈ S. A policy π ∈ P is stationary if there exists
f ∈ F such that the equality πn({ f (xn)}|hn) = 1 always holds: the class of stationary
policies is naturally identified with F, a convention allowing to write F ⊂ P . Given
the initial state X0 = x and the policy π ∈ P used to drive the system, the distribution
of the state-action process {(Xt , At )}t∈N is uniquely determined and is denoted by
Pπ
x (Hernández-Lerma 1989; Arapostathis et al. 1993; Puterman 1994), whereas Eπ

x
stands for the corresponding expectation operator.

Throughout the sequel, the following notation will be used: For each n ∈ N set

Hn := (X0, A0, . . . , Xn−1, An−1, Xn) and Fn := σ(Hn), (2.1)

whereas for each F ⊂ S the first return time to set F is defined by

TF := min{n ≥ 1 | Xn ∈ F}; (2.2)

when F = {x} is a singleton the simpler notation

Tx ≡ T{x} (2.3)

is used. Notice that TF is an stopping time respect to the filtration {Fn}, i. e., [TF =
n] ∈ Fn for every n ∈ N.

Average criterionThroughout the remainder it is supposed that the decision maker
has a constant risk-sensitive coefficient λ which satisfies

λ < 0.
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This means that the controller assesses a random cost Y via the expectation of Uλ(Y ),
where the (dis-)utility function Uλ : R → (−∞, 0) is defined as follows

Uλ(x) = −eλx , x ∈ R; (2.4)

notice that Uλ(·) is strictly increasing and satisfies the relation

Uλ(a + b) = eλaUλ(b), a, b ∈ R. (2.5)

When the decision maker chooses between two random costs C0 and C1, the con-
troller prefers C0 if E[Uλ(C0)] < E[Uλ(C1)], and is indifferent between both costs
if E[Uλ(C0)] = E[Uλ(C1)]. The certainty equivalent of a cost Y is denoted by Eλ[Y ]
and is determined by the equality Uλ(Eλ[Y ]) = E[Uλ(Y )], so that the controller is
indifferent between paying the fixed amount Eλ(Y ) or facing the random costY . Notice
that Uλ(·) is a concave function, so that Jensen’s inequality yields that Eλ(Y ) ≤ E[Y ].
Now, observe that

Eλ[Y ] = U−1
λ (E[Uλ(Y )]) = 1

λ
log

(
E

[
eλY

])
, (2.6)

an expression that immediately yields that

P[|Y | ≤ b] = 1 �⇒ |Eλ(Y )| ≤ b. (2.7)

Next, assume that the controller chooses actions using policy π ∈ P starting at
x ∈ S. The application of the first n actions A0, A1, . . . An−1 generates the cost∑n−1

k=0 C(Xk, Ak) and, by (2.6), the associated certainty equivalent is given by

Jn(π, x) := 1

λ
log

(
Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )

])
, n = 1, 2, 3, . . . , (2.8)

which represents an average of Jn(π, x)/n per step. The (inferior limit λ-sensitive)
average performance index of policy π ∈ P at state x ∈ S is given by

J (π, x) := lim inf
n→∞

1

n
Jn(π, x), (2.9)

and

J∗(x) := inf
π∈P

J (π, x), x ∈ S. (2.10)

is the corresponding optimal value function. A policy π∗ ∈ P is (λ-)average optimal
if J (π, x) = J (π∗, x) for every x ∈ S.
Recurrence-communication conditions In the risk-neutral case, it is known that
the simultaneous Doeblin condition, which is stated in Assumption 2.2(i) below, is
sufficient to ensure that the optimal average cost is constant and is characterized via
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an optimality equation (Hernández-Lerma 1989; Arapostathis et al. 1993; Puterman
1994). In the present risk-sensitive context, the λ-sensitive average optimality equation
is given by

Uλ(g + h(x)) = inf
a∈A(x)

⎡

⎣
∑

y∈S
px,y(a)Uλ(C(x, a) + h(y))

