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Abstract
The class of exact transferable utility coalitional games, introduced in 1972 bySchmei-
dler, has been studied both in the context of game theory and in the context of imprecise
probabilities. We characterize the cone of exact games by describing the minimal
set of linear inequalities defining this cone; these facet-defining inequalities for the
exact cone appear to correspond to certain set systems (= systems of coalitions). We
noticed that non-empty proper coalitions having non-zero coefficients in these facet-
defining inequalities form set systems with particular properties. More specifically,
we introduce the concept of a semi-balanced system of coalitions, which general-
izes the classic concept of a balanced coalitional system in cooperative game theory.
The semi-balanced coalitional systems provide valid inequalities for the exact cone
and minimal semi-balanced systems (in the sense of inclusion of set systems) char-
acterize this cone. We also introduce basic classification of minimal semi-balanced
systems, their pictorial representatives and a substantial concept of an indecompos-
able (minimal) semi-balanced system of coalitions. The main result of the paper is that
indecomposable semi-balanced systems are in one-to-one correspondence with facet-
defining inequalities for the exact cone. The second relevant result is the rebuttal of a
former conjecture claiming that a coalitional game is exact iff it is totally balanced and
its anti-dual is also totally balanced. We additionally characterize those inequalities
which are facet-defining both for the cone of exact games and for the cone of totally
balanced games.
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1 Introduction

The class of exact (transferable utility) games is one of the topics of interest in coop-
erative game theory; see Rosenmüller (2000, §V.1) or Grabish (2016, §3.4). Exact
games were introduced by Schmeidler (1972) within a wide framework of cooperative
games with possibly infinite amount of players. In this paper we, however, consider the
usual game-theoretical framework and assume that the set N of players (for considered
cooperative games) is a (fixed) non-empty finite set. Mathematically equivalent con-
cept of a coherent lower probability (to the one of an exact game) has later appeared in
the context of imprecise probabilities (Walley 1991), where N has the interpretation
of the sample space for considered (discrete) probability distributions. Exact games
have various applications described in detail in (Csóka et al. 2011, §1). For example,
it was shown by Csóka et al. (2009) that exact games coincide with risk allocation
games with no aggregate uncertainty and by Calleja et al. (2005) that non-negative
exact games coincide with multi-issue allocation games.

1.1 Overview of former related results

It was shown already by Schmeidler (1972, §2) that the exact games involve tradi-
tional convex (= supermodular) games (Shapley 1972) and form a subclass of a popular
class of totally balanced games (Rosenmüller 2000, ChapterV). The latter class is then
included in the class of balanced games (Shapley 1967), defined as the class of coop-
erative games with non-empty core polyhedron. Note that all these game-theoretical
concepts have also their counterparts in the context of imprecise probabilities; see
Miranda and Montes (2018) for more details about the correspondence.

In our framework of a finite set N of players, one can consider the geometric point of
view on the situation. It follows from the results by Csóka et al. (2011) and Lohmann
et al. (2012) that the set of (characteristic functions for) exact games over a fixed
set N of players forms a polyhedral cone; the same is true for other three classes of
cooperative games mentioned above. Thus, exact games over N can be characterized
by means of a finite number of linear inequalities and a natural question of theoretical
interest is what is the minimal set of such inequalities. Note in this context that we
do not distinguish between an inequality and its multiple by a positive factor and that
the uniqueness of the minimal defining set of linear inequalities for a polyhedral set
is relative to the affine (= a shifted linear) space generated by the set; these are the
so-called facet-defining inequalities for the polyhedral set.

Let us mention other related results. Balanced games were characterized in terms
of linear inequalities already in the 1960s (Bondareva 1963; Shapley 1967) and the
facet-defining inequalities for this cone correspond to certain systems of subsets of N ,
called theminimal balanced set systems (= collections). The facet-defining inequalities
for the cone of supermodular games can also be assigned to set systems, namely to
pairs of sets S, T ⊆ N such that S\T and T \S are singletons (Kuipers et al. 2010,
Corollary11). The facet-defining inequalities for the cone of totally balanced games
were recently characterized in (Kroupa and Studený 2019): they also correspond to
set systems, called irreducible (minimal) balanced systems on subsets of N .
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Facets of the cone of exact games 37

The existence of a finite systemof linear inequalities characterizing exact games fol-
lows from the results by Lohmann et al. (2012). The inequalities reported by Lohmann
et al. (2012) also correspond to systems of subsets of N ; nevertheless, not all these
inequalities are facet-defining for the exact cone. The problem of the characterization
of facet-defining inequalities for this cone was then discussed in (Kroupa and Stu-
dený 2019, §6) where a conjecture has been raised about their form. That conjecture,
confirmed in case |N | ≤ 5, has an equivalent formulation saying that a game is exact
iff it is totally balanced and its anti-dual game (Oishi et al. 2016) is totally balanced
as well.

Recall that every polyhedral cone can be characterized by means of (finitely many)
linear inequalities,which characterization is named theouter description. Nonetheless,
every polyhedral cone can also alternatively be defined as the conic hull of finitelymany
vectors, which characterization is named the inner description. The latter approach
leads to the task to characterize the extreme rays of (a pointed version of) the polyhe-
dral cone. The generators of the extreme rays of the cones of (suitably) standardized
cooperative games are named extreme games (Rosenmüller 2000, §V.4). Note in this
context that the inner description for the cone of balanced games was presented in
(Kroupa and Studený 2019, §5.2). On the other hand, the number of extreme rays for
the other three (standardized) cones seems to grow more than exponentially with |N |;
this observation decreases the hope that they have manageable inner description. The
available results here are the criteria to recognize extreme games: we have proposed
simple and easily implementable such linear criteria based on the (vertices of the)
corresponding core polyhedron both in the supermodular case (Studený and Kroupa
2016) and in case of exact games (Studený and Kratochvíl 2018).

1.2 Main results in this paper

This paper is devoted to the problem of characterization of facet-defining inequalities
for the cone of exact games. We follow the line of research indicated above. More
specifically, we introduce the concept of a (minimal) semi-balanced system of subsets
of N , which generalizes the classic concept of a (minimal) balanced set system on
N from (Shapley 1967). Linear inequalities assigned to these set systems are shown
to characterize the cone of exact games (see Corollary 9). This result is analogous
to Theorem 3.4 from (Lohmann et al. 2012) in which exact games are characterized
by means of the so-called “exact balanced collections” of subsets of N , but there is
one important difference. Our semi-balanced set systems technically differ from the
collections of sets introduced by Lohmann et al. (2012), although the assigned sets of
inequalities (as a whole) are necessarily equivalent.

The point is that our concept of a semi-balanced set system allows one to recognize
easily certain hidden symmetry. More specifically, every game over N is exact iff its
anti-dual game is exact and this fact is reflected in the linear inequalities for exact
games: an inequality is valid/facet-defining for the exact cone iff the same holds
for its conjugate inequality (see Sect. 5.1). Each semi-balanced set system S has
a complementary semi-balanced set system S� and the inequality assigned to S�

is conjugate to the inequality assigned to S. We also introduce basic classification
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38 M. Studený, V. Kratochvíl

for minimal semi-balanced set systems, called briefly min-semi-balanced systems
(on N ), into four basic classes; the class of minimal balanced (= min-balanced) set
systems on N is one of them (Sect. 5.2). In addition to that we introduce pictorial
representatives for (permutational types of) min-semi-balanced systems (Sect. 5.3),
which easily encode the assigned inequalities and reflect both the classification and
complementarity relationships.

Besides that we establish a certain one-to-many correspondence between min-
balanced systems on N involving at least 3 sets and purely min-semi-balanced set
systems on N , that is, those that are not balanced (Sect. 6.1). This correspondence
may be a basis for a procedure to generate the complete list of min-semi-balanced
systems on N on basis of the list of all min-balanced systems on N . The point is that
if |N | ≥ 3 then every facet-defining inequality for the exact cone corresponds to a
purely min-semi-balanced system. Note in this context that an analogous observation
that the min-balanced systems are not needed for the minimal outer description of the
exact cone was already made by Lohmann et al. (2012, §5,Theorem5.4).

Nonetheless, even purely min-semi-balanced set systems can be superfluous in the
sense that the assigned inequalities are not facet-defining. We introduce a narrower
concept of an indecomposable min-semi-balanced set system (see Sect. 7) and show
that if |N | ≥ 3 then any facet-defining inequality corresponds to an indecomposable
set system. In fact, our main result is that the facet-defining inequalities for the exact
cone are then just the inequalities assigned to indecomposable min-semi-balanced set
systems (see Theorem 18).

We also put more light on the relation of the cones of exact and totally bal-
anced games. Specifically, we first give a counterexample to a former conjecture from
(Kroupa and Studený 2019, §6) mentioned above in Sect. 1.1 (see Sect. 8.1). Then we
derive, as a consequence of our main result, that those facet-defining inequalities for
the cone of totally balanced games which concern strict subsets of N are also facet-
defining for the cone of exact games (Sect. 8.2). In fact, these inequalities correspond
to min-semi-balanced systems from one of four basic classes in our classification
from Sect. 5.2. In particular, every irreducible min-balanced system on a strict subset
of N from (Kroupa and Studený 2019) can be extended uniquely to a certain special
indecomposable min-semi-balanced set system (on N ).

1.3 Structure of the paper

In Sect. 2 we recall elementary concepts and basic facts. Our concept of a semi-
balanced system is introduced in Sect. 3. We give several equivalent definitions of a
minimal semi-balanced system, called a min-semi-balanced system, there and intro-
duce the linear inequalities assigned to these set systems. The cone of exact games is
characterized by means of these inequalities in Sect. 4. In Sect. 5 we then introduce
the concept of a complementary set system and basic classification of min-semi-
balanced systems. We also propose special pictures to represents these set systems
and the inequalities assigned to them. In Sect. 6 we establish the correspondence of
purely min-semi-balanced systems to min-balanced ones and shown that the inequal-
ities assigned to min-balanced systems are superfluous if |N | ≥ 3. The concept of an
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Facets of the cone of exact games 39

indecomposablemin-semi-balanced set system is then defined formally in Sect. 7. We
formulate our main result there saying that indecomposability is a necessary and suf-
ficient condition for the assigned inequality to be facet-defining. Section 8 is devoted
to the relation of the exact cone to the cone of totally balanced games. We first give
a counterexample to the conjecture from (Kroupa and Studený 2019, §6). Then we
characterize those facet-defining inequalities for the totally balanced cone which are
also facet-defining for the exact cone. In Conclusions (Sect. 9) we summarize our
findings and give a reference to our catalogue of indecomposable min-semi-balanced
systems over sets of low cardinality. Some of the longer technical proofs are moved
to the “Appendix”.

2 Preliminaries

Throughout the paper the symbol N will denote a finite set of players and we restrict
ourselves to the non-degenerate case |N | ≥ 2. The power set P(N ) := {S : S ⊆ N }
of the set of players is the set of coalitions. The symbol ⊂ will denote strict inclusion
of either sets or set systems, that is, S ⊂ T iff S ⊆ T and S �= T . Given a set system
S ⊆ P(N ) the union of sets in S will be denoted by

⋃
S; analogously,

⋂
S will

denote their intersection. The set of real numbers will be denoted by R, the set of
rational numbers by Q.

2.1 Basic versions of linear combinations

We are going to deal with vectors in real Euclidean spaces R
I , where I is a non-

empty finite index set. Our elementary linear algebraic operations will concern the
space R

N in which case one has I = N . But later on, some more advanced geometric
considerations will be in the space R

I where I will be a class of subsets of N , mostly
I = P(N ).

The incidence vector of a coalition (= set) S ⊆ N will be denoted by χS ∈ R
N :

χS(i) :=
{
1 if i ∈ S,

0 if i /∈ S,
for i ∈ N .

A vector whose components equal each other, that is, a vector of the form [r , ..., r ] in
R

N , where r ∈ R, will be called a constant vector in R
N .

A special case of a constant vector in R
N is the zero vector in R

N , denoted by
0. A finite set U of vectors in R

N is linearly independent if
∑

x∈U αx · x = 0 with
αx ∈ R, x ∈ U , implies [ ∀ x ∈ U αx = 0 ], otherwise it is called linearly dependent.
Analogously, a finite set U ⊆ R

N is affinely independent if

[
∑

x∈U
αx · x = 0 with αx ∈ R, x ∈ U , satisfying

∑

x∈U

αx = 0

]

implies [∀ x ∈ U αx = 0 ] ,

otherwise it is called affinely dependent.
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40 M. Studený, V. Kratochvíl

Other elementary concepts apply to any real Euclidean space R
I , 0 < |I| < ∞.

We are going to use the symbol

〈θ, x〉 :=
∑

ι∈I
θ(ι) · x(ι) for vectors θ, x ∈ R

I

to denote the respective scalar product inR
I . A (finite) linear combination

∑
i∈I λi ·xi

of vectors xi ∈ R
I with real coefficients λi ∈ R is called

• non-zero if there is i ∈ I with λi �= 0,
• affine if

∑
i∈I λi = 1,

• conic if λi ≥ 0 for all i ∈ I , and
• convex if it is both affine and conic.

The convex hull of a set U ⊆ R
I is the collection of all convex combinations of

vectors fromU ; it will be denoted by conv (U ). A setU ⊆ R
I is convex if it is closed

under convex combinations: U = conv (U ). The conic hull of U ⊆ R
I is the set of

all conic combinations of vectors from U ; it will be denoted by cone (U ).
Analogously, the affine hull of a setU ⊆ R

I is the collection of all affine combina-
tions of vectors fromU . It is always an affine subspace ofR

I , that is, a subset A ⊆ R
I

closed under affine combinations. A non-empty affine subspace is always a shifted
linear subspace of R

I , that is, a set of the form A = x + V := { x + y : y ∈ V },
where x ∈ R

I and V ⊆ R
I is a linear subspace (Brøndsted 1983, §1); V is then

uniquely determined by A while x is not unique.
The dimension of a set U ⊆ R

I , denoted by dim(U ), is the dimension of its affine
hull A, defined as the dimension of V . Recall that the linear space V is determined
uniquely by the set U through its affine hull A.

A hyperplane in R
I is an affine subspace H of R

I of the dimension |I| − 1. An
equivalent condition is that it is the set of solutions x ∈ R

I to the equation 〈θ, x〉 = β,
where β ∈ R and θ ∈ R

I is a non-zero vector in R
I ; see Brøndsted (1983, §1).

2.2 Some concepts from polyhedral geometry

Throughout the paper we assume that the reader is familiar with standard concepts
and basic facts from polyhedral geometry; see Brøndsted (1983), Schrijver (1998),
Bachem and Kern (1992) and Ziegler (1995), for example. Nevertheless, for reader’s
convenience, we recall those of them that are used (repeatedly) in our paper. On the
other hand, those readers that are not interested in the proofs and technicalities can
possibly skip the claims from Sect. 2.2 and consult it only when they encounter an
unknown concept from polyhedral geometry.

Given distinct x, y ∈ R
I , the convex hull of {x, y} is the closed segment, denoted

by [x, y], while the open segment, denoted by ]x, y[, consists of convex combinations
of x and y which have both coefficients non-zero:

]x, y[ := { (1 − α) · x + α · y : 0 < α < 1 } .
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Facets of the cone of exact games 41

A polyhedron in R
I , 0 < |I| < ∞, is the set of vectors x ∈ R

I specified by finitely
many linear inequalities 〈θ, x〉 ≥ β for x ∈ R

I , where θ ∈ R
I and β ∈ R. A

polyhedron is called rational if, moreover, θ ∈ Q
I and β ∈ Q for these inequalities.

A set U ⊆ R
I is bounded if there are constants c0, c1 ∈ R such that c0 ≤ x(ι) ≤ c1

for any component x(ι), ι ∈ I, of any x ∈ U . A polytope (in R
I ) is the convex hull of

a non-empty finite set of vectors in R
I . A fundamental result in polyhedral geometry

says that a subset of R
I is a polytope iff it is a non-empty bounded polyhedron; see

Brøndsted (1983, Theorem9.2) or Ziegler (1995, Theorem2.15).
A face of a polyhedron P ⊆ R

I , more precisely an exposed face of P (Brøndsted
1983, §5), is a subset F ⊆ P consisting of vectors x ∈ P satisfying 〈θ, x〉 = β for
some θ ∈ R

I , β ∈ R, such that 〈θ, y〉 ≥ β is a valid inequality for all y ∈ P . In
case of a polyhedron P , this is equivalent to the condition that F ⊆ P is a convex
subset of it such that one has [y, z] ⊆ F whenever y, z ∈ P and ]y, z[ ∩ F �= ∅; use
Brøndsted (1983, §8) or see Bachem and Kern (1992, Theorem7.51). The number of
faces of a polyhedron P is finite; see Brøndsted (1983, Corollary8.5). The face-lattice
of P ⊆ R

I is the collection of its faces, ordered by inclusion relation ⊆; it is indeed
a lattice in usual sense (Brøndsted 1983, §5).

