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Abstract
In this paper, we investigate a stochastic Stackelberg differential reinsurance and
investment game problem with delay for a reinsurer and an insurer in a defaultable
market, which consists of a risk-free asset, a risky asset and a defaultable bond. As the
leader, the reinsurer can determine reinsurance premium price and investment strat-
egy to maximize the expected exponential utility of its terminal wealth with delay. As
the follower, the insurer can select reinsurance proportion and investment strategy to
maximize the expected exponential utility of its terminal wealth with delay. By using
the idea of backward induction and the dynamic programming approach, we solve
the leader’s and follower’s optimization problems sequentially and derive the Stackel-
berg equilibrium strategy explicitly. Then, we provide the corresponding verification
theorem. Finally, we present some numerical examples to illustrate the influence of
model parameters on the equilibrium strategy and draw some economic interpreta-
tions from these results. We find that the pre-default value functions are higher than
the post-default value functions and the influence of delay weight on equilibrium strat-
egy depends on the length of delay time. Moreover, when the Stackelberg equilibrium
is achieved in the interior case, the optimal reinsurance premium follows the vari-
ance premium principle and the influence of delay weight on the optimal reinsurance
premium strategy is just opposite to that on other strategies.
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1 Introduction

Reinsurers and insurers, as special financial institutions, not only face the investment
risk in the financial market, but also face the risk of future random claims in the insur-
ance market. The study of optimal reinsurance and investment problem has become
a hot issue in actuarial and mathematical finance research. The existing literature is
mainly based on a single perspective of the insurer, while the interest of the reinsurer
is often ignored. For example, Browne (1995), Bai and Guo (2008), Li et al. (2012),
Yi et al. (2013), Bensoussan et al. (2014), Liang et al. (2016), Hu et al. (2018), Zhou
et al. (2019), Zhou et al. (2019) and so on. Since any reinsurance contract is obvi-
ously a mutual agreement between the insurer and the reinsurer, a reinsurance strategy
that only considers the interest of one party may be unacceptable to the other party.
To address this problem, we investigate the reinsurer’s premium pricing and invest-
ment optimization problem as well as insurer’s reinsurance-investment optimization
problem.

The existing literature on two-party optimization problems is generally carried out
under the framework of game, such as zero-sum game (e.g., Zeng (2010), Taksar and
Zeng (2011), Li et al. (2015), etc.) and non-zero-sum game (e.g., Bensoussan et al.
(2014), Meng et al. (2015), Guan and Liang (2016), Zhou et al. (2021), etc.). However,
both parties considered in the above literature are insurers, and the interest of the
reinsurer is not considered. Under utility maximization criteria, Chen and Shen (2018)
first constructed a Stackelberg stochastic differential game model to analyze optimal
reinsurance problem from joint interests of the insurer and the reinsurer. By solving
the optimization problems of both parties in turn, they obtained the optimal premium
price strategy and the optimal retained proportion under special circumstances. Based
on this study, many literatures have conducted extensive research in different market
environments, such as, Chen and Shen (2019), Bai et al. (2020), Bai et al. (2021),
etc. In view of the more extensive investment channels of insurance funds, this paper
studies a stochastic Stackelberg differential reinsurance and investment game problem
for a reinsurer and an insurer in the defaultable market.

Although the default risk has been understood as one of the significant trigger of
the global credit crisis, defaultable bonds are still sought after because of the relative
high profits. With respect to maximizing the expected utility of the terminal wealth,
Bielecki and Jang (2006) studied a portfolio optimization problem with a defaultable
security; Zhu et al. (2015) analyzed the optimal proportional reinsurance and invest-
ment problem in a defaultable market under the Heston’s stochastic volatility model.
Deng et al. (2018) derived the Nash equilibrium reinsurance-investment policy with
default risk under the non-zero-sum game framework. More studies on defaultable
bond can be found in Zhao et al. (2016), Li et al. (2017) and Wang et al. (2019a) and
so on.

Traditionally, the optimal reinsurance-investment decision-making problem based
on current information has been studied, ignoring the past wealth performance. How-
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ever, the decisions ofmanagers often depend on the past information in the real system,
and delays arise naturally. It would be more practical to consider such a delay period.
Recently, delay has been explicitly discussed in the literature on stochastic control
(e.g., Chang et al. (2011), Federico (2011), Shen and Zeng (2014),Wang et al. (2019b),
etc.). With the optimality criterion of maximizing the expected exponential utility of
the combination of terminal wealth and average performance wealth, Chunxiang and
Li (2015) and Chunxiang et al. (2018) studied optimal investment and excess-of-
loss reinsurance problems with delay. Motivated by the above studies, we consider
the wealth processes with delay to characterize the bounded memory feature in the
framework of stochastic Stackelberg differential game.

The main work of this study is summarized as follows. We build a stochastic Stack-
elberg differential reinsurance and investment game model between a reinsurer and an
insurer. Both of the insurer and the reinsurer can invest their wealth in a defaultable
market. Moreover, we consider the wealth processes with delay. By using the idea of
backward induction and the dynamic programming approach, we solve the reinsurer’s
and insurer’s optimization problems sequentially, and derive the Stackelberg equilib-
rium reinsurance-investment strategy and value functions explicitly. Then, we prove
the corresponding verification theorem, and analyze the properties of the equilibrium
strategy and value functions. Finally, we provide some numerical simulations and
sensitivity analysis to show the impact of the model parameters on the Stackelberg
equilibrium strategy and verify our theoretical results. We have the following findings.
Firstly, we find the pre-default value functions are higher than the post-default value
functions and the difference between two cases stands for the loss in objectives due
to the default event. Secondly, if the proportional reinsurance is applied, the variance
premium principle is an ideal candidate among all possible premium principles when
the equilibrium is achieved in the interior case. Thirdly, the influence of delay weight
on equilibrium strategy depends on the length of delay time, and the influence of delay
weight on the equilibrium reinsurance premium strategy is opposite to that on other
strategies.

Different from the existing literature, this paper has the following contributions. (1)
Wefirst consider the default risk in the framework of stochastic Stackelberg differential
reinsurance and investment game model. (2) Compared with the existing research
on the stochastic Stackelberg differential game in the field of actuarial and strategic
optimization, we consider not only the reinsurance game between the reinsurer and
the insurer, but also the optimal investment problem. (3) We consider the delay factor
in the Stackelberg game model to characterize the bounded memory feature of wealth
processes.

The remainder of this paper is organized as follows. In Sect. 2, we construct a
stochastic Stackelberg differential reinsurance and investment game model consid-
ering the default risk and delay. In Sect. 3, we derive the Stackelberg equilibrium
reinsurance-investment strategy and value functions explicitly and prove the cor-
responding verification theorem. In Sect. 4, we give some numerical examples to
illustrate the influence of model parameters on the Stackelberg equilibrium strategy
and draw some economic interpretations. Finally, we summarize the conclusions of
this paper.
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2 Model setup

In this section, we describe the model in details. Let [0, T ] be a finite time horizon,
over which reinsurance and investment activities can occur. The uncertainty inmarkets
is represented by a probability space (�,F ,P), where P is the real world probability
measure; F = {Ft }t≥0 is the right-continuous, P-complete filtration generated by
two standard Brownian motions W (t) and WF (t). We assume that W (t) and WF (t)
are independent of each other. We denote by H = {Ht }t≥0 the filtration of a default
process,which is driven by aPoisson process.Weassume thatH andF are independent
of each other. LetG = {Gt }t≥0 be the enlarged filtration ofF andH, i.e.,Gt = Ft ∨Ht .

2.1 Dynamics of the financial assets

We consider a financial market that consists of a risk-free asset, a risky asset (i.e.,
a stock) and a corporate zero coupon bond that is defaultable. The price process of
the risk-free asset, {S0(t)}t≥0, is given by the following ordinary differential equation
(ODE):

d S0(t) = r0S0(t)dt, S0(0) = 1, (2.1)

where r0 > 0 is the constant risk-free interest rate. The stock price process, {S(t)}t≥0,
follows a constant elasticity of variance (CEV) model (refer to Cox and Ross (1976),
Emanuel and Macbeth (1982) and Gu et al. (2010)):

d S(t) = S(t)
[
rdt + σ Sβ(t)dW (t)

]
, S(0) = s0, (2.2)

where r , σ Sβ(t) and β denote the expected return rate, the volatility and the constant
elasticity parameter of the risky asset, respectively; r > r0, σ > 0. β is a constant
parameter. As in Emanuel andMacbeth (1982) and Gu et al. (2010), we assume β ≥ 0
to keep the stock price process positive. If β = 0, the CEV model reduces to the
geometric Brownian motion (GBM) model. If β > 0, the volatility σ Sβ(t) increases
as the stock price increases.

Referring to Chapter 5 and Chapter 8 in Bielecki and Rutkowski (2002), we adopt
the reduced-formapproach tomodeling the default risk.AssumeT1 > T is thematurity
date of the defaultable bond and the default time is denoted by τ which is a nonnegative
random variable and the first jump time of a Poisson process with constant intensity
h P > 0 under the real world probability measure P. Define the default process by
H(t) = I{τ≤t}, where I denotes the indicator function that equals one if there exists a
jump and zero otherwise. Then, H(t) = 0 and H(t) = 1 correspond to the pre-default
case {τ > t} and the post-default case {τ ≤ t}, respectively.

Assume that the investor would recover a fraction of themarket value of the default-
able bond prior to default and the value of the defaultable bond after default is zero.
Then, we use 0 < ζ ≤ 1 to denote the constant loss rate when a default occurs,
and 1 − ζ is the default recovery rate. According to Bielecki and Jang (2006), Zhu
et al. (2015), Zhao et al. (2016) and Wang et al. (2019a), the dynamics of the default-
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able bond price, {S1(t, T1)}t≥0, under measure P is given by the following stochastic
differential equation (SDE):

d S1(t, T1) = S1(t−, T1)
[
r0dt + (1 − H(t−))η(1 − �)dt − (1 − H(t−))ζd M P (t)

]
,

(2.3)

where

M P (t) = H(t) −
∫ t

0
(1 − H(u−))h P du (2.4)

is a G-martingale under P; 1
�

= hQ

h P denotes the default risk premium; hQ is the default

intensity under the risk-neutral measureQ; η = hQζ denotes the credit spread. Duffie
and Singleton (2003) indicated that the probability of default occurring under risk-
neutral measure Q is higher than that under the real world probability measure P.
Therefore, we assume that 1

�
≥ 1 throughout this paper.