⎤

⎦ , x ∈ S, (2.11)

where g is a real number and h : S → R is a function. When this equation admits
a solution (g, h(·)) and h(·) is a bounded mapping, it is known that the optimal λ-
average cost function J∗(·) is constant and equal to g, and if f ∈ F is such that for each
state x action f (x) minimizes the term within brackets in (2.11), then f is λ-average
optimal; see, for instance, Howard and Matheson (1972), Hernández-Hernández and
Marcus (1996), or Cavazos-Cadena (2009). Notice that via (2.4) the above optimality
equation can be equivalently written as

eλg+λh(x) = sup
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S
px,y(a)eλh(y)

⎤

⎦ , x ∈ S. (2.12)

In contrast with the risk-neutral context, in the present framework where the con-
troller is risk-seeking, the simultaneous Doeblin conditions is not sufficient to
ensure even that the optimal average cost function is constant (Cavazos-Cadena and
Fernández-Gaucherand 1999; Cavazos-Cadena 2009). For this reason, in this work
the simultaneous Doeblin condition will be complemented with a communication
requirement.

Assumption 2.2 There exists z ∈ S such that properties (i) and (ii) below hold:

(i) [Simultaneous Doeblin Condition.] The first return time Tz satisfies

sup
x∈S, f ∈F

E f
x [Tz] < ∞. (2.13)

(ii) [Accessibility from z.] Under the action of any stationary policy, every state y ∈ S
is accessible from z, that is,

P f
z [Ty < ∞] > 0, y ∈ S, f ∈ F. (2.14)

Remark 2.1 Assumptions 2.1 and 2.2 imply the following properties (i) and (ii) below;
for a proof see Theorem 4.1 in Cavazos-Cadena (2018).

(i) For each y ∈ S, there exists a finite constant My such that

Eπ
x [Ty] ≤ My, x ∈ S, π ∈ P. (2.15)

(ii) If x, y ∈ S with x �= y, then Pπ
x [Ty < Tx ] > 0 for every π ∈ P .
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Remark 2.2 Assumption 2.2 is, admittedly, very strong. However, in the denumerable
case such a condition is presently the most general one under which a characterization
of the optimal risk-sensitive average cost is available. The result in this direction can
be seen in Cavazos-Cadena (2018) and involves an extension of the Collatz-Wielandt
relations in the theory of positive matrices.

The Problem Under Assumptions 2.1 and 2.2 the optimal average cost function J∗(·)
is constant but the optimality equation (2.11) does not necessarily admits a solution;
an (uncontrolled) example illustrating this phenomenon was presented in Section 9 of
Cavazos-Cadena (2018). This fact provides that motivation to analyze the following
problem:

• To obtain convergent approximations to the optimal average cost as well as ‘nearly
optimal’ stationary policies via the fixed points of contractive operators.

An answer to this problem allows to determine approximations to the optimal
average cost as well as a stationary policy whose average cost is ‘close’ to the optimal
one by solving the single equation characterizing the fixed point of a contractive
operator. The main result on the above problem is stated in the following section, and
represents an extension of the classical ‘discounted approach’ in the risk neutral case
(Hernández-Lerma 1989; Puterman 1994) to the present risk-seeking framework.

Throughout the remainder, even without explicit reference, Assumptions 2.1 and
2.2 are enforced.

3 Contractive approximations

In this section the main result of the paper will be stated in Theorem 3.1 below. To begin
with, for each α ∈ (0, 1) define Tα : B(S) → B(S) as follows: For each W ∈ B(S),
Tα[W ] is implicitly determined by

Uλ(Tα[W ](x)) = inf
a∈A(x)

⎡

⎣
∑

y∈S
px,y(a)Uλ(C(x, a) + αW (y))

⎤

⎦ , x ∈ S, (3.1)

an expression that via (2.4) leads to

Tα[W ](x) : = 1

λ
log

⎛

⎝ sup
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S
px,y(a)eλαW (y)

⎤

⎦

⎞

⎠ , x ∈ S. (3.2)

Using (2.7) it follows that ‖Tα[W ]‖ ≤ ‖C‖+α‖W‖, so that Tα maps B(S) into itself.
Also, it is not difficult to verify that Tα is a monotone and α-homogeneous operator,
i. e., for each W , V ∈ B(S)

W ≥ V �⇒ Tα[W ] ≥ Tα[V ] and Tα[V + c] = Tα[V ] + αc, c ∈ R. (3.3)
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Observing that V ≤ W + ‖V − W‖, these properties lead to Tα[V ] ≤ Tα[W + ‖V −
W‖] = Tα[W ] + α‖V − W‖, and interchanging the roles of V and W it follows that

