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Abstract
In this paper, we consider risk-sensitive discounted control problem for continuous-
time jump Markov processes taking values in general state space. The transition rates
of underlying continuous-time jump Markov processes and the cost rates are allowed
to be unbounded. Under certain Lyapunov condition, we establish the existence and
uniqueness of the solution to the Hamilton–Jacobi–Bellman equation. Also, we prove
the existence of optimal risk-sensitive control in the class of Markov control and
completely characterized the optimal control.

Keywords Continuous-time Markov decision process · History-dependent control ·
General state space · Risk-sensitive discounted criterion · HJB equation · Optimal
control

1 Introduction

In this paper, we study the risk-sensitive discounted criterion for continuous-time
Markov decision processes (CTMDPs) with Borel state space. In the risk-neutral
criterion, the controller wants to optimize the expected value of the total payoff. But
in the risk-sensitive criterion, controller considers the expected value of the exponential
of the total payoff and so, the risk-sensitive criterion gives a better protection from
the risk. Therefore, the risk-sensitive or exponential of integral is a very popular cost
criterion due to its applications in many areas such as queueing systems and finance,
for more details see Bauerle and Rieder (2014) and Whittle (1990) and the references
therein. In the literature, risk-sensitive control problems for CTMDPs are an important
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class of stochastic optimal control problems and have been widely studied under
different sets of conditions. Finite horizon risk-sensitive CTMDPs for countable state
space were studied in Ghosh and Saha (2014), Guo et al. (2019) and Wei (2016) and
for infinite horizon risk-sensitive CTMDPs we refer to Ghosh and Saha (2014), Guo
and Zhang (2020), Kumar and Pal (2013, 2015), Pal and Pradhan (2019) and Zhang
(2017). For important contributions to the risk-sensitive control of discrete-time MDP
on a general state space, see Masi and Stettner (2000) and Masi and Stettner (2007).
Although risk-sensitive control of CTMDPs on a countable state space have been
studied extensively, but the corresponding literature in the context of risk-sensitive
control of CTMDPs on a general state space is rather limited. Some exceptions are
(Guo and Zhang 2019, 2020; Pal and Pradhan 2019).

In the paper (Pal and Pradhan 2019), the authors studied risk-sensitive control of
pure jump processes on a general state space. They considered bounded transition
and cost rates and all controls are Markovian. In Pal and Pradhan (2019), the authors
proved the HJB characterization of the optimal risk-sensitive control. The bounded-
ness assumption on the transition and cost rates plays a key role in the proof of the
existence of the optimal risk-sensitive control in Pal and Pradhan (2019). This bound-
edness requirement, however, imposes some restrictions in applications, for instance
in queueing control and population processes, where the transition and reward/cost
rates are usually unbounded. Also, there are many real-life situations where the state
spacemay be uncountable, for example, the chemical reactionmodel, Gaussianmodel,
etc. One can see Guo and Zhang (2019), Piunovskiy and Zhang (2020) and references
therein for the real-life examples. In Guo and Zhang (2019), the author considered the
finite-horizon risk-sensitive control problem for CTMDPs on a Borel state space with
unbounded transition and cost rates and proved the existence of optimal control via
the HJB equation.

In this paper, we study a much more general risk-sensitive control problem for
CTMDP with general state space. To the best of our knowledge, this is the first work
which deals with infinite horizon discounted risk-sensitive control for CTMDPs on a
general state space with unbounded cost and transition rates and the controls can be
history-dependent. The main objective of this work is to prove the existence of the
solution of the HJB equation and the characterization of the optimal risk-sensitive
control. In particular (1) We prove that the HJB equations has a unique solution
ϕα ∈ L∞

V ([0, 1]×S) satisfying the bounds as in Eq. (3.1) below, where L∞
V ([0, 1]×S)

is described below. (2) We prove that any measurable minimizer of the HJB equation
is optimal, and conversely any optimal control in the class of Markov controls is a
minimizer of the HJB Eq. (3.1) below. We first consider for bounded transition and
cost rates and establish the existence of a solution to the corresponding HJB equation
by Banach’s fixed point theorem as in Pal and Pradhan (2019). Then we will relax the
bounded hypothesis and extend this result to unbounded transition and cost rates. We
characterize the value function via the HJB equation. Also, we prove the existence of
an optimal control in the class of Markov control and the HJB characterization of the
optimal risk-sensitive control and prove its complete characterization. In Corollary
5.1, we prove that if the cost and transition rates are bounded, then an optimal control
exists for our model.
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The rest of this article is structured as follows. Section 2 dealswith the description of
the problem, required notations, someAssumptions, and preliminary results. In Sect. 3,
we give a continuity-compactness Assumption and prove the stochastic representation
of the solution of the HJB Eq. (3.1). In Sect. 4, we truncate our transition and cost
rates and prove the existence of the unique solution to the HJB equation. A complete
characterization of optimal control is proven in Sect. 5. In Sect. 6, we illustrate our
theory and assumptions by an illustrative example.

2 The control problems

The model of CTMDP is a five-tuple which consists of the following elements:

M := {S, A, (A(x) ⊂ A, x ∈ S), c(x, a), q(·|x, a)},

• a Borel space S, called the state space, whose elements are referred to as states of
the system and the corresponding Borel σ -algebra isB(S). (Throughout the whole
paper we consider that for any Borel space X , the corresponding Borel σ -algebra
is B(X).)

• A is the action set, which is assumed to be Borel space with the Borel σ -algebra
B(A).

• for each x ∈ S, A(x) ∈ B(A) denotes the set of admissible actions for state x . Let
K := {(x, a)|x ∈ S, a ∈ A(x)}, which is a Borel subset of S × A.

• the measurable function c : K → R+ denotes the cost rate function. We require
the cost function c(x, a) to measure (or evaluate) the utility of taking action a at
state x .

• given any (x, a) ∈ K , the transition rate q(·|x, a) is a Borel measurable signed
kernel on S given K . That is, q(·|x, a) satisfies countable additivity; q(D|x, a) ≥ 0
where (x, a) ∈ K , x /∈ D and D ∈ B(S). Moreover, we assume that q(·|x, a)

satisfies the following conservative and stable conditions: for any x ∈ S,

q(S|x, a) ≡ 0 and

q∗(x) := sup
a∈A(x)

qx (a) < ∞,

where qx (a) := −q({x}|x, a) ≥ 0. We need the transition rates to specify the
random dynamic evolution of the system.

Next, we give an informal description of the evolution of the CTMDPs as follows.
The controller observes continuously the current state of the system.When the system
is in state x ∈ S at time t ≥ 0, he/she chooses action at ∈ A(x) according to some
control. As a consequence of this, the following happens:

• the controller incurs an immediate cost at rate c(x, at ); and
• after a random sojourn time (i.e., the holding time at state x), the system jumps

to a set B ∈ B(S) (x /∈ B) of states with the transition probability
q(B|x, at )
qx (at )
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determined by the transition rates q(dy|x, at ). The distribution function of the

sojourn time is (1−e− ∫ t+x
t qx (as )ds). (see Proposition B.8 in [ Guo and Hernandez-

Lerma (2009), p. 205] for details).

When the state of the system transits to a new state y 	= x , the above procedure is
repeated. Thus, the controller tries to minimize his/her costs with respect to some
performance criterion Jα(·, ·, ·), which in our present case is defined by (2.2), below.
To formalize what is described above, below we describe the construction of contin-
uous time Markov decision processes (CTMDPs) under possibly history-dependent
controls. To construct the underlying CTMDPs (as in Guo and Piunovskiy 2011;
Kitaev 1995; Piunovskiy and Zhang 2011, 2020) we introduce some notations: let
S� := S ∪ {�} (with some “isolated” state � /∈ S), �0 := (S × (0,∞))∞,
�k := (S × (0,∞))k × S × ({∞} × {�})∞ for k ≥ 1 and � := ∪∞

k=0�k . Let
F be the Borel σ -algebra on �. Then we obtain the measurable space (�,F). For
some k ≥ 1, and sample ω := (x0, θ1, x1, · · · , θk, xk, · · · ) ∈ �, define

T0(ω) := 0, Tk(ω) := Tk−1(ω) + θk, T∞(ω) := lim
k→∞ Tk(ω).

Using {Tk}, we define the state process {ξt }t≥0 as

ξt (ω) :=
∑

k≥0

I{Tk≤t<Tk+1}xk + I{t≥T∞}�, for t ≥ 0 (with T0 := 0). (2.1)

Here, IE denotes the indicator function of a set E , and we use the convention that
0+ z =: z and 0z =: 0 for all z ∈ S�. Obviously, ξt (ω) is right-continuous on [0,∞).
We denote ξt−(ω) := lim infs→t− ξs(ω). From Eq. (2.1), we see that Tk(ω) (k ≥ 1)
denotes the k-th jump moment of {ξt , t ≥ 0}, xk−1 is the state of the process on
[Tk−1(ω), Tk(ω)), θk = Tk(ω) − Tk−1(ω) plays the role of sojourn time at state xk−1,
and the sample path {ξt (ω), t ≥ 0} has at most denumerable states xk(k = 0, 1, · · · ).
The process after T∞ is regarded to be absorbed in the state�. Thus, let q(·|�, a�) :≡
0, A� := A ∪ {a�}, A(�) := {a�}, c(�, a) :≡ 0 for all a ∈ A�, where a� is an
isolated point.
To precisely define the criterion,we need to introduce the concept of a control as inGuo
et al. (2012), Guo and Piunovskiy (2011) andKitaev and Rykov (1995). Take the right-
continuous σ -algebras {Ft }t≥0 with Ft := σ({Tk ≤ s, ξTk ∈ S} : 0 ≤ s ≤ t, k ≥ 0).
For all t ≥ 0, Fs− =: ∨

0≤t<s Ft . Now define a σ -algebra P := σ(A × {0}, B ×
(s,∞) : A ∈ F0, B ∈ Fs−), which denotes the σ -algebra of predictable sets on
� × [0,∞) related to {Ft }t≥0. To complete the specification of a stochastic optimal
control problem, we need, of course, to introduce an optimality criterion. This requires
to define the class of controls as below.