2.2 Dynamics of the surplus processes

We consider an insurance market that consists of one huge reinsurer and one small
insurer. For the convenience of calculation, we use the diffusion approximation model
proposed by Grandell (1990) to describe the surplus process. The surplus process of
the insurer, {X F (t)}t≥0, is denoted by

d X F (t) = cF dt − λFμF dt +
√

λF (σ̃F )2dWF (t), X F (0) = x0F , (2.5)

where x0F > 0 is the insurer’s initial surplus, cF ≥ 0 is the premium rate, λF > 0 is the
claim intensity, 0 < μF < +∞ and (σ̃F )2 < +∞ are the first moment and second
moment of the claim size, respectively. The insurance premium rate cF is assumed to
be determined by the expected value premium principle, i.e., cF = (1 + θF )λFμF ,
where θF > 0 is the insurer’s safety loading.

The insurer can purchase proportional reinsurance protection continuously from the
reinsurer to manage its claim risks. Denote {q(t), t ≥ 0} the reinsurance strategy of
the insurer, where q(t) ∈ [0, 1]. Then, the reinsurer will cover (1− q(t))100% of the
claimswhile the insurer will cover the remaining at time t . The price of the reinsurance
premium at time t is p(t) ∈ [cF , c̄], where c̄ = (1+ θ̄ )λFμF , θ̄ is an upper bound of
the reinsurer’s relative safety loading and satisfies θ̄ > θF . The larger safety loading
aims at avoiding cheap reinsurance, in which case the insurer transfers the complete
risk and still earns something. Introducing proportional reinsurance strategy q(t) into
Eq. (2.5), then

d X F (t) = [θF a − (p(t) − a)(1 − q(t))]dt + q(t)σF dWF (t), (2.6)
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where a = λFμF , σF = √
λF (σ̃F )2. The surplus process of the reinsurer associated

to this contract with the above insurer, {X L(t)}t≥0, can be expressed:

d X L(t) = (p(t) − a)(1 − q(t))dt + (1 − q(t))σF dWF (t), X L(0) = x0L , (2.7)

where x0L > x0F . In other words, the huge reinsurer has more initial wealth than the
small insurer.

2.3 Wealth processes with delay and default risk

In this paper, we assume that the insurer and the reinsurer can invest in the risk-
free asset, the stock and the corporate zero coupon bond continuously. Suppose that
there are no transaction costs or taxes for investment and reinsurance; short-selling
of the risky asset is allowed; the corporate bond is not traded after default, and these
investments are not enough to affect the prices of the stock and defaultable bond.
The investment horizon is [0, T ] and T < T1. Let bF (t) and bL(t) represent the
dollar amount that the insurer and the reinsurer invest in the stock at time t , respec-
tively. Let bF1(t) and bL1(t) represent the dollar amount that the insurer and the
reinsurer invest in the corporate bond at time t , respectively. Then, the remaining
wealth XπF

F (t) − bF (t) − bF1(t) and XπL
L (t) − bL(t) − bL1(t) are invested in the

risk-free asset. Let πF (t) = (q(t), bF (t), bF1(t)) and πL(t) = (p(t), bL(t), bL1(t)).
Thus, in the defaultable financial market described above, the wealth processes of the
insurer and the reinsurer are given by (2.8) and (2.9), respectively.

d XπF
F (t) = XπF

F (t) − bF (t) − bF1(t)

S0(t)
d S0(t) + bF (t)

S(t)
d S(t) + bF1(t)

S1(t−, T1)
d S1(t, T1)

+ [θF a − (p(t) − a)(1 − q(t))]dt + q(t)σF dWF (t)

=[
θF a − (p(t) − a)(1 − q(t)) + r0XπF

F (t)

+ (r − r0)bF (t) + (1 − H(t−))η(1 − �)bF1(t)
]
dt

+ q(t)σF dWF (t) + bF (t)σ Sβ(t)dW (t) − bF1(t)(1 − H(t−))ζd M P (t),
(2.8)

d XπL
L (t) = XπL

L (t) − bL (t) − bL1(t)

S0(t)
d S0(t) + bL (t)

S(t)
d S(t) + bL1(t)

S1(t−, T1)
d S1(t, T1)

+ (p(t) − a)(1 − q(t))dt + (1 − q(t))σF dWF (t)

= [
(p(t) − a)(1 − q(t)) + r0XπL

L (t)

+(r − r0)bL (t) + (1 − H(t−))η(1 − �)bL1(t)] dt

+ (1 − q(t))σF dWF (t) + bL (t)σ Sβ(t)dW (t) − bL1(t)(1 − H(t−))ζd M P (t).
(2.9)

In fact, due to the bounded memory characteristic, the decisions of the reinsurer
and the insurer depend on the exogenous capital instantaneous inflow into or outflow
from current wealth. Motivated by Chunxiang and Li (2015), we consider the wealth
processes with delay. Let YF (t) and Z F (t) be the integrated and pointwise delayed
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information of the insurer’s wealth in the past horizon [t − hF , t], respectively. Cor-
respondingly, the integrated and pointwise delayed information of the reinsurer in
the time interval [t − hL , t] is denoted as YL(t) and ZL(t), respectively. That is, for
∀t ∈ [0, T ],

YF (t) =
∫ 0

−hF

eαF s XπF
F (t + s)ds, Z F (t) = XπF

F (t − hF ), (2.10)

YL(t) =
∫ 0

−hL

eαL s XπL
L (t + s)ds, ZL(t) = XπL

L (t − hL), (2.11)

where αL ≥ 0 and αF ≥ 0 are average parameters; hL > 0 and hF > 0 are delay
time parameters. Let fF (t, XπF

F (t) − YF (t), XπF
F (t) − Z F (t)) and fL(t, XπL

L (t) −
YL(t), XπL

L (t) − ZL(t)) represent the capital inflow/outflow amount of the insurer
and the reinsurer, respectively; where XπF

F (t) − YF (t), XπL
L (t) − YL(t) represent the

average performance and XπF
F (t) − Z F (t), XπL

L (t) − ZL(t) represent the absolute
performance. To make the problem solvable, we assume

fF (t, XπF
F (t) − YF (t), XπF

F (t) − Z F (t)) = BF (XπF
F (t) − YF (t)) + CF (XπF

F (t) − Z F (t)),

fL (t, XπL
L (t) − YL (t), XπL

L (t) − ZL (t)) = BL (XπL
L (t) − YL (t)) + CL (XπL

L (t) − ZL (t)),

where BF , CF , BL and CL are nonnegative constants. In other words, the amount of
the capital inflow/outflow is the linear weighted sum of the average performance
and the absolute performance. Then, considering capital inflow/outflow functions
fF (t, XπF

F (t)−YF (t), XπF
F (t)− Z F (t)) and fL(t, XπL

L (t)−YL(t), XπL
L (t)− ZL(t)),

the wealth processes of the insurer and the reinsurer are governed by the following
stochastic differential delay equations (SDDEs), respectively:

d X
πF
F (t) =[

θF a − (p(t) − a)(1 − q(t)) + AF X
πF
F (t) + BF YF (t) + CF Z F (t) + (r − r0)bF (t)

+ (1 − H(t−))η(1 − �)bF1(t)
]
dt + q(t)σF dWF (t)

+ bF (t)σ Sβ(t)dW (t) − bF1(t)(1 − H(t−))ζd M P (t), (2.12)

d X
πL
L (t) =[

(p(t) − a)(1 − q(t)) + AL X
πL
L (t) + BL YL (t) + CL ZL (t) + (r − r0)bL (t)

+ (1 − H(t−))η(1 − �)bL1(t)
]
dt + (1 − q(t))σF dWF (t)

+ bL (t)σ Sβ(t)dW (t) − bL1(t)(1 − H(t−))ζd M P (t), (2.13)

where AF = r0 − BF − CF and AL = r0 − BL − CL . In addition, we assume
that the insurer is endowed with the initial wealth x0F at time −hF and does not start
the business (insurance/reinsurance/investment) until time 0, i.e., XπF

F (t) = x0F ,∀t ∈
[−hF , 0]. Correspondingly, suppose that XπL

L (t) = x0L > 0,∀t ∈ [−hL , 0]. Then,
YF (0) = x0F

αF
(1 − e−αF hF ) and YL(0) = x0L

αL
(1 − e−αL hL ).

For any fixed t ∈ [0, T ], denote XπL
L (t) = xL , XπF

F (t) = xF , YL(t) = yL ,
YF (t) = yF , ZL(t) = zL , Z F (t) = zF , S(t) = s and H(t) = h. Then, we define the
admissible strategy as follows.
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Definition 1 (Admissible strategy) π(·) = πL(·) × πF (·) = (p(·), bL(·), bL1(·)) ×
(q(·), bF (·), bF1(·)) is said to be admissible, if

(i) {πL(t)}t∈[0,T ] and {πF (t)}t∈[0,T ] areG-progressivelymeasurable processes, such
that p(t) ∈ [cF , c̄] and q(t) ∈ [0, 1] for any t ∈ [0, T ];

(ii) E
[ ∫ T

t [(bL())2(Sβ())2+(bL1())
2]d

]
< +∞ and E

[ ∫ T
t [(bF ())2(Sβ())2+

(bF1())
2]d

]
< +∞, ∀ ∈ [t, T ];

(iii) the state equation (2.13) associated with πL(·) has a unique strong solution,
which satisfies
{Et,xL ,yL ,s,h[sup |XπL

L ()|2]} 1
2 < +∞, for ∀(t, xL , yL , s, h) ∈ [0, T ]×R×R×

R × {0, 1}, ∀ ∈ [t, T ];
(iv) the state equation (2.12) associated with πF (·) has a unique strong solution,

which satisfies
{Et,xF ,yF ,s,h[sup |XπF

F ()|2]} 1
2 < +∞, for ∀(t, xF , yF , s, h) ∈ [0, T ] × R ×

R × R × {0, 1}, ∀ ∈ [t, T ].
Let� = �L ×�F be the set of all admissible strategies, where�L and�F denote

the set of all admissible strategies of the reinsurer and the insurer, respectively.

2.4 Formulation of a stochastic Stackelberg differential game

In this paper, we consider a stochastic Stackelberg differential reinsurance-investment
game with default risk and delay, in which the reinsurer is the leader and the insurer is
the follower. The goal of the game is to seek the Stackelberg equilibrium by solving
the leader’s and follower’s optimization problems sequentially. According to Yong
(2002), Chen and Shen (2018) and Chen and Shen (2019), the procedure of solving the
Stackelberg game adopts the idea of backward induction. Specifically, the procedure
can be divided into the following three steps:

• Step 1 The leader (i.e., the reinsurer) moves first by announcing one admissible
strategy πL(·) = (p(·), bL(·), bL1(·));

• Step 2 The follower (i.e., the insurer) observes the reinsurer’s strategy and obtains
its optimal strategy q∗(·) = α∗(·, p(·), bL(·), bL1(·)), b∗

F (·) = β∗(·, p(·), bL(·),
bL1(·)) and b∗

F1(·) = β∗
1 (·, p(·), bL(·), bL1(·)) by solving its own optimization

problem;
• Step 3Knowing that the insurerwould executeα∗(·, p(·), bL(·), bL1(·)),β∗(·, p(·),

bL(·), bL1(·)) and β∗
1 (·, p(·), bL(·), bL1(·)), the reinsurer then decides on its

admissible strategy (p∗(·), b∗
L(·), b∗

L1(·)) by solving its own optimization prob-
lem.