Given a non-empty polyhedron P , any of its faces of the dimension dim(P) − 1
is called a facet of P . An equivalent definition is that a facet (of P) is a maximal
face F of P distinct from P; use Brøndsted (1983, Corollary8.6). A basic fact is
that each full-dimensional proper polyhedron P ⊂ R

I , that is, each polyhedron with
dim(P) = |I| and P �= R

I , is specified by those valid inequalities for P which
define facets and the specification of P by facet-defining inequalities is the unique
inclusion-minimal inequality description of P (up to positivemultiples of inequalities);
see Brøndsted (1983, Theorem8.2).

A vertex (= an extreme point) of a convex set P ⊆ R
I is a vector x ∈ P such that

there is no open segment ]y, z[ with (distinct) y, z ∈ P and x ∈ ]y, z[, which is, in
case of a polytope P , another way of saying that {x} is a face of P (of the dimension
0). The set of vertices of (a polytope) P will be denoted by ext (P). A well-known
consequence of famous Krein–Milman theorem is that every polytope P has finitely
many vertices and equals to the convex hull of the vertex set: P = conv (ext (P)); see
Brøndsted (1983, Theorem7.2(c)) or Ziegler (1995, Proposition2.2(i)).

One of easy observations is that if U = conv (V ) for U , V ⊆ R
I then ext (U ) ⊆

ext (V ). Another immediate observation is that if Q ⊆ P are twopolytopes in inclusion
in R

I then x ∈ Q ∩ ext (P) implies x ∈ ext (Q). Every non-empty face F of a
polytope P is again a polytope and ext (F) = F ∩ ext (P); see Brøndsted (1983,
Theorem7.3) or Ziegler (1995, Proposition2.3(i)). Further basic fact, which follows
from the properties of the operatorU �→ conv (U ) and Krein–Milman theorem, is the
following one: if P j , j ∈ J , where J is a finite index set, are bounded polyhedrons
in R

I then Q := conv (
⋃

j∈J P j ) is a bounded polyhedron in R
I as well.

An edge of a polytope P is a closed segment [y, z] ⊆ P which is a face of P (of
the dimension 1); then necessarily y, z ∈ ext (P). Further special fact is as follows.
Given a polytope P ⊆ R

I and a hyperplane H inR
I with H ∩P �= ∅, the intersection

Q := H ∩ P is a polytope and x ∈ ext (Q) iff either x ∈ H ∩ ext (P) or there is
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42 M. Studený, V. Kratochvíl

an edge [y, z] of P such that x ∈ ]y, z[ and [y, z] ∩ H = {x}; use Brøndsted (1983,
Theorem11.1(d)).

A polyhedral cone in R
I is a subset C of R

I defined as the conic hull of a non-
empty finite set U of vectors from R

I . An equivalent definition is that C is specified
by finitely many inequalities 〈θ, x〉 ≥ 0 for x ∈ R

I (Ziegler 1995, Theorem1.3);
thus, it is a non-empty polyhedron. A polyhedral cone C ⊆ R

I is called pointed, if
−C ∩ C = {0}, where −C := {−y : y ∈ C } and 0 denotes the zero vector in R

I .
An equivalent condition is that there exists (non-zero) θ ∈ R

I such that 〈θ, x〉 > 0
for any x ∈ C\{0}; see Studený (1993, Proposition2). It makes no problem to observe
that if, moreover, C\{0} �= ∅, then, for each β > 0, the intersection of C with the
hyperplane H := {x ∈ R

I : 〈θ, x〉 = β } is a polytope; this is because one can
find finite ∅ �= U ⊂ H with C = cone (U ). The reader can verify (using alternate
definitions of a face) that then the mapping F ⊆ C �→ F ∩ H establishes a one-to-
one correspondence between non-empty faces F of C and (all) faces of the polytope
P := C ∩ H : the inverse mapping is

F ′ ⊆ C ∩ H �→ cone (F ′ ∪ {0}) ≡ {0} ∪ {α · x : α ≥ 0 & x ∈ F ′ }.

This correspondence preserves the inclusion ordering; thus, it is an isomorphism
between the lattice of non-empty faces of C and the face-lattice of P .

Every subset U ⊆ R
I can be assigned its dual cone

U∗ := { θ ∈ R
I : 〈θ, x〉 ≥ 0 for any x ∈ U } , which is a closed convex cone.

A well-known elementary fact is that C ⊆ R
I is a non-empty closed convex cone

iff C = C∗∗, which happens iff C = U∗ for some U ⊆ R
I ; see for example Stu-

dený (1993, Consequence 1). Moreover, the dual cone to a polyhedral cone is also a
polyhedral cone; use Bachem and Kern (1992, Corollary7.12). Thus, if one shows,
for a polyhedral cone C ⊆ R

I , and for a set U ⊆ R
I that U = C∗ then this fact

already implies that C and U are mutually dual polyhedral cones, which means both
C = U∗ and U = C∗. Another useful fact from polyhedral geometry is that the
lattices of non-empty faces of mutually dual polyhedral cones are anti-isomorphic.
More specifically, the mapping is as follows:

F ⊆ C a non-empty face of C �→ F⊥ := { θ ∈ U : 〈θ, x〉 = 0 for all x ∈ F }

and the inverse mapping is of the same form (exchange C for U ); use Bachem and
Kern (1992, Theorem7.41) to derive that. This particular one-to-one correspondence
reverses the inclusion ordering and has the property that dim(F) + dim(F⊥) = |I|;
use Bachem and Kern (1992, Theorem7.42).

2.3 Some concepts from game theory

A (transferable utility coalitional ) game over (a set of players) N is modeled by a real
function m : P(N ) → R such that m(∅) = 0, called the “characteristic function" of
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the game. The class of all games over N will be denoted by G(N ). Given m ∈ G(N )

and ∅ �= S ⊆ N , the restriction mS of m to P(S) is called a subgame of the game
m ∈ G(N ).

The core C(m) of a game m ∈ G(N ) is the polyhedron

C(m) :=
{

[xi ]i∈N ∈ R
N :

∑

i∈N
xi = m(N ) &

∑

i∈S
xi ≥ m(S) for all S ⊆ N

}

.

We say that a game m ∈ G(N ) is balanced if it has a non-empty core,

• totally balanced if every subgame of m is balanced,
• exact if, for each coalition S ⊆ N , there exists a vector [xi ]i∈N ∈ C(m) in the
core that is tight for S, which means that

∑
i∈S xi = m(S).

The set T (N ) of all totally balanced games over N is known to be a polyhedral cone
in R

P(N ); the same is true for the set E(N ) of all exact games over N ; see Kroupa and
Studený (2019, §2).

Recall from (Kalai and Zemel 1982, Theorem1) that m is totally balanced iff it has
a finite min-representation, which means that there exists a non-empty finite X ⊆ R

N

such that

m(S) = min
x∈X

∑

i∈S
xi for any S ⊆ N .

It is a well-known fact that m is exact iff it has a min-representation ∅ �= X ⊆ C(m)

consisting of the elements in the core; see Studený and Kratochvíl (2018, Proposi-
tion1), for example. Hence, we know that every exact game is totally balanced.

Following Oishi et al. (2016), given m ∈ E(N ), by the anti-dual of m we call the
game

m�(S) := m(N\S) − m(N ) for all S ⊆ N .

Note that, by habitual terminology in cooperative game theory, the (−1) multiple of
m� is named the dual game of m; see Peleg and Sudhölter (2007, Definition 6.6.3).
Nonetheless, for our purpose the concept of an anti-dual is more relevant asm ∈ E(N )

iff m� ∈ E(N ), see Kroupa and Studený (2019, §3.2). In particular, if m is exact then
both m and m� are totally balanced. On the other hand, m ∈ E(N ) � − m ∈ E(N )

in general; thus, duals of exact games need not be exact.

3 Balanced and semi-balanced set systems

We first recall a classic well-known concept in cooperative game theory (Shapley
1967).

Definition 1 (Non-trivial and balanced set system) Let N be a finite set with |N | ≥ 2.
A system S of its subsets such that ∅ �= S ⊆ P(N )\{∅, N }will be called a non-trivial
set system on N .
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44 M. Studený, V. Kratochvíl

A balanced system (on N ) is such a non-trivial set system B (on N ) that χN is a conic
combination of vectors {χS : S ∈ B} with all coefficients non-zero. A balanced
system B on N is called minimal if there is no balanced system C on N with C ⊂ B;
B will then be called briefly min-balanced (on N ).

In other words, B is a balanced set system on N if χN is a linear combination of
vectors {χS : S ∈ B} with strictly positive coefficients. In the sequel we are going to
generalize this concept.

3.1 Semi-balanced set systems

Our generalization is based on the following elementary concept.

Definition 2 (Semi-conic combination) We shall say that a linear combination∑
i∈I λi ·xi inR

N is semi-conic if atmost one of its coefficients λi is strictlynegative,
that is, |{ j ∈ I : λ j < 0}| ≤ 1.

While linear combination concepts recalled in Sect. 2.1 are standard inmathematics,
the concept of a semi-conic combination is a specific concept relevant to the topic of
our study. Our terminology is motivated by the fact that the remaining coefficients
λi , i �= j , in a such a linear combination must be non-negative. Thus, any conic
combination is also semi-conic. Nonetheless, despite this fact, the concepts of semi-
conic and conic combination differ substantially from each other.

Remark 1 In this side note we explain the principal difference between conic and
semi-conic combinations. Recall that the conic hull of a set U in a real Euclidean
space is the collection cone (U ) of all conic combinations of vectors from U and it is
always a convex cone. Another well-known fact is that the mapping U �→ cone (U )

is a closure operator in sense of abstract algebra (Birkhoff 1995, §V.1); this means
that it is extensive [U ⊆ cone (U )], monotone [U ⊆ V implies cone (U ) ⊆ cone (V )]
and idempotent [cone (cone (U )) = cone (U )]. One can analogously introduce the
semi-conic hull semi-cone (U ) as the set of all semi-conic combinations of vectors
from U , but this set need not be convex. The operator U �→ semi-cone (U ) is then
extensive and monotone but it is not idempotent. Consider, for example, the case
U = {(1, 0), (0, 1)} ⊆ R

2. Thus, the mapping U �→ semi-cone (U ) is not a closure
operator.

Now, we are ready to introduce basic concepts in our treatise.

Definition 3 (Semi-balanced set system, exceptional set) Assume that N is a finite set
with |N | ≥ 2. We shall say that a non-trivial set system S on N is semi-balanced (on
N ) if there is a constant vector in R

N which is a semi-conic combination of vectors
{χS : S ∈ S} with all coefficients non-zero. A semi-balanced system S on N will
be called minimal if there is no semi-balanced system C on N with C ⊂ S. We will
then say briefly that such a set system is min-semi-balanced (on N ).
A semi-balanced set system S (on N ) which is not balanced (on N ) will be called
purely semi-balanced (on N ). Analogously, a minimal semi-balanced system which
is not balanced will be called purely min-semi-balanced.
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Given a non-trivial set system S on N , we will say that a set T ∈ S is exceptional
within S if there exists a linear combination

∑
S∈S λS · χS yielding a constant vector

in R
N with λT < 0 and λS ≥ 0 for S ∈ S\{T }.

It follows directly from the definition that any balanced system is also semi-
balanced. Let us emphasize that both these concepts are relative to N despite one
may have

⋃
S ⊂ N for a semi-balanced system S on N (see Example 1 below);

this is because the constant vector is required to be in R
N . Note that, for a semi-

balanced system, all coefficients in any of the considered linear combinations must be
strictly positive with one possible exception of a strictly negative coefficient (with an
exceptional set).

If a set T ⊂ N is exceptional within a system S then it is exceptional within any
larger non-trivial system T ⊇ S: put λS := 0 for S ∈ T \S. Of course, every non-
trivial set system with an exceptional set contains a semi-balanced system because the
considered linear combination is semi-conic. Conversely, every purely semi-balanced
system has at least one exceptional set. Note that, in case of a (purely) min-semi-
balanced system, this exceptional set is uniquely determined; the uniqueness of this
set follows from later Lemmas 1 and 2.

A set system containing a semi-balanced system need not be semi-balanced. In fact,
even the union of two semi-balanced systems need not be a semi-balanced system (see
Example 1 below). On the other hand, the union of a semi-balanced system and a bal-
anced system has to be a semi-balanced system: consider a suitable non-trivial convex
combination of the respective semi-conic combinations yielding constant vectors. The
same argument implies that the union of two balanced systems on N is a balanced
system on N .

Example 1 Given N := {a, b, c, d}, consider two set systems S := { a, b, ab } and
T := { c, bc, acd }. The equalities 1 · χa + 1 · χb + (−1) · χab = 0 and (−1) · χc +
1 · χbc + 1 · χacd = χN imply that both S and T is semi-balanced on N . To show
that their unionD := S ∪ T is not semi-balanced on N consider a linear combination∑

S∈D λS · χS = [r , r , r , r ] ∈ R
N having all coefficients non-zero. Realize that

λacd = ∑
S∈D: d∈S λS = r . The equality λacd = r = ∑

S∈D: c∈S λS = λc+λbc+λacd
then gives λc + λbc = 0 and the assumption λc �= 0 �= λbc implies that [λc < 0 or
λbc < 0 ]. Analogously, λacd = r = ∑

S∈D: a∈S λS = λa + λab + λacd means
λa + λab = 0, which implies that [λa < 0 or λab < 0 ]. Therefore, one has λT < 0
for at least two sets T ∈ D and the considered linear combination is not semi-conic.

The following lemma contains a few elementary observations valid for semi-
balanced set systems; in fact, they hold for a wider class of systems containing
semi-balanced ones. Its proof is shifted to “Appendix A”.

Lemma 1 Given |N | ≥ 2 and ∅ �= S ⊆ P(N )\{∅, N }, let ∑
S∈S λS · χS = ρ be a

non-zero semi-conic combination yielding a constant vector ρ = [r , . . . , r ] ∈ R
N

(with zero coefficients allowed). Then one has
∑

S∈S λS ≥ r ≥ 0; moreover, r > 0 in
case of a conic combination.
In any case

∑
S∈S λS > 0 and by a positive factor multiplication one gets an affine

semi-conic combination
∑

S∈S λ̃S ·χS yielding a constant vector ρ̃ = [r̃ , . . . , r̃ ] ∈ R
N

with r̃ ∈ [0, 1].
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Finally, if the considered linear combination is not conic, then S has to contain at
least three different sets and the existence of such a set system forces |N | ≥ 3.

It follows from (the last claim in) Lemma 1 that every purely semi-balanced system
contains at least three sets and, thus, there is no such a set system on a two-element
set.

We now provide equivalent definitions of min-semi-balanced systems. Slightly
longer proof of the next lemma is shifted to “Appendix B”.

Lemma 2 Given |N | ≥ 2, let ∅ �= S ⊆ P(N )\{∅, N } be a non-trivial set system on
N. Then the following conditions on S are equivalent:

(a) S is a minimal set system such that there is a constant vector in R
N which can be

written as a non-zero semi-conic combination of vectors {χS : S ∈ S},
(b) S is a minimal semi-balanced set system on N,
(c) S is semi-balanced on N, the vectors {χS : S ∈ S} are affinely independent and

in case
⋃

S = N even linearly independent,
(d) there is only one affine combination of vectors {χS : S ∈ S} yielding a constant

vector in R
N and this unique combination is semi-conic and has all coefficients

non-zero,
(e) there is only one affine semi-conic combination of vectors {χS : S ∈ S} which is

a constant vector in R
N and this unique combination has all coefficients non-zero.

Given (purely) min-semi-balanced system S on N with an exceptional set T , by
Lemma 1 one can consider an affine combination

∑
S∈S λS · χS yielding a constant

vector where λT < 0 and λS ≥ 0 for S ∈ S\{T }. Then, by Lemma 2(d), such a
combination is unique. This implies that the exceptional set T within S is uniquely
determined by S.

The next Example 2 illustrates that the requirement concerning the case
⋃

S = N
in the condition (c) of Lemma 2 cannot be removed.