‖Tα[W ] − Tα[V ]‖ ≤ α‖W − V ‖, W , V ∈ B(S), (3.4)

so that Tα is a contractive operator on B(S). Since B(S) endowed with the supremum
norm is a Banach space, there exists a unique Vα ∈ B(S) satisfying

Vα = Tα[Vα], (3.5)

an equation that, via (3.2), is equivalent to

eλVα(x) = sup
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S
px,y(a)eλαVα(y)

⎤

⎦ , x ∈ S. (3.6)

Additionally, from Assumption 2.1 it is not difficult to see that there exists fα ∈ F

such that, for every x ∈ S, action fα(x) maximizes the term within brackets in the
above display, so that

eλVα(x) = eλC(x, fα(x))
∑

y∈S
px,y( fα(x))eλαVα(y), x ∈ S. (3.7)

The normalized (α-)cost and the (α-)relative value functions are defined by

gα(x) : = (1 − α)Vα(x), hα(x) : = α[Vα(x) − Vα(w)], x ∈ S, (3.8)

respectively, where, from this point onwards, w ∈ S is an arbitrary but fixed state.
Direct calculations combining these definitions with the two previous displays yield
hat

eλgα(x)+λhα(x) = sup
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S
px,y(a)eλhα(y)

⎤

⎦ , x ∈ S, (3.9)

and

eλgα(x)+λhα(x) = eλC(x, fα(x))
∑

y∈S
px,y( fα(x))eλhα(y), x ∈ S. (3.10)

Notice that ‖Vα − Tα[0]‖ = ‖Tα[Vα] − Tα[0]‖ ≤ α‖Vα − 0] = α‖Vα‖, and
then, observing that ‖Tα[0]‖ ≤ ‖C‖, by (3.2), it follows that ‖Vα‖ − ‖C‖ ≤ ‖Vα‖ −
‖Tα[0]‖ ≤ ‖Vα − Tα[0]‖ ≤ α‖Vα‖, so that

‖gα‖ = (1 − α)‖Vα‖ ≤ ‖C‖. (3.11)

The next theorem is the main result of this work.
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Theorem 3.1 Let λ < 0 be arbitrary but fixed. Under Assumptions 2.1 and 2.2 the
following assertions (i) and (ii) hold.

(i) The optimal average cost is constant, say g∗, and limα↗1 gα(x) = g∗ = J∗(x)
for every x ∈ S.

(iii) Given ε > 0, for each x ∈ S there exists αx,ε ∈ (0, 1) such that policy fα in (3.7)
is ε-optimal at x for α ∈ (αx,ε, 1), that is,

α ∈ (αx,ε, 1) �⇒ g∗ + ε ≥ J ( fα, x). (3.12)

The proof of Theorem 3.1 will be presented in Sect. 5 after the preliminary results
established in the following section.

4 Auxiliary tools

In this section the basic technical instruments that will be used to verify Theorem
3.1 are analyzed. Such preliminaries are established in Lemmas 4.1–4.3 below. The
first one concerns with boundedness properties of the family of relative cost functions
introduced in (3.8).

Lemma 4.1 (i) For each α ∈ (0, 1),

hα(·) ≤ 2‖C‖Mw, (4.1)

where the finite constant Mw is as in (2.15).
(ii) For each x ∈ S, lim infα↗1 hα(x) > −∞.

Proof (i) Given α ∈ (0, 1), define the sequence {Yn} of random variables by Y0 =
eλhα(X0) and Yn = eλ

∑n−1
t=0 (C(Xt ,At )−gα(Xt ))+λhα(Xn) for n ≥ 1. Now, let x ∈ S be

a fixed state, and observe that (3.10) implies that for every n ∈ N

eλhα(Xn) = eλ(C(Xn , fα(Xn))−gα(Xn))
∑

y∈S
pXn ,y( fα(Xn))e

λhα(y)

= E fα
x

[
eλ(C(Xn ,An)−gα(Xn))+λhα(Xn+1)