Due to the bounded memory feature, we suppose that both the reinsurer and the
insurer are concernedwith not only the terminal wealth, but also the integrated delayed
information. In other words, the objective of the reinsurer is to find a premium pricing
strategy and investment strategies such that the expected utility of XπL

L (T )+ηLYL(T )

is maximized, where the constant ηL ∈ (0, 1) is the reinsurer’s delay weight, repre-
senting the sensitivity of the reinsurer to past wealth. Correspondingly, the objective
of the insurer is to find a reinsurance strategy and investment strategies such that the
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expected utility of XπF
F (T )+ηF YF (T ) is maximized, where the constant ηF ∈ (0, 1)

is the insurer’s delay weight, representing the sensitivity of the insurer to past wealth.
Then, the Stackelberg game problem is given by Problem 1.

Problem 1 The insurer’s problem is the following optimization problem: for any
πL(·) = (p(·), bL(·), bL1(·)) ∈ �L(·), find a map (q∗(·), b∗

F (·), b∗
F1(·)) =

(α∗(·, p(·), bL(·), bL1(·)), β∗(·, p(·), bL(·), bL1(·)), β∗
1 (·, p(·), bL(·), bL1(·))) : [0, T ]

× � × �L → �F such that the following value function holds:

V F(
t, xF , yF , s, h; p(·), bL (·), bL1(·), α∗(·, p(·), bL(·), bL1(·)),

β∗(·, p(·), bL(·), bL1(·)), β∗
1 (·, p(·), bL(·), bL1(·))

)

= sup
(q(·),bF (·),bF1(·))∈�F

V F(
t, xF , yF , s, h; p(·), bL (·), bL1(·), q(·), bF (·), bF1(·)

)

= sup
(q(·),bF (·),bF1(·))∈�F

Et,xF ,yF ,s,h
[
UF

(
XπF

F (T ) + ηF YF (T )
)]

, (2.14)

where UF is a strictly increasing and strictly concave utility function for the
insurer. The reinsurer’s problem is the following optimization problem: find a
(p∗(·), b∗

L(·), b∗
L1(·)) ∈ �L such that the following value function holds:

V L (
t, xL , yL , s, h; p∗(·), b∗

L (·), b∗
L1(·), α∗(·, p∗(·), b∗

L (·), b∗
L1(·)),

β∗(·, p∗(·), b∗
L (·), b∗

L1(·)), β∗
1 (·, p∗(·), b∗

L (·), b∗
L1(·))

)

= sup
(p(·),bL (·),bL1(·))∈�L

V L (
t, xL , yL , s, h; p(·), bL (·), bL1(·), α∗(·, p(·), bL (·), bL1(·)),

β∗(·, p(·), bL (·), bL1(·)), β∗
1 (·, p(·), bL (·), bL1(·))

)

= sup
(p(·),bL (·),bL1(·))∈�L

Et,xL ,yL ,s,h
[
UL

(
XπL

L (T ) + ηL YL (T )
)]

. (2.15)

where UL is a strictly increasing and strictly concave utility function for the reinsurer.

Definition 2 The six-tuple
(

p∗(·), b∗
L(·), b∗

L1(·), α∗(·, p∗(·), b∗
L(·), b∗

L1(·)), β∗
(·, p∗(·), b∗

L(·), b∗
L1(·)), β∗

1 (·, p∗(·), b∗
L(·), b∗

L1(·))
)
is called an equilibrium solution

to the Stackelberg game problem 1.

Furthermore, if there is no risk of confusion, when the equilibrium strategy of
the Stackelberg game is adopted, V F

(
t, xF , yF , s, h; p∗(·), b∗

L(·), b∗
L1(·), α∗(·, p∗(·),

b∗
L(·), b∗

L1(·)), β∗(·, p∗(·), b∗
L(·), b∗

L1(·)), β∗
1 (·, p∗(·), b∗

L(·), b∗
L1(·))

)
is also called

the value function of the insurer’s problem.

3 Solution to the Stackelberg game for CARA preference

Compared with individual investors, insurers and reinsurers have considerable wealth.
Therefore, the risk aversion coefficient is relatively stable and can be regarded as a
constant. Moreover, the wealth of the insurer and the reinsurer are likely to be negative
due to the randomness of future claims, which could lead to bankruptcy. In view

123



350 Y. Bai et al.

of these facts, we assume that the insurer and the reinsurer have exponential utility
preferences, i.e., both the insurer and the reinsurer are constant absolute risk aversion
(CARA) agents:

UF (xF + ηF yF ) = − 1

γF
exp[−γF (xF + ηF yF )], (3.16)

UL(xL + ηL yL) = − 1

γL
exp[−γL(xL + ηL yL)], (3.17)

where γF > 0 and γL > 0 are the constant absolute risk aversion coefficients of the
insurer and the reinsurer, respectively.

According to existing literature, the optimal control problem with delay is infinite-
dimensional in general. The stochastic control problem with delay can be transformed
into a finite-dimensional Markov system when the drift and diffusion terms in (2.12)
(or (2.13)) are linear with respect to XπF

F (t), YF (t) and Z F (t) (or XπL
L (t), YL(t) and

ZL(t)), and the coefficients satisfy a certain relationship (refer to Elsanosi et al. (2000),
Elsanousi and Larssen (2001), Larssen (2002)). In order to deal with this problem, the
existing literature (for example, Chunxiang and Li (2015), Chunxiang et al. (2018)
etc.) generally assumes the following relationships:

CL = ηLe−αL hL , BLe−αL hL = (αL + AL + ηL)CL , (3.18)

CF = ηF e−αF hF , BF e−αF hF = (αF + AF + ηF )CF . (3.19)

Note that although conditions (3.18) and (3.19) lose some generality, they are one
of the sufficient conditions for the optimal control problem with delay to have analytic
solution. In fact, (3.18) and (3.19) can be regarded as the conditions given in advance
by the reinsurer and the insurer. That is, the reinsurer (the insurer) can calculate the
average performance and the absolute performance by selecting average parameter
and delay time parameter, then select delay weight parameter, and use the condition
(3.18) (or (3.19)) to calculate BL andCL (BF andCF ) as the average performance and
the absolute performance proportional parameters to regulate the inflow and outflow
of wealth from the reinsurer (the insurer). From the explicit forms of BL and CL (BF

and CF ), we can see that, the shorter the delay time considered by managers, the
greater the absolute performance weight; the longer the delay time, the greater the
average performance weight. The nature of the parameters reflects that this setting is
also common sense.

Based on the dynamic programming technique, for ∀t ∈ [0, T ], we derive
Hamilton-Jacobi-Bellman (HJB) equations for the insurer and the reinsurer as fol-
lows:

{
supπF ∈�F

AF V F (t, xF , yF , s, h) = 0,
V F (T , xF , yF , s, h) = UF (xF + ηF yF ); (3.20)

{
supπL∈�L

AL V L(t, xL , yL , s, h) = 0,
V L(T , xL , yL , s, h) = UL(xL + ηL yL); (3.21)
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where

AF V F (t, xF , yF , s, h)

= ∂V F (t, xF , yF , s, h)

∂t
+ [

θF a − (p(t) − a)(1 − q(t))

+ AF xF + BF yF + CF zF + (r − r0)bF (t)

+ (1 − h)ηbF1(t)
]∂V F (t, xF , yF , s, h)

∂xF

+ 1

2

[
(q(t))2σ 2

F + (bF (t))2σ 2s2β
]∂V F (t, xF , yF , s, h)

∂x2F

+ (xF − αF yF − e−αF hF zF )
∂V F (t, xF , yF , s, h)

∂ yF

+ rs
∂V F (t, xF , yF , s, h)

∂s
+ 1

2
σ 2s2β+2 ∂V F (t, xF , yF , s, h)

∂s2

+ bF (t)σ 2s2β+1 ∂V F (t, xF , yF , s, h)

∂xF∂s
+ [

V F (t, xF − bF1(t)ζ, yF , s, h + 1)

− V F (t, xF , yF , s, h)
]
h P (1 − h), (3.22)

AL V L(t, xL , yL , s, h)

= ∂V L(t, xL , yL , s, h)

∂t
+ [

(p(t) − a)(1 − q∗(t)) + AL xL

+ BL yL + CL zL + (r − r0)bL(t)

+ (1 − h)ηbL1(t)
]∂V L(t, xL , yL , s, h)

∂xL

+ 1

2

[
(1 − q∗(t))2σ 2

F + (bL(t))2σ 2s2β
]∂V L(t, xL , yL , s, h)

∂x2L

+ (xL − αL yL − e−αL hL zL)
∂V L(t, xL , yL , s, h)

∂ yL

+ rs
∂V L(t, xL , yL , s, h)

∂s
+ 1

2
σ 2s2β+2 ∂V L(t, xL , yL , s, h)

∂s2

+ bL(t)σ 2s2β+1 ∂V L(t, xL , yL , s, h)

∂xL∂s
+ [

V L(t, xL − bL1(t)ζ, yL , s, h + 1)

− V L(t, xL , yL , s, h)
]
h P (1 − h). (3.23)

Next, we will deduce the solutions of HJB equations (3.20) and (3.21) according
to the steps of solving the Stackelberg game proposed in Sect. 2.4. Then, we will
construct the verification theorem to prove that the equilibrium strategy obtained by
the above steps is optimal in �L × �F and the solutions are the value functions of
the insurer and reinsurer, respectively. We split the original value functions into two
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Table 1 p∗(t) and q∗(t) under different cases

Cases p∗(t) q∗(t)

(1) N θF (t) ≥ 1 p 1

(2) N θ̄ (t) ≤ K (t) c̄ N θ̄ (t)

(3) K (t) ≤ N θF (t) < 1 cF N θF (t)

(4) N θF (t) < K (t) < N θ̄ (t) a + K (t)γF σ 2
F ϕF (t) K (t)

pieces that represent the pre-default (i.e., h = 0) value functions and post-default (i.e.,
h = 1) value functions.

3.1 Equilibrium strategy and value functions after default

After the default of the corporate zero-coupon bond, which corresponds to the case of
h = 1. In this section, we address the stochastic Stackelberg differential reinsurance-
investment game after default, and provide explicit expressions of the equilibrium
strategy and associated value functions. The relevant results are given by Theorem 1.