Definition 2.1 A history-dependent policy π := {πt (ω)}t≥0 is a measurable map from
(� × [0,∞),P) onto (A�,B(A�)) satisfying πt (ω) ∈ A(ξt−(ω)) for all ω ∈ � and
t ≥ 0. For notational simplicity, we denote a history-dependent control as {πt }t≥0.
The set of all history-dependent controls is denoted by �. A control π ∈ �, is called
a Markov if πt (ω) = πt (ξt−(w)) for every w ∈ � and t ≥ 0, where ξt−(w) :=
lims↑t ξs(w). We denote by �m the family of all Markov controls.
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For any compact metric space Y , let P(Y ) denote the space of probability measures
on Y with Prohorov topology. Under Assumption 2.1 below, for any initial state x ∈ S
and any control π ∈ �, Theorem 4.27 in Kitaev and Rykov (1995) yields the existence
of a unique probability measure denoted by Pπ

x on (�,F). Let Eπ
x be the expectation

operator with respect to Pπ
x . Fix any discounted factor α > 0. For any π ∈ � and

x ∈ S, the risk-sensitive discounted criterion is defined as

Jα(θ, x, π) := 1

θ
log

{

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]}

, (2.2)

provided that the integral is well defined, where {ξt }t≥0 is the Markov process corre-
sponding to π = {πt }t≥0 ∈ � and θ ∈ (0, 1] denotes a risk-sensitive parameter and
the limiting case of θ → 0 is the risk-neutral case. For each x ∈ S, let

J ∗
α (θ, x) = inf

π∈�
Jα(θ, x, π).

A control π∗ ∈ � is said to be optimal if Jα(θ, x, π∗) = J ∗
α (θ, x) for all x ∈ S. The

objective of this paper is to provide conditions for the existence of optimal control and
introduce a HJB characterization of such control.
Since the logarithm is an increasing function, instead of studying Jα(θ, x, π), we will
consider J̃α(θ, x, π) on [0, 1] × S × � defined by

J̃α(θ, x, π) := Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]

. (2.3)

Obviously, J̃α(θ, x, π) ≥ 1 for (θ, x) ∈ [0, 1] × S and π ∈ �, and we have π∗ is
optimal if and only if inf

π∈�
J̃α(θ, x, π) = J̃α(θ, x, π∗) =: J̃ ∗

α (θ, x) ∀x ∈ S. Since

the rates q(dy|x, a) and costs c(x, a) are allowed to be unbounded, we next give
conditions for the non-explosion of {ξt , t ≥ 0} and finiteness of Jα(θ, x, π), which
had been widely used in CTMDPs; see, for instance, (Guo and Hernandez-Lerma
2009; Guo et al. 2012; Guo and Liao 2019; Guo and Piunovskiy 2011; Prieto-Rumeau
and Hernandez-Lerma 2012) and references therein.

Assumption 2.1 There exists a real-valued Borel measurable function V ≥ 1 on S and
constants ρ0 > 0, M0 > 0, L0 ≥ 0 and 0 < ρ1 < min{α, ρ−1

0 α2} such that

(i)
∫
S V(y)q(dy|x, a) ≤ ρ0V(x) ∀(x, a) ∈ K ;

(ii) supa∈A(x) qx (a) ≤ M0V(x) ∀x ∈ S;
(iii) supa∈A(x) c(x, a) ≤ ρ1 logV(x) + L0 ∀x ∈ S.

Remark 2.1 (a) Note that, when the transition rates are bounded i.e., supx∈S q∗(x) <

∞, Assumptions 2.1 (i) and (ii) are satisfied by taking a suitable constant value of
V(x).

(b) Under Assumption 2.1 (iii) the criterion (2.3) is well defined and finite; see Propo-
sition 2.1(c) below.
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Proposition 2.1 Grant Assumption 2.1. Then for any control π ∈ � and (θ, x) ∈
[0, 1] × S, the following results are true:

(a) Pπ
x (T∞ = ∞) = 1, Pπ

x (ξ0 = x) = 1, and Pπ
x (ξt ∈ S) = 1 for all t ≥ 0;

(b) Eπ
x [V(ξt )] ≤ eρ0tV(x) for all t ≥ 0;

(c) We have

J̃α(θ, x, π) ≤ α2

α2 − ρ0ρ1θ
eθL0/α[V(x)] ρ1θ

α ≤ α2

α2 − ρ0ρ1
eL0/αV(x).

Also, we get

J ∗
α (θ, x) ≤ log

(
α2

α2 − ρ0ρ1

)

+ L0

α
+ ρ1

α
logV(x) ∀θ ∈ (0, 1], x ∈ S. (2.4)

Proof For parts (a) and (b), see, Guo et al. (2012) andGuo and Piunovskiy (2011,The-
orem 3.1).
Proof of part (c): Observe that d(−e−αt ) is a probability measure on [0,∞). For any
π ∈ � and (θ, x) ∈ [0, 1] × S, by (2.3) and Jensen’s inequality we have

J̃α(θ, x, π) = Eπ
x

[

exp

(∫ ∞

0

θ

α
c(ξt , πt )d(−e−αt )

)]

≤ Eπ
x

[∫ ∞

0
exp

(
θ

α
c(ξt , πt )

)

d(−e−αt )

]

.

By Assumption 2.1 and part (b) we obtain

J̃α(θ, x, π) ≤ Eπ
x

[∫ ∞

0
exp

(
θ

α
(ρ1 logV(ξt ) + L0)

)

d(−e−αt )

]

= eθL0/α

[∫ ∞

0
Eπ
x

(

V(ξt )
ρ1θ

α

)

d(−e−αt )

]

≤ eθL0/α

[∫ ∞

0
(Eπ

x [V(ξt )])
ρ1θ

α d(−e−αt )

]

(since ρ1θ < α)

≤ αeθL0/α[V(x)] ρ1θ

α

[∫ ∞

0
exp

(
ρ0ρ1θ t

α
− αt

)

dt

]

= α2

α2 − ρ0ρ1θ
eθL0/α[V(x)] ρ1θ

α ,

where the last equality holds due to the fact that ρ0ρ1θ < α2.

Next observe that sup
θ∈[0,1]

J̃ ∗
α (θ, x) ≤ α2

α2 − ρ0ρ1
eL0/αV(x), and

sup
θ∈(0,1]

J ∗
α (θ, x) = sup

θ∈(0,1]
1

θ
log J̃ ∗

α (θ, x) ≤ sup
θ∈(0,1]

1

θ

(

log
α2

α2 − ρ0ρ1θ

)

+ L0

α
+ ρ1

α
logV(x).

Also, doing a simple and direct calculation, we achieve (2.4). ��
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In Ghosh and Saha (2014) and Kumar and Pal (2013), the authors used the Dynkin’s
formula within the class of Markov controls by using the Markov property of the state
process {ξt }t≥0. But this Markov property may fail to hold when we study within the
class of history-dependent controls, and consequently, here we can’t directly apply the
Dynkin formula. Hence we assume the following condition, so that we can apply the
Dynkin’s formula for a large enough class of functions, which had been widely used
in CTMDPs; see, for instance, (Guo and Liao 2019; Guo et al. 2019; Guo and Zhang
2019).

Assumption 2.2 The Borel measurable function V2 ≥ 1 on S satisfies the following
Lyapunov condition

∫

S
q(dy|x, a)V2(y) ≤ ρ2V2(x) + b0 ∀ (x, a) ∈ K ,

for some constants 0 < ρ2 < α and b0 ≥ 0. Here V is as in Assumption 2.1.

We now introduce some frequently used notations.

• C∞
c (a, b) denotes the set of all infinitely differentiable functions on (a, b) with

compact support.
• Let Aas([0, 1] × S) denote the space of all functions which are real-valued and
differentiable almost everywhere with respect to the first variable θ ∈ [0, 1].
Given any real-valued function W ≥ 1 on S and any Borel set X , a real-valued

function ϕ on X × S is called W bounded if ‖ϕ‖∞
W := sup

(θ,x)∈X×S

|ϕ(θ, x)|
W (x)

< ∞.