∣
∣
∣Fn

]
, P fα

x -a. s., (4.2)

where, using that the relation P fα
x [At = fα(Xt )] = 1 is always valid, the second

equality is due to the Markov property. Observing that eλ
∑n−1

t=0 (C(Xt ,At )−gα(Xt )) is
Fn-measurable, by (2.1), the previous display yields

Yn = eλ
∑n−1

t=0 (C(Xt ,At )−gα(Xt ))+λhα(Xn)

= eλ
∑n−1

t=0 (C(Xt ,At )−gα(Xt ))E fα
x

[
eλ(C(Xn ,An)−gα(Xn))+λhα(Xn+1)

∣
∣
∣Fn

]

= E fα
x

[
eλ

∑n
t=0(C(Xt ,At )−gα(Xt ))+λhα(Xn+1)

∣
∣
∣Fn

]
= E fα

x
[
Yn+1|Fn

]
,
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so that {(Yn,Fn)} is a martingale with respect to P fα
x ; since P fα

x [X0 = x] = 1,
the optional sampling theorem yields that, for every initial state x and n ∈ N,

eλhα(x) = E fα
x [Y0]

= E fα
x [Yn∧Tw ] = E fα

x

[
eλ

∑n∧Tw−1
t=0 (C(Xt ,At )−gα(Xt ))+hα(Xn∧Tw )

]
.

Now, using (2.2) and (2.3), observe that hα(XTw) = hα(w) = 0 on the event
[Tw < ∞]; since P fα

x [Tw < ∞] = 1, by (2.15), it follows hat

lim
n→∞ eλ

∑n∧Tw−1
t=0 (C(Xt ,At )−gα(Xt ))+hα(Xn∧Tw )

= eλ
∑Tw−1

t=0 (C(Xt ,At )−gα(Xt ))+hα(XTw )

= eλ
∑Tw−1

t=0 (C(Xt ,At )−gα(Xt )), P fα
x -a. s..

Via Fatou’s lemma and Jensen’s inequality, these two last displays together imply
that

eλhα(x) = lim inf
n→∞ E fα

x

[
eλ

∑n∧Tw−1
t=0 (C(Xt ,At )−gα(Xt ))+hα(Xn∧Tw )

]

≥ E fα
x

[
eλ

∑Tw−1
t=0 (C(Xt ,At )−gα(Xt ))

]
≥ e

E fα
x

[
λ

∑Tw−1
t=0 (C(Xt ,At )−gα(Xt ))

]

≥ e
E fα
x

[
−∑Tw−1

t=0 |λ(C(Xt ,At )−gα(Xt ))|
]

≥ e2λ‖C‖E fα
x [Tw],

where (3.11) and the negativity of λ were used in the last step. It follows that
λhα(x) ≥ 2λ‖C‖E fα

x [Tw], so that hα(x) ≤ 2‖C‖E fα
x [Tw]; since x was arbitrary

in this argument, (4.1) follows via (2.15).
(ii) Let f̃ ∈ F be fixed, and define the sequence {Sk} of subsets of the state space S by

S0 := {w},
Sk := {y ∈ S : px,y( f̃ (x)) > 0 for some x ∈ Sk−1}, k = 1, 2, 3, . . .

and notice that
⋃∞

k=0 Sk = S, by Remark 2.1(ii). Thus, to establish part (ii) it is
sufficient to show that, for every k ∈ N,

lim inf
α↗1

hα(x) > −∞, x ∈ Sk, (4.3)
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a claim will be verified by induction. To begin with, let f̃ ∈ F be a fixed policy
and notice that (3.9) implies that

eλhα(x) ≥ eλC(x, f̃ (x))−gα(x)
∑

y∈S
px,y( f̃ (x))e

λhα(y)

≥ e2λ‖C‖ ∑

y∈S
px,y( f̃ (x))e

λhα(y) (4.4)

where the second inequality is due to (3.11) and the negativity of λ. Now, using
that S0 = {w} and hα(w) = 0 for every α ∈ (0, 1), observe that assertion (4.3)
clearly holds for k = 0. Next, assume that (4.3) is valid for some k ∈ N and let
ỹ ∈ Sk+1 be arbitrary. Pick x̃ ∈ Sk such that

px̃,ỹ( f̃ (x̃)) > 0

and notice that (4.4) implies that eλhα(x̃) ≥ e2λ‖C‖ px̃,ỹ( f̃ (x̃))eλhα(ỹ), so that

hα(x̃) ≤ 2‖C‖ + 1

λ
log(px̃,ỹ( f̃ (x̃))) + hα(ỹ).