Theorem 1 (Post-default) For ∀t ∈ [τ ∧T , T ], the equilibrium strategy of the Stackel-
berg game problem 1 is (p∗(t), b∗

L(t), b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)), where p∗(t) and

q∗(t) under different cases are given by Table 1; the equilibrium investment strategies
of the reinsurer and the insurer are described by

b∗
L(t) = (r − r0)s−2β

γLϕL(t)σ 2 − 2βgL
1 (t)s−2β

γLϕL(t)
, (3.24)

b∗
L1(t) = 0, (3.25)

b∗
F (t) = (r − r0)s−2β

γFϕF (t)σ 2 − 2βgF
1 (t)s−2β

γFϕF (t)
, (3.26)

b∗
F1(t) = 0, (3.27)

where p is any value in the interval [cF , c̄], ϕL(t), ϕF (t), gL
1 (t) and gF

1 (t) are given
by

ϕL(t) = exp[(AL + ηL)(T − t)], (3.28)

ϕF (t) = exp[(AF + ηF )(T − t)], (3.29)

gL
1 (t) =gF

1 (t) = − 1

4βr0
(
r − r0

σ
)2{1 − exp[−2βr0(T − t)]}, (3.30)
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K (t), N θF (t) and N θ̄ (t) are given by

K (t) = γFϕF (t) + γLϕL(t)

2γFϕF (t) + γLϕL(t)
, N θF (t) = θF a

γFσ 2
FϕF (t)

, N θ̄ (t) = θ̄a

γFσ 2
FϕF (t)

.

(3.31)

The post-default value function of the reinsurer is given by

V L(t, xL , yL , s, 1) = − 1

γL
exp[−γLϕL(t)(xL + ηL yL)

+ gL
1 (t)s−2β + gL

2 (t)], (3.32)

and, the post-default value function of the insurer is given by

V F (t, xF , yF , s, 1) = − 1

γF
exp[−γFϕF (t)(xF + ηF yF )

+ gF
1 (t)s−2β + gF

2 (t)], (3.33)

where gL
2 (t) and gF

2 (t) under different cases are given by Table 2; gLa
2 , gLb1

2 (t),
gLb2
2 (t),gLb3

2 (t), gFa
2 (t), gFb1

2 (t), gFb2
2 (t) and gFb3

2 (t) are given by

gLa
2 (t) = − (2β + 1)(r − r0)

2

4r0
(T − t) + (2β + 1)(r − r0)

2

8βr20
{1 − exp[−2βr0(T − t)]},

(3.34)

gLb1
2 (t) =gLa

2 (t) + γ 2
Lσ 2

F
4(AL + ηL )

[(ϕL (t))2 − 1]

−
∫ t

T
(θ̄a)2[ γLϕL (u)

γFσ 2
FϕF (u)

+ 1

2

γ 2
L (ϕL (u))2

γ 2
Fσ 2

F (ϕF (u))2
]du

+
∫ t

T
(θ̄a)[γLϕL (u) + γ 2

L (ϕL (u))2

γF (ϕF (u))
]du, (3.35)

gLb2
2 (t) =gLa

2 (t) + γ 2
Lσ 2

F
4(AL + ηL )

[(ϕL (t))2 − 1]

−
∫ t

T
(θF a)2[ γLϕL (u)

γFσ 2
FϕF (u)

+ 1

2

γ 2
L (ϕL (u))2

γ 2
Fσ 2

F (ϕF (u))2
]du

+
∫ t

T
(θF a)[γLϕL (u) + γ 2

L (ϕL (u))2

γF (ϕF (u))
]du, (3.36)

gLb3
2 (t) =gLa

2 (t) + γ 2
Lσ 2

F
4(AL + ηL )

[(ϕL (t))2 − 1]

+
∫ t

T
K (u)γFσ 2

FϕF (u)[γLϕL (u) + γ 2
L (ϕL (u))2

γF (ϕF (u))
]du
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Table 2 gL
2 (t) and gF

2 (t) under
different cases

Cases gL
2 (t) gF

2 (t)

Case (1) gLa
2 (t) gFa

2 (t)

Case (2) gLb1
2 (t) gFb1

2 (t)

Case (3) gLb2
2 (t) gFb2

2 (t)

Case (4) gLb3
2 (t) gFb3

2 (t)

−
∫ t

T
(K (u)γFσ 2

FϕF (u))2[ γLϕL (u)

γFσ 2
FϕF (u)

+ 1

2

γ 2
L (ϕL (u))2

γ 2
Fσ 2

F (ϕF (u))2
]du, (3.37)

gFa
2 (t) =gLa

2 (t) − γF θF a

AF + ηF
(ϕF (t) − 1) + γ 2

Fσ 2
F

4(AF + ηF )
[(ϕF (t))2 − 1], (3.38)

gFb1
2 (t) =gLa

2 (t) + γF a(θ̄ − θF )

AF + ηF
(ϕF (t) − 1) − (θ̄a)2

2σ 2
F

(T − t), (3.39)

gFb2
2 (t) =gLa

2 (t) − (θF a)2

2σ 2
F

(T − t), (3.40)

gFb3
2 (t) =gLa

2 (t) − γF θF a

AF + ηF
(ϕF (t) − 1) − γF

∫ t

T
ϕF (u)K (u)γFσ 2

FϕF (u)du

+ 1

2σ 2
F

∫ t

T
[K (u)γFσ 2

FϕF (u)]2du. (3.41)

Proof The proof is similar to the proof of Theorem 2, therefore we omit it here. ��
Remark 1 Note that the amount of money invested in the defaultable bond is 0, (i.e.,
b∗

L1(t) = 0 and b∗
F1(t) = 0) because the defaultable bond can not be traded after

default.

3.2 Equilibrium strategy and value functions before default

Before the default of the corporate zero-coupon bond, which corresponds to the case of
h = 0. In this section, we derive the Stackelberg equilibrium reinsurance-investment
strategy before default. Theorem 2 describes the pre-default equilibrium strategy and
its associated value functions.

Theorem 2 (Pre-default) For ∀t ∈ [0, τ ∧ T ), the equilibrium strategy of the Stack-
elberg game problem 1 is (p∗(t), b∗

L(t), b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)), where b∗

L1(t)
and b∗

F1(t) are given by

b∗
L1(t) = ln( 1

�
) + (ln 1

�
+ � − 1)[e− η

ζ
(T −t) − 1]

γLϕL(t)ζ
, (3.42)

123



A stochastic Stackelberg differential reinsurance and… 355

b∗
F1(t) = ln( 1

�
) + (ln 1

�
+ � − 1)[e− η

ζ
(T −t) − 1]

γFϕF (t)ζ
; (3.43)

p∗(t), q∗(t), b∗
L(t) and b∗

F (t) are the same as that in Theorem 1. The pre-default value
function of the reinsurer is given by

V L (t, xL , yL , s, 0) = − 1

γL
exp{−γLϕL (t)(xL + ηL yL ) + gL

1 (t)s−2β + gL
2 (t) + G2(t)}

=V L (t, xL , yL , s, 1)eG2(t), (3.44)

and, the pre-default value function of the insurer is given by

V F (t, xF , yF , s, 0) = − 1

γF
exp{−γFϕF (t)(xF + ηF yF ) + gF

1 (t)s−2β + gF
2 (t) + G2(t)}

=V F (t, xF , yF , s, 1)eG2(t), (3.45)

where

G2(t) = (ln
1

�
+ � − 1)[e− η

ζ
(T −t) − 1]. (3.46)

Proof See Appendix A. ��
Combining Theorems 1 and 2, we obtain the following result directly.

Theorem 3 The equilibrium strategy of the Stackelberg game problem1 is (p∗(t), b∗
L(t),

b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)), where p∗(t) and q∗(t) under different cases are given

by Table 1; b∗
L(t) and b∗

F (t) are given by (3.24) and (3.26); b∗
L1(t) and b∗

F1(t) are
given by

b∗
L1(t) =

⎧
⎨

⎩

ln( 1
�

)e
− η

ζ
(T −t)+(1−�)[1−e

− η
ζ

(T −t)]
γLϕL (t)ζ

, t ∈ [0, τ ∧ T ),

0, t ∈ [τ ∧ T , T ].
(3.47)

and

b∗
F1(t) =

⎧
⎨

⎩

ln( 1
�

)e
− η

ζ
(T −t)+(1−�)[1−e

− η
ζ

(T −t)]
γF ϕF (t)ζ

, t ∈ [0, τ ∧ T ),

0, t ∈ [τ ∧ T , T ].
(3.48)

respectively; ϕF (t) and ϕL(t) are given by (3.29) and (3.28), respectively.
The value function of the reinsurer is given by

V L(t, xL , yL , s, 0) = − 1

γL
exp{−γLϕL(t)(xL + ηL yL)

+ gL
1 (t)s−2β + gL

2 (t) + (1 − h)G2(t)}, (3.49)
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Table 3 The properties of p∗(t)
and q∗(t)

∂ p∗(t)
∂γL

∂ p∗(t)
∂γF

∂ p∗(t)
∂hL

∂q∗(t)
∂γL

∂q∗(t)
∂γF

∂q∗(t)
∂hF

+ + + + − −

and, the value function of the insurer is given by

V F (t, xF , yF , s, 0) = − 1

γF
exp{−γFϕF (t)(xF + ηF yF )

+ gF
1 (t)s−2β + gF

2 (t) + (1 − h)G2(t)}, (3.50)

where gL
1 (t), gF

1 (t) and G2(t) are given by (3.30) and (3.46), respectively; gL
2 (t) and

gF
2 (t) under different cases are given by Table 2.

From Theorem 3, we find that the Stackelberg equilibrium reinsurance-investment
strategy is independent of the current wealth, which is caused by the choice of expo-
nential utility. Furthermore, the equilibrium investment strategies are independentwith
the reinsurer’s premium pricing strategy and the insurer’s reinsurance strategy. More-
over, we find that the insurer’s optimal reinsurance strategy can be expressed as the
optimal reinsurance premium strategy. That is,

q∗(t) = p∗(t) − a

γFσ 2
FϕF (t)

∧ 1. (3.51)

Remark 2 Similar to Chen and Shen (2018), when the Stackelberg equilibrium is
achieved in the interior case (i.e., Case (4) in Table 1), the optimal reinsurance premium
follows the variance premium principle. That is, for every one unit of risk, the total
instantaneous reinsurance premium associated with the ceded proportion (1 − q∗(t))
can be written as

(1 − q∗(t))p∗(t) = a(1 − q∗(t)) + (1 − q∗(t))2σ 2
F [γLϕL(t) + γFϕF (t)], (3.52)

where the first term accounts for the mean component, and the second for the variance
component. This implies that the variance premium principle is an ideal candidate
among all possible premium principles when the proportional reinsurance is applied.
In fact, this conclusion has a dual conclusion: proportional reinsurance is the optimal
form of reinsurance when the variance premium principle is adopted, which can be
seen from Proposition 3.2 in Chen and Shen (2019).