Example 2 There exists a semi-balanced set system S on N with
⋃

S = N where
vectors {χS : S ∈ S} are affinely independent but not linearly independent. Take
N := {a, b, c, d} and put S := { a, b, ab, abc, abd }. Then one has

1 · χa + 1 · χb + (−2) · χab + 1 · χabc + 1 · χabd = χN ,

which implies that S is semi-balanced. The equality 0 = 1 · χa + 1 · χb + (−1) · χab

implies that {χS : S ∈ S} are linearly dependent. On the other hand, the condition

α · χa + β · χb + γ · χab + δ · χabc + ε · χabd = 0

together with α + β + γ + δ + ε = 0 implies α = . . . = ε = 0, which means
that {χS : S ∈ S} are affinely independent. Indeed, take d first to derive ε = 0,
then c to get δ = 0, a to obtain α = −γ and b to obtain β = −γ ; altogether,
0 = α +β +γ + δ +ε = −γ gives the conclusion. Hence, by Lemma 2, the system S
is not min-semi-balanced on N ; two of its proper subsystems that are semi-balanced
are { a, b, ab } and { ab, abc, abd }.
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The basic requirement in the condition (d) of Lemma 2 is a geometric one: it says
that the affine subspace { ∑

S∈S λS · χS ∈ R
N : ∑

S∈S λS = 1} intersects the line
{[r , . . . , r ] ∈ R

N : r ∈ R} of constant vectors in precisely one vector. The following
Example 3 shows that both additional requirements on this unique affine combination
are necessary.

Example 3 There exists a non-trivial system D on N such that only one affine
combination of {χS : S ∈ D} yields a constant vector in R

N and this unique com-
bination is conic but has not all coefficients non-zero. Take N := {a, b, c} and put
D := { a, b, bc }. Then

1

2
· χa + 0 · χb + 1

2
· χbc = 1

2
· χN ,

is the above-mentioned unique affine combination.Of course, this particular set system
D is not semi-balanced but its subsystem D′ := { a, bc } is even balanced.

There is also a non-trivial set system C on N with a unique affine combination
of {χS : S ∈ C} yielding a constant vector in R

N , where all the coefficients in
this combination are non-zero but the combination is not semi-conic. Let us take
N := {a, b, c, d, e} and consider C := { ab, ac, ad, abc, abce }. Then

(−1) · χab + (−1) · χac + 1 · χad + 1 · χabc + 1 · χabce = χN

is that unique combination. By Lemma 1, the system C is not semi-balanced on N .

A consequence of Lemma 2 is the observation that the concept of a min-semi-
balanced system generalizes the one of a min-balanced system.

Corollary 3 Given |N | ≥ 2, a balanced system B on N is minimal within the class of
balanced systems on N if and only if it is minimal within the class of semi-balanced
systems on N. In other words, B is min-balanced (on N) iff it is balanced and min-
semi-balanced (on N).

Proof The fact that B is balanced on N implies
⋃

B = N . By Lemma 2(c), its
minimality within semi-balanced systems means that {χS : S ∈ B} are linearly
independent, while, by Lemma 2.1 in (Kroupa and Studený 2019), this condition
characterizes its minimality within balanced systems. ��

Lemma 2(c) also sets a limit on the number of sets in a min-semi-balanced system.

Corollary 4 If |N | ≥ 2 and S is a min-semi-balanced system on N then |S| ≤ |N |.
Proof If

⋃
S ⊂ N then affine independence of vectors {χS : S ∈ S} yields the

inequalities |S| ≤ | ⋃S| + 1 ≤ |N | because affinely independent set in R
M has at

most |M | + 1 elements. In case
⋃

S = N the linear independence of the respective
set of vectors implies directly |S| ≤ |N |. ��
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3.2 Inequalities assigned to semi-balanced systems

Given a non-trivial systemS on N , any non-zero semi-conic combination
∑

S∈S λS ·χS

yielding a constant vector [r , . . . , r ] ∈ R
N gives an inequality

r · m(N ) ≥
∑

S∈S
λS · m(S) for m ∈ R

P(N ),

which appears to be valid for all exact gamesm. To ensure one-to-one correspondence
between the inequalities and semi-conic combinations we limit ourselves to affine
combinations,which is possible owing toLemma1. The formal definition is as follows.

Definition 4 (Vectors of coefficients, inequalities induced by set systems) Let S be a
non-trivial set systemon N , |N | ≥ 2.Any affine semi-conic combination

∑
S∈S λS ·χS

yielding a constant vector [r , . . . , r ] ∈ R
N is assigned a vector θ ∈ R

P(N ):

θ(S)=−λS for S ∈ S, θ(N )=r , θ(∅) = 1 − r , θ(L)=0 for other L⊆N . (1)

The vector θ is then interpreted as the coefficient vector in an inequality

0 ≤ 〈θ,m〉 :=
∑

S⊆N

θ(S) · m(S) for vectors m ∈ R
P(N )with m(∅) = 0. (2)

The symbol �S will denote the set of vectors θ for all such affine semi-conic combi-
nations. Provided |�S | = 1, the only vector in �S will be denoted by θS .

Note that every coefficient vector θ is given by a suitable affine combination and
that the values θ(S) for S ∈ S correspond to the coefficients in the combination;
however, the remaining contingent non-zero values θ(N ) and θ(∅) are determined by
them.

Here are some elementary observations on the set of coefficient vectors.

Corollary 5 Given |N | ≥ 2 and a non-trivial set system S on N, one has�S �= ∅ iff S
contains a semi-balanced system. The inclusion T ⊆ S of two non-trivial systems on
N implies �T ⊆ �S . The set �S is the union of sets �T for semi-balanced systems
T with T ⊆ S. One has |�S | = 1 iff S contains just one semi-balanced system on
N. In particular, every min-semi-balanced system S on N satisfies |�S | = 1.

These facts mean that the inequalities (2) from Definition 4 are just those that are
assigned to semi-balanced systems. The last claim says that solely a non-minimal
semi-balanced system S may have non-singleton �S and, thus, be assigned several
inequalities.

On the other hand, the substantial inequalities appear to be those assigned to min-
semi-balanced systems; see later Corollary 9(iii). Thus, the inequalities assigned to
other non-trivial set systems are superfluous for the description of the exact cone.
Nonetheless, in order to follow the analogy with former results by Lohmann et al.
(2012), we have also assigned the inequalities to non-minimal semi-balanced set sys-
tems; see later Corollary 9(ii).
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Proof The first claim follows from Definition 3 and Lemma 1, further two ones are
direct consequences of Definition 4. As concerns the fourth claim, the necessity of
the uniqueness of a semi-balanced subsystem can be shown by contradiction with the
help of Lemma 1. For its sufficiency realize that the unique semi-balanced system
T on N with T ⊆ S is necessarily minimal. Given vector θ ∈ �S , the set system
{S ⊂ N : S �= ∅ & θ(S) �= 0} ⊆ S is semi-balanced on N , and, thus, it has to
coincide with T . The condition (e) in Lemma 2 (for T ) implies the uniqueness of
θ ∈ �S ; hence, |�S | ≤ 1. This implies the last claim. ��

The following example shows that the set �S need not be convex.

Example 4 Take N := {a, b, c, d} and put B := { a, b, c, d, ab, cd }. The conic com-
bination

1

2
· χa + 1

2
· χb + 1

2
· χc + 1

2
· χd + 1

2
· χab + 1

2
· χcd = χN

means thatB is balanced on N . A semi-conic combination 1·χa+1·χb+(−1)·χab = 0
leads to a coefficient vector θ1 ∈ �B:

θ1(a) = −1, θ1(b) = −1, θ1(ab) = +1, θ1(∅) = +1, θ1(L) = 0 otherwise.

Analogously, 1 · χc + 1 · χd + (−1) · χcd = 0 gives rise to the vector θ2 ∈ �B:

θ2(c) = −1, θ2(d) = −1, θ2(cd) = +1, θ2(∅) = +1, θ2(L) = 0 otherwise.

Their convex combination 1
2 · θ1 + 1

2 · θ2, however, does not belong to �B because
the corresponding affine combination 1

2 (χa + χb + χc + χd − χab − χcd) = 0 is not
semi-conic.

On the other hand, �S is always the union of finitely many closed convex sets.

Corollary 6 Given a semi-balanced system S on N, |N | ≥ 2, the set �S is the union
of finitely many rational polyhedrons. In particular, if S is min-semi-balanced then
the unique vector θS in �S has rational components: θS ∈ Q

P(N ).

Proof In fact, �S is the union over T ∈ S of sets �S:T consisting of θ ∈ R
P(N ) such

that

• θ(N ) + θ(∅) = 1 = ∑
S∈S −θ(S),

∑
S∈S −θ(S) · χS = θ(N ) · χN ,

• ∀ S ∈ S\{T } θ(S) ≤ 0, ∀ L ∈ P(N )\(S ∪ {∅, N }) θ(L) = 0.

Indeed, the above conditions defining �S:T are the rewriting of (1) and of the require-
ments on the respective linear combination

∑
S∈S λS · χS , where λT is allowed to be

negative. These constraints have clearly rational coefficients. In case of a minimal S
one has |�S | = 1 by Corollary 5. Thus, {θS} = �S:T for some T ∈ S then. Because
�S:T is specified by rational constraints it is a rational polyhedron. Another well-
known fact from polyhedral geometry is that every vertex of a rational polyhedron
has rational components; see Studený (1993, Statement3) for example. This gives
θS ∈ Q

P(N ). ��
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Note that (the first claim in) later Lemma 7 implies that every set �S:T from the
above proof is, in fact, a bounded polyhedron: the set �S:T with S := P(N )\{∅, N }
coincides with the below-defined set �̃N

D for D = T .

4 Characterization of exact games

Note that readers not interested in technicalities (or proofs) can possibly skip this
section. The inequalities of the form (2) from Definition 4 allow one to delimit the
cone of exact games. To this end we introduce the following convex sets.

Definition 5 (Auxiliary cones and polyhedrons) Given |N | ≥ 2 and ∅ �= D ⊆ N we
introduce

�N
D := { θ ∈ R

P(N ) : θ(S) ≤ 0 for any S ⊆ N such that S /∈ {∅, D, N },
∑

L⊆N

θ(L) = 0 and
∑

L⊆N : i∈L
θ(L) = 0 for any i ∈ N },

�̃N
D := �N

D ∩ { θ ∈ R
P(N ) : θ(N ) + θ(∅) = 1 },

 := conv (
⋃

D: ∅�=D⊆N

�̃N
D).

Observe that �̃N
D = �N

D ∩ { θ ∈ R
P(N ) : ∑

L: ∅�=L⊂N θ(L) = −1 }, which re-
writing allows one to ignore the component for ∅ and interpret these convex sets as
subsets of R

P(N )\{∅}. It follows directly from the definition that �̃N
N ⊆ �̃N

D for any
∅ �= D ⊂ N ; thus, one can, alternatively, consider the union over ∅ �= D ⊂ N in the
definition of . The proof of the next lemma, based on some facts from (Kroupa and
Studený 2019, §5.1), is moved to “Appendix C”.

Lemma 7 Given |N | ≥ 2, every set �̃N
D , where∅ �= D ⊆ N , is a bounded polyhedron.

Every vector θ ∈ �N
D satisfies both θ(N ) ≥ 0 and θ(∅) ≥ 0 and every non-zero vector

θ ∈ �N
D satisfies θ(N ) + θ(∅) > 0. Given m ∈ R

P(N ) with m(∅) = 0, one has

m ∈ E(N ) ⇔
⎡

⎣∀ θ ∈
⋃

∅�=D⊆N

�̃N
D 〈θ,m〉 ≥ 0

⎤

⎦ . (3)

The first claim in Lemma 7 allows one to observe that  is a bounded polyhedron
as well; this follows from basic facts in polyhedral geometry recalled in Sect. 2.2.

The second claim in Lemma 7 means that each set �N
D , ∅ �= D ⊆ N , is a pointed

polyhedral cone. An equivalent formulation is that every non-zero vector θ ∈ �N
D

satisfies
∑

L: ∅�=L⊂N θ(L) < 0, which is relevant if �N
D is interpreted as a subset of

R
P(N )\{∅}.
Further auxiliary observation says that the vertices of the (bounded) polyhedrons

from Definition 5 correspond to (certain) min-semi-balanced set systems on N . Thus,
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together with Lemma 7, it puts in relation exact games and semi-balanced systems.
Its proof is also shifted to “Appendix D”.

Lemma 8 Given |N | ≥ 2 and ∅ �= D ⊆ N, every vertex of �̃N
D has either the form

θB, where B is a min-balanced set system on N, or the form θS , where S is a min-
semi-balanced system on N having D as the exceptional set.
Conversely, in case ∅ �= D ⊂ N, every vector θS , where S is a min-semi-balanced
system on N having D as the exceptional set, is a vertex of �̃N

D: θS ∈ ext (�̃N
D).

Note in this context that one can show, using the same arguments as in the proof
of Lemma 8, that ext (�̃N

N ) consists just of the vectors θB where B is a min-balanced
set system on N ; nonetheless, this observation is not necessarily needed to derive our
results. On the other hand, the delimitation of ext (�̃N

D) for D ⊂ N in the first claim of
Lemma 8 is not tight. Analogous arguments can be used to show that θB ∈ ext (�̃N

D)

for every min-balanced system B on N with D ∈ B. For a min-balanced system B on
N such that D /∈ B, however, the vector θB may or may not be a vertex of �̃N

D as the
next example shows.

Example 5 Take N := {a, b, c} and put D := {a, b}; the set system B := { a, b, c } is
then min-balanced on N . The corresponding vector θB ∈ R

P(N ) is given by

θB(N ) = +1

3
, θB(a) = θB(b) = θB(c) = −1

3
, θB(∅) = +2

3
,

θB(L) = 0 otherwise,

evidently belongs to �̃N
D . Consider another min-balanced system C := { c, ab } on N

with

θC(N ) = θC(∅) = +1

2
, θC(c) = θC(ab) = −1

2
, θC(L) = 0 otherwise,

and a min-semi-balanced system D := { a, b, ab } on N with

θD(ab) = θD(∅) = +1, θD(a) = θD(b) = −1, θC(L) = 0 otherwise .

These two vectors both belong to �̃N
D and one has θB = 2

3 · θC + 1
3 · θD. In particular,

θB is not a vertex of �̃N
D . On the other hand, the min-balanced system B′ := { a, bc }

on N with

θB′(N ) = θB′(∅) = +1

2
, θB′(a) = θB′(bc) = −1

2
, θB′(L) = 0 otherwise,

also complies with D /∈ B′ and it makes no problem to show that θB′ ∈ ext (�̃N
D).

Lemmas 7 and 8 allow one to characterize exact games in terms of semi-balanced
systems.

Corollary 9 Given |N | ≥ 2, consider a set function m ∈ R
P(N ) such that m(∅) = 0.

Then the following conditions on the game m are equivalent:
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(i) m is an exact game over N, that is, m ∈ E(N ),
(ii) for every semi-balanced set system S on N one has 〈θ,m〉 ≥ 0 for all θ ∈ �S ,
(iii) for every min-semi-balanced set system S on N one has 〈θS ,m〉 ≥ 0.

Note that one is entitled to write θS in (iii) since, by Corollary 5, |�S | = 1 then.

Proof The implication (i)⇒(ii) follows from (3) in Lemma 7, one only needs to
realize that, given a semi-balanced system S on N , one has �S ⊆ �̃N

D for some
non-empty set ∅ �= D ⊆ N . Indeed, any θ ∈ �S is defined in (1) from an affine
(semi-conic) combination

∑
S∈S λS · χS yielding a constant vector in R

N , which
gives both θ(N ) + θ(∅) = −∑

L:∅�=L⊂N θ(L) = +1 and
∑

L⊆N :i∈L θ(L) = 0 for

any i ∈ N . Thus, if it is a conic combination then θ ∈ �̃N
N , otherwise one has θ ∈ �̃N

T
for the only (exceptional) T ∈ S with λT < 0.

The implication (ii)⇒(iii) is immediate.
To verify (iii)⇒(i) we apply the first claim in Lemma 8 to observe that 〈θ,m〉 ≥ 0

for any θ ∈ ext (�̃N
D) and ∅ �= D ⊆ N . Hence, the same holds for any θ ∈ �̃N

D and
arbitrary ∅ �= D ⊆ N . In particular, one can use (3) in Lemma 7 to derive (i). ��

Let us remark that the observations fromCorollary 9 are analogous to former results
by Lohmann et al. (2012), specifically to Theorem 3.4 in (Lohmann et al. 2012, §3)
and Theorem 5.1 in (Lohmann et al. 2012, §5). The proviso is that Lohmann et al. used
a different formal way to associate set systems with inequalities—see later Remark 2
for the explanation. We believe that our approach and presentation offers an elegant
geometric interpretation and simpler arguments. Moreover, it can be extended to get
the following characterization of facet-defining inequalities.

Corollary 10 Given |N | ≥ 2, the inequality (2), that is,0 ≤ 〈θ,m〉 form ∈ R
P(N ), with

a coefficient vector θ ∈ R
P(N ), where

∑
S⊆N θ(S) = 0 and

∑
L: ∅�=L⊂N θ(L) = −1,

is facet-defining for the cone of exact games E(N ) iff θ ∈ ext ().