Denote BW (X × S) the Banach space of all W -bounded functions. When W ≡ 1,
B1([0, 1] × S) is the space of all bounded functions on [0, 1] × S. Now define
L∞
W ([0, 1] × S) := {ϕ : [0, 1] × S → R : ϕ ∈ BW ([0, 1] × S) ∩ Aas([0, 1] × S)}.

3 Stochastic representation of a solution to the HJB equation

In this section, we prove that if the HJB equation for the cost criterion (2.3) has a
solution then we will give a stochastic representation of that solution. Using dynamic
programming heuristics, the HJB equations for the discounted cost criterion (2.3) is
given by

⎧
⎪⎨

⎪⎩

αθ
∂ϕα

∂θ
(θ, x) = inf

a∈A(x)

[∫

S
q(dy|x, a)ϕα(θ, y) + θc(x, a)ϕα(θ, x)

]

,

1 ≤ ϕα(θ, x) ≤ α2

α2−ρ0ρ1θ
eθL0/α(V(x))

ρ1θ

α for (θ, x) ∈ [0, 1] × S,

(3.1)

for each x ∈ S and a.e. θ ∈ [0, 1] where the upper bound of ϕα(θ, x) is motivated by
Proposition 2.1.
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Remark 3.1 To prove the existence of an optimal control for bounded cost and transi-
tion rates, in Pal and Pradhan (2019), the authors studied the following HJB equation
having a solution φα(θ, x) on [0, 1] × S such that
⎧
⎨

⎩
αθ

∂φα

∂θ
(θ, x) = inf

a∈A(x)

[∫

S
q(dy|x, a)φα(θ, y) + θc(x, a)φα(θ, x)

]

, for (θ, x) ∈ [0, 1] × S,

limθ→0 φα(θ, x) = 1 uniformly in x ∈ S.

(3.2)

From the arguments for the existence of a unique solution to theEq. (3.2), it is necessary
to have φα(θ, x) converges to 1 uniformly in x as θ → 0. But, it is not true in general
when the cost and transition rates are unbounded; for more details see Example 3.2 in
Guo and Liao (2019). In this article we replace the uniform convergence condition by
the above new one.

To ensure the existence of an optimal control, in addition to Assumptions 2.1 and
2.2, we also need the following continuity and compactness conditions.

Assumption 3.1 The following conditions hold:

(i) for each x ∈ S, the set A(x) is compact;
(ii) for any fixed x ∈ S, the function c(x, a) is continuous in a ∈ A(x);

(iii) for any given x ∈ S, the function
∫

S
V(y)q(dy|x, a) is continuous in a ∈ A(x),

where V is introduced in Assumption 2.1.

Remark 3.2 Assumptions 3.1 (i)–(iii) are commonly used to find an optimal control for
continuous-time MDP, see Guo and Hernandez-Lerma (2009), Guo and Liao (2019),
Guo et al. (2019), Guo and Piunovskiy (2011) and Guo and Zhang (2019). Also,
note that if Assumption 3.1 (iii) is satisfied, then for any given x ∈ S, the function∫

S
u(y)q(dy|x, a) is continuous in a ∈ A(x) for each function u ∈ BV (S).

In the next theoremwe show that if theHJBequationhas a solution then its stochastic
representation is equal to the value function corresponding to the cost criterion (2.3).

Theorem 3.1 Under Assumptions 2.1, 2.2, and 3.1 suppose that the HJB Eq. (3.1) has
a solution ϕα ∈ L∞

V ([0, 1] × S) satisfying the bounds as in Eq. (3.1). Then, for all
(θ, x) ∈ [0, 1] × S, we have the probabilistic representation of ϕα as

ϕα(θ, x) = inf
π∈�

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]

(3.3)

i.e., ϕα(θ, x) = J̃ ∗
α (θ, x) for all (θ, x) ∈ [0, 1] × S.

Proof First, we see that

[

θc(x, a)ϕα(θ, x) +
∫

S
q(dy|x, a)ϕα(θ, y)

]
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is continuous in a ∈ A(x) and A(x) is compact. So by measurable selection theorem,
[Bertsekas and Shreve (1996), Proposition 7.33], there exists a measurable function
f ∗ : [0, 1] × S → A such that

inf
a∈A(x)

[

θc(x, a)ϕα(θ, x) +
∫

S
q(dy|x, a)ϕα(θ, y)

]

=
[

θc(x, f ∗(θ, x))ϕα(θ, x) +
∫

S
q(dy|x, f ∗(θ, x))ϕα(θ, y)

]

. (3.4)

Let

π∗ : S × R+ → A

be defined by

π∗
t (x) := f ∗(θe−αt , x).

Now we observe from Eq. (3.1) that for any x ∈ S, a ∈ A(x) and a.e. θ ∈ [0, 1] that

−αθ
∂ϕα

∂θ
(θ, x) +

[∫

S
q(dy|x, a)ϕα(θ, y) + θc(x, a)ϕα(θ, x)

]

≥ 0. (3.5)

For any history-dependent control π ∈ � and θ ∈ [0, 1], let {ξt , t ≥ 0} be the
corresponding process, and define θ(t) := θe−αt . Now for each ω ∈ �, by Eq. (3.5),
we get for a.e. s ≥ 0,

−αθ(s)
∂ϕα

∂θ
(θ(s), ξs) +

[∫

S
q(dy|ξs , πs)ϕα(θ(s), y) + θ(s)c(ξs , πs)ϕα(θ(s), ξs)

]

≥ 0.

(3.6)

Define a function g : [0,∞) × S × � → [0,∞) by

g(t, x, ω) := exp

(∫ t

0
θ(s)c(ξs, πs)ds

)

ϕα(θ(t), x).

In view of Assumptions 2.1 and 2.2, we have

Eπ
x

[

exp

(∫ t

0
2e−αsc(ξs, πs)ds

)]

≤ Eπ
x

[

exp

(∫ ∞

0

2

α
c(ξs, πs)d(−e−αs)

)]

≤ Eπ
x

[∫ ∞

0
exp

(
2

α
c(ξs, πs)

)

d(−e−αs)

]

≤ Eπ
x

[∫ ∞

0
exp

(
2

α
(ρ1 logV(ξs) + L0)

)

d(−e−αs)

]
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(by Assumption2.1)

= e2L0/α

[∫ ∞

0
Eπ
x

(

V(ξs)
2ρ1
α

)

d(−e−αs)

]

≤ αe2L0/α

(

V2(x) + b0
ρ2

)[∫ ∞

0
eρ2s−αsds

]

= αe2L0/α

α − ρ2

(

V2(x) + b0
ρ2

)

, (3.7)

where second inequality is obtained by using Jensen’s inequality.

Hence Eπ
x

[

exp

(
∫ t
0 2e−αsc(ξs, πs)ds

)]

< ∞ for all x ∈ S and t ∈ (0,∞). Thus,

using the extension ofDynkin formula inGuo et al. (2019), Theorem3.1 to the function
g, we have

Eπ
x [g(t, ξt , ω)] − ϕα(θ, x)

= Eπ
x

{∫ t

0
exp

(∫ s

0
θ(v)c(ξv, πv)dv

)

×
[

−αθ(s)
∂ϕα

∂θ
(θ(s), ξs)

+
∫

S
q(dy|ξs, πs)ϕα(θ(s), y) + θ(s)c(ξs, πs)ϕα(θ(s), ξs)

]

ds

}

. (3.8)

Now from (3.6) and (3.8), we have

ϕα(θ, x) ≤ Eπ
x

[

exp

(∫ t

0
θ(s)c(ξs, πs)ds

)

ϕα(θ(t), ξt )

]

. (3.9)

Given any p > 1, let q > 1 such that 1
p + 1

q = 1, by Holder’s inequality we have

ϕα(θ, x) ≤ Eπ
x

[

exp

(∫ t

0
θ(s)c(ξs, πs)ds

)

ϕα(θ(t), ξt )

]

≤
{

Eπ
x

[

exp

(

p
∫ t

0
θ(s)c(ξs, πs)ds

)]}1/p

×
{

Eπ
x [ϕq

α(θ(t), ξt )]
}1/q

=: T1(p, t) · T2(q, t). (3.10)

For T2(q, t) := {Eπ
x [ϕq

α(θ(t), ξt )]}1/q , by the upper bound of ϕα in (3.1), we have

ϕα(θ(t), ξt ) = ϕα(θe−αt , ξt ) ≤ α2

α2 − θe−αtρ0ρ1
exp

(
θe−αt L0

α

)

[V(ξt )]
ρ1θe−αt

α .

If t > α−1 log(θqρ1/α) then θe−αt qρ1/α < 1. Applying Jensen’s inequality and
Proposition 2.1(b), we get
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T2(q, t) ≤
{

Eπ
x

[(
α2

α2 − θe−αtρ0ρ1

)q

exp

(
qθe−αt L0

α

)

[V(ξt )]
qρ1θe−αt

α

]}1/q

= α2

α2 − θe−αtρ0ρ1
exp

(
θe−αt L0

α

)[

Eπ
x [V qρ1θe−αt

α (ξt )]
] 1

q

≤ α2

α2 − θe−αtρ0ρ1
exp

(
θe−αt L0

α

)

[Eπ
x (V(ξt ))]

ρ1θe−αt

α

≤ α2

α2 − θe−αtρ0ρ1
exp

(
θe−αt

α
(L0 + ρ0ρ1t)

)

V θe−αt ρ1
α (x) =: T3(t).