Corollary 1 When the Stackelberg equilibrium is achieved in the interior case (i.e.,
Case (4) in Table 1)), some of the properties of p∗(t) and q∗(t) are given in Table 3,
(3.53) and (3.54).

∂ p∗(t)
∂αL

=

⎧
⎪⎨

⎪⎩

< 0, αL > − 1
hL

ln 1
hL

;
= 0, αL = − 1

hL
ln 1

hL
;

> 0, αL < − 1
hL

ln 1
hL

.

∂q∗(t)
∂αF

=

⎧
⎪⎨

⎪⎩

> 0, αF > − 1
hF

ln 1
hF

;
= 0, αF = − 1

hF
ln 1

hF
;

< 0, αF < − 1
hF

ln 1
hF

.

(3.53)
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If r0 + αL < 1, we have

∂ p∗(t)

∂ηL
=

⎧
⎪⎪⎨

⎪⎪⎩

< 0, hL < − 1
αL

ln(1 − r0 − αL );
= 0, hL = − 1

αL
ln(1 − r0 − αL );

> 0, hL > − 1
αL

ln(1 − r0 − αL ).

∂q∗(t)

∂ηF
=

⎧
⎪⎪⎨

⎪⎪⎩

> 0, hF < − 1
αF

ln(1 − r0 − αF );
= 0, hF = − 1

αF
ln(1 − r0 − αF );

< 0, hF > − 1
αF

ln(1 − r0 − αF ).

(3.54)

Proof See Appendix B. ��
The Eq. (3.53) shows that the optimal reinsurance premium strategy and the optimal

reinsurance strategy are quadratic in relation to their average parameters. The equa-
tion (3.54) shows that the influence of delay weight on optimal reinsurance premium
strategy or optimal reinsurance strategy is related to the length of delay time. For the
optimal reinsurance premium strategy, when the delay time exceeds a given value, the
greater the delay weight, the higher the reinsurance premium; when the delay time is
lower than this given value, the greater the delay weight, the lower the reinsurance
premium. For the optimal reinsurance strategy, when the delay time exceeds a given
value, the larger the delay weight is, the lower the reservation proportion of the insurer
is; when the delay time is lower than this given value, the larger the delay weight is,
the higher the reservation proportion of the insurer is.

Corollary 2

(1) If 1
�

= 1, for ∀t ∈ [0, T ], we have

b∗
L1(t) = 0, b∗

F1(t) = 0, (3.55)

V L(t, xL , yL , s, 0) = V L(t, xL , yL , s, 1), (3.56)

V F (t, xF , yF , s, 0) = V F (t, xF , yF , s, 1). (3.57)

(2) If 1
�

> 1, for ∀t ∈ [0, T ], we have

b∗
L1(t) > 0, b∗

F1(t) > 0, (3.58)

V L(t, xL , yL , s, 0) > V L(t, xL , yL , s, 1), (3.59)

V F (t, xF , yF , s, 0) > V F (t, xF , yF , s, 1). (3.60)

Proof See Appendix C. ��
The risk premium refers to the premium investors demand for average risk invest-

ment relative to the risk-free interest rate. If 1
�

= 1, then investors cannot get the
default risk premium. In this case, the reinsurer and the insurer will not buy default-
able bonds. Furthermore, we find that when 1

�
> 1, the pre-default value functions of

the reinsurer and the insurer are higher than the post-default value functions, respec-
tively. The difference between two cases stands for the loss in the reinsurer’s and
the insurer’s objectives due to the default event. For the analysis of the nature of the
optimal investment strategies of the reinsurer and the insurer, we have the following
conclusions.
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Table 4 The properties of b∗
L (t), b∗

L1(t), b∗
F (t) and b∗

F1(t)

∂b∗
L (t)

∂γL

∂b∗
L1(t)
∂γL

∂b∗
L (t)

∂hL

∂b∗
L1(t)

∂hL

∂b∗
F (t)

∂γF

∂b∗
F1(t)
∂γF

∂b∗
F (t)

∂hF

∂b∗
F1(t)

∂hF

− − − − − − − −

Corollary 3 For ∀t ∈ [0, T ], if 1
�

> 1 and β > 0, some properties of b∗
L(t), b∗

L1(t),
b∗

F (t) and b∗
F1(t) are given in Table 4, (3.61) and (3.63).

∂b∗
L (t)

∂αL
=

⎧
⎪⎪⎨

⎪⎪⎩

> 0, αL > − 1
hL

ln 1
hL

;
= 0, αL = − 1

hL
ln 1

hL
;

< 0, αL < − 1
hL

ln 1
hL

.

∂b∗
F (t)

∂αF
=

⎧
⎪⎪⎨

⎪⎪⎩

> 0, αF > − 1
hF

ln 1
hF

;
= 0, αF = − 1

hF
ln 1

hF
;

< 0, αF < − 1
hF

ln 1
hF

.

(3.61)

∂b∗
L1(t)

∂αL
=

⎧
⎪⎪⎨

⎪⎪⎩

> 0, αL > − 1
hL

ln 1
hL

;
= 0, αL = − 1

hL
ln 1

hL
;

< 0, αL < − 1
hL

ln 1
hL

.

∂b∗
F1(t)

∂αF
=

⎧
⎪⎪⎨

⎪⎪⎩

> 0, αF > − 1
hF

ln 1
hF

;
= 0, αF = − 1

hF
ln 1

hF
;

< 0, αF < − 1
hF

ln 1
hF

.

(3.62)

Furthermore, if r0 + αL < 1 and r0 + αF < 1, then

∂b∗
L(t)

∂ηL
=

⎧
⎪⎨

⎪⎩

> 0, hL < − 1
αL

ln(1 − r0 − αL);
= 0, hL = − 1

αL
ln(1 − r0 − αL);

< 0, hL > − 1
αL

ln(1 − r0 − αL).

∂b∗
F (t)

∂ηF
=

⎧
⎪⎨

⎪⎩

> 0, hF < − 1
αF

ln(1 − r0 − αF );
= 0, hF = − 1

αF
ln(1 − r0 − αF );

< 0, hF > − 1
αF

ln(1 − r0 − αF ).

(3.63)

∂b∗
L1(t)

∂ηL
=

⎧
⎪⎨

⎪⎩

> 0, hL < − 1
αL

ln(1 − r0 − αL);
= 0, hL = − 1

αL
ln(1 − r0 − αL);

< 0, hL > − 1
αL

ln(1 − r0 − αL).

∂b∗
F1(t)

∂ηF
=

⎧
⎪⎨

⎪⎩

> 0, hF < − 1
αF

ln(1 − r0 − αF );
= 0, hF = − 1

αF
ln(1 − r0 − αF );

< 0, hF > − 1
αF

ln(1 − r0 − αF ).

(3.64)

Proof The proof of this corollary is similar to that of Corollary 1. ��
Similar to the analysis of Corollary 1, we find that the optimal investment strategy

presents a quadratic relationship with the average parameter, and the effect of delay
weight on the optimal investment strategy depends on the length of delay time. Fur-
thermore, we find that the influence of delay weight on the equilibrium reinsurance
premium strategy is just opposite to that on other strategies.

When the Stackelberg reinsurance-investment game in the defaultable market does
not consider the effects of delay factors, Theorem 3 can be reduced to the following
conclusions.

123



A stochastic Stackelberg differential reinsurance and… 359

Table 5 p∗(t) and q∗(t) under different cases

Cases p∗(t) q∗(t)

(1) N θF0 (t) ≥ 1 ∀p ∈ [cF , c̄] 1

(2) N θ̄0 (t) ≤ K 0(t) c̄ N θ̄0 (t)

(3) K 0(t) ≤ N θF0 (t) < 1 cF N θF0 (t)

(4) N θF0 (t) < K 0(t) < N θ̄0 (t) a + K 0(t)γF σ 2
F er0(T −t) K 0(t)

Corollary 4 If ηL = 0 and ηF = 0, the equilibrium strategy of the Stackelberg game
is (p∗(t), b∗

L(t), b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)), where p∗(t) and q∗(t) under different

cases are given by Table 5;

K 0(t) = γF + γL

2γF + γL
, N θF0(t) = θF ae−r0(T −t)

γFσ 2
F

, N θ̄0(t) = θ̄ae−r0(T −t)

γFσ 2
F

.

b∗
L(t), b∗

L1(t), b∗
F (t) and b∗

F1(t) are given by

b∗
L(t) = (r − r0)e−r0(T −t)

γLσ 2s2β
{1 + r − r0

2r0
[1 − e−2βr0(T −t)]}, (3.65)

b∗
L1(t) =

{
e−r0(T −t)

γLζ
[(ln 1

�
+ � − 1)e− η

ζ
(T −t) + 1 − �], t ∈ [0, τ ∧ T ),

0, t ∈ [τ ∧ T , T ]. (3.66)

and

b∗
F (t) = γL

γF
b∗

L(t), b∗
F1(t) = γL

γF
b∗

L1(t), (3.67)

respectively.

It can be seen from Corollary 4 that when the Stackelberg reinsurance-investment
game without delay, the optimal reinsurance premium price strategy and the optimal
reservation ratio are consistent with Proposition 5.2 in Chen and Shen (2018), the
strategy of investing in the defaultable bond is consistent with that in Zhu et al. (2015).

3.3 Verification theorem

In order to prove that the Stackelberg equilibrium strategy given in Theorem3 is indeed
optimal for both sides of the Stackelberg game and verify that the smooth candidate
solutions derived in the previous section are the value functions of the insurer and
reinsurer, we give a verification theorem in this section.

Lemma 1 Let τi be the exiting time from the open set Mi , where Mi ⊂ M =
R × R × R × {0, 1} such that Mi ⊂ Mi+1 ⊂ M, i = 1, 2, · · · , and M = ∪iMi .
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Table 6 The parameter values of
the financial assets

r0 r σ β s0 � ζ η T

0.05 0.1 0.4 1 1 0.5 0.4 0.2 10

Table 7 The parameter values of
the insurer

λF μF σF θF hF αF ηF γF

0.8 1.2 2 1 3 0.5 0.05 0.8

Table 8 The parameter values of
the reinsurer

θ̄ hL αL ηL γL

3 2 0.3 0.1 0.5

Then, for any ε > 1, i = 1, 2, · · · , we have

sup
i

E
{ | V F (τi ∧ T , X F (τi ∧ T ), YF (τi ∧ T ), S(τi ∧ T ), H(τi ∧ T )) |ε }

< +∞,

(3.68)

sup
i

E
{ | V L(τi ∧ T , X L(τi ∧ T ), YL(τi ∧ T ), S(τi ∧ T ), H(τi ∧ T )) |ε }

< +∞.