Note that the above requirements
∑

S⊆N θ(S) = 0 and
∑

L: ∅�=L⊂N θ(L) = −1
on a coefficient vector θ are solely technical constraints which can, without loss of
generality, be assumed to hold for any facet-defining inequality for the exact cone.
The former requirement is related to the facts that m(∅) = 0 for any game m ∈ G(N )

and that E(N ) is a full-dimensional cone in R
P(N )\{∅}: it is a convention on the value

θ(∅). The latter requirement is related to the fact that facet-defining inequalities are
determined uniquely up to a positive multiple: it is a particular convention about the
choice of the multiplicative factor.

The proof is based on a geometric consideration concerning the duality of polyhe-
dral cones. It is more convenient technically to imagine both the cone of exact games
and its dual cone within the space R

P(N )\{∅} because then the dual cone becomes
pointed.

Proof Consider the space R
P(N )\{∅} and interpret the polyhedrons �̃N

D from Defini-
tion 5 as its subsets. Introduce a polyhedral cone ̄ ⊆ R

P(N )\{∅} as the conic hull of
. Since every θ ∈  satisfies

∑
∅�=L⊂N θ(L) = −1 every non-zero θ ∈ ̄ satisfies

∑
∅�=L⊂N θ(L) < 0 meaning that ̄ is pointed and its extreme rays are generated by
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vertices θ ∈ ext () (see Sect. 2.2). The first claim in Lemma 7 allows one to observe
that is a bounded polyhedron, while the third claim in Lemma 7means that the cone
E(N ) is dual to ̄: E(N ) = (̄)∗.

Hence, by the basic facts from polyhedral geometry recalled in Sect. 2.2, the cones
̄ and E(N ) are mutually dual polyhedral cones and the lattices of their non-empty
faces are anti-isomorphic. In particular, extreme rays of ̄ correspond to facets of
E(N ). Moreover, the lattice of non-empty faces of ̄ is isomorphic to the face-lattice
of, which implies that the extreme rays of ̄ are just those rays that are generated by
vertices of . In other words, a vector θ normalized by

∑
∅�=L⊂N θ(L) = −1 yields

a facet-defining inequality for E(N ) iff θ is a vertex of . ��
Remark 2 Lohmann et al. (2012) introduced the concept of an exact balanced collec-
tion of sets with the intention to use such set systems to generate linear inequalities
specifying the cone of exact games. These collections of sets often coincide with our
semi-balanced set systems, but there is one (substantial) technical difference in their
approach. It concerns the inequalities 〈θ,m〉 ≥ 0 for m ∈ E(N ) with θ(N ) = 0. They
ascribe such inequalities to the so-called “minimal sub-balanced" collections which
are certain set systems always involving the grand coalition N . To give an example of
the difference consider the vector θ ∈ R

P(N ), where N = {a, b, c}, given by

θ(∅) = +1, θ(ab) = +1, θ(a) = −1, θ(b) = −1,

θ(L) = 0 for other L ⊆ N .

One has θ ∈ �N
D for D = ab and 〈θ,m〉 ≥ 0 is facet-defining for m ∈ E(N ). Our

approach is to associate this inequality with a set system { a, b, ab } while Lohmann
et al. (2012) ascribe that inequality to the set system { a, b, ab, N }. We have two
arguments why their approach is not appropriate for our purpose:

• There is no one-to-one correspondence between set systems and inequalities in
their approach although technically all inequalities assigned to a minimal sub-
balanced collection are equivalent [see Lohmann et al. (2012, Theorem3.9)],

• Their approach does not allow one to reveal one important relation of complemen-
tarity among set systemswhich corresponds to the respective relation of conjugacy
between facet-defining inequalities for E(N ) [see Kroupa and Studený (2019,
Lemma3.4)]. The reader can find further details in Sect. 5.1.

That is why we believe our way of inequality description is more appropriate.

5 Properties of semi-balanced systems

In this section we discuss some structural relations among semi-balanced set systems.

5.1 Complementarity of set systems

A substantial fact about the cone of exact games is that its facet-defining inequalities
come in pairs of mutually conjugate inequalities, as shown already in (Kroupa and
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54 M. Studený, V. Kratochvíl

Studený 2019, Lemma 3.4). Therefore, the corresponding set systems also come in
pairs of mutually complementary systems.

Definition 6 (Conjugate inequality, complementary set system) Assume |N | ≥ 2.
The conjugate inequality to the inequality (2), that is, to the inequality 0 ≤ 〈θ,m〉 for
m ∈ R

P(N ) with a coefficient vector θ ∈ R
P(N ), is the inequality

0 ≤ 〈θ�,m〉 for m ∈ R
P(N ), where θ�(L) := θ(N\L) for any L ⊆ N . (4)

Given a non-trivial set system S on N , its complementary system is the set system

S� := {N\S : S ∈ S} .

Of course, both concepts are relative to N . Here are the relevant observations.

Lemma 11 Given |N | ≥ 2, let S be a non-trivial set system on N. Then S is semi-
balanced iff S� is semi-balanced and�S� = {θ� : θ ∈ �S}. An analogous statement
holds for balanced systems. In particular, S is min-semi-balanced iff S� is min-semi-
balanced and the same holds for min-balanced systems on N. Moreover, one then has
θ�
S := (θS)� = θS� .
Given θ ∈ R

P(N ) with
∑

S⊆N θ(S) = 0 and
∑

∅�=L⊂N θ(L) = −1, the inequality (2)
is facet-defining for E(N ) iff its conjugate inequality (4) is facet-defining for E(N ).

Proof ByLemma 1,S is semi-balanced if r ·χN = ∑
S∈S λS ·χS with r ∈ [0, 1] and an

affine semi-conic combination on the right-hand side (which has all its coefficients non-
zero). One can multiply that by (−1) and add to that the equality χN = ∑

S∈S λS ·χN

to get (1 − r) · χN = ∑
S∈S λS · χN\S = ∑

L∈S� λN\L · χL , which means that S�

is semi-balanced; one can then put r� = 1 − r and λ�
L = λN\L for L ∈ S�. Thus,

the relation �S� = {θ� : θ ∈ �S} follows from Definition 4. The same argument
works for balanced systems: the linear combination is even conic then. The relation
of non-trivial systems T ⊆ S iff T � ⊆ S� then implies the consequences concerning
minimal such systems.

The last claim in Lemma 11 can be derived from Corollary 10 using Definition 5.
Note that θ ∈ �̃N

N ⇔ θ� ∈ �̃N
N , and, for every∅ �= D ⊂ N , θ ∈ �̃N

D ⇔ θ� ∈ �̃N
N\D ,

which allows one to deduce θ ∈  ⇔ θ� ∈ . Since θ �→ θ� is a linear mapping
one has θ ∈ ext () ⇔ θ� ∈ ext () and the rest follows from Corollary 10. ��

Note that T ∈ S is exceptional within a non-trivial set system S on N (see Def-
inition 3) iff N\T ∈ S� is exceptional within S�: given a combination r · χN =∑

S∈S λS ·χS multiply it by (−1) and add (
∑

S∈S λS)·χN to get (
∑

S∈S λS−r)·χN =∑
S∈S λS · χN\S = ∑

R∈S� λN\R · χR . In particular, a non-trivial system S on N is
purely min-semi-balanced iff the same holds for its complementary system S�.

5.2 Basic classification of min-semi-balanced systems

The uniqueness condition (d) in Lemma 2 on an affine combination yielding a constant
vector allows one to classify min-semi-balanced systems by the values of the constant.
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Lemma 12 Given |N | ≥ 2 and a min-semi-balanced system S on N, let
∑

S∈S λS ·χS

be the unique affine (and semi-conic) combination yielding a constant vector r · χN ,
r ∈ [0, 1].
One has then r = 0 iff there exists a min-balanced system B on M ⊂ N, |M | ≥ 2,
such that S = B ∪ {M}; another equivalent condition is ⋃

S ⊂ N. Moreover, a min-
balanced system B on M ⊂ N, |M | ≥ 2, yields a min-semi-balanced one, namely the
system S := B ∪ {M} on N with r = 0.
One has r = 1 iff S is a complementary system to a system S� with

⋃
S� ⊂ N;

another equivalent condition is
⋂

S �= ∅.
On the other hand, every min-balanced system S on N satisfies 0 < r < 1.

The proof of Lemma 12 is shifted to “Appendix E”. Thus, one can distinguish at
least three classes of min-semi-balanced systems S:

• those with
⋃

S ⊂ N , which are extensions of min-balanced systems on strict
subsets,

• those with
⋂

S �= ∅, which can be viewed as their complementary systems, and
• min-balanced systems on N , which satisfy both

⋃
S = N and

⋂
S = ∅.

Nevertheless, as the next example shows, there is the fourth class ofmin-semi-balanced
systems: these satisfy both

⋃
S = N and

⋂
S = ∅ but they are not balanced on N .

Example 6 Take N := {a, b, c, d} and S := { a, ab, bc, abd }. The semi-conic com-
bination

1 · χa + (−1) · χab + 1 · χbc + 1 · χabd = χN

implies that S is semi-balanced on N . Since
⋃

S = N and {χS : S ∈ S} are
linearly independent, by Lemma 2(c), S is min-semi-balanced. Clearly, the unique
linear combination yielding χN is not conic; hence, S is not balanced.

Remark 3 We showed in Lemma 12 that every min-balanced set system B on a strict
subsetM ⊂ N leads to a semi-balanced systemB∪{M} on N . Note in this context that
B itself is never semi-balanced on N . This is because the vectors {χS : S ∈ B} are then
linearly independent (Kroupa and Studený 2019, Lemma 2.1). Thus,

⋃
B = M ⊂ N

implies that a contingent semi-conic combination of {χS : S ∈ B} can only yield the
zero constant vector 0, while the linear independence implies that only the zero linear
combination yields 0.

5.3 Pictorial representation of min-semi-balanced systems

We propose to use certain special pictures to represent (permutational types of)
minimal semi-balanced set systems. In fact, our diagrams additionally encode the cor-
responding linear inequalities (2). Corollary 6 says that, given a min-semi-balanced
system S on N , the vector θS has rational components, that is, it is given by an affine
rational semi-conic combination

∑
S∈S λS · χS = r · χN . One can multiply this by a

natural number � so that αS := � ·λS , S ∈ S, become integers with no common prime
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divisor. Then αN := � · r ∈ Z
+ and one can introduce α∅ := −αN + ∑

S∈S αS ∈ Z
+

(use Lemma 1). Thus, one gets

∑

S∈S
αS · χS = α∅ · χ∅ + αN · χN , where all the coefficients αS are integers.

One can have α∅ = 0 or αN = 0, while the remaining coefficients are non-zero.
Provided there is T ∈ S with λT < 0 one can re-write that in the form

∑

S∈S\{T }
αS · χS = α∅ · χ∅ + (−αT ) · χT + αN · χN

with non-negative integers as coefficients.
A diagram representing a set system S has the form of a pair of two-dimensional

arrays whose entries are colorful boxes; the arrays encode the sides of the above
vector equality. The rows of these arrays correspond to the elements of the base set N
(= players); they are labeled if the diagram represents a particular set system S and
they are unlabeled if it represents a permutational type of such systems.

The columns of the arrays encode sets S from the enlarged system S∪{∅, N }. Each
of the sets has its own color; however, the black color is reserved for the grand coalition
N , a fully blank (= white) column implicitly encodes the empty set and the grey color
is reserved for a contingent set T with a negative coefficient λT < 0 (= an exceptional
set in S). The other sets from S have bright colors then. The column representing a
set S has boxes of the respective color just in rows corresponding to elements of S. To
express the value of the respective coefficient αS ∈ Z in the inequality the respective
column is repeated |αS|-times.

The left array is composed of columns which correspond to sets with positive
coefficients λS > 0, S ∈ S, while the array on the right-hand side has either fully
black columns, fully blank (= white) columns and possibly columns containing grey
boxes.

Example 7 Take N := {a, b, c, d, e} and put S := { ab, ac, bc, abd, abe }. The rela-
tion

1 · χac + 1 · χbc + 2 · χabd + 2 · χabe = 1 · χ∅ + 3 · χab + 2 · χN

allows one to observe that S is semi-balanced on N . As the vectors {χS : S ∈ S} are
linearly independent S is minimal. A picture representing this set system is in Fig. 1.

Note that, in any row, the numbers of boxes in the left and right array coincide:
this is because of the equality

∑
S∈S αS · χS(i) = αN · χN (i) for any i ∈ N . Another

interesting observation is that the diagram for the complementary systemS� can easily
by obtained by “reflection” from the diagram for S: the boxes are interchanged with
non-boxes and the colors for columns are kept, under a convention that the color for
blank columns is black.

One can also easily recognize on basis of the diagram for S to which of the four
basic classes it belongs. Systems S with

⋃
S ⊂ N , that is, those with the constant
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Fig. 1 A picture representing the set system from Example 7

r = 0, have no black column. Their complementary systems S with
⋂

S �= ∅, that
is, those with the constant r = 1, have no blank (= white) column. The min-balanced
systems on N have no grey column and other min-semi-balanced systems have blank,
grey and black columns.

6 Purely min-semi-balanced systems

Let us first discuss the situation when only two players exist, that is, |N | = 2. Then, as
explained below Lemma 1, there is no purely semi-balanced system on N . In fact, the
only semi-balanced system over N = {a, b} is the min-balanced system B := { a, b }.
Thus, by Corollary 9, a game m ∈ R

P(N ), m(∅) = 0, is exact iff 〈θB,m〉 ≥ 0, and the
cone of exact games is specified by a single inequality m(ab) − m(a) − m(b) ≥ 0.

6.1 How to get purely min-semi-balanced systems

Therefore, in the sequel we limit our attention to a non-trivial case |N | ≥ 3, when there
exist purely semi-balanced systems on N . We first establish some relation between
min-balanced and purely min-semi-balanced systems. The proof of the next lemma is
shifted to “Appendix F”.

Lemma 13 Assume |N | ≥ 3. If B is a min-balanced set system on N such that |B| ≥ 3
and Z ∈ B then Y := N\Z is not in B, the set system S := (B\{Z}) ∪ {Y } is purely
min-semi-balanced on N and Y is the exceptional set within S.
Conversely, if S is a (purely) min-semi-balanced system on N and Y ∈ S the excep-
tional set within S then Z := N\Y is not in S and B := (S\{Y }) ∪ {Z} is a
min-balanced system on N such that |B| ≥ 3.

Thus, by Lemma 13, there is one-to-many correspondence B ↔ S between min-
balanced systemsB on N satisfying |B| ≥ 3 and purely min-semi-balanced systems S
on N which is realized by the mutual exchange of a set Z ∈ B and of its complement
Y ∈ S. It allows one to generate a complete list of min-semi-balanced systems on N
on basis of the list of all min-balanced systems on N . Note that the fact that balanced
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Fig. 2 Pictures representing the set systems B and S from Example 8

systems on N induce in this way other semi-balanced systems on N has already
been recognized by Lohmann et al. (2012, §4,Theorem 4.4). Nevertheless, the above
correspondence was not revealed there in its full scope for the reason mentioned in
Remark 2.

Let us remark in this context that the discussed transition from a min-balanced
systemB to a purely min-semi-balanced system S (and back) can be recognized easily
on basis of their diagrams/pictures from Sect. 5.3. Indeed, if a diagram represents a
min-balanced systemB and has αZ columns representing a set Z ∈ B then the diagram
representing S := (B\{Z}) ∪ {Y }, where Y := N\Z , can be obtained from it by
removing those αZ columns of bright color from the left array, αZ blank columns and
αZ black columns from the right array and by adding αZ grey columns representing
the set Y to the right array. Of course, the transition back can be done by an inverse
operation with the diagrams. The following example illustrates the procedure.

Example 8 Take N := {a, b, c, d} and putB := { ab, ac, bc, d }. One can observe that
B is min-balanced on N using the equality relation

1

2
· χab + 1

2
· χac + 1

2
· χbc + 1 · χd = χN .

The choice of a set Z := d from B leads, by Lemma 13, to a min-semi-balanced
system S := (B\{Z}) ∪ {Y } = { ab, ac, bc, abc }. The diagrams for both systems are
in Fig. 2. We observe that two columns representing Z , ∅ and N from the diagram for
B are missing in the diagram for S and replaced there by two columns representing
Y := N\Z = abc.

6.2 The case of balanced systems

We now show that the inequalities corresponding to balanced systems on N , |N | ≥ 3,
are superfluous. The next observation follows from Lemma 13.