Since x̃ ∈ Sk , the induction hypothesis yields that lim infα↗1 hα(x̃) > −∞, and
then the two last displays together imply that lim infα↗1 hα(ỹ) > −∞. Recalling
that ỹ ∈ Sk+1 is arbitrary, it follows that (4.3) holds with k + 1 instead of k,
completing the induction argument. ��

In the subsequent development {αn} ⊂ (0, 1) is a fixed sequence such that

αn ↗ 1 as n → ∞ (4.5)

and, after taking a subsequence—if necessary—without loss of generality it is assumed
that the following limits exist:

g(x) : = lim
n→∞ gαn (x), h∗(x) : = lim

n→∞ hαn (x), x ∈ S (4.6)

where, for each x ∈ S,

g(x) ∈ [−‖C‖, ‖C‖], h∗(x) ∈ (−∞, 2‖C‖Mw]; (4.7)

see (3.11) and Lemma 4.1.
The next lemma establishes fundamental properties of the mappings g(·) and h∗(·).

Lemma 4.2 With the notation in (4.5)–(4.7) assertions (i)–(iv) below hold.

(i) The mapping g(·) in (4.6) is constant, say g(x) = g∗ ∈ R for each x ∈ S.

(ii) For each x ∈ S, eλg∗+λh∗(x) ≥ supa∈A(x)

[
eλC(x,a)

∑
y∈S px,y(a)eλh∗(y)

]
.
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(iii) For each positive integer n,

ng∗ + h∗(x) − 2‖C‖Mw ≤ Jn(π, x), x ∈ S, π ∈ P.

(iv) g∗ ≤ J∗(·).

Proof (i) Notice that (3.8) yields that gαn (x) − gαn (w) = 1 − αn

αn
hαn (x) for every

x ∈ S. Taking the limit as n goes to ∞, (4.6) and (4.7) together yield that g(x) =
g(w) for every x ∈ S.

(ii) Let (x, a) ∈ K be arbitrary and notice that (3.9) implies that, for each n ∈ N,

eλgαn (x)+λhαn (x) ≥ eλC(x,a)
∑

y∈S
px,y(a)eλhαn (y).

Taking the inferior limit as n goes to ∞ in both sides of this inequality, (4.6) and
part (i) together imply that

eλg∗+λh∗(x) ≥ lim inf
n→∞ eλC(x,a)

∑

y∈S
px,y(a)eλhαn (y)

≥ eλC(x,a)
∑

y∈S
px,y(a) lim inf

n→∞ eλhαn (y)

where Fatou’s lemma was used to set the second inequality. Thus, (4.6) and the
above display lead to

eλg∗+λh∗(x) ≥ eλC(x,a)
∑

y∈S
px,y(a)eλh∗(y), (x, a) ∈ K, (4.8)

establishing part (ii).
(iii) An induction argument starting at (4.8) and using the Markov property yields that

for every x ∈ S, π ∈ P and n ∈ N \ {0},

eλng∗+λh∗(x) ≥ Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λh∗(Xn+1)

]
.

From this relation, recalling that λ < 0 and using (4.7) it follows that

eλng∗+λh∗(x) ≥ Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )+2λ‖C‖Mw

]
= eλJn(π,x)+2λ‖C‖Mw ,

where (2.8) was used to set the equality. Therefore, λng∗ +λh∗(x) ≥ λJn(π, x)+
2λ‖C‖Mw, and the conclusion follows, since λ is negative.

(iv) Dividing by n both sides of 4.2 and taking the inferior limit as n ↗ ∞ in the
resulting inequality, (2.9) yields that g∗ ≤ J (π, x) for each x ∈ S and π ∈ P .
From this point, (2.10) leads to g∗ ≤ J∗(·). ��
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The following result is the final step before proceeding to the proof of the main
theorem.

Lemma 4.3 Given α ∈ (0, 1), let the policy fα ∈ F be such that (3.7) holds.