(3.69)

Proof The proof of this lemma is similar to the proof of Lemma 4.1 of Deng et al.
(2018), so we omitted it. ��
Theorem 4 (Verification theorem) Under the CARA utility function, let J F and J L

be solutions to HJB equations (3.20) and (3.21), respectively. Then, the equilibrium
strategy (p∗(t), b∗

L(t), b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)) described in Theorem 3 achieves

optimality in �L × �F ; J F and J L are value functions of the insurer and reinsurer,
respectively.

Proof See Appendix D. ��

4 Sensitivity analysis

In order to illustrate the sensitivity of theStackelberg equilibriumstrategy (p∗(t), b∗
L(t),

b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)) to the model parameters, we present some numerical

experiments in this section. In the following, unless otherwise stated, the basic model
parameters are given in Tables 6, 7 and 8.

4.1 Sensitivity analysis of the equilibrium investment strategy

Figure 1 shows the influence of risk aversion parameters on the equilibrium investment
strategy. Figure 1a depicts the impact of the reinsurer’s risk aversion coefficient γL on
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Fig. 1 Effects of risk aversion coefficients on the equilibrium investment strategy
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Fig. 2 Effects of the defaultable bond coefficients on the equilibrium investment strategy

its optimal investment strategies b∗
L(t) and b∗

L1(t). Accordingly, Fig. 1b describes the
impact of the insurer’s risk aversion coefficient γF on its optimal investment strategies
b∗

F (t) and b∗
F1(t). As can be seen from Fig. 1, the amount invested in the risky asset

and the amount invested in the defaultable bond will decrease with the increase of risk
aversion coefficient. In other words, the more risk-averse (i.e., conservative) investors
are, the less willing they are to invest their idle assets in the risky asset and the bond
with default risk, which is also consistent with the actual situation.

Figure 2 describes the effects of the coefficients of the defaultable bond on the
equilibrium investment strategy at t = 0. Figure 2a shows the effect of the default
risk premium 1

�
on b∗

L1(0) and b∗
F1(0). We note that the amount of money invested

in the defaultable bond increases as the default risk premium 1
�

increases and the
slopes of the curves decrease as the default risk premium 1

�
increases. It is intuitive

that the reinsurer and the insurer would invest more wealth in a corporate bond with a
higher default risk premium. In addition, we find that the amount of money invested
in the defaultable bond is zero when the defaultable bond’s risk premium is 1(i.e.,
h P = hQ). Figure 2b shows the sensitivity of the equilibrium investment strategy

123



362 Y. Bai et al.

Fig. 3 Effects of β on the
equilibrium investment strategy
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with respect to the loss rate ζ . The curves in Fig. 2b mean that the amount of money
invested in the defaultable bond decreases with the increase of the loss rate ζ . This is
easy to understand because a larger loss rate ζ results in a lower recovery rate; this
implies that the reinsurer’s and the insurer’s potential losses become greater at a higher
loss rate. As a result, the reinsurer and the insurer will reduce their investment in the
defaulted bond when the loss rate is high.

Figure 3 presents the impacts of the constant elasticity parameter β on equilibrium
investment strategy at t = 0. As shown in Fig. 3, the amount invested in the risk asset
will increase with the increase of the elasticity parameter, and the increasing trend
tends to be more and more flat. This indicates that both the reinsurer and the insurer
will reduce investment in the risky asset as β decreases to hedge the volatility risk.

Figure 4 illustrates the effects of delay coefficients (i.e., ηL , hL , ηF and hF ) on
equilibrium investment strategy at t = 0. Four subgraphs in Fig. 4 show that the

investment strategywill decrease as the delay time increases, i.e.,
∂b∗

L (t)
∂hL

< 0,
∂b∗

L1(t)
∂hL

<

0,
∂b∗

F (t)
∂hL

< 0 and
∂b∗

F1(t)
∂hL

< 0, which is consistent with the conclusions in Table 4. In
addition, when the delay time is within a certain time range, the investment strategy
has a positive correlation with the delay weight; when the delay time exceeds this
range, a negative correlation is presented, which is consistent with (3.63) and (3.64).

4.2 Sensitivity analysis of the equilibrium premium strategy and reinsurance
strategy

Figure 5 presents the changes of the equilibrium premium strategy and the equilib-
rium reinsurance strategy over time, and Table 9 shows the corresponding numerical
results. From Table 9, we find that when t ≤ 3, the condition of Case (2) in Table 1
(i.e., N θ̄ (t) ≤ K (t)) is satisfied, then p∗(t) = c̄ and q∗(t) = N θ̄ (t); when t ≥ 4,
the condition of Case (4) in Table 1 (i.e., N θF (t) < K (t) < N θ̄ (t)) is satisfied, then
p∗(t) = a + K (t)γFσ 2

FϕF (t) and q∗(t) = K (t). Figure 5 clearly shows the trends
of the equilibrium premium strategy and the equilibrium reinsurance strategy in these
two cases.

Since Case (4) in Table 1 is the most general situation in this paper, we will analyze
the sensitivity of the equilibrium premium strategy and the equilibrium reinsurance
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Fig. 4 Effects of delay coefficients on the equilibrium investment strategy

Fig. 5 Effect of t on p∗(t) and
q∗(t)
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Fig. 6 Effects of γL and γF on p∗(8) and q∗(8)

strategy in Case (4) in Table 1 with respect to model parameters. Therefore, in order
to ensure that the condition of Case (4) is satisfied, we select the equilibrium strategy
at t = 8 for analysis.

Figure 6 depicts the effects of γL and γF on p∗(8) and q∗(8). From Fig. 6, we have
the following findings. Firstly, the more risk-averse the reinsurer or the insurer is, the
more expensive the reinsurance premium will be. Secondly, the more the reinsurer is
risk-averse or the more the insurer prefers the risks, the higher the reserve level of the
insurer will be. When the reinsurer is more risk-averse, it will reduce the compensa-
tion risk by raising the reinsurance premium price, and correspondingly the insurer
will reduce the reinsurance proportion in the reinsurance contract (i.e., the insurer’s
reserved proportion will increase). When the insurer is more risk-averse, it will reduce
the compensation risk by reducing its reserved proportion (that is, increasing the pro-
portion of reinsurance in the reinsurance contract), and accordingly the reinsurer will
increase the price of reinsurance premium. These phenomena are consistent with the
actual situation and the mathematical conclusions in Table 3.

Figure 7 illustrates the effects of delay coefficients (i.e., ηL , hL , ηF and hF ) on
p∗(8) and q∗(8). Figure 7a shows that the premium strategy will increase as the
delay time increases. In addition, when the delay time is within a certain time range,
the premium strategy and the delay weight show a negative correlation; when the
delay time exceeds this range, it shows a positive correlation. Figure 7b shows that
the reinsurance strategy will decrease as the delay time increases. In addition, when
the delay time is within a certain time range, the reinsurance strategy has a positive
correlation with the delay weight; when the delay time exceeds this range, a negative
correlation is presented. Combined with Fig. 4, we can find that the influence of delay
weight on the equilibrium reinsurance premium strategy is just opposite to that on
other strategies, which is consistent with Corollary 1 and Corollary 3.
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Fig. 7 Effects of ηL , hL , ηF and hF on p∗(8) and q∗(8)

5 Conclusion

In the paper, we study a stochastic Stackelberg differential reinsurance and investment
game between a reinsurer and an insurer, in which the reinsurer is the leader and the
insurer is the follower. Assuming that both the reinsurer and the insurer can invest their
wealth in a financial market consisting of a risk-free asset, a risky asset and a default-
able bond. We consider the delay factor to characterize the bounded memory feature
of wealth processes. The objective of the reinsurer is to determine the optimal reinsur-
ance premium strategy and the optimal investment strategy to maximize the expected
CARA utility of the combination of its terminal wealth and integrated performance.
The objective of the insurer is to select the optimal reinsurance strategy and the optimal
investment strategy to maximize the expected CARA utility of the combination of its
terminal wealth and integrated performance. Based on the idea of backward induction
and the dynamic programming approach, We derive the Stackelberg equilibrium rein-
surance and investment strategy explicitly and prove the corresponding verification
theorem. Finally, we present some numerical examples to illustrate the influence of
model parameters on the equilibrium reinsurance and investment strategy and draw
some economic interpretations.

The main findings are as concluded as follows: (1) When the Stackelberg equi-
librium is achieved in the interior case (i.e., Case (4) in Theorem 1), the optimal
reinsurance premium follows the variance premium principle, which implies the vari-
ance premium principle is an ideal candidate among all possible premium principles
when the proportional reinsurance is applied. (2) The pre-default value functions of the
reinsurer and the insurer are higher than the post-default value functions, respectively;
which implies that the difference between two cases stands for the loss in the rein-
surer’s and the insurer’s objectives due to the default event. (3) The influence of delay
weight on equilibrium strategy depends on the length of delay time, and the influence
of delay weight on the equilibrium reinsurance premium strategy is just opposite to
that on other strategies.

Because the goal ofminimizing the ruin probabilities is very important for reinsurers
and insurers, it is also interesting to study the reinsurance-investment strategy aiming
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at minimizing ruin probabilities under the Stackelberg game framework, which can
be seemed as an expansion of this paper in the future.

Appendix A Proof of Theorem 2

Proof Step 1 In the stochastic Stackelberg differential game, the reinsurer takes action
first by announcing its any admissible strategy πL(·) = (p(·), bL(·), bL1(·)) ∈ �L .

Step 2 Based on the reinsurer’s strategy πL(·) = (p(·), bL(·), bL1(·)) ∈ �L , we
solve the insurer’s optimization problem (2.14) under the CARA utility function.