(3.11)

Next take t → ∞ and get

T1(p, t) →
{

Eπ
x

[

exp

(

p
∫ ∞

0
θ(s)c(ξs, πs)ds

)]}1/p

and T3(t) → 1. (3.12)

By (3.10), (3.11) and (3.12) we obtain

ϕα(θ, x) ≤
{

Eπ
x

[

exp

(

pθ
∫ ∞

0
e−αt c(ξt , πt )dt

)]}1/p

.

Now, take the limit as p ↓ 1 and get the result

ϕα(θ, x) ≤ Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]

.

Since π ∈ � is an arbitrary control, we have

ϕα(θ, x) ≤ inf
π∈�

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]

. (3.13)

Using (3.1), (3.4) and (3.10), we can show that

Eπ∗
x

[

exp

(∫ t

0
θ(s)c(ξs, π

∗
s (ξs−))ds

)

ϕα(θ(t), ξt )

]

= ϕα(θ, x). (3.14)

Now, using the lower bound of ϕα in (3.1) and Fatou’s lemma, we obtain

lim inf
t→∞ Eπ∗

x

[

exp

(∫ t

0
θ(s)c(ξs, π

∗
s (ξs−))ds

)

ϕα(θ(t), ξt )

]

≥ lim inf
t→∞ Eπ∗

x

[

exp

(∫ t

0
θ(s)c(ξs, π

∗
s (ξs−))ds

)]

≥ Eπ∗
x

[

lim inf
t→∞ exp

(∫ t

0
θ(s)c(ξs, π

∗
s (ξs−))ds

)]

= J̃α(θ, x, π∗). (3.15)
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From (3.14) and (3.15), we have

J̃α(θ, x, π∗) ≤ ϕα(θ, x).

Thus

inf
π∈�

J̃α(θ, x, π) ≤ J̃α(θ, x, π∗) ≤ ϕα(θ, x). (3.16)

From (3.13) and (3.16), we have (3.3). ��

4 The existence of solution to the HJB equation

In this Section, we prove that the Eq. (3.1) is the HJB equation for the α discounted
cost (2.3) and the Eq. (3.1) has a solution in L∞

V ([0, 1] × S). We now proceed to
make a rigorous analysis of the above. First, we prove a lemma about the existence
of a solution for the HJB equation for bounded transition and cost rates; see Lemma
4.1 below. Then in Theorem 4.1, we relax these boundedness condition and prove the
existence of a solution to theHJBEq. (3.1). For that, we first truncate our transition and
cost rates which plays a crucial role to derive the HJB equations and find the solution.
Fix any n ≥ 1, 0 < δ < 1. For each n ≥ 1, x ∈ S, a ∈ A(x), let An(x) := A(x),
Sn := {x ∈ S|V(x) ≤ n}, and Kn := {(x, a)|x ∈ Sn, a ∈ An(x)}. Moreover for each
x ∈ S, a ∈ An(x) define

q(n)(dy|x, a) :=
{
q(dy|x, a) if x ∈ Sn,
0 if x /∈ Sn

(4.1)

and

cn(x, a) :=
{
c(x, a) ∧ min{n, ρ1 lnV(x) + L0} if x ∈ Sn,
0 if x /∈ Sn .

(4.2)

Lemma 4.1 Grant Assumptions 2.1, 2.2 and 3.1. Then, there exists a unique function
ϕ

(n,δ)
α (depending on n, δ) in L∞

V ([0, 1] × S) for which the followings are true :

(1) ϕ
(n,δ)
α ∈ B1([0, 1]×S) is a bounded solution to the following differential equations

(DEs) for all x ∈ S and a.e. θ ∈ (δ, 1] :
⎧
⎨

⎩
αθ

∂ϕ
(n,δ)
α

∂θ
(θ, x) = inf

a∈A(x)

[

θcn(x, a)ϕ(n,δ)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δ)

α (θ, y)

]

ϕ
(n,δ)
α (δ, x) = enδ/α.

(4.3)

(2) ϕ
(n,δ)
α (θ, x) has a stochastic representation as follows: for each x ∈ S and a.e.

θ ∈ (δ, 1],
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ϕ(n,δ)
α (θ, x) = inf

π∈�
Eπ
x

[

enδ/α exp

(

θ

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]

, (4.4)

where Tδ(θ) := α−1 log(θ/δ) and {ξ (n)
t }t≥0 is the process corresponding to the

q(n)(·|x, a).

Proof (1) Since Sn := {x ∈ S|V(x) ≤ n}, by Assumption 2.1(ii), we see that

q(n)
x (a) :=

∫

S/{x}
q(n)(dy|x, a) is bounded. So we can use the Lyapunov function

V ≡ 1 such that
∫
S q

(n)(dy|x, a)V (y) ≤ ρ0V (x), and q(n) := sup(x,a)∈K q(n)
x (a) <

∞. Now let us define a nonlinear operator T on B1([0, 1] × S) as follows:

Tu(θ, x) =eδn/α + 1

α

∫ θ

δ

inf
a∈A(x)

[
1

s

∫

S
q(n)(dy|x, a)u(s, y) + cn(x, a)u(s, x)

]

ds,

where u ∈ B1([0, 1] × S) and (θ, x) ∈ [δ, 1] × S. By using the Assumption 2.1 and
the fact that cn is bounded, we obtain

sup
θ∈[δ,1]

sup
x∈S

|Tu(θ, x)|

≤ eδn/α + 1

α

∫ 1

δ

sup
a∈A(x)

{
1

s
sup
x∈S

[∫

S
|q(n)(dy|x, a)||u(s, y)|

]

+ n sup
x∈S

|u(s, x)|
}

ds

≤ eδn/α + ‖u‖∞
1

α

{∫ 1

δ

sup
a∈A(x)

1

s
sup
x∈S

(

2q(n)
x (a)

)

ds + n(1 − δ)

}

≤ eδn/α + 1

α

[

(−2)q(n) log δ + n(1 − δ)

]

‖u‖∞
1 .

Therefore, T is a nonlinear operator from B1([0, 1] × S) to B1([0, 1] × S). For any
g1, g2 ∈ B1([0, 1] × S) and θ ∈ [δ, 1], we have

sup
x∈S

|Tg1(t, x) − Tg2(t, x)| ≤ 1

α

∫ t

δ

(

2q(n)/s + n

)

sup
x∈S

|g1(s, x) − g2(s, x)|ds

≤ 1

α

[

2q(n)(log t − log δ) + n(t − δ)

]

‖g1 − g2‖∞
1 .

(4.5)

Now, we prove the following:

sup
x∈S

|T lg1(t, x) − T lg2(t, x)|

≤ ‖g1 − g2‖∞
1

αl · l!
[

2q(n)(log t − log δ) + n(t − δ)

]l
∀ l ≥ 1. (4.6)
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By (4.5) and (4.6) we have

sup
x∈S

|T l+1g1(t, x) − T l+1g2(t, x)|

≤ 1

α

∫ t

δ

(

2q(n)/s + n

)

sup
x∈S

|T lg1(s, x) − T lg2(s, x)|ds

≤ ‖g1 − g2‖∞
1

αl+1 · l!
∫ t

δ

(

2q(n)/s + n

)[

2q(n)(log s − log δ) + n(s − δ)

]l
ds

= ‖g1 − g2‖∞
1

αl+1 · (l + 1)!
[

2q(n)(log t − log δ) + n(t − δ)

]l+1

.

Since
∑

k≥1
1

αk ·k!

[

−2q(n) log δ+n(1−δ)

]k
< ∞, there exists somem such that β :=

1
αm ·m!

[

−2q(n) log δ+n(1−δ)

]m
< 1,which implies that‖Tmg1−Tmg2‖∞

1 ≤ β‖g1−
g2‖∞

1 . Therefore, T is am-step contraction operator on B1([0, 1]× S). So, by Banach

fixed point theorem, there exists a unique bounded function ϕ
(n,δ)
α ∈ B1([0, 1] × S)

(depending on (n, δ)) such that Tϕ
(n,δ)
α = ϕ

(n,δ)
α ; that is,

ϕ(n,δ)
α (θ, x) = eδn/α+ 1

α

∫ θ

δ

inf
a∈A(x)

[
1

s

∫

S
q(n)(dy|x, a)ϕ(n,δ)

α (s, y)

+ cn(x, a)ϕ(n,δ)
α (s, x)

]

ds.

Also note thatϕ(n,δ)
α (δ, x) = eδn/α . Hence by using (4.1), (4.2) and the above equation,

we have ϕ
(n,δ)
α ∈ L∞

V ([0, 1] × S) and it satisfies equation (4.3).
(2) First we see that

[

θcn(x, a)ϕ(n,δ)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δ)

α (θ, y)

]

is continuous in a ∈ A(x) and A(x) is compact. So by measurable selection theorem
(Bertsekas and Shreve 1996), Proposition 7.33, there exists a measurable function
f ∗δ : [0, 1] × S → A such that

inf
a∈A(x)

[

θcn(x, a)ϕ(n,δ)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δ)

α (θ, y)

]

=
[

θcn(x, f ∗δ(θ, x))ϕ(n,δ)
α (θ, x) +

∫

S
q(n)(dy|x, f ∗δ(θ, x))ϕ(n,δ)

α (θ, y)

]

. (4.7)
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Let

π∗δ : S × R+ → A

be defined by

π∗δ
t (x) := f ∗δ(θe−αt , x).