(i) For each x ∈ S,

gα(x) ≥ (1 − α)2
∞∑

k=1

αk−1 Jk( fα, x).

(ii) Given ε > 0 and x ∈ S, there exists α̃x,ε ∈ (0, 1) such that

gα + ε/2 ≥ J ( fα, x), α ∈ (α̃x,ε, 1).

(iii) g∗ ≥ J∗(·).

Proof (i) Let x ∈ S be arbitrary but fixed. Following ideas in Cavazos-Cadena and
Salem-Silva (2010), it will be proved by induction that for every positive integer
n

eλVα(x) ≤ E fα
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λVα(Xn)

]αn n∏

k=1

eλ(1−α)αk−1 Jk ( fα,x). (4.9)

To begin with, recall that the equality P fα
x [At = fα(Xt )] = 1 is always valid, so

that the Markov property and (3.7) together yield that, for every x ∈ S and n ∈ N,

eλVα(Xn) = E fα
x

[
eλC(Xn ,An)+λαVα(Xn+1)

∣
∣
∣Fn

]
, P fα

x -a. s.

Setting n = 0 in this relation and using that P fα
x [X0 = x], it follows that

eλVα(x) = E fα
x

[
eλC(X0,A0)+λαVα(X1)

]

= E fα
x

[(
eλC(X0,A0)+λVα(X1))

)α (
eλC(X0,A0)

)1−α
]

≤ E fα
x

[
eλC(X0,A0)+λVα(X1))

]α

E fα
x

[
eλC(X0,A0)

](1−α)

= E fα
x

[
eλC(X0,A0)+λVα(X1))

]α

eλJ1( fα,x)(1−α)

where Hölder’s inequality was used in the third step, and the last equality is due
to (2.8). This shows that (4.9) holds for n = 1. Next, assume that (4.9) is valid for
certain positive integer n. Observing that the equality At = fα(Xt ) is always valid
with probability one under fα and using that

∑n−1
t=0 C(Xt , At ) is Fn-measurable,
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by (2.1), via the Markov property it follows that

E fα
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λVα(Xn)

∣
∣
∣Fn

]

= eλ
∑n−1

t=0 C(Xt ,At )eλVα(Xn)

= eλ
∑n−1

t=0 C(Xt ,At )E fα
x

[
eλC(Xn ,An)+λαVα(Xn+1)

∣
∣
∣Fn

]

= E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λαVα(Xn+1)

∣
∣
∣Fn

]
.

Therefore, via Hölder’s inequality and (2.8) it follows that

E fα
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λVα(Xn)

]

= E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λαVα(Xn+1)

]

= E fα
x

[(
eλ

∑n
t=0 C(Xt ,At )+λVα(Xn+1)

)α (
eλ

∑n
t=0 C(Xt ,At )

)(1−α)
]

≤ E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λVα(Xn+1)

]α

E fα
x

[
eλ

∑n
t=0 C(Xt ,At )

](1−α)

= E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λVα(Xn+1)

]α (
eλJn+1( fα,x)

)(1−α)

,

and then

E fα
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λVα(Xn)

]αn

≤ E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λVα(Xn+1)

]αn+1 (
eλJn+1( fα,x)

)(1−α)αn

= E fα
x

[
eλ

∑n
t=0 C(Xt ,At )+λVα(Xn+1)

]αn+1

eλ(1−α)αn Jn+1( fα,x).

Combining this relation with the induction hypothesis, it follows that (4.9) holds
with n + 1 instead of n. Now, to establish part (i) notice that for n = 1, 2, 3, . . .

∣
∣
∣
∣
∣

n−1∑

t=0

C(Xt , At ) + Vα(Xn)

∣
∣
∣
∣
∣
≤ n‖C‖ + ‖Vα(·)‖ ≤ ‖C‖(n + (1 − α)−1),

so that E fα
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λVα(Xn)

]
≤ e|λ|‖C‖(n+(1−α)−1), and via (4.9) it fol-

lows that

eλVα(x) ≤ eαn |λ|‖C‖(n+(1−α)−1)
n∏

k=1

eλ(1−α)αk−1 Jk( fα,x),
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an inequality that, recalling that λ < 0, is equivalent to

Vα(x) ≥ −αn‖C‖(n + (1 − α)−1) +
n∑

k=1

(1 − α)αk−1 Jk( fα, x).