When h = 0, the HJB equation of the insurer becomes

0 = sup
(q(·),bF (·),bF1(·))∈�F

{∂V F (t, xF , yF , s, 0)

∂t

+ [
θF a − (p(t) − a)(1 − q(t)) + AF xF + BF yF + CF zF

+ (r − r0)bF (t) + ηbF1(t)
]∂V F (t, xF , yF , s, 0)

∂xF

+ 1

2

[
(q(t))2σ 2

F + (bF (t))2σ 2s2β
]∂V F (t, xF , yF , s, 0)

∂x2F

+ (xF − αF yF − e−αF hF zF )
∂V F (t, xF , yF , s, 0)

∂ yF

+ rs
∂V F (t, xF , yF , s, 0)

∂s
+ 1

2
σ 2s2β+2 ∂V F (t, xF , yF , s, 0)

∂s2

+ bF (t)σ 2s2β+1 ∂V F (t, xF , yF , s, 0)

∂xF∂s

+ [
V F (t, xF − bF1(t)ζ, yF , s, 1) − V F (t, xF , yF , s, 0)

]
h P}

, (A.70)

with the boundary condition V F (T , xF , yF , s, 0) = UF (xF + ηF yF ). To solve this
equation, we conjecture that

V F(
t, xF , yF , s, 0

) = − 1

γF
exp[−γFϕF (t)(xF + ηF yF ) + gF

01(t)s
−2β + gF

02(t)],
(A.71)

where ϕF (t), gF
01(t) and gF

02(t) are deterministic, continuously differentiable functions
with boundary conditions ϕF (T ) = 0, gF

01(T ) = 0 and gF
02(T ) = 0. Then, we can get

that

∂V F (t, xF , yF , s, 0)

∂t
= V F (t, xF , yF , s, 0)[−γF

dϕF (t)

dt
(xF + ηF yF )

+ dgF
01(t)

dt
s−2β + dgF

02(t)

dt
],

123



368 Y. Bai et al.

∂V F (t, xF , yF , s, 0)

∂xF
= V F (t, xF , yF , s, 0)[−γF ϕF (t)],

∂V F (t, xF , yF , s, 0)

∂x2F
= V F (t, xF , yF , s, 0)(γF )2[ϕF (t)]2,

∂V F (t, xF , yF , s, 0)

∂ yF
= V F (t, xF , yF , s, 0)[−γF ηF ϕF (t)],

∂V F (t, xF , yF , s, 0)

∂s
= V F (t, xF , yF , s, 0)[−2βgF

01(t)s
−2β−1],

∂V F (t, xF , yF , s, 0)

∂s2
= V F (t, xF , yF , s, 0)[4β2(gF

01(t))
2s−4β−2 + 2β(2β + 1)gF

01(t)s
−2β−2],

∂V F (t, xF , yF , s, 0)

∂xF ∂s
= V F (t, xF , yF , s, 0)γF ϕF (t)2βgF

01(t)s
−2β−1.

Substituting the above differential forms into the HJB equation (A.70) leads the
following differential equation:

0 =V F (t, xF , yF , s, 0)
{
γF xF

( − dϕF (t)

dt
− ϕF (t)AF − ϕF (t)ηF

)

+ γF yF
( − dϕF (t)

dt
ηF − ϕF (t)BF + ϕF (t)ηFαF

)

+ γFϕF (t)zF
( − CF + ηF e−αF hF

)

+ s−2β[dgF
01(t)

dt
− 2βrgF

01(t) + 2σ 2β2(gF
01(t))

2] + β(2β + 1)σ 2gF
01(t)

+ dgF
02(t)

dt
− γFϕF (t)θF a

+ inf
q(t)∈[0,1]

[
γFϕF (t)(p(t) − a)(1 − q(t)) + 1

2
γ 2

Fσ 2
F (ϕF (t))2(q(t))2

]

+ inf
bF (t)

[ − γFϕF (t)(r − r0)bF (t) + 1

2
γ 2

Fσ 2(ϕF (t))2s2β(bF (t))2

+ 2βσ 2γFϕF (t)gF
01(t)bF (t)

]

+ inf
bF1(t)

[ − γFϕF (t)ηbF1(t)

+ h P (eγF ϕF (t)bF1(t)ζ+(gF
1 (t)−gF

01(t))s
−2β+(gF

2 (t)−gF
02(t)) − 1)

]}
. (A.72)

The first-order conditions for a regular interior minimizer of (A.72) gives that

q∗(t, p(t)) = α∗(t, p(t)) = p(t) − a

γFσ 2
FϕF (t)

∨ 0 ∧ 1, (A.73)

b∗
F (t) = (r − r0)s−2β

γFϕF (t)σ 2 − 2βgF
01(t)s

−2β

γFϕF (t)
, (A.74)

b∗
F1(t) = ln( 1

�
) − (gF

1 (t) − gF
01(t))s

−2β − (gF
2 (t) − gF

02(t))

γFϕF (t)ζ
. (A.75)
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It is observed that the optimal investment strategies b∗
F (t) and b∗

F1(t) have noth-
ing to do with the reinsurer’s strategy, and the optimal reinsurance strategy q∗(t)
depends on the reinsurer’s premium pricing strategy. Furthermore, the optimal strate-
gies q∗(t, p(t)), b∗

F (t) and b∗
F1(t) do not depend on state variables xF , yF and zF .

Substitute b∗
F (t) and b∗

F1(t) into (A.72), we can get that

0 =V F (t, xF , yF , s, 0)
{
γF xF

( − dϕF (t)

dt
− ϕF (t)AF − ϕF (t)ηF

)

+ γF yF
( − dϕF (t)

dt
ηF − ϕF (t)BF + ϕF (t)ηFαF

)

+ γFϕF (t)zF
( − CF + ηF e−αF hF

)

+ s−2β[dgF
01(t)

dt
− 2βr0gF

01(t)

− 1

2

(r − r0)2

σ 2 + η

ζ
(gF

1 (t) − gF
01(t))

]

+ dgF
02(t)

dt
+ β(2β + 1)σ 2gF

01(t) + η

ζ
(gF

2 (t) − gF
02(t)) + h P (

1

�
− 1)

− η

ζ
ln(

1

�
) − γFϕF (t)θF a

+ [
γFϕF (t)(p(t) − a)(1 − q∗(t, p(t))) + 1

2
γ 2

Fσ 2
F (ϕF (t))2(q∗(t, p(t)))2

]}
.

(A.76)

Then, we can derive (A.76) into the following differential equations:

0 =γF xF
( − dϕF (t)

dt
− ϕF (t)AF − ϕF (t)ηF

)

+ γF yF
( − dϕF (t)

dt
ηF − ϕF (t)BF + ϕF (t)ηFαF

)

+ γFϕF (t)zF
( − CF + ηF e−αF hF

)
, (A.77)

0 =s−2β[dgF
01(t)

dt
− 2βr0gF

01(t) − 1

2

(r − r0)2

σ 2 + η

ζ
(gF

1 (t) − gF
01(t))

]
, (A.78)

0 =dgF
02(t)

dt
+ β(2β + 1)σ 2gF

01(t) + η

ζ
(gF

2 (t) − gF
02(t)) + h P (

1

�
− 1) − η

ζ
ln(

1

�
)

− γFϕF (t)θF a + [
γFϕF (t)(p(t) − a)(1 − q∗(t, p(t)))

+ 1

2
γ 2

Fσ 2
F (ϕF (t))2(q∗(t, p(t)))2

]
, (A.79)

with boundary conditions ϕF (T ) = 0, gF
01(T ) = 0 and gF

02(T ) = 0. Due to (3.19),
we have

ϕF (t) = exp[(AF + ηF )(T − t)]. (A.80)
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Let G F
1 (t) = gF

01(t) − gF
1 (t), and G F

1 (t) is differentiated w.r.t. t . From (3.30) and
(A.78), we obtain:

dG F
1 (t)

dt
= dgF

01(t)

dt
− dgF

1 (t)

dt
= (2βr0 + η

ζ
)G F

1 (t), (A.81)

with boundary conditions G F
1 (T ) = gF

01(T ) − gF
1 (T ) = 0. Then, G F

1 (t) = 0, i.e.,
gF
01(t) = gF

1 (t).
Similarly, let G F

2 (t) = gF
02(t) − gF

2 (t), and G F
2 (t) is differentiated w.r.t. t . From

the process of calculating the value functions in Theorem 1, we know that

0 =dgF
2 (t)

dt
+ β(2β + 1)σ 2gF

1 (t) − γFϕF (t)θF a

+ γFϕF (t)(p(t) − a)(1 − q∗(t, p(t)))

+ 1

2
γ 2

Fσ 2
F (ϕF (t))2(q∗(t, p(t)))2. (A.82)

From (A.82) and (A.79), we have:

dG F
2 (t)

dt
=dgF

02(t)

dt
− dgF

2 (t)

dt

= η

ζ
G F

2 (t) + η

ζ
ln(

1

�
) − h P (

1

�
− 1), (A.83)

with boundary conditions G F
2 (T ) = gF

02(T ) − gF
2 (T ) = 0. Then,

G F
2 (t) = (ln

1

�
+ � − 1)[e− η

ζ
(T −t) − 1]. (A.84)

That is gF
02(t) = gF

2 (t) + G F
2 (t).

Then, from (A.74) and (A.75), the optimal investment strategies for the insurer are
given by

b∗
F (t) = (r − r0)s−2β

γFϕF (t)σ 2 − 2βgF
1 (t)s−2β

γFϕF (t)
, (A.85)

b∗
F1(t) = ln( 1

�
) + (ln 1

�
+ � − 1)(e− η

ζ
(T −t) − 1)

γFϕF (t)ζ
. (A.86)

From the form of ϕF (t) and the range of reinsurance premium price p(t), we know
that q∗(t, p(t)) = p(t)−a

γF σ 2
F ϕF (t)

> 0. Next, we will discuss the size relationship between

reinsurance strategy q∗(t, p(t)) and 1.
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• Case (Fa) If p(t)−a
γF σ 2

F ϕF (t)
≥ 1, then q∗(t, p(t)) = 1.