Corollary 14 Given |N | ≥ 3, let B be a min-balanced set system on N with |B| ≥ 3.
Then θB is a (non-trivial) convex combination of θD for a min-balanced system D
on N with |D| = 2 and of θS for a purely min-semi-balanced system S on N with
|S| = |B|.
Proof We take Z ∈ B, put Y := N\Z and observe, by means of Lemma 13, that
S := (B\{Z}) ∪ {Y } is min-semi-balanced on N . Consider the unique affine conic
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combination
∑

S∈B λS · χS yielding a constant vector in R
N . Let us add −λZ · χN to

that and obtain a semi-conic combination
∑

S∈B\{Z} λS ·χS+(−λZ )·χY . By Lemma 1,
applied to the latter combination, get 0 <

∑
S∈B\{Z} λS + (−λZ ) = 1 − 2λZ . Thus,

(1− 2λZ )−1-multiple of it is an affine combination. PutD := {Y , Z}, which is a min-
balanced system on N , and the respective affine conic combination 1

2 · χY + 1
2 · χZ

yields a constant vector in R
N . Then

∑

S∈B
λS · χS = 2λZ ·

[
1

2
· χY + 1

2
· χZ

]

+ (1 − 2λZ ) ·
⎡

⎣
∑

S∈B\{Z}
(1 − 2λZ )−1 · λS · χS + (1 − 2λZ )−1 · (−λZ ) · χY

⎤

⎦ ,

and using (1) derive that θB = 2λZ · θD + (1 − 2λZ ) · θS . ��
Corollary 14 says that the vector θB for a min-balanced system B with |B| ≥ 3

is a convex combination of vectors for min-semi-balanced systems of cardinality at
most |B|. The vector θD for a min-balanced system D on N with |D| = 2 can also be
written as a convex combination of other vectors. Nevertheless, the difference is that
the summands in the combination correspond to set systems of higher cardinality.

Lemma 15 Assume |N | ≥ 3. If D is a min-balanced system on N with |D| = 2 then
θD is a convex combination of θS and θT for purely min-semi-balanced systems S
and T on N.

Proof We have D = {Y , Z} where Y ∩ Z = ∅, Y ∪ Z = N , ∅ �= Z and |Y | ≥ 2.
Thus, there exists a set ∅ �= R ⊂ Y and one can put S := { Z , R, Z ∪ R } and
T := { Z∪R,Y , R }. The equalities χZ +χR −χZ∪R = 0 and χZ∪R+χY −χR = χN

together with affine/linear independence of involved vectors allows one to observe
using Lemma 2 that bothS and T is a min-semi-balanced system on N . The respective
affine semi-conic combinations are related as follows:

[
1

2
· χY + 1

2
· χZ

]

= 1

2
· [1 · χZ + 1 · χR + (−1) · χZ∪R]

+ 1

2
· [1 · χZ∪R + 1 · χY + (−1) · χR] ,

which equality implies using (1) that θD = 1
2 · θS + 1

2 · θT . ��
The previous two results allow one to derive the following conclusion.

Corollary 16 If |N | ≥ 3 and B is a min-balanced system on N then the inequality
given by θ = θB is not facet-defining for the exact cone E(N ).

Recall that the fact that balanced systems provide superfluous inequalities has
already been shown in (Lohmann et al. 2012, §5,Theorem 5.4); we give our short
proof for the sake of completeness.
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Proof By combining Corollary 14 with Lemma 15 observe that every vector θB for
a min-balanced system B on N is a non-trivial convex combination of vectors θS for
purely min-semi-balanced systems S on N . Then apply Corollary 10 to observe that
the inequality (2) with θ = θB is not facet-defining for E(N ). ��

7 Indecomposable semi-balanced systems

Nevertheless, even purelymin-semi-balanced systems can induce superfluous inequal-
ities. We give a simple sufficient condition for that.

Definition 7 (Decomposition, indecomposable system) Assume |N | ≥ 3. Given a
purely min-semi-balanced set system S on N and E ⊆ N with E /∈ (S ∪ {∅, N }) we
say that E yields a decomposition of S if E is an exceptional set within the system
S∪{E} (see Definition 3). A purely min-semi-balanced set system on N will be called
indecomposable if it has no decomposition.

Recall from Sect. 5.1 that a set is exceptional within a non-trivial set system iff its
complement is exceptional within its complementary system. This implies that S has a
decomposition iff its complementary system S� has a decomposition. Therefore, S is
indecomposable iff the same holds for S�. Our main result follows from the following
lemma; its technical proof is moved to “Appendix G”.

Lemma 17 Let S be a purely min-semi-balanced system on N, |N | ≥ 3, with excep-
tional set T ∈ S and W := P(N )\({∅, N } ∪ S). Then the following conditions are
equivalent:

(a) θS /∈ ext (), (see Definition 5)
(b) there exists a convex combination θS = ∑

D∈W∪{T } αD · θD where αT < 1 and

θD ∈ �̃N
D whenever αD > 0,

(c) the set (S) := conv (
⋃

D∈W �̃N
D) ∩ { θ ∈ R

P(N ) : θ(W ) ≥ 0 for W ∈ W } is
non-empty,

(d) there exists E ∈ W such that E is exceptional inS∪{E}, (=S has a decomposition)
(e) there exists E ∈ W such that E is exceptional in (S\{T }) ∪ {E},
(f) amin-semi-balanced systemD on N exists such thatD\S = {E} for some E ∈ W ,

the set E is exceptional within D, and T /∈ D,
(g) a min-semi-balanced system D on N exists with an exceptional set E such that

D \ S = {E}.
Now, we are ready to state our main result.

Theorem 18 Given |N | ≥ 3 the inequality 0 ≤ 〈θ,m〉 for m ∈ R
P(N ) with a coef-

ficient vector θ ∈ R
P(N ), where

∑
S⊆N θ(S) = 0 and

∑
L: ∅�=L⊂N θ(L) = −1, is

facet-defining for m ∈ E(N ) iff θ = θS for an indecomposable min-semi-balanced
system S on N.

Proof By Corollary 10, facet-defining inequalities 0 ≤ 〈θ,m〉 for m ∈ E(N ) corre-
spond to vertices θ of the polytope . Each θ ∈ ext () must be a vertex of �̃N

D
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for some ∅ �= D ⊆ N (see Sect. 2.2). By Lemma 8, every vertex θ ∈ ext (�̃N
D) has

the form θ = θS for a min-semi-balanced system S on N . Corollary 16 excludes
the case that S is min-balanced. In case of a purely min-semi-balanced system S
one applies Lemma 17, the equivalence of negations ¬(a) ⇔ ¬(d), which says that
θ = θS ∈ ext () iff S is indecomposable. ��

Note in this context that, by Lemma 17(f), a purely min-semi-balanced system S
on N is indecomposable iff there is no min-semi-balanced system D with T /∈ D,
D\S = {E}, and E exceptional within D. Thus, provided one has all purely min-
semi-balanced systems on N at disposal, the indecomposable ones among them can
be determined by this criterion.

8 Relation of exact and totally balanced games

In this section we deal with the relation of the cone E(N ) of exact games and the cone
T (N ) of totally balanced games. In (Kroupa and Studený 2019, §6) a conjecture has
been raised about what are the facets of E(N ), which is equivalent to the condition
that

a game m over N is exact iff both m and its anti-dual m� are totally balanced.

We give a counterexample to the conjecture in case |N | = 6. On the other hand, we
show that every originally conjectured inequality from (Kroupa and Studený 2019,
§6) is indeed facet-defining for E(N ) whenever |N | ≥ 3.

8.1 Counterexample to a former conjecture

Here we present a counterexample to the conjecture from (Kroupa and Studený 2019,
§6). Despite we found our counterexample for |N | = 6 computationally, by the
method described in later Remark 4, the reader need not repeat those computations
to check its validity. The values for coalitions in our counterexample m are given in
Table 1.

To show that m ∈ T (N ) for the game m from Table 1 we provide its min-
representation in Table 2 (see Sect. 2.3 for the reason). It is boring and tedious
but the reader can verify manually in a straightforward way that it is indeed a min-
representation of m. As a hint we indicate already in Table 1 at least one vector from
Table 2 which is tight for the respective coalition. The first 17 vectors in Table 2 are
(all) the vertices of the core of m. None of them is tight for sets {c, e} and {b, c, e}.
This implies that there is no element in the core of m which is tight for one of these
two sets. This is because tight vectors for any set S ⊆ N form a face of the core and,
if this face is non-empty then, by arguments from Sect. 2.2, a vertex of the core exists
that is tight for S. Thus, m /∈ E(N ) (see again Sect. 2.3).

The anti-dual m� of our game m is given in Table 3, its min-representation in
Table 4. The core of the anti-dual also has 17 vertices, presented in the first 17 lines
of the table. None of them is tight for sets {a, d, f } and {a, b, d, f }; in particular,
m� /∈ E(N ), which fact also follows from a former observation that m /∈ E(N ). A
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Table 1 Our counterexample m over N = {a, b, c, d, e, f }
Coalition ∅ a b c d e f ab

Value 0 0 0 0 0 0 0 0

Tight vector [1] [7] [1] [2] [1] [11] [1] [7]

Coalition ac ad ae a f bc bd be b f

Value 0 0 0 0 0 0 4 0

Tight vector [15] [7] [11] [12] [17] [1] [1] [1]

Coalition cd ce c f de d f e f abc abd

Value 0 4 8 0 0 0 0 0

Tight vector [2] [18] [12] [11] [1] [12] [17] [7]

Coalition abe ab f acd ace ac f ade ad f ae f

Value 4 0 0 8 8 0 0 0

Tight vector [8] [16] [15] [2] [12] [11] [13] [12]

Coalition bcd bce bc f bde bd f be f cde cd f

Value 0 4 12 4 0 4 6 8

Tight vector [17] [18] [1] [1] [1] [1] [2] [13]

Coalition ce f de f abcd abce abc f abde abd f abe f

Value 8 0 0 8 12 4 4 4

Tight vector [12] [14] [17] [5] [7] [8] [1] [12]

Coalition acde acd f ace f ade f bcde bcd f bce f bde f

Value 8 8 8 0 8 12 12 4

Tight vector [2] [13] [12] [14] [2] [1] [12] [1]

Coalition cde f abcde abcd f abce f abde f acde f bcde f abcde f

Value 16 8 12 12 4 16 16 20

Tight vector [1] [9] [7] [12] [14] [11] [1] [1]

min-representation ofm� can be obtained by adding one additional vector. The reader
can verify manually that Table 4 indeed provides a min-representation ofm�; for each
coalition, we indicate in Table 3 at least one vector from Table 4 which is tight for it.

Remark 4 This is to describe the way we found our counterexample. Our method was
based on the characterization of E(N ) from Sect. 4. We have succeeded to compute
the extreme rays of all the cones �N

D , ∅ �= D ⊆ N , in case |N | = 6. Thus, we got a
finite set of linear inequalities characterizing the cone E(N ) in this case, although a
pretty big one. Additionally, on basis of the results from (Studený et al. 2019), wewere
able to get a complete list L of coefficient vectors for the conjectured facet-defining
inequalities. Checking the validity of the conjecture in case |N | = 6 was, therefore,
reduced to checking whether, for every ∅ �= D ⊆ N , every generator of an extreme
ray of �N

D is in the conic hull of L.
This appeared not to be the case: we found an extreme ray of �N

D for |D| = 2
which is not in the conic hull of L. Specifically, it was an element of θ̂ ∈ �N

D for
N = {a, b, c, d, e, f } and D = {c, e} defined as follows (we write ce instead of {c, e}
here):
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Table 2 The min-representation
of our counterexample m

Vector identifier a b c d e f

[1] 4 0 12 0 4 0

[2] 2 2 0 0 6 10

[3] 3 1 2 2 3 9

[4] 2 2 4 0 2 10

[5] 2 0 2 2 4 10

[6] 4 0 4 0 4 8

[7] 0 0 8 0 8 4

[8] 0 0 12 0 4 4

[9] 0 0 4 0 4 12

[10] 0 0 4 4 4 8

[11] 0 4 8 0 0 8

[12] 0 4 8 8 0 0

[13] 0 4 8 0 8 0

[14] 0 4 16 0 0 0

[15] 0 4 0 0 8 8

[16] 0 0 12 4 4 0

[17] 0 0 0 0 8 12

[18] 20 0 0 20 4 20

θ̂ (∅) = +1, θ̂ (ce) = +4, θ̂ (abcde f ) = +3,

θ̂ (be) = −1, θ̂ (ace) = −3, θ̂ (bc f ) = −1, θ̂ (bcde) = −1, θ̂ (cde f ) = −2 ,

and θ̂ (S) = 0 for remaining S ⊆ N . On basis of that objective vector θ̂ we found a
game m that satisfies 〈θ̂ ,m〉 < 0 while 〈θ ′,m〉 ≥ 0 for any θ ′ ∈ L, which is just the
gamem presented in Table 1. Note, however, that the vector θ̂ has appeared not to yield
a facet-defining inequality for m ∈ E(N ): the set E = bce yields the decomposition
of the respective min-semi-balanced system.

Remark in this context that an alternative idea of computing the extreme rays of
the cone {m ∈ G(N ) : 〈θ,m〉 ≥ 0 for θ ∈ L} has appeared to be computationally
infeasible. This is because the number of the extreme rays of E(N ) grows very rapidly
with |N | and we were not able to compute them even in case |N | = 5.

8.2 Facets shared with the cone of totally balanced games

This is to relate our new concept of an indecomposable min-semi-balanced system to
earlier concepts and results from (Kroupa and Studený 2019), where facet-defining
inequalities for the cone T (N ) of totally balanced games were characterized. The
following is a simplified equivalent definition of a central concept from (Kroupa and
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Table 3 The anti-dual m� of our counterexample m

Coalition ∅ a b c d e f ab

Value 0 −4 −4 −16 −8 −8 −12 −4

Tight vector [1] [3] [1] [17] [16] [6] [4] [1]

Coalition ac ad ae a f bc bd be b f

Value −16 −8 −8 −12 −20 −12 −12 −12

Tight vector [15] [16] [3] [2] [17] [16] [8] [1]

Coalition cd ce c f de d f e f abc abd

Value −16 −16 −16 −8 −12 −20 −20 −12

Tight vector [13] [5] [1] [6] [4] [9] [17] [16]

Coalition abe ab f acd ace ac f ade ad f ae f

Value −12 −14 −16 −20 −16 −8 −16 −20

Tight vector [8] [2] [13] [15] [1] [3] [18] [9]

Coalition bcd bce bc f bde bd f be f cde cd f

Value −20 −20 −20 −12 −12 −20 −20 −16

Tight vector [16] [14] [1] [8] [1] [8] [13] [1]

Coalition ce f de f abcd abce abc f abde abd f abe f

Value −20 −20 −20 −20 −20 −12 −16 −20

Tight vector [4] [9] [16] [14] [1] [8] [18] [7]

Coalition acde acd f ace f ade f bcde bcd f bce f bde f

Value −20 −16 −20 −20 −20 −20 −20 −20

Tight vector [13] [1] [3] [9] [13] [1] [1] [8]

Coalition cde f abcde abcd f abce f abde f acde f bcde f abcde f

Value −20 −20 −20 −20 −20 −20 −20 −20

Tight vector [4] [13] [1] [1] [7] [3] [1] [1]

Studený 2019, §4); the equivalence of the original definition and the later simplified
version of it was shown in (Studený et al. 2019, §2.3).

Definition 8 (Reducible and irreducible balanced set system) A min-balanced set
system B on a finite set M , |M | ≥ 2, will be called reducible if there exists a set
∅ �= E ⊂ M such that χE is a conic combination of { χS : S ∈ B & S ⊂ E }.
A min-balanced set system B on M which is not reducible is called irreducible.

It was shown in (Kroupa and Studený 2019, Lemma 2.1) that a balanced system B
on M is minimal iff vectors {χS : S ∈ B} are linearly independent. In particular, for a
min-balanced set system B on M , there is a unique linear combination

∑
S∈B γS · χS

yielding χM and this unique combination has all coefficients strictly positive: γS > 0
for S ∈ B. Standard interpretation of a min-balanced system B is then in terms of the
assigned linear inequality

m(M) ≥
∑

S∈B
γS · m(S) ,
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Table 4 The min-representation
of the anti-dual m� Vector identifier a b c d e f

[1] 0 −4 −8 0 0 −8

[2] −2 −2 −4 0 −2 −10

[3] −4 0 −4 0 −4 −8

[4] 0 0 −4 0 −4 −12

[5] 0 0 −12 0 −4 −4

[6] 0 0 −8 0 −8 −4

[7] −2 −2 0 0 −6 −10

[8] 0 −4 0 0 −8 −8

[9] 0 0 0 0 −8 −12

[10] −2 0 −2 −2 −4 −10

[11] 0 0 −4 −4 −4 −8

[12] −3 −1 −2 −2 −3 −9

[13] 0 0 −12 −4 −4 0

[14] 0 −4 −8 0 −8 0

[15] −4 0 −12 0 −4 0

[16] 0 −4 −8 −8 0 0

[17] 0 −4 −16 0 0 0

[18] −4 0 0 −4 0 −8

Table 5 Numbers of facets of E(N ) and of its permutational types for n = |N | ≤ 6

Number of players n = 2 n = 3 n = 4 n = 5 n = 6

Number of facets 1 6 44 280 7006

Number of its permutational types 1 2 6 16 53

which can be interpreted as an inequality for any gamem on a superset N of M . Recall
that the main result from (Kroupa and Studený 2019, Theorem 5.1) says that the facet-
defining inequalities for the cone T (N ) of totally balanced games on N , |N | ≥ 2, are
just the inequalities assigned to irreducible min-balanced systems on subsets M ⊆ N ,
|M | ≥ 2.