Let θ(t) := θe−αt for t ∈ [0,∞). Since cn and ϕ
(n,δ,k)
α are bounded, by Dynkin’s

formula we get

Eπ
x

[

exp

(∫ Tδ(θ)

0
θ(s)cn(ξ

(n)
s , πs)ds

)

ϕ(n,δ)
α

(

θ(Tδ), ξ
(n)
Tδ

)]

− ϕ(n,δ)
α (θ, x)

= Eπ
x

{∫ Tδ(θ)

0

[

−αθ(s)
∂ϕ

(n,δ)
α

∂θ
(θ(s), ξ (n)

s ) +
∫

S
q(n)(dy|ξ (n)

s , πs)ϕ
(n,δ)
α (θ(s), y)

+ θ(s)cn(ξ
(n)
s , πs)ϕ

(n,δ)
α (θ(s), ξ (n)

s )

]

× exp

(∫ s

0
θ(v)cn(ξ

(n)
v , πv)dv

)

ds

}

.

(4.8)

By using (4.3) and (4.8), we obtain

Eπ
x

[

exp

(∫ Tδ(θ)

0
θ(s)cn(ξ

(n)
s , πs)ds

)

ϕ(n,δ)
α

(

θ(Tδ), ξ
(n)
Tδ

)]

≥ ϕ(n,δ)
α (θ, x).

Since π ∈ � is an arbitrary control and ϕ
(n,δ)
α (θ(Tδ(θ)), ξ

(n)
Tδ

) = enδ/α , we have

ϕ(n,δ)
α (θ, x) ≤ inf

π∈�
Eπ
x

[

enδ/α exp

(∫ Tδ(θ)

0
θ(s)cn(ξ

(n)
s , πs)ds

)]

. (4.9)

Using Eqs. (4.3), (4.7) and (4.8), we can show that

ϕ(n,δ)
α (θ, x) = Eπ∗δ

x

[

enδ/α exp

(∫ Tδ(θ)

0
θ(s)cn(ξ

(n)
s , π∗δ

s (ξ
(n)
s− ))ds

)]

.

Therefore

ϕ(n,δ)
α (θ, x) ≥ inf

π∈�
Eπ
x

[

enδ/α exp

(∫ Tδ(θ)

0
θ(s)cn(ξ

(n)
s , πs)ds

)]

. (4.10)

Therefore, from (4.9) and (4.10), we obtain (4.4). This completes the proof. ��
Theorem 4.1 Grant Assumptions 2.1, 2.2 and 3.1. Then the HJB Eq. (3.1) has a unique

solution ϕα ∈ L∞
V ([0, 1] × S) satisfying 1 ≤ ϕα(θ, x) ≤ α2eθL0/α

α2−ρ0ρ1θ
(V(x))

ρ1θ

α for all
(θ, x) ∈ [0, 1] × S.
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Proof First note that ϕ
(n,δ)
α is the solution to the Eq. (4.3), which depends on two

parameters n, δ. We prove this theorem in two steps.
Step 1: In the first step, we construct a solution ϕ

(n)
α (·, x) from ϕ

(n,δ)
α (·, x) by passing

the limit as δ → 0, such that ϕ
(n)
α (·, x) is an absolutely continuous function and

satisfies the following DEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αθ
∂ϕ

(n)
α

∂θ
(θ, x) = inf

a∈A(x)

[∫

S
q(n)(dy|x, a)ϕ(n)

α (θ, y) + θcn(x, a)ϕ(n)
α (θ, x)

]

,

x ∈ S, a.e., θ ∈ [0, 1],
1 ≤ ϕ

(n)
α (θ, x) ≤ α2eθL0/α

α2−ρ0ρ1θ
(V(x))

ρ1θ

α ∀ (θ, x) ∈ [0, 1] × S.

(4.11)

Given 0 < δ < 1 and 1 ≤ n < ∞ by (4.4) and sup
(x,a)∈K

cn(x, a) ≤ n, we have

ϕ
(n,δ)
α (θ, x) ≤ e2n/α, x ∈ S, θ ∈ [δ, 1].

Next, we extend the domain of ϕ
(n,δ)
α to [0, 1] × S by

ϕ(n,δ)
α (θ, x) =

{
ϕ

(n,δ)
α (θ, x), δ ≤ θ ≤ 1 ∀x ∈ S

enδ/α, 0 ≤ θ < δ ∀x ∈ S.

We consider the following expression, for any given π ∈ �, x ∈ S, θ, θ0 ∈ [δ, 1]:

∣
∣
∣
∣E

π
x

[

enδ/α exp

(

θ

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]

− Eπ
x

[

enδ/α exp

(

θ0

∫ Tδ(θ0)

0
e−αt cn(ξ

(n)
t , πt )dt

)]∣
∣
∣
∣

≤ P1 + P2,

where

P1 :=
∣
∣
∣
∣E

π
x

[

enδ/α exp

(

θ

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]

− Eπ
x

[

enδ/α exp

(

θ0

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]∣
∣
∣
∣,

and

P2 :=
∣
∣
∣
∣E

π
x

[

enδ/α exp

(

θ0

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]

− Eπ
x

[

enδ/α exp

(

θ0

∫ Tδ(θ0)

0
e−αt cn(ξ

(n)
t , πt )dt

)]∣
∣
∣
∣.
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Consider c ∧ d := min{c, d} and c ∨ d := max{c, d}. Then for fix n ≥ 1; we have

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt ≤ n

∫ Tδ(θ)

0
e−αt dt ≤ n

α

and

∫ Tδ(θ∨θ0)

Tδ(θ∧θ0)

e−αt cn(ξ
(n)
t , πt )dt ≤ n

∫ Tδ(θ∨θ0)

Tδ(θ∧θ0)

e−αt dt

= n

α
[exp(−αTδ(θ ∧ θ0)) − exp(−αTδ(θ ∨ θ0))] ≤ δn|θ0 − θ |

αθθ0
.

Using the above results and knowing the fact that ebz −1 ≤ (eb −1)z for all z ∈ [0, 1]
and b > 0, we obtain

P1 = enδ/αEπ
x

[

exp

(

(θ ∧ θ0)

∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)

×
(

exp

(

|θ0 − θ |
∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)

− 1

)]

≤ e2n/αEπ
x

[

exp

(

|θ0 − θ |
∫ Tδ(θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)

− 1

]

≤ e2n/α
(
exp

( n

α
|θ0 − θ |

)
− 1

)

≤ e2n/α
(
en/α − 1

)
|θ0 − θ |.

Similarly for P2 we have

P2 = enδ/αEπ
x

[

exp

(

θ0

∫ Tδ(θ∧θ0)

0
e−αt cn(ξ

(n)
t , πt )dt

)

×
(

exp

(

θ0

∫ Tδ(θ∨θ0)

Tδ(θ∧θ0)

e−αt cn(ξ
(n)
t , πt )dt

)

− 1

)]

≤ e2n/αEπ
x

[

exp

(

θ0

∫ Tδ(θ∨θ0)

Tδ(θ∧θ0)

e−αt cn(ξ
(n)
t , πt )dt

)

− 1

]

≤ e2n/α

(

exp

(
nδ|θ − θ0|

αθ

)

− 1

)

≤ e2n/α

(

en/α − 1

)

|θ0 − θ |.

Hence for all (θ, x) ∈ [0, 1] × S, we have

|ϕ(n,δ)
α (θ0, x) − ϕ(n,δ)

α (θ, x)| ≤ 2e2n/α(en/α − 1)|θ − θ0|. (4.12)
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Now we want to show that ϕ
(n,δ)
α is decreasing as δ → 0 for any (θ, x). For a fixed

α > 0 and ε > 0 small enough, consider ϕ
(n,δ+ε)
α (θ, x) − ϕ

(n,δ)
α (θ, x) and assume

that hδ := e
nδ
α . By measurable selection theorem we get the minimizer π∗(δ+ε) like

in Eq. (3.4), corresponding to ϕ
(n,δ+ε)
α such that the followings cases hold.

Case 1. If δ + ε < θ then

ϕ(n,δ+ε)
α (θ, x) − ϕ(n,δ)

α (θ, x)

= Eπ∗(δ+ε)

x

[

hδ+ε exp

(

θ

∫ Tδ+ε

0
e−αt cn(ξ

(n)
t , π

∗(δ+ε)
t (ξ

(n)
t− ))dt

)]

− inf
π∈�

Eπ
x

[

hδ exp

(

θ

∫ Tδ

0
e−αt cn(ξ

(n)
t , πt )dt

)]

≥ hδE
π∗(δ+ε)

x

[

exp

(

θ

∫ Tδ+ε

0
e−αt cn(ξ

(n)
t , π

∗(δ+ε)
t (ξ

(n)
t− ))dt

)

×
{

hε − exp

(

θ

∫ Tδ

Tδ+ε

e−αt cn(ξ
(n)
t , π

∗(δ+ε)
t (ξ

(n)
t− ))dt

)}]

≥ hδE
π∗(δ+ε)

x

[

exp

(

θ

∫ Tδ+ε

0
e−αt cn(ξ

(n)
t , π

∗(δ+ε)
t (ξ

(n)
t− ))dt

){

hε − exp

(

θ

∫ Tδ

Tδ+ε

e−αt ndt

)}]

= hδE
π∗(δ+ε)

x

[

exp

(

θ

∫ Tδ+ε

0
e−αt cn(ξ

(n)
t , π

∗(δ+ε)
t (ξ

(n)
t− ))dt

){

hε − exp

(
nθ(e−αTδ+ε − e−αTδ )

α

)}]

= 0.