Substituting q∗(t, p(t)) into Eq. (A.79) gives

0 =dgF
02(t)

dt
+ β(2β + 1)σ 2gF

01(t) + η

ζ
(gF

2 (t) − gF
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
)

− γFϕF (t)θF a + 1

2
γ 2

Fσ 2
F (ϕF (t))2. (A.87)

The integral from T to t gives that

gF
02(t) = gFa

02 (t)
.= gFa

2 (t) + G F
2 (t). (A.88)

• Case (Fb) If p(t)−a
γF σ 2

F ϕF (t)
< 1, thenq∗(t, p(t)) = p(t)−a

γF σ 2
F ϕF (t)

. Substitutingq∗(t, p(t))

into Eq. (A.79) and integrating from T to t gives

0 =dgF
02(t)

dt
+ β(2β + 1)σ 2gF

01(t) + η

ζ
(gF

2 (t) − gF
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
)

− γFϕF (t)θF a + γFϕF (t)(p(t) − a) − 1

2σ 2
F

(p(t) − a)2. (A.89)

The integral from T to t gives that

gF
02(t) = gFb

02 (t)
.= gFb

2 (t) + G F
2 (t). (A.90)

Step 3
When h = 0, the HJB equation of the reinsurer becomes

0 = sup
(p(·),bL (·),bL1(·))∈�L

{∂V L(t, xL , yL , s, 0)

∂t

+ [
(p(t) − a)(1 − q∗(t)) + AL xL + BL yL + CL zL

+ (r − r0)bL(t) + ηbL1(t)
]∂V L(t, xL , yL , s, 0)

∂xL

+ 1

2

[
(1 − q∗(t))2σ 2

F + (bL(t))2σ 2s2β
]∂V L(t, xL , yL , s, 0)

∂x2L

+ (xL − αL yL − e−αL hL zL)
∂V L(t, xL , yL , s, 0)

∂ yL
+ rs

∂V L(t, xL , yL , s, 0)

∂s

+ 1

2
σ 2s2β+2 ∂V L(t, xL , yL , s, 0)

∂s2
+ bL(t)σ 2s2β+1 ∂V L(t, xL , yL , s, 0)

∂xL∂s
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+ [
V L(t, xL − bL1(t)ζ, yL , s, 1) − V L(t, xL , yL , s, 0)

]
h P}

. (A.91)

with the boundary condition V L(T , xL , yL , s, 0) = UL(xL + ηL yL). To solve this
equation, we conjecture that

V L(
t, xL , yL , s, 0

) = − 1

γL
exp[−γLϕL(t)(xL + ηL yL) + gL

01(t)s
−2β + gL

02(t)],
(A.92)

where ϕL(t), gL
01(t) and gL

02(t) are deterministic, continuously differentiable functions
with boundary conditions ϕL(T ) = 0, gL

01(T ) = 0 and gL
02(T ) = 0. Then, we can get

that

∂V L (t, xL , yL , s, 0)

∂t
= V L (t, xL , yL , s, 0)

[

−γL
dϕL (t)

dt
(xL + ηL yL ) + dgL

01(t)

dt
s−2β + dgL

02(t)

dt

]

,

∂V L (t, xL , yL , s, 0)

∂xL
= V L (t, xL , yL , s, 0)[−γLϕL (t)],

∂V L (t, xL , yL , s, 0)

∂x2L
= V L (t, xL , yL , s, 0)(γL )2(ϕL (t))2,

∂V L (t, xL , yL , s, 0)

∂ yL
= V L (t, xL , yL , s, 0)[−γLηLϕL (t)],

∂V L (t, xL , yL , s, 0)

∂s
= V L (t, xL , yL , s, 0)[−2βgL

01(t)s
−2β−1],

∂V L (t, xL , yL , s, 0)

∂s2
= V L (t, xL , yL , s, 0)[4β2(gL

01(t))
2s−4β−2 + 2β(2β + 1)gL

01(t)s
−2β−2],

∂V L (t, xL , yL , s, 0)

∂xL∂s
= V L (t, xL , yL , s, 0)γLϕL (t)2βgL

01(t)s
−2β−1.

Substituting the above differential forms into the HJB equation (A.91) leads the
following differential equation:

0 =V L(t, xL , yL , s, 0)
{
γL xL

( − dϕL(t)

dt
− ϕL(t)AL − ϕL(t)ηL

)

+ γL yL
( − dϕL(t)

dt
ηL − ϕL(t)BL + ϕL(t)ηLαL

)

+ γLϕL(t)zL
( − CL + ηLe−αL hL

)

+ s−2β[dgL
01(t)

dt
− 2βrgL

01(t) + 2σ 2β2(gL
01(t))

2]

+ β(2β + 1)σ 2gL
01(t) + dgL

02(t)

dt
+ inf

p(t)∈[cF ,c̄]
[ − γLϕL(t)(p(t) − a)(1 − q∗(t, p(t)))
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+ 1

2
γ 2

Lσ 2
F (ϕL(t))2(1 − q∗(t, p(t)))2

]

+ inf
bL (t)

[ − γLϕL(t)(r − r0)bL(t)

+ 1

2
γ 2

Lσ 2(ϕL(t))2s2β(bL(t))2 + 2βσ 2γLϕL(t)gL
01(t)bL(t)

]

+ inf
bL1(t)

[ − γLϕL(t)ηbL1(t)

+ h P(eγLϕL (t)bL1(t)ζ+(gL
1 (t)−gL

01(t))s
−2β+(gL

2 (t)−gL
02(t)) − 1)

]}
. (A.93)

Since the premium strategy and investment strategies are independent of each other,
the first-order conditions for a regular interior minimizer of (A.93) about b∗

L(t) and
b∗

L1(t) give that

b∗
L(t) = (r − r0)s−2β

γLϕL(t)σ 2 − 2βgL
01(t)s

−2β

γLϕL(t)
, (A.94)

b∗
L1(t) = ln( 1

�
) − (gL

1 (t) − gL
01(t))s

−2β − (gL
2 (t) − gL

02(t))

γLϕL(t)ζ
. (A.95)

Substitute b∗
L(t) and b∗

L1(t) into (A.93), we can get that

0 =V L(t, xL , yL , s, 0)
{
γL xL

( − dϕL(t)

dt
− ϕL(t)AL − ϕL(t)ηL

)

+ γLϕL(t)zL
( − CL + ηLe−αL hL

)

+ γL yL
( − dϕL(t)

dt
ηL − ϕL(t)BL + ϕL(t)ηLαL

)

+ s−2β[dgL
01(t)

dt
− 2βr0gL

01(t) − 1

2

(r − r0)2

σ 2

+ η

ζ
(gL

1 (t) − gL
01(t))

] + dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t)

+ η

ζ
(gL

2 (t) − gL
02(t)) + h P (

1

�
− 1) − η

ζ
ln(

1

�
)

+ inf
p(t)∈[cF ,c̄]

[ − γLϕL(t)(p(t) − a)(1 − q∗(t, p(t)))

+ 1

2
γ 2

Lσ 2
F (ϕL(t))2(1 − q∗(t, p(t)))2

]}
. (A.96)

Then, we can derive (A.96) into the following differential equations:

0 =γL xL
( − dϕL(t)

dt
− ϕL(t)AL − ϕL(t)ηL

)

+ γL yL
( − dϕL(t)

dt
ηL − ϕL(t)BL + ϕL(t)ηLαL

)
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+ γLϕL(t)zL
( − CL + ηLe−αL hL

)
, (A.97)

0 =s−2β[dgL
01(t)

dt
− 2βr0gL

01(t) − 1

2

(r − r0)2

σ 2 + η

ζ
(gL

1 (t) − gL
01(t))

]
, (A.98)

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
)

+ inf
p(t)∈[cF ,c̄]

[ − γLϕL(t)(p(t) − a)(1 − q∗(t, p(t)))

+ 1

2
γ 2

Lσ 2
F (ϕL(t))2(1 − q∗(t, p(t)))2

]
. (A.99)

with boundary conditions ϕL(T ) = 0, gL
1 (T ) = 0 and gL

2 (T ) = 0. Due to (3.18), we
have

ϕL(t) = exp[(AL + ηL)(T − t)]. (A.100)

Let GL
1 (t) = gL

01(t) − gL
1 (t), and GL

1 (t) is differentiated w.r.t. t . From (3.30) and
(A.98), we obtain:

dGL
1 (t)

dt
= dgL

01(t)

dt
− dgL

1 (t)

dt
= (2βr0 + η

ζ
)GL

1 (t), (A.101)

with boundary condition GL
1 (T ) = gL

01(T ) − gL
1 (T ) = 0. Then, GL

1 (t) = 0, i.e.,
gL
01(t) = gL

1 (t).
Similarly, let GL

2 (t) = gL
02(t) − gL

2 (t), and GL
2 (t) is differentiated w.r.t. t . From

the process of calculating the value functions in Theorem 1, we know that

0 =dgL
2 (t)

dt
+ β(2β + 1)σ 2gL

1 (t) + inf
p(t)∈[cF ,c̄]

[ − γLϕL (t)(p(t) − a)(1 − q∗(t, p(t)))

+ 1

2
γ 2

Lσ 2
F (ϕL (t))2(1 − q∗(t, p(t)))2

]
. (A.102)

From (A.102) and (A.99), we have:

dGL
2 (t)

dt
= dgL

02(t)

dt
− dgL

2 (t)

dt
= η

ζ
GL

2 (t) + η

ζ
ln(

1

�
) − h P (

1

�
− 1), (A.103)

with boundary conditions GL
2 (T ) = gL

02(T ) − gL
2 (T ) = 0. Then,

GL
2 (t) = (ln

1

�
+ � − 1)[e− η

ζ
(T −t) − 1]. (A.104)

That is gL
02(t) = gL

2 (t) + GL
2 (t).
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Then, from (A.94) and (A.95), the optimal investment strategies for the reinsurer
are given by

b∗
L(t) = (r − r0)s−2β

γLϕL(t)σ 2 − 2βgL
1 (t)s−2β

γLϕL(t)
, (A.105)

b∗
L1(t) = ln( 1

�
) + (ln 1

�
+ � − 1)[e− η

ζ
(T −t) − 1]

γLϕL(t)ζ
. (A.106)

For premium strategy p(t), we discuss it in the following categories:

• Case (La) If p(t)−a
γF σ 2

F ϕF (t)
≥ 1, then q∗(t, p(t)) = 1. Substituting q∗(t, p(t)) into

Eq. (A.99), we have

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
). (A.107)

with the boundary condition gL
02(T ) = 0. We can get that p∗(t) = p, where p is

an arbitrary value in the interval [cF , c̄]. Then, q∗(t, p∗(t)) = 1. The precondition
p(t)−a

γF σ 2
F ϕF (t)

≥ 1 becomes N θF (t) ≥ 1. From (3.34) and (A.107), we have

gL
02(t) = gLa

02 (t)
.= gLa

2 (t) + GL
2 (t). (A.108)

• Case (Lb) If p(t)−a
γF σ 2

F ϕF (t)
< 1, thenq∗(t, p(t)) = p(t)−a

γF σ 2
F ϕF (t)

. Substitutingq∗(t, p(t))

into Eq. (A.99), we have

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t)) + h P (

1

�
− 1) − η

ζ
ln(

1

�
)

+ inf
p(t)∈[cF ,c̄]

{
(p(t) − a)2[ γLϕL (t)

γFσ 2
FϕF (t)

+ 1

2

γ 2
L (ϕL (t))2

γ 2
Fσ 2

F (ϕF (t))2
]

− (p(t) − a)[γLϕL (t) + γ 2
L (ϕL (t))2

γF (ϕF (t))
] + 1

2
γ 2

L (ϕL (t))2σ 2
F
}
. (A.109)

with boundary condition gL
02(T ) = 0. The first-order conditions for a regular

interior minimizer of (A.109) gives that

p∗(t) = [a + K (t)γFσ 2
FϕF (t)] ∨ cF ∧ c̄. (A.110)

• Subcase (Lb1) When a + K (t)γFσ 2
FϕF (t) ≥ c̄, we have p∗(t) = c̄,

q∗(t, p∗(t)) = N θ̄ (t). Then, the