Recall from Lemma 12 that every min-balanced set system B on a proper subset
M ⊂ N , |M | ≥ 2, corresponds to a min-semi-balanced system S := B ∪ {M}. The
unique affine combination

∑
S∈S λS · χS yielding a constant vector 0 ∈ R

N is semi-
conic with λM < 0 and can be written as

∑
S∈B λS · χS = (−λM ) · χM . Therefore,

the induced inequality (2) for m ∈ R
P(N ), m(∅) = 0, is equivalent to (= is a positive

multiple of) the standard inequality assigned to the min-balanced system B.
The next result says that every irreducible min-balanced system on a proper subset

M of N yields an indecomposable min-semi-balanced system on N . Thus, by Theo-
rem 18, this implies that the respective inequality is facet-defining for the exact cone
E(N ).
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Lemma 19 Given a min-semi-balanced set system of the form S := B ∪ {M} on N,
|N | ≥ 3, where B is a min-balanced set system on M ⊂ N, |M | ≥ 2, the next two
conditions are equivalent:

(i) B is irreducible,
(ii) S is indecomposable.

Proof We prove the equivalence of negations of those conditions.
To show ¬(i) ⇒ ¬(ii) assume that B is a reducible min-balanced system on

M ⊂ N . Consider ∅ �= E ⊂ M and a conic combination
∑

S∈B:S⊂E λS · χS = χE

and re-write that as a semi-conic combination
∑

S∈B:S⊂E λS · χS + (−1) · χE = 0 in
the space R

N . Then put λS := 0 for remaining S ∈ S = B ∪ {M}, and, because 0 is
a constant vector in R

N , conclude that E is exceptional within S ∪ {E}. This means
that S has a decomposition.

To verify ¬(ii) ⇒ ¬(i) assume that S = B ∪ {M} has a decomposition, that is, a
linear combination

∑
S∈S λS ·χS +λE ·χE = r ·χN yielding a constant vector in R

N

exists with λS ≥ 0 for S ∈ S and with λE < 0 for some ∅ �= E ⊂ N , E /∈ S. Since it
is a semi-conic combination, by Lemma 1, one has r ≥ 0. In case E\M �= ∅ one can
choose i ∈ E\M and its substitution to the equality gives a contradictory conclusion
r = λE < 0. This gives E ⊆ M . Thus, as E /∈ S = B ∪ {M}, E ⊂ M ⊂ N ,
the choice of j ∈ N \ M and its substitution to the equality gives r = 0, that is,∑

S∈B∪{M} λS ·χS +λE ·χE = 0. Hence, the non-negativity of the coefficients except
for λE implies that, for any S ∈ S such that S\E �= ∅ (including S = M) one
necessarily has λS = 0. Thus, λS > 0 forces S ⊂ E for S ∈ S, and one can write the
equality in the form

∑
S∈B:S⊂E λS · χS = (−λE ) · χE , which easily implies that B is

reducible. ��
By Lemma 19 and Theorem 18, every facet-defining inequality for the totally bal-

anced cone T (N ) corresponding to a strict subset M ⊂ N is also facet-defining for
the exact cone E(N ). These are facet-defining inequalities for both cones. Note that,
by Lemma 11, also conjugate inequalities to these inequalities are facet-defining for
E(N ), but not for T (N ). These two classes of inequalities induced by irreducible
min-balanced systems on M ⊂ N were originally conjectured in (Kroupa and Stu-
dený 2019, §6) to be all facet-defining inequalities for E(N ).

9 Conclusions

The main achievement in this paper is the observation that a linear inequality for
games over N , |N | ≥ 3, is facet-defining for the exact cone E(N ) iff it corresponds
to (uniquely determined) indecomposable min-semi-balanced set system on N (The-
orem 18). At first we got these inequalities in case |N | = 6 by computation and later
we confirmed the conjecture that the correspondence holds in general. Because of the
computation, we know what are the numbers of facets of E(N ) in cases 2 ≤ |N | ≤ 6;
they are shown in Table 5.

Note that the case |N | = 2 is special in some sense: then the cone of exact games
coincides with the cone of balanced games and the only facet-defining inequality

123



Facets of the cone of exact games 67

corresponds to the only min-balanced set system on N with |N | = 2. As concerns the
case |N | = 3, the cone of exact games coincides with the cone of supermodular (=
convex) games, while for |N | ≥ 4 these two cones already differ.

Min-semi-balanced systems and their induced inequalities can synoptically be
described bymeans of special pictures/diagrams (see Sect. 5.3). A catalogue of permu-
tational types of indecomposablemin-semi-balanced set systemsover N , 3 ≤ |N | ≤ 6,
obtained as a result of our computation, is available:

http://gogo.utia.cas.cz/indecomposable-min-semi-balanced-catalogue/

Thus, it implicitly provides an overview of all facet-defining inequalities in these
cases. Hence we know that every facet-defining inequality for E(N ) in case |N | ≤ 5
corresponds to amin-semi-balanced systemS satisfying either

⋃
S ⊂ N or

⋂
S �= ∅;

on the other hand, this is not the case in case |N | = 6.
Recall that the min-semi-balanced systems break into four basic classes (Sect. 5.2)

and the pictorial representatives reflect this classification. They also reflect the fact
that (indecomposable) min-semi-balanced systems are closed under complementarity
transform (Sect. 5.1). Further relevant observation is that (purely) min-semi-balanced
systems on N can be obtained on basis of min-balanced systems on N (Sect. 6.1),
which fact suggests that one can possibly get all such systems for |N | ≥ 7.

The second main result in this paper is an example of a game m over N , with
|N | = 6, such that bothm and its anti-dualm are totally balanced whilem is not exact
(Sect. 8.1).

Acknowledgements This research has been supported by the grant GAČR No. 19-04579S. We are grateful
to our colleague Tomáš Kroupa for a consultation with him which helped us to overcome an obstacle on
our way to compute facets of the exact cone in case |N | = 6. We also thank the reviewers of the paper for
their comments and positive attitude.

A Proof of Lemma 1

For reader’s convenience we recall the result.
Lemma 1 Given |N | ≥ 2 and ∅ �= S ⊆ P(N )\{∅, N }, let ∑

S∈S λS · χS = ρ be
a non-zero semi-conic combination yielding a constant vector ρ = [r , . . . , r ] ∈ R

N .
Then one has

∑
S∈S λS ≥ r ≥ 0; moreover, r > 0 in case of a conic combination.

In any case
∑

S∈S λS > 0 and by a positive factor multiplication one gets an affine
semi-conic combination

∑
S∈S λ̃S ·χS yielding a constant vector ρ̃ = [r̃ , . . . , r̃ ] ∈ R

N

with r̃ ∈ [0, 1].
Finally, if the considered linear combination is not conic, then S has to contain at

least three different sets and the existence of such a set system forces |N | ≥ 3.

Proof The case of a conic combination is easy: choose L ∈ S with λL > 0, i ∈ L ,
and write 0 < λL ≤ ∑

S∈S λS · χS(i) = r = ∑
S∈S: i∈S λS ≤ ∑

S∈S λS . Thus, in the
rest of the proof we assume that the combination is not conic.

Let T ∈ S be the set with λT < 0; note that ∅ ⊂ T ⊂ N . The choice of an
element j ∈ N \ T gives r = ∑

S∈S λS · χS( j) = ∑
S∈S: j∈S λS ≥ 0 because λS ≥ 0

whenever S ∈ S\{T }. Choose some i ∈ T and observe implications for subsets of
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N : i /∈ S ∈ S ⇒ S ∈ S\{T } ⇒ λS ≥ 0. This gives
∑

S∈S λS ≥ ∑
S∈S: i∈S λS =∑

S∈S λS · χS(i) = r . For the verification of the claim
∑

S∈S λS > 0 assume without
loss of generality that λS �= 0 for any S ∈ S, for otherwise one can replace S by
S ′ := {S ∈ S : λS �= 0}. We distinguish two cases:

• In case [∃ L ∈ S\{T }with T \L �= ∅ ]we choose k ∈ T \L . ThenλS ≥ 0whenever
k /∈ S ∈ S and we get

∑
S∈S λS ≥ λL + ∑

S∈S: k∈S λS >
∑

S∈S: k∈S λS = r ≥ 0.
• In case [∀ L ∈ S\{T } one has T ⊆ L ] we first observe

⋃
S\T �= ∅. Indeed,

by contradiction: if
⋃

S ⊆ T then ∀ L ∈ S\{T } one has L ⊆ T ⊆ L , which
means S = {T } contradicting ∑

S∈S λS ≥ 0. Thus, one can choose k ∈ ⋃
S\T ,

fix K ∈ S with k ∈ K and write
∑

S∈S λS ≥ r = ∑
S∈S: k∈S λS ≥ λK > 0.

Thus, in both cases we have
∑

S∈S λS > 0.
In particular, given a non-zero semi-conic combination

∑
S∈S λS · χS yielding a

constant vector inR
N we put � := ∑

S∈S λS > 0 and observe that
∑

S∈S(�−1 ·λS)·χS

is the required affine semi-conic combination. The inequality
∑

S∈S λS ≥ r applied
to an affine combination

∑
S∈S λ̃S · χS with

∑
S∈S λ̃S = 1 yields r̃ ∈ [0, 1].

To verify the last claim take T ∈ S with λT < 0 and assume for a contra-
diction |S| ≤ 2. If |S| = 1 take j ∈ T and get a contradictory conclusion:
0 ≤ r = ∑

S∈S: j∈S λS = λT < 0. In case |S| = 2 one has S = {T , L} and
contingent choice of j ∈ T \L leads to an analogous contradiction. Hence, one must
have T ⊂ L and the choice of j ∈ T and k ∈ L\T leads to another contradiction:
r = ∑

S∈S: k∈S λS = λL > λL + λT = ∑
S∈S: j∈S λS = r . Thus, |S| ≥ 3; since

|N | = 2 ⇒ |P(N )\{∅, N }| = 2, the existence of S forces |N | ≥ 3. ��

B Proof of Lemma 2

For reader’s convenience we recall the result.
Lemma 2 Given |N | ≥ 2, let ∅ �= S ⊆ P(N )\{∅, N } be a non-trivial set system on
N . Then the following conditions on S are equivalent:

(a) S is a minimal set system such that there is a constant vector in R
N which can be

written as a non-zero semi-conic combination of vectors {χS : S ∈ S},
(b) S is a minimal semi-balanced set system on N ,
(c) S is semi-balanced on N , the vectors {χS : S ∈ S} are affinely independent and

in case
⋃

S = N even linearly independent,
(d) there is only one affine combination of vectors {χS : S ∈ S} yielding a constant

vector in R
N and this unique combination is semi-conic and has all coefficients

non-zero,
(e) there is only one affine semi-conic combination of vectors {χS : S ∈ S} which is

a constant vector in R
N and this unique combination has all coefficients non-zero.

Proof To show (a)⇒(b) assume a non-zero semi-conic combination
∑

S∈S λS · χS

which is a constant vector in R
N and put S ′ := {S ∈ S : λS �= 0}. Because of

minimality of S in (a) one has S ′ = S, which implies that S is semi-balanced. The
rest is evident.

To show (b)⇒(a) it is enough to verify the minimality of S in (a). Assume for a
contradiction that a set system C ⊂ S exists with a non-zero semi-conic combination
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∑
S∈C μS · χS yielding a constant vector in R

N and put C′ := {S ∈ C : μS �= 0}.
Then C′ is semi-balanced on N and C′ ⊂ S contradicts the minimality of S in (b).

To show (b)⇒(c) let us fix a semi-conic combination
∑

S∈S λS · χS yielding a
constant vector in R

N with λS �= 0 for S ∈ S. We first consider the case when it is not
a conic combination, that is, there is a unique set T ∈ S with λT < 0; hence, λS > 0
for S ∈ S\{T }.

We then verify that {χS : S ∈ S} are affinely independent. Assume for a contradic-
tion that a non-zero linear combination

∑
S∈S μS ·χS = 0 with

∑
S∈S μS = 0 exists.

One can assume without loss of generality μT ≤ 0 for otherwise one can multiply the
linear combination by (−1). Moreover,

∑
S∈S μS = 0 implies the existence of L ∈ S

with μL < 0. In fact, there are at least two such sets: otherwise
∑

S∈S μS · χS = 0
is a semi-conic combination and, by Lemma 1, one has

∑
S∈S μS > 0 which con-

tradicts the assumption. In particular, there is L ∈ S\{T } with μL < 0. For any
ε ≥ 0 and S ∈ S we put λε

S := λS + ε · μS and observe that
∑

S∈S λε
S · χS yields

the same constant vector, λε
T < 0, while λε

S > 0 for S ∈ S\{T } and sufficiently
small ε. Since λε

L tends to −∞ with increasing ε there is a maximal ε∗ > 0 such
that λε∗

S ≥ 0 for all S ∈ S\{T }. There must be K ∈ S\{T } with λε∗
K = 0; then the

system C := {S ∈ S : λε∗
S �= 0} �� K is semi-balanced on N , which contradicts the

minimality of S.
The second step is to show that if

⋃
S = N then the vectors {χS : S ∈ S} are

linearly independent. Note that this case involves the case of a conic combination∑
S∈S λS · χS = r · χN ∈ R

N because then, by Lemma 1, r > 0, which enforces if⋃
S = N then the vectors. In the sequel, let T denote a contingent set T ∈ S with

λT < 0, which, however, need not exist. Recall that λS > 0 for S ∈ S\{T }.
Assume for a contradiction that a non-zero linear combination

∑
S∈S μS · χS = 0

exists. We then show that there exists such a linear combination which, additionally,
satisfies μT ≤ 0 if T exists and μL < 0 for at least one L ∈ S\{T }. This is easy
in case T does not exist or μT = 0 because possible multiplication of the linear
combination by (−1) reaches the goal. In caseμT �= 0 possible multiplication ensures
μT < 0. To show then the existence of L ∈ S\{T } with μL < 0 assume for a
contradiction the opposite, which means that

∑
S∈S μS · χS = 0 is a semi-conic

combination and the system C := {S ∈ S : μS �= 0} is semi-balanced. The
minimality of S then implies that C = S’ and, thus, μS > 0 for S ∈ S\{T }. Since
T ⊂ N there exists i ∈ N\T and

⋃
S = N implies the existence of K ∈ S with

i ∈ K . Since [ i ∈ S ∈ S ⇒ μS > 0 ], this leads to a contradictory conclusion
0 = ∑

S∈S μS · χS(i) = ∑
S∈S:i∈S μS ≥ μK > 0.

Finally, having a linear combination
∑

S∈S μS · χS = 0 with μT ≤ 0 and μL < 0
for some L ∈ S\{T }, one can repeat the construction used in the previous case (of
affine independence) to get a contradiction with the minimality of S.

To show (c)⇒(d) use Lemma 1 to obtain an affine semi-conic combination∑
S∈S λS · χS with all coefficients non-zero yielding a constant vector ρ = [r , . . . , r ]

in R
N with r ∈ [0, 1]. Let us fix this affine combination. Assume that

∑
S∈S σS · χS

is an affine combination yielding a constant vector ς = [s, . . . , s] ∈ R
N . It is enough

to show that these two combinations coincide. To this end we distinguish two cases.
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In case
⋃

S ⊂ N we have
∑

S∈S λS · χS(i) = 0 = ∑
S∈S σS · χS(i) for any

i ∈ N \ ⋃
S. This implies that both ρ = 0 and � = 0. By subtracting we obtain the

relation
∑

S∈S(λS−σS)·χS = 0with
∑

S∈S(λS−σS) = 0 and by affine independence
σS = λS for all S ∈ S.

In case
⋃

S = N the linear independence of vectors {χS : S ∈ S} implies both
r �= 0 and s �= 0 because solely their zero linear combination yields the vector = 0.
Hence, we have

∑
S∈S(r−1 · λS) · χS = χN and

∑
S∈S(s−1 · σS) · χS = χN . By

subtracting we get
∑

S∈S(r−1 · λS − s−1 · σS) · χS = 0 and by linear independence
r−1 · λS = s−1 · σS for all S ∈ S. Thus, λS = r · s−1 · σS for S ∈ S and, because
both combinations are affine, by summing over S ∈ S one derives 1 = r · s−1. Hence,
s = r and σS = λS for all S ∈ S.