Case 2. δ < θ ≤ δ + ε

ϕ(n,δ+ε)
α (θ, x) − ϕ(n,δ)

α (θ, x)

= hδ+ε − Eπ∗δ

x

[

hδ exp

(

θ

∫ Tδ

0
e−αt cn(ξ

(n)
t , π∗δ

t (ξ
(n)
t− ))dt

)]

= hδ

[

hε − Eπ∗δ

x

[

exp

(

θ

∫ Tδ

0
e−αt cn(ξ

(n)
t , π∗δ

t (ξ
(n)
t− ))dt

)]]

≥ hδ

[

hε − exp

(

θ

∫ Tδ

0
e−αt ndt

)]

= hδ

[

hε − enθ
(1−e−αTδ )

α

]

≥ 0.

Case 3. θ ≤ δ

ϕ(n,δ+ε)
α (θ, x) − ϕ(n,δ)

α (θ, x) = hδ+ε − hδ = hδ(hε − 1) = hδ(e
nε
α − 1) ≥ 0.

Hence ϕ
(n,δ)
α (θ, x) is increasing in δ for any (θ, x) ∈ [0, 1] × S. Now from (4.12),

we know that for each x ∈ S, ϕ(n,δ)
α (·, x) is Lipschitz continous in θ ∈ [0, 1]. Also,

ϕ
(n,δ)
α (θ, x) is increasing in δ for any (θ, x) ∈ [0, 1] × S and bounded above (since

ϕ
(n,δ)
α (θ, x) ≤ e2n/α, x ∈ S, θ ∈ [δ, 1]), therefore there exists a function ϕ

(n)
α on

[0, 1] × S that is continuous with respect to θ ∈ [0, 1], such that along a subsequence
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δm → 0, we have limm→∞ ϕ
(n,δm )
α (θ, x) = ϕ

(n)
α (θ, x) and for any fixed x ∈ S this

convergence is uniform in θ ∈ [0, 1].
Let ψ ∈ C∞

c (0, 1), then we have

−
∫ 1

0
α
d(θψ)

dθ
(θ)ϕ(n,δm )

α (θ, x)dθ =
∫ 1

0
αθ

∂ϕ
(n,δm)
α

∂θ
(θ, x)ψ(θ)dθ

=
∫ 1

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δm )

α (θ, y)

]

ψ(θ)dθ

−
∫ δm

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δm )

α (θ, y)

]

ψ(θ)dθ

=
∫ 1

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n,δm )

α (θ, y)

]

ψ(θ)dθ

−
∫ δm

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x)

]

ψ(θ)dθ. (4.13)

Now take τ(x) := M0V(x) and define

Q(n)(dy|x, a) := δx (dy) + q(n)(dy|x, a)

τ (x)

for all (x, a) ∈ K where δx (·) is the Dirac measure concentrated at x . We see that
under Assumption 2.1, Q(n) is a stochastic kernel on S given K . Then (4.13) can be
written as

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
ϕ(n,δm )

α (θ, x) − ϕ(n,δm)
α (θ, x)ψ(θ)

}

dθ

=
∫ 1

0
inf

a∈A(x)

[
θ

τ(x)
cn(x, a)ϕ(n,δm)

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n,δm)

α (θ, y)

]

ψ(θ)dθ

− 1

τ(x)

∫ δm

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm )
α (θ, x)

]

ψ(θ)dθ. (4.14)

Now

∣
∣
∣
∣ inf
a∈A(x)

[
θ

τ(x)
cn(x, a)ϕ(n,δm )

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n,δm )

α (θ, y)

]

ψ(θ)

∣
∣
∣
∣

≤ |ψ(θ)| sup
a∈A(x)

[
θ

τ(x)
|cn(x, a)||ϕ(n,δ)

α (θ, x)| +
∫

S
Q(n)(dy|x, a)|ϕ(n,δ)

α (θ, y)|
]

≤ α2

α2 − ρ0ρ1θ
eθL0/α sup

a∈A(x)

[
θ

τ(x)
nV ρ1θ

α (x) +
∫

S
Q(n)(dy|x, a)V ρ1θ

α (y)

]

|ψ(θ)|

≤ α2

α2 − ρ0ρ1θ
eθL0/α sup

a∈A(x)

[
θ

τ(x)
nV(x) +

∫

S
Q(n)(dy|x, a)V(y)

]

|ψ(θ)|
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≤ α2

α2 − ρ0ρ1θ
eθL0/α

[
θ

τ(x)
nV(x) + V(x) + ρ0

V(x)

τ (x)

]

|ψ(θ)|

= α2

α2 − ρ0ρ1θ
eθL0/α

[
θ

τ(x)
nV(x) + V(x) + ρ0

M0

]

|ψ(θ)|. (4.15)

Since for each fixed x ∈ S, A(x) is compact, there exist a subsequence of {m}, by abuse
of notation, we denote the same sequence and a∗ ∈ A(x) such that limm→∞ a∗

m = a∗.
Now, from (4.13), for any a ∈ A(x), we have

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
ϕ(n,δm )

α (θ, x) − ϕ(n,δm )
α (θ, x)ψ(θ)

}

dθ

=
∫ 1

0

[
θ

τ(x)
cn(x, a

∗
m)ϕ(n,δm )

α (θ, x) +
∫

S
Q(n)(dy|x, a∗

m)ϕ(n,δm)
α (θ, y)

]

ψ(θ)dθ

− 1

τ(x)

∫ δm

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x)

]

ψ(θ)dθ. (4.16)

So, by Lemma 8.3.7 in Hernandez-Lerma and Lassere (1999) (Hernandez-Lerma and
Lasserre 1999) taking limit as m → ∞ in (4.16), we get

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
(θ)ϕ(n)

α (θ, x) − ϕ(n)
α (θ, x)ψ(θ)

}

dθ

≥
∫ 1

0

[
θ

τ(x)
cn(x, a

∗)ϕ(n)
α (θ, x) +

∫

S
Q(n)(dy|x, a∗)ϕ(n)

α (θ, y)

]

ψ(θ)dθ.

Hence

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
(θ)ϕ(n)

α (θ, x) − ϕ(n)
α (θ, x)ψ(θ)

}

dθ

≥ inf
a∈A(x)

∫ 1

0

[
θ

τ(x)
cn(x, a)ϕ(n)

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n)

α (θ, y)

]

ψ(θ)dθ.

(4.17)

But

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
ϕ(n,δm)

α (θ, x) − ϕ(n,δm )
α (θ, x)ψ(θ)

}

dθ

≤
∫ 1

0

[
θ

τ(x)
cn(x, a)ϕ(n,δm)

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n,δm)

α (θ, y)

]

ψ(θ)dθ

− 1

τ(x)

∫ δm

0
inf

a∈A(x)

[

θcn(x, a)ϕ(n,δm)
α (θ, x)

]

ψ(θ)dθ.
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By analogous arguments, we get

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
(θ)ϕ(n)

α (θ, x) − ϕ(n)
α (θ, x)ψ(θ)

}

dθ

≤ inf
a∈A(x)

∫ 1

0

[
θ

τ(x)
cn(x, a)ϕ(n)

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n)

α (θ, y)

]

ψ(θ)dθ.

(4.18)

From (4.17) and (4.18), we get

−
∫ 1

0

{
α

τ(x)

d(θψ)

dθ
(θ)ϕ(n)

α (θ, x) − ϕ(n)
α (θ, x)ψ(θ)

}

dθ

= inf
a∈A(x)

∫ 1

0

[
θ

τ(x)
cn(x, a)ϕ(n)

α (θ, x) +
∫

S
Q(n)(dy|x, a)ϕ(n)

α (θ, y)

]

ψ(θ)dθ.

(4.19)

Thus we obtain

−
∫ 1

0
α
d(θψ)

dθ
(θ)ϕ(n)

α (θ, x)dθ

= inf
a∈A(x)

∫ 1

0

[

θcn(x, a)ϕ(n)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n)

α (θ, y)

]

ψ(θ)dθ.