Multiplying by (1 − α) both sides of this relation, using (3.8) it follows that

gα(x) ≥ −αn(1 − α)‖C‖(n + (1 − α)−1) +
n∑

k=1

(1 − α)2αk−1 Jk( fα, x)

and the desired conclusion follows taking the limit a n goes to ∞.
(ii) Let x ∈ S and ε > 0 be arbitrary and, using (2.9), pick N0(x, ε) ∈ N such that

1

k
Jk( fα, x) ≥ J ( fα, x) − ε/4, k ≥ N0(x, ε).

Thus, observing that |J ( fα, x)|, k−1|Jk( fα, x)| ≤ ‖C‖, via part (i) it follows that

gα(x) ≥ (1 − α)2
∞∑

k=1

kαk−1 Jk( fα, x)

k

= J ( fα, x) + (1 − α)2
∞∑

k=1

kαk−1
(

1

k
Jk( fα, x) − J ( fα, x)

)

≥ J ( fα, x) + (1 − α)2
N0(x,ε)−1∑

k=1

kαk−1
(

1

k
Jk( fα, x) − J ( fα, x)

)

− ε/4

≥ J ( fα, x) − 2(1 − α)2‖C‖
N (x0,ε)−1∑

k=1

kαk−1 − ε/4.

where the previous display was used to set the first inequality. Finally, select α̃x,ε

such that (1 − α)2 ∑N (x0,ε)−1
k=1 kαk−1 ≤ ε(8‖C‖ + 1)−1 when α ∈ (α̃x,ε, 1) to

conclude that

gα(x) ≥ J ( fα, x) − ε/2, α ∈ (α̃x,ε, 1),

completing the proof of part (ii).
(iii) Let x ∈ S be arbitrary. Given ε > 0, let α̃x,ε ∈ (0, 1) be as in part (ii) and observe

that (4.5) yields that there exists Ñ (x, ε) ∈ N such that αn > α̃x,ε if n > Ñ (x, ε),
and in this case (4.3) implies that gαn (x) ≥ J ( fαn , x) − ε/2, so that

gαn (x) ≥ J∗(x) − ε/2, n > Ñ (x, ε).

Taking the limit as n goes to ∞, this relation leads to g∗ ≥ J∗(x) − ε/2, and the
conclusion follows, since ε > 0 is arbitrary. ��
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5 Proof of themain result

After the preliminaries in the previous section, the main conclusions of the paper can
be established as follows.

Proof of Theorem 3.1 Let {αn}n∈N be an arbitrary sequence satisfying (4.5) and, as
before, taking a subsequence, if necessary, without loss of generality assume that
(4.6) holds, so that limk→∞ gαk (·) = g∗ ∈ R, by Lemma 4.2(i).

(i) Combining Lemma 4.2(iv) and Lemma 4.3(iii) it follows that J∗(·) = g∗ =
limn→∞ gαn (x) for every x ∈ S. Thus, since the sequence {αn} satisfying (4.5) is
arbitrary, it follows that limα↗1 gα(·) = J∗(·) = g∗.

(ii) Let x ∈ S be arbitrary but fixed. Given ε > 0, using part (i) select α̂x ε ∈ (0, 1)

such that

gα(x) < g∗ + ε/2, α ∈ (α̂x,ε, 1).

Setting αx,ε = max{α̂x,ε, α̃x,ε}, this last display and Lemma 4.3 (ii) together yield
that (3.12) holds.

6 Conclusion

In this work, Markov decision chains on a denumerable state space were studied. It
was assumed that the performance of a decision policy is measured by the average
criterion as perceived by a risk-seeking controller with constant risk-sensitivity. Under
conditions ensuring that the optimal average cost is constant, but not that the optimality
equation admits a solution, the problems of approximating the optimal average cost,
and determining a nearly optimal policy via the family of fixed points of contractive
operators were studied. The results in this direction, which are stated in Theorem 3.1,
provide an extension to the present framework of the classical discounted approach in
the theory of Markov decision chains endowed with the risk-neutral average index. On
the other hand, extending the conclusions in Theorem 3.1 to more general contexts,
including unbounded costs or more general state space, seems to be an interesting
problem.
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