The implication (d)⇒(e) is evident.
To show (e)⇒(b) consider the affine semi-conic combination

∑
S∈S λS · χS with

all coefficients non-zero yielding a constant vector in R
N . Its existence implies that

S is semi-balanced. To verify the minimality of S assume for a contradiction that
C ⊂ S exists which is semi-balanced on N . By Lemma 1 applied to C there exists
an affine semi-conic combination

∑
S∈C σS · χS yielding a constant vector in R

N . We
extend it by putting σS = 0 for S ∈ S\C. Thus, we get two different affine semi-conic
combinations of {χS : S ∈ S} yielding a constant vector in R

N , which contradicts
the assumption. ��

C Proof of Lemma 7

For reader’s convenience we recall what is claimed; see Definition 5 for notation.
Lemma 7 Given |N | ≥ 2, every set �̃N

D , where ∅ �= D ⊆ N , is a bounded
polyhedron. Every vector θ ∈ �N

D satisfies both θ(N ) ≥ 0 and θ(∅) ≥ 0 and every
non-zero vector θ ∈ �N

D satisfies θ(N )+θ(∅) > 0.Givenm ∈ R
P(N ) withm(∅) = 0,

one has

m ∈ E(N ) ⇔
⎡

⎣ ∀ θ ∈
⋃

∅�=D⊆N

�̃N
D 〈θ,m〉 ≥ 0

⎤

⎦ . (3)

Proof Note that �N
N ⊆ �N

D if D ⊂ N ; therefore, one can assume without loss of
generality ∅ �= D ⊂ N . To show θ(N ) ≥ 0 for θ ∈ �N

D choose i ∈ N\D and write
θ(N ) = −∑

L⊂N :i∈L θ(L) ≥ 0. Note that, for any j ∈ N ,

∑

S⊆N\{ j}
θ(S) =

∑

S⊆N

θ(S) −
∑

L⊆N : j∈L
θ(L) = 0 − 0 = 0.

Hence, to show θ(∅) ≥ 0 for θ ∈ �N
D take j ∈ D and write θ(∅) =

−∑
∅�=S⊆N\{ j} θ(S) ≥ 0.
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Thus, we have observed that every θ ∈ �N
D satisfies both θ(N ) ≥ 0 and θ(∅) ≥ 0.

In particular, if θ ∈ �̃N
D then θ(N ) + θ(∅) = 1 gives both 0 ≤ θ(∅) ≤ 1 and

0 ≤ θ(N ) ≤ 1.
Let us show that, for θ ∈ �̃N

D , if S ⊂ N and S\D �= ∅ then 0 ≥ θ(S) ≥ −1.
Indeed, because of S /∈ {∅, D, N }, the choice of i ∈ S\D gives

0 ≥ θ(S) ≥
∑

L⊂N :i∈L
θ(L) = −θ(N ) +

∑

L⊆N :i∈L
θ(L)

︸ ︷︷ ︸
=0

= −θ(N ) ≥ −1 .

To observe that 0 ≥ θ(S) ≥ −1 for θ ∈ �̃N
D whenever ∅ �= S ⊂ N and D\S �= ∅

introduce a vector θ� ∈ R
P(N ) by θ�(L) := θ(N\L) for L ⊆ N . It is easy to observe

that θ� ∈ �̃N
N\D: to this end write for any i ∈ N

∑

L⊆N :i∈L
θ�(L) =

∑

L⊆N :i∈L
θ(N\L) =

∑

S⊆N :i /∈S
θ(S) =

∑

S⊆N

θ(S) −
∑

S⊆N :i∈S
θ(S) = 0 − 0 = 0.

Thus, because of ∅ �= D\S = (N\S)\(N\D), one has 0 ≥ θ�(N\S) ≥ −1 by the
previous observation applied to θ�, which, however, means 0 ≥ θ(S) ≥ −1.

Altogether, we have 0 ≥ θ(S) ≥ −1 for θ ∈ �̃N
D and S ∈ P(N )\{∅, D, N }, which

implies 0 ≥ ∑
S:S /∈{∅,D,N } θ(S) ≥ 3 − 2|N |. Taking into consideration that

∑

S:S /∈{∅,D,N }
θ(S) = −θ(∅) − θ(D) − θ(N ) +

∑

L⊆N

θ(L)

︸ ︷︷ ︸
=0

= −θ(N ) − θ(∅) − θ(D) = −1 − θ(D)

one gets 2|N | − 4 ≥ θ(D) ≥ −1. In particular, �̃N
D is bounded and so is �̃N

N .
The fact that, for any ∅ �= D ⊆ N , every non-zero vector θ ∈ �N

D satisfies
θ(N ) + θ(∅) > 0 follows directly from (Kroupa and Studený 2019, Lemma 5.1). In
particular, every non-zero θ ∈ �N

D is a positive multiple of a vector θ̃ ∈ �̃N
D . Further

important fact, which follows from (Kroupa and Studený 2019, Lemma 5.3), is that a
game m is exact, that is, m ∈ E(N ), iff [ ∀ ∅ �= D ⊆ N ∀ θ ∈ �N

D 〈θ,m〉 ≥ 0 ]. The
combination of these two observations gives (3). ��

D Proof of Lemma 8

For reader’s convenience we recall what is claimed; see Definition 5 for notation.
Lemma 8 Given |N | ≥ 2 and ∅ �= D ⊆ N , every vertex of �̃N

D has either the
form θB, where B is a min-balanced set system on N , or the form θS , where S is a
min-semi-balanced system on N having D as the exceptional set.
Conversely, in case ∅ �= D ⊂ N , every vector θS , where S is a min-semi-balanced
system on N having D as the exceptional set, is a vertex of �̃N

D : θS ∈ ext (�̃N
D).
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Proof Given a vertex θ ∈ ext (�̃N
D), we first observe that there exists a min-semi-

balanced system S on N such that θ = θS . To this end we put

S := {S ⊆ N : ∅ �= S ⊂ N & θ(S) �= 0 } and λS := − θ(S) for S ∈ S.

Thus,
∑

S∈S λS · χS yields a constant vector θ(N ) · χN and S is semi-balanced on
N . To evidence that S is min-semi-balanced we use the condition (c) in Lemma 2. To
verify affine independence of the vectors {χS : S ∈ S} assume for a contradiction
that there is a non-zero linear combination

∑
S∈S σS · χS = 0 with

∑
S∈S σS = 0.

Then we put σL := 0 for remaining L ⊆ N and θε(S) := θ(S) + ε · σS for any
S ⊆ N and ε ∈ R. Then one has θε ∈ �̃N

D whenever |ε| is small; thus, the relation
θ = 1

2 · θε + 1
2 · θ−ε then contradicts the assumption of extremity of θ in �̃N

D , because
of σL �= 0 for some L ∈ S.

To verify linear independence of the vectors {χS : S ∈ S} in case
⋃

S = N we
first realize that one has θ(N ) > 0 then. Indeed, if D = N then θ(S) < 0 for any
S ∈ S and if D �= N then we choose i ∈ N\D and have θ(S) < 0 for any S ∈ S with
i ∈ S; this allows us to use

∑
L⊆N : i∈L θ(L) = 0 for i ∈ N to derive θ(N ) > 0.

Assume for a contradiction that a non-zero linear combination
∑

S∈S σS · χS = 0
exists and put ς := ∑

S∈S σS . The case ς = 0 leads to a contradiction as shown in
the case of affine independence. Thus, consider ς �= 0, put σ∅ := −ς , σL := 0 for
remaining L ⊆ N , and θε(S) := (1−ε ·ς)−1 ·(θ(S)+ε ·σS) for any S ⊆ N and ε ∈ R,
ε �= ς−1. One has θε ∈ �̃N

D for small |ε|. Moreover, θ = 1−ε·ς
2 · θε + 1+ε·ς

2 · θ−ε.
Because of ς �= 0 we have θε(N ) = (1 − ε · ς)−1 · θ(N ) �= θ(N ) if ε �= 0. Hence,
we get a contradiction with the assumption of extremity of θ in �̃N

D .
We have thus shown that the set system S is min-semi-balanced on N and one

clearly has θ = θS . If S = B is min-balanced then the first option θ = θB occurs. If
S has an exceptional set T ∈ S then θ(T ) = θS(T ) > 0 which forces T = D. Thus,
D is the exceptional set in S in this case.

To verify the second claim assume that S is a min-semi-balanced set system on
N and that D is the exceptional set within S. It is straightforward to evidence that
θS ∈ �̃N

D . To show that θS ∈ ext (�̃N
D) assume for a contradiction that there is a non-

trivial convex combination θS = α · θ0 + (1 − α) · θ1 with θ0, θ1 ∈ �̃N
D , α ∈ (0, 1),

and θ0 �= θ1. We know that θS(S) = 0 any S ⊆ N , S /∈ {∅, N } ∪ S and observe that
θ0(S) = 0 = θ1(S) for any such S ⊆ N as well. Indeed, the inclusion �̃N

D ⊆ �N
D

implies θ i (L) ≤ 0 for L ⊆ N , L /∈ {∅, D, N }, which forces θ i (S) = 0 for S ⊆ N ,
S /∈ {∅, N } ∪ S .

For every ε ≥ 0 we put θε := θ0 + ε · (θ1 − θ0). Note that θε(S) = 0 for any
S ⊆ N , S /∈ {∅, N } ∪ S. The fact that �̃N

D is bounded (see Lemma 7) implies the
existence of ε� := max {ε ≥ 1 : θε ∈ �̃N

D }. There exists L ∈ S with θε�
(L) = 0

because otherwise one gets a contradiction with maximality of ε�. We put

C := {S ∈ S : θε�
(S) �= 0 }
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and observe, using the fact θε� ∈ �̃N
D , that C is a semi-balanced system on N . Then

the fact L ∈ S \C contradicts the minimality of S. Thus, there is no non-trivial convex
combination of θ0, θ1 ∈ �̃N

D yielding θS , which means that θS is a vertex of �̃N
D . ��

E Proof of Lemma 12

For reader’s convenience we recall what is claimed.
Lemma12 Given |N | ≥ 2 and amin-semi-balanced systemS on N , let

∑
S∈S λS ·χS

be the unique affine (and semi-conic) combination yielding a constant vector r · χN ,
r ∈ [0, 1].
One has then r = 0 iff there exists a min-balanced system B on M ⊂ N , |M | ≥ 2,
such that S = B ∪ {M}; another equivalent condition is ⋃

S ⊂ N . Moreover, a min-
balanced system B on M ⊂ N , |M | ≥ 2, yields a min-semi-balanced one, namely the
system S := B ∪ {M} on N with r = 0.
One has r = 1 iff S is a complementary system to a system S� with

⋃
S� ⊂ N ;

another equivalent condition is
⋂

S �= ∅.
On the other hand, every min-balanced system S on N satisfies 0 < r < 1.

Proof Recall that all coefficients λS , S ∈ S, are non-zero. If r = 0 then there is
T ∈ S with λT < 0, for otherwise λS > 0 for S ∈ S and S �= ∅ contradict∑

S∈S λS · χS = 0. Given i ∈ N\T one has λS > 0 whenever i ∈ S ∈ S and
0 = ∑

S∈S λS · χS(i) = ∑
S∈S:i∈S λS implies that there is no S ∈ S with i ∈ S.

Hence,
⋃

S = T and
∑

S∈S\{T } λS · χS = (−λT ) · χT . This implies S\{T } �= 0 and,
thus, forces |T | ≥ 2 (because

⋃
S = T ). The latter equality also means that S\{T } is

balanced on T and one can put M := T and B := S\{T }. To show that B is minimal
assume for a contradiction that D ⊂ B exists which is balanced on T , that is, there
are σS > 0, S ∈ D, with

∑
S∈D σS ·χS = χT . Hence,

∑
S∈D σS ·χS + (−1) ·χT = 0

and, by Lemma 1, one has −1 + ∑
S∈D σS > 0 and one can multiply it to get an

affine combination (in R
N ) different from

∑
S∈S λS · χS = 0, which contradicts the

minimality of S (use Lemma 2(d)). Thus, B has to be min-balanced on T .
The existence of such B then implies

⋃
S ⊂ N . To complete the chain of impli-

cations realize that, if
⋃

S ⊂ N for a min-semi-balanced set system S on N then the
choice of i ∈ N\ ⋃

S gives r = ∑
S∈S:i∈S λS = 0.

To verify the additional claim assume that B is a min-balanced system on M ⊂ N ,
|M | ≥ 2. By (Kroupa and Studený 2019, Lemma2.1) {χS : S ∈ B} is linearly inde-
pendent (even in R

N ). Fix a combination
∑

S∈B λS · χS = χM with all coefficients
strictly positive. Then

∑
S∈B λS · χS + (−1) · χM = 0 is a semi-conic combina-

tion yielding a constant vector in R
N and S := B ∪ {M} is semi-balanced. We use

the condition (d) in Lemma 2 to show that S is minimal. By Lemma 1 one has
k := ∑

S∈B λS−1 > 0 and
∑

S∈B k−1λS ·χS+(−k−1)·χM = 0 is an affine semi-conic
combination with all coefficients non-zero. We need to show that any affine combina-
tion

∑
S∈B σS ·χS +σM ·χM = ρ yielding a constant vector in R

N coincides with the
abovementioned affine combination. The substitution of some i ∈ N\M allows one to
observe that ρ = 0.. One cannot have σM = 0 because then

∑
S∈B σS ·χS = 0 contra-

dicts linear independence of {χS : S ∈ B}. If σM �= 0 then
∑

S∈B −σ−1
M σS ·χS = χM
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and linear independence of {χS : S ∈ B} gives λS = −σ−1
M σS for all S ∈ B. We

substitute σS = −σMλS for S ∈ B to
∑

S∈B σS + σM = 1 to get σM = −k−1; hence,
the considered affine combinations coincide.

As concerns the case r = 1, by Lemma 11, S� is also min-semi-balanced and the
respective unique affine combination for S� is

∑
L∈S� λN\L ·χL = (1−r) ·χN . Thus,

r = 1 iff the previous case r� = 0 occurs for S�. The formula
⋂

S = N\ ⋃
S� then

gives the other equivalent condition.
The definition of a min-balanced system B on N implies

⋃
B = N . By Lemma 11,

the same is true for its complementary system:
⋃

B� = N , which means
⋂

B = ∅.
Thus, one has both

⋃
B = N and

⋂
B = ∅, and by previous claims, r �= 0 and r �= 1.

��

F Proof of Lemma 13

For reader’s convenience we recall what is claimed.
Lemma 13 Assume |N | ≥ 3. If B is a min-balanced set system on N such that
|B| ≥ 3 and Z ∈ B then Y := N\Z is not in B, the set system S := (B\{Z}) ∪ {Y }
is purely min-semi-balanced on N and Y is the exceptional set within S.
Conversely, if S is a (purely) min-semi-balanced system on N and Y ∈ S the excep-
tional set within S then Z := N\Y is not in S and B := (S\{Y }) ∪ {Z} is a
min-balanced system on N such that |B| ≥ 3.

Proof I. Let B be a balanced system on N and Z ∈ B such that Y := N\Z /∈ B.
Then S := (B\{Z}) ∪ {Y } is semi-balanced on N . Indeed, there exists a conic
combination

∑
S∈B λS ·χS = χN , λS > 0 for S ∈ B. We add−λZ ·χN to that and

obtain a semi-conic combination
∑

S∈B\{Z} λS ·χS + (−λZ ) ·χY = (1−λZ ) ·χN

yielding a constant vector.
II. Analogously, given a semi-balanced system S over N with an exceptional set

Y ∈ S and Z := N\Y /∈ S, the set system B := (S\{Y }) ∪ {Z} is balanced on
N . Indeed, given a semi-conic combination

∑
S∈S λS · χS = r · χN with r ∈ R,

where λY < 0 and λS > 0 for S ∈ S\{Y } we add −λY · χN to that and get∑
S∈S\{Y } λS · χS + (−λY ) · χZ = (r − λY ) · χN , which is a conic combination

yielding a constant vector. Then use Lemma 1.
III. Let B be a min-balanced system on N with |B| ≥ 3 and Z ∈ B. Then one has

Y := N\Z /∈ B as otherwiseD := {Y , Z} ⊂ B is a balanced system contradicting
the minimality of B. Step I. implies that S := (B\{Z}) ∪ {Y } is semi-balanced on
N , specifically, that there exists a semi-conic combination

∑
S∈S λS · χS yielding

a constant vector in R
N with λY < 0.

To show that S is minimal assume for a contradiction that a min-semi-balanced
system S ′ ⊂ S exists. Then necessarily Y ∈ S ′ as otherwise S ′ ⊂ B contradicts
the minimality of B (use Corollary 3). Let

∑
S∈S ′ σS · χS be the (unique) affine

semi-conic combination yielding a constant vector in R
N .