Hence

αθ
∂ϕ

(n)
α

∂θ
(θ, x) = inf

a∈A(x)

[

θcn(x, a)ϕ(n)
α (θ, x) +

∫

S
q(n)(dy|x, a)ϕ(n)

α (θ, y)

]

a.e. θ ∈ [0, 1]

in the sense of distribution. Now for θ ∈ [δm, 1], by using (4.4) and Proposition 2.1,
we have

ϕ(n,δm )
α (θ, x) = inf

π∈�
Eπ
x

[

enδm/α exp

(

θ

∫ Tδm (θ)

0
e−αt cn(ξ

(n)
t , πt )dt

)]

≤ enδm/α inf
π∈�

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)]

≤ enδm/α inf
π∈�

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξ (n)

t , πt )dt

)]

≤ enδm/α α2eθL0/α

α2 − ρ0ρ1θ
(V(x))

ρ1θ

α
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Note that ϕ
(n,δm )
α → ϕ

(n)
α as m → ∞. Thus, letting m → ∞ in the above equation,

we obtain

1 ≤ ϕ(n)
α (θ, x) ≤ α2eθL0/α

α2 − ρ0ρ1θ
(V(x))

ρ1θ

α . (4.20)

By using (4.1), (4.2), (4.20), and the DE satisfied by ϕ
(n)
α (that is just proven), we see

that ϕ
(n)
α ∈ L∞

V ([0, 1] × S) and it is a solution of (4.11). Thus by closely mimicking
the arguments as in Theorem 3.1, one can easily get the stochastic representation of
the solution ϕ

(n)
α , that is

ϕ(n)
α (θ, x) = inf

π∈�
Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)]

. (4.21)

Step 2: In this step we prove Theorem 4.1, by passing to the limit as n → ∞. Now
we will prove that for each x ∈ S, {ϕ(n)

α }n≥1 is equicontinuous on [0, 1]. We consider
the following expression, for any given π ∈ �, x ∈ S, θ, θ0 ∈ [0, 1]:

∣
∣
∣
∣E

π
x

[

exp

(

θ

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)]

− Eπ
x

[

exp

(

θ0

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)]∣
∣
∣
∣

≤ K1,

where

K1 = Eπ
x

[

exp

(

(θ ∧ θ0)

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

×
(

exp

(

|θ0 − θ |
∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

− 1

)]

≤ Eπ
x

[

exp

(

(θ ∧ θ0)

∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

×
(

exp

(∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

− 1

)

|θ0 − θ |
]

≤ Eπ
x

[

exp

(∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

×
(

exp

(∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)

|θ0 − θ |
)]

= |θ0 − θ | × Eπ
x

[

exp

(

2
∫ ∞

0
e−αt cn(ξ

(n)
t , πt )dt

)]

≤ |θ0 − θ | × αe2L0/α

α − ρ2

(

V2(x) + b0
ρ2

)

.
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Here, the first inequality is according to ebz − 1 ≤ (eb − 1)z for all z ∈ [0, 1] and
b > 0 and the last inequality follows from (3.7). Therefore, we have

|ϕ(n)
α (θ0, x) − ϕ(n)

α (θ, x)| ≤ sup
π∈�

|θ0 − θ | × αe2L0/α

α − ρ2

(

V2(x) + b0
ρ2

)

= |θ0 − θ | × αe2L0/α

α − ρ2

(

V2(x) + b0
ρ2

)

. (4.22)

By measurable selection theorem, [Bertsekas and Shreve (1996), Proposition 7.33],
there exists a measurable function f ∗n : [0, 1] × S → A such that

inf
a∈A(x)

[

θcn(x, a)ϕα(θ, x) +
∫

S
q(n)(dy|x, a)ϕα(θ, y)

]

=
[

θcn(x, f ∗n(θ, x))ϕα(θ, x) +
∫

S
q(n)(dy|x, f ∗n(θ, x))ϕα(θ, y)

]

. (4.23)

Let

π∗n : S × R+ → A

be defined by

π∗n
t (x) := f ∗n(θe−αt , x).

Hence by Eq. (4.11), we have a.e. θ ∈ [0, 1] and ∀x ∈ S, we have

⎧
⎪⎨

⎪⎩

αθ
∂ϕ

(n)
α

∂θ
(θ, x) =

[∫

S
q(n)(dy|x, f ∗n(θ, x))ϕ(n)

α (θ, y) + θcn(x, f ∗n(θ, x))ϕ(n)
α (θ, x)

]

1 ≤ ϕ
(n)
α (θ, x) ≤ α2eθL0/α

α2−ρ0ρ1θ
(V(x))

ρ1θ

α ∀ (θ, x) ∈ [0, 1] × S.

(4.24)

Since cn ≥ 0, by (4.21), we see ϕ
(n)
α (θ, x) is increasing in θ . Also we know that

ϕ
(n)
α (θ, x) is differentiable a.e. with respect to θ ∈ [0, 1]. So

∂ϕ
(n)
α

∂θ
(θ, x) ≥ 0 for a.e. θ. (4.25)

So, by (4.1), (4.2) and (4.24), for all x ∈ S and for a.e. θ , we have

⎧
⎨

⎩
−αθ

∂ϕ
(n)
α

∂θ
(θ, x) +

[∫

S
q(n−1)(dy|x, f ∗n(θ, x))ϕ(n)

α (θ, y) + θcn−1(x, f ∗n(θ, x))ϕ(n)
α (θ, x)

]

≤ 0 if x ∈ Sn−1

(4.26)
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and

⎧
⎪⎪⎨

⎪⎪⎩

−αθ
∂ϕ

(n)
α

∂θ
(θ, x) +

[∫

S
q(n−1)(dy|x, f ∗n(θ, x))ϕ(n)

α (θ, y) + θcn−1(x, f ∗n(θ, x))ϕ(n)
α (θ, x)

]

= −αθ
∂ϕ

(n)
α

∂θ
(θ, x) ≤ 0

if x /∈ Sn−1 (by (4.25)).
(4.27)

So, by Dynkin formula, we get

Eπ∗n
x

[

exp

(

θ

∫ ∞

0
e−αt cn−1(ξ

(n−1)
t , π∗n

t (ξ
(n−1)
t− ))dt

)]

≤ ϕ(n)
α (θ, x) for all (θ, x) ∈ [0, 1] × S.

(4.28)

Also using (4.11) and Dynkin formula (see (3.7) and (3.13)), we have

ϕ(n−1)
α (θ, x) ≤ Eπ∗n

x

[

exp

(

θ

∫ ∞

0
e−αt cn−1(ξ

(n−1)
t , π∗n

t (ξ
(n−1)
t− ))dt

)]

. (4.29)

By (4.28) and (4.29), we have ϕ
(n−1)
α (θ, x) ≤ ϕ

(n)
α (θ, x).

Hence ϕ
(n)
α (θ, x) is increasing in n for any (θ, x) ∈ [0, 1] × S. Now from (4.22),

we know that for each x ∈ S, ϕ(n)(·, x) is Lipschitz continuous in θ ∈ [0, 1]. Also,
ϕ

(n)
α (θ, x) is increasing as n → ∞ for any (θ, x) ∈ [0, 1] × S and bounded above (by

(4.20)), therefore there exists a function ϕα on [0, 1]×S that is continuous with respect
to θ ∈ [0, 1], such that along a subsequence nk → ∞, we have limnk→∞ ϕ

(nk )
α (θ, x) =

ϕα(θ, x) and this convergence is uniform in θ ∈ [0, 1] for each fixed x ∈ S. Moreover,
by (4.20), we have

1 ≤ ϕα(θ, x) ≤ α2eθL0/α

α2 − ρ0ρ1θ
(V(x))

ρ1θ

α . (4.30)

As the proof of equation (4.11) in step 1 (starting from the first equality of (4.13)),
we see that ϕα is a solution to the HJB Eq. (3.1). Also by (4.30), we can conclude that
ϕα ∈ L∞

V ([0, 1] × S). Finally, the uniqueness of ϕα(θ, x) follows from the stochastic
representation in Theorem 3.1. ��

5 The existence of optimal control

In this section, we present the main result of this article. Here we show the existence
of an optimal control.

Theorem 5.1 Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied. Then, the fol-
lowing assertions hold.
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(1) The HJB Eq. (3.1) has a unique solution ϕα ∈ L∞
V ([0, 1] × S) and the solution

admits the following representation

1 ≤ ϕα(θ, x) = inf
π∈�

Eπ
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , πt )dt

)]

≤ α2eθL0/α

α2 − ρ0ρ1θ
(V(x))

ρ1θ

α .

(2) There exists a measurable function f ∗ : [0, 1] × S → A such that

αθ
∂ϕα

∂θ
(θ, x) =

[∫

S
q(dy|x, f ∗(θ, x))ϕα(θ, y) + θc(x, f ∗(θ, x))ϕα(θ, x)

]

a.e. θ ∈ [0, 1]. (5.1)

(3) Furthermore an optimal Markov control for the cost criterion (2.2) exists and is
given by

π̃∗
t (x) := f ∗(θe−αt , x),

where f ∗ satisfies (5.1).

Proof Part (1) follows from Theorems 3.1 and 4.1.
To prove (2), by Hernandez-Lerma and Lasserre (1999), we first observe that the
function

∫

S
q(dy|x, a)ϕα(θ, y) + θc(x, a)ϕα(θ, x)

is continuous in a ∈ A(x) for each given (θ, x) ∈ [0, 1] × S. Thus, by the
measurable selection theorem (Bertsekas and Shreve 1996), Proposition 7.33 there
exists a measurable function f ∗ satisfying (5.1), and so (2) follows. For part (3),
take any f ∗ that satisfies (5.1). Then by Theorem 3.1, we have inf

π∈�
J̃α(θ, x, π) =

J̃α(θ, x, π̃∗) = ϕα(θ, x), which together with (2.2), (2.3) and part (1), we have

inf
π∈�

Jα(θ, x, π) = Jα(θ, x, π̃∗) = 1

θ
ln J̃α(θ, x, π̃∗) = 1

θ
ln ϕα(θ, x). Hence π̃∗

is an optimal Markov control. ��
Now we prove the converse of the Theorem 5.1.