Observe that σY < 0 as otherwise one can put σS := 0 for S ∈ S\S ′, and then
τS := α · σS + (1 − α) · λS for S ∈ S with α := −λY · (σY − λY )−1 ∈ (0, 1]
to get a semi-conic combination

∑
S∈S τS · χS yielding a constant vector in R

N
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where τY = 0; this means that E := {S ∈ S : τS �= 0} ⊂ B is a semi-
balanced system which fact contradicts the minimality of B, by Corollary 3. Thus,
Y has to be an exceptional set within S ′ and, by step II. applied to S ′, the system
B′ := (S ′\{Y })∪{Z} ⊂ B is a balanced system on N contradicting the minimality
of B. Thus, the first claim in Lemma 13 has been verified.

IV. Let S be a min-semi-balanced system on N with the exceptional set Y ∈ S within
it. Then Z := N\Y /∈ S as otherwise D := {Y , Z} ⊂ S is a balanced system
contradicting the minimality of S (note that |S| ≥ 3 by Lemma 1). Step II. implies
that B := (S\{Y }) ∪ {Z} is balanced on N . To show that B is minimal assume
for a contradiction that a balanced system B′ ⊂ B on N exists. Then necessarily
Z ∈ B′ as otherwise B′ ⊂ S contradicts the minimality of S. By step I. applied
to B′, the set system S ′ := (B′\{Z}) ∪ {Y } ⊂ S is semi-balanced on N , which
contradicts the minimality of S. Of course, |B| = |S| ≥ 3, which concludes the
proof of the second claim in Lemma 13. ��

G Proof of Lemma 17

A key induction step in the proof is based on the following auxiliary observations.

Lemma 20 Given |N | ≥ 3, let S be a purely min-semi-balanced system on N. Denote
W := P(N )\({∅, N }∪S) and introduce the next special polytopes (see Definition 5):

�(S) := conv

(
⋃

D∈W
�̃N

D

)

,

(S) := �(S) ∩ {θ ∈ R
P(N ) : θ(W ) ≥ 0 for any W ∈ W } .

Moreover, for any Z ⊆ W , we put:

�Z (S) := �(S) ∩ {θ ∈ R
P(N ) : θ(Z) = 0 for any Z ∈ Z } ,

Z (S) := �Z (S) ∩ (S) .

Then, for any Z ⊆ W , one has:

(i) �W (S) = ∅,
(ii) if ∅ �= Z (S) and �Z (S)\Z (S) �= ∅ then ∅ �= Z∪{D}(S) for some set

D ∈ W \ Z
(iii) if θ ∈ ext (�Z (S)) then θ ∈ ⋃

D∈W �̃N
D.

Proof To show (i) assume for a contradiction that θ ∈ �W (S) exists. Thus, θ(W ) = 0
for any W ∈ W forces B := {S ⊂ N : S �= ∅ & θ(S) �= 0 } ⊆ S. Since, however,
every η ∈ ⋃

D∈W �̃N
D satisfies η(S) ≤ 0 for any S ∈ S, one has θ ′(S) ≤ 0 for

any S ∈ S and θ ′ ∈ �(S). Hence, θ(S) ≤ 0 for any S ∈ S and for our vector
θ ∈ �W (S). The fact that θ ∈ �(S) implies the equality constraints θ(N )+θ(∅) = 0,∑

L⊆N θ(L) = 0, and
∑

L⊆N : i∈L θ(L) = 0 for i ∈ N (useDefinition 5). The relations
imply

∑
S∈S θ(S) · χS + θ(N ) · χN = 0, and, using

∑
L:∅�=L⊂N θ(L) = −1, also
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θ(N ) > 0. Therefore θ(N ) · χN = ∑
S∈S −θ(S) · χS is a conic combination, which

allows one to observe that B is balanced on N . The minimality of S then implies that
B = S, contradicting the assumption that S is not balanced on N .

To show (ii) assume the existence of η ∈ Z (S). By (i) one has W\Z �= ∅. If
there is D ∈ W\Z with η(D) = 0 then η ∈ Z∪{D}(S) and we are done. Thus,
assume that η(W ) �= 0 for anyW ∈ W\Z , which implies, by definition of (S), that
η(W ) > 0 for any W ∈ W\Z . The second assumption in (ii) means that there exists
θ ∈ �Z (S)\Z (S); thus, necessarilyη �= θ . Put θα := (1−α)·η+α·θ for 0 ≤ α ≤ 1;
the convexity of �Z (S) gives θα ∈ �Z (S). Take β := max { α ≥ 0 : θα ∈ Z (S) }
and θ ′ := θβ . Note that there exists D ∈ W\Z with θ ′(D) = θβ(D) = 0 as otherwise
one has θβ(W ) > 0 for anyW ∈ W\Z , which contradicts the maximality of β. Thus,
the facts θ ′ ∈ Z (S) and θ ′(D) = 0 imply together that θ ′ ∈ Z∪{D}(S).

The condition (iii) can be verified by induction on |Z|. In case Z = ∅ this fol-
lows directly from the definition of �(S) using basic facts from polyhedral geometry
recalled in Sect. 2.2. To verify the induction step assume that the claim is true for some
Z ⊂ W , take Z ∈ W\Z and evidence the claim for Z ∪ {Z}. Note that the polytope
Q := �Z∪{Z}(S) is the intersection of the polytope P := �Z (S)with the hyperplane
H := { θ : θ(Z) = 0}. The characterization of vertices of Q = P ∩ H recalled in
Sect. 2.2 says that any vertex θ ∈ ext (Q) is either a vertex of P , in which case one
has θ ∈ ⋃

D∈W �̃N
D by the induction assumption, or there is an edge [η, σ ] of P such

that θ ∈ ]η, σ [ and [η, σ ] ∩ H = {θ}. Since η, σ ∈ ext (P), by the induction hypoth-
esis, one has η, σ ∈ ⋃

D∈W �̃N
D . As [η, σ ] ∩ H = {θ} one has η(Z) �= 0 �= σ(Z)

and can assume without loss of generality that η(Z) > 0 and σ(Z) < 0. This forces
that η ∈ �̃N

Z ; assume that σ ∈ �̃N
E for some E ∈ W (possibly E = Z ). It makes

no problem to observe that these facts imply that θ ∈ �̃N
E (see Definition 5). Hence,

θ ∈ ⋃
D∈W �̃N

D and the induction step has been verified. ��
For reader’s convenience we recall what is claimed.

Lemma 17 Let S be a purely min-semi-balanced system on N , |N | ≥ 3, with
exceptional set T ∈ S andW := P(N )\({∅, N } ∪ S). Then the following conditions
are equivalent:

(a) θS /∈ ext (), (see Definition 5)
(b) there exists a convex combination θS = ∑

D∈W∪{T } αD · θD where αT < 1 and

θD ∈ �̃N
D whenever αD > 0,

(c) the set (S) := conv (
⋃

D∈W �̃N
D) ∩ { θ ∈ R

P(N ) : θ(W ) ≥ 0 for W ∈ W } is
non-empty,

(d) there exists E ∈ W such that E is exceptional in S ∪ {E},
(e) there exists E ∈ W such that E is exceptional in (S\{T }) ∪ {E},
(f) amin-semi-balanced systemD on N exists such thatD\S = {E} for some E ∈ W ,

the set E is exceptional within D, and T /∈ D,
(g) a min-semi-balanced system D on N exists with an exceptional set E such that

D \ S = {E}.
Proof To show (a)⇒(b) realize that θS ∈ �̃N

T ⊆  and assume that θS ∈ ]η, σ [ for
η, σ ∈ , η �= θS �= σ . By the definition of  a finite convex combination yielding
η exists: η = ∑

j∈J β j · η j , where β j > 0 and η j ∈ ⋃
∅�=D⊆N �̃N

D for j ∈ J . Since
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η �= θS , there exists j ∈ J with η j �= θS . An analogous convex combination exists
for σ and by combining them observe that a finite convex combination yielding θS
exists:

θS =
∑

i∈I
αi · θi , where αi > 0 and θi ∈

⋃

∅�=D⊆N

�̃N
D for all i ∈ I ,

and, moreover, θi �= θS for at least one i ∈ I . Assume without loss of generality that
θi , i ∈ I , differ from each other and, if there is i ∈ I with θi = θS then, by easy
modification, one gets such a convex combination yielding θS where θi �= θS for all
i ∈ I .

Observe that one can even assume without loss of generality that θi (S) ≤ 0 for any
i ∈ I and S ∈ S\{T }. Indeed, if there exists j ∈ I and S ∈ S\{T } with θ j (S) > 0
then the convex combination can be replaced by another convex combination θS =
α̂ j · θ̂ j + ∑

i∈I\{ j} α̂i · θi , where θ̂ j (S) = 0. To observe that realize that α j < 1, as
otherwise θ j = θS . Thus, one can put α := 1 − α j = ∑

i∈I\{ j} αi > 0 and

θ :=
∑

i∈I\{ j}

αi

α
· θi , which gives θS = α j · θ j + α · θ, that is, θS ∈ ]θ j , θ [.

On the other hand, since θ j (S) > 0 and θS(S) < 0 there exists unique θ̂ j ∈ ]θ j , θS [
such that θ̂ j (S) = 0. Note that necessarily θ j ∈ �̃N

S while θS ∈ �̃N
T which facts

together allow one to observe that θ̂ j ∈ �̃N
T . The vectors θ j , θ̂ j , θS and θ are on

the same line, which implies that θS ∈ ]θ̂ j , θ [. Thus, 0 < γ < 1 exists with θS =
γ · θ̂ j + (1 − γ ) · θ and the substitution gives

θS = γ · θ̂ j +
∑

i∈I\{ j}

(1 − γ ) · αi

α︸ ︷︷ ︸
α̂i

· θi , where it suffices to put α̂ j := γ.

For any i ∈ I , one has θi ∈ �̃N
E for some ∅ �= E ⊆ N . In case E ∈ S\{T } the

above inequalities θi (S) ≤ 0 for S ∈ S\{T } give θi ∈ �̃N
N and (see Definition 5) the

inclusion �̃N
N ⊆ �̃N

T allows one to conclude that θi ∈ �̃N
D for some D ∈ W ∪{T }. To

summarize that: there exists a convex combination θS = ∑
i∈I αi · θi , where αi > 0,

θi �= θS and θi ∈ ⋃
D∈W∪{T } �̃N

D for all i ∈ I .
Further observation is that there exists j ∈ I andW ∈ W such that θ j (W ) > 0. To

show that assume for a contradiction the converse, that is, θi (W ) ≤ 0 for any i ∈ I
andW ∈ W . That basically means, that, for any i ∈ I , the condition θi ∈ �̃N

W implies
θi ∈ �̃N

N ⊆ �̃N
T . In particular, one would have θi ∈ �̃N

T , θi �= θS for any i ∈ I , which
contradicts the fact θS ∈ ext (�̃N

T ) claimed by (the second claim in) Lemma 8.
Thus, any i ∈ I can be assigned to some D ∈ W ∪{T } such that θi ∈ �̃N

D ; let us fix
that choice and write i �→ D to denote that. We already know that there exists j ∈ I
and W ∈ W with θ j (W ) > 0, which necessitates j �→ W . For any D ∈ W ∪ {T } we
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put

αD :=
∑

i∈I : i �→D

αi and, if αD > 0, θD :=
∑

i∈I : i �→D

αi

αD
· θi ∈ �̃N

D .

Thus, one has θS = ∑
D∈W∪{T } αD · θD , where θD can be chosen arbitrarily in case

αD = 0. It is a convex combination and the existence of j ∈ I and W ∈ W with
j �→ W implies αW > 0. Hence, αT < 1, which gives the condition (b).
To show (b)⇒(c) consider a convex combination θS = ∑

D∈W∪{T } αD · θD where

αT < 1 and θD ∈ �̃N
D whenever αD > 0. The fact θS(T ) > 0 forces both αT > 0 and

θT (T ) > 0 because η(T ) ≤ 0 for any η ∈ ⋃
D∈W �̃N

D . Thus, one has some θT ∈ �̃N
T .

Let us put

θ :=
∑

D∈W

αD

1 − αT
· θD and observe that θS = (1 − αT ) · θ + αT · θT .

By definition, θ ∈ conv (
⋃

D∈W �̃N
D). The fact θS ∈ ]θ, θT [ together with θS(W ) = 0

and θT (W ) ≤ 0 for any W ∈ W forces θ(W ) ≥ 0 for any such W . In particular,
θ ∈ (S) and the condition (c) has been verified.

To show (c)⇒(d) we use Lemma 20; the condition (c) means, by notation from
Lemma 20, that Z (S) �= ∅ for empty Z = ∅. By inductive application of
Lemma 20(ii) we find Z ⊆ W with �Z (S) = Z (S) �= ∅; indeed, by Lemma 20(i)
one has �W (S) = ∅, which ensures that inductive enlarging of Z has to finish with
some desired Z ⊂ W . Thus, ∅ �= ext (�Z (S)) ⊆ Z (S) for some Z ⊂ W . One
can take some θ ∈ ext (�Z (S)) and, by Lemma 20(iii), there exists E ∈ W such that
θ ∈ �̃N

E . Hence, θ(W ) ≤ 0 for any W ∈ W\{E} while θ ∈ (S) says θ(W ) ≥ 0 for
anyW ∈ W . That together means θ(W ) = 0 for anyW ∈ W\{E} and θ(E) ≥ 0. One
cannot have θ(E) = 0 for otherwise θ ∈ �W (S) contradicts the claim inLemma20(i).
Thus, necessarily θ(E) > 0; note also that θ(S) ≤ 0 for any S ∈ S. The equality con-
straints

∑
L⊆N : i∈N θ(L) = 0 for any i ∈ N and θ ∈ �̃N

E allow one to conclude that∑
S∈S∪{E} −θ(S) · χS = θ(N ) · χN is a semi-conic combination yielding a constant

vector in R
N . Thus, by definition, E is exceptional in S ∪ {E} and the condition (d)

has been verified.
To show (d)⇒(e) assume that E ∈ W is exceptional within S ∪ {E}. This means

that there exists a linear combination
∑

S∈S∪{E} νS · χS yielding a constant vector

in R
N where νE < 0 and νS ≥ 0 for S ∈ S. Observe that E is exceptional within

a smaller set system (S\{T }) ∪ {E}. In case νT = 0 we are done. In case νT > 0
we apply Lemma 2(d) to S which says that there exists (unique) affine combination∑

S∈S λS · χS yielding a constant vector in R
N with both λT < 0 and λS > 0 for

S ∈ S\{T }. Then we put λE := 0 and

κS := νT

νT − λT
· λS + −λT

νT − λT
· νS for S ∈ S ∪ {E}.
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Hence,
∑

S∈S∪{E} κS · χS yields a constant vector in R
N , κE < 0, and κT = 0. Thus,

(S\{T }) ∪ {E} is a semi-balanced system on N and E is an exceptional set within it.
To show (e)⇒(f) we fix a semi-conic combination

∑
S∈S∪{E} κS · χS yielding a

constant vector in R
N with κE < 0 and κT = 0. In particular, one can choose

a min-semi-balanced system D ⊆ (S\{T }) ∪ {E}. One has E ∈ D as otherwise
D ⊂ S contradicts the minimality of S. By Lemma 2(d), there exists (unique) affine
combination

∑
S∈D σS · χS yielding a constant vector in R

N which is semi-conic and
has all coefficients non-zero. Assume for a contradiction that σE > 0. Then we put
σS := 0 for S ∈ S\D and

μS := σE

σE − κE
· κS + −κE

σE − κE
· σS for S ∈ S ∪ {E}.

Hence,
∑

S∈S∪{E} μS · χS yields a constant vector in R
N and μE = 0 = μT . Since it

is a semi-conic combination T := {S ∈ S : μS �= 0} ⊂ S is a semi-balanced system
on N , which contradicts the minimality of S. As σE �= 0, one necessarily has σE < 0
and the set E is exceptional within D. Thus, the condition (f) has been verified.

The implication (f)⇒(g) is evident.
To show (g)⇒(a) assume that D is the min-semi-balanced system with an excep-

tional set E ∈ W such that D\S = {E}. Note that, by (1), one has both θD(E) > 0
and θD(W ) = 0 for any W ∈ W\{E}. Then we put

θε := (1 + ε) · θS + (−ε) · θD = θS + ε · (θS − θD) for every ε ≥ 0.

It makes no problem to observe that, for small ε > 0, one has θε ∈ �̃N
T ⊆ . Because

of θS ∈ ]θD, θε[ and θD ∈ �̃N
E ⊆  one gets θS /∈ ext () and (a) has been verified.

��
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