Theorem 5.2 Grant Assumptions 2.1, 2.2 and 3.1. Suppose there exists an optimal
Markov control for the cost criterion (2.2) and is given by

π̂∗
t (x) := f̃ ∗(θe−αt , x),

for some measurable function f̃ ∗. Then we prove that f̃ ∗ is a minimizing selector of
(3.1).
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Proof sSince π̂∗ is optimal for the cost criterion (2.2), therefore we have

inf
π∈�

J̃α(θ, x, π) = J̃α(θ, x, π̂∗) = J̃ ∗
α (θ, x). (5.2)

Now for f̃ ∗ by Theorem 4.1, there exists a unique solution ψα ∈ L∞
V ([0, 1] × S) for

the equation

αθ
∂ψα

∂θ
(θ, x) =

[∫

S
q(dy|x, f̃ ∗(θ, x))ψα(θ, y) + θc(x, f̃ ∗(θ, x))ψα(θ, x)

]

,

(5.3)

for each x ∈ S and a.e. θ ∈ [0, 1], satisfying 1 ≤ ψα(θ, x) ≤ α2eθL0/α

α2−ρ0ρ1θ
(V(x))

ρ1θ

α for
all (θ, x) ∈ [0, 1] × S.

Now by Theorem 3.1, we know that

1 ≤ ψα(θ, x) = E π̂∗
x

[

exp

(

θ

∫ ∞

0
e−αt c(ξt , π̂

∗
t (ξt−))dt

)]

≤ α2eθL0/α

α2 − ρ0ρ1θ
(V(x))

ρ1θ

α . (5.4)

From (5.2) and (5.4), we get

ψα(θ, x) = inf
π∈�

J̃α(θ, x, π) = J̃α(θ, x, π̂∗) = J̃ ∗
α (θ, x) for (θ, x) ∈ [0, 1] × S.

(5.5)

So, in view of Theorem 3.1, by Eqs. (3.1), (5.3), and (5.5), we conclude that f̃ ∗ is a
minimizing selector of (3.1). ��
When the transition and cost rates are bounded, the existence of an optimal control is
ensured by Theorem 5.1.

Corollary 5.1 Grant Assumption 3.1 ((i)–(ii)). Also, assume that the transition and
cost rates are bounded. Then, there exist a unique solution ϕα and an optimal control
for the HJB Eq. (3.1).

Proof Suppose there exist constants L1 and b1, such that sup
(x,a)∈K

qx (a) ≤ L1 and

sup
(x,a)∈K

c(x, a) ≤ b1. First we take the Lyapunov function V(x) ≡ P , for all x ∈
S, P ≥ 1, a constant. Now

∫
S V(y)q(dy|x, a) = ∫

S V2(y)q(dy|x, a) = 0, for all
(x, a) ∈ K . Now, take ρ0 = α, M0 = L1, any real number, ρ1 ∈ (0, α), and L0 = b1.
Then Assumption 2.1 is verified. Now for all x ∈ S, take any constants ρ2 ∈ (0, α)

and b0 ∈ (0,∞). Then Assumption 2.2 holds. Also
∫
S V(y)q(dy|x, a) is continuous

in a ∈ A(x). So, Assumption 3.1 is also true. Then, by Theorem 5.1, we have a unique
solution ϕα and an optimal control for the HJB Eq. (3.1). ��
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6 Application and example

In this section, we verify the above assumptionswith one example, where the transition
and cost rates are unbounded.

Example 6.1 The GaussianModel: Suppose a hunter is hunting outside his house for
his manager. Suppose the house is at state 0. A positive state represents the distance
from the house to the right, and a negative state represents the distance from the
house to the left. Let S = R. If the current position is x ∈ S, the hunter takes
an action a ∈ A(x), then after an exponentially distributed travel time with rate
λ(x, a) > 0, the hunter reaches the new position, and the travel distance follows
the normal distribution with mean x and variance σ . (Or we can interpret λ(x, a) as
the total jump intensity that is an arbitrary measurable positive-valued function on
S × A, and the distribution of the state after a jump from x ∈ S is normal with the
variance σ and expectation x .) Also assume that the hunter receives a payoff c(x, a)

from his manager for each unit of time he spends there. Let us consider the model
as A2 := {S, (A, A(x), x ∈ S), c(x, a), q(dy|x, a)}, where S = (−∞,∞). For each
D ∈ B(S), the transition rate is

q(D|x, a) = λ(x, a)

[ ∫

y∈D
1√
2πσ

e− (y−x)2

2σ2 dy − δx (D)

]

, x ∈ S, a ∈ A(x), σ > 0.

(6.1)

To ensure the existence of an optimal Markov control for the model, we consider the
following hypotheses.

(I) For each fixed x ∈ S, λ(x, a) is continuous in a ∈ A(x) and there exists a positive
constant M1 such that 0 < sup

a∈A(x)
λ(x, a) ≤ M1(x

2 + 1) and M1 < α
6σ 2(σ 2+1)

.

(II) For each x ∈ S, the cost rate c(x, a) is nonnegative and continuous in a ∈ A(x)

and there exists a constant 0 < ρ1 < min{α, α2

M1σ 2 } such that

sup
a∈A(x)

c(x, a) ≤ ρ1 log(1 + x2).

(III) For each fixed x ∈ S, A(x) is a compact subset of the Borel spaces A.

Proposition 6.1 Under conditions (I)–(III), the above controlled system satisfies the
Assumptions 2.1, 2.2, and 3.1. Hence by Theorem 5.1, there exists an optimal Markov
control for this model.

Proof We know 1√
2πσ

∫ ∞
−∞(y − x)2k+1e− (y−x)2

2σ2 dy = 0 and 1√
2πσ

∫ ∞
−∞(y −

x)2ke− (y−x)2

2σ2 dy = 1 · 3 · · · (2k − 1)σ 2k for all k = 0, 1 · · · .

We first verify Assumption 2.1. Let V(x) = x2 + 1.

∫

S
V(y)q(dy|x, a) = λ(x, a)

[
1√
2πσ

∫ ∞

−∞
(y2 + 1)e− (y−x)2

2σ2 dy − (x2 + 1)

]
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= λ(x, a)σ 2

≤ M1σ
2V(x). (6.2)

Let ρ0 = M1σ
2. Then

∫
S V(y)q(dy|x, a) ≤ ρ0V(x). Now

q∗(x) = sup
a∈A(x)

qx (a) = sup
a∈A(x)

λ(x, a) ≤ M1(x
2 + 1) = M1V(x) ∀ x ∈ S.

Now by condition (II), we can write

sup
a∈A(x)

c(x, a) ≤ ρ1 log(1 + x2) + M1.

Observe that by condition (II), 0 < ρ1 < min{α, ρ−1
0 α2}. Hence Assumption 2.1 is

verified with M0 = L0 = M1.
Next we verify Assumption 2.2. For any x ∈ S, a ∈ A(x),

∫

S
q(dy|x, a)V2(y) =

∫

S
q(dy|x, a)(1 + y2)2

= λ(x, a)

[
1√
2πσ

∫ ∞

−∞
(y2 + 1)2e− (y−x)2

2σ2 dy − (x2 + 1)2
]

= λ(x, a)[1 · 3σ 4 + σ 2(2 + 6x2)]
≤ M1(x

2 + 1)[3σ 4 + σ 2(2 + 6x2)]
= M1σ

2(x2 + 1)(3σ 2 + 2 + 6x2)

≤ 6M1σ
2(x2 + 1)(x2 + 1)(σ 2 + 1)

= 6M1V2(x)σ 2(σ 2 + 1)

≤ ρ2V2(x) + 1

where ρ2 = 6M1σ
2(σ 2+1), and b0 = 1. Then by condition (I), we have 0 < ρ2 < α.

Hence, Assumption 2.2 is verified. Now by conditions (I) and (II) c(x, a) is continuous
in a ∈ A(x). Observe that by condition (I) and (6.2),

∫
S V(y)q(dy|x, a) is continuous

in a ∈ A(x). Hence Assumption 3.1 is also verified. So, by Theorem 5.1, we see that
there exists an optimal Markov control for this model. ��
Remark 6.1 As we mention in the introduction, there are many real-life applications,
where the underlying system dynamic is modeled as a CTMDP, with a Borel state and
action spaces as well as cost and transition rates are unbounded, see such a cash-flow
problem in Guo and Zhang (2019), [p. 112, Piunovskiy and Zhang (2020)]. Also,
there are lots of real-life examples like infrastructure surveillance models [p. 115–
116, Piunovskiy and Zhang (2020)], queueing model [p. 192, Piunovskiy and Zhang
(2020)], where we see that the state space is uncountable, can be formulated in our
set-up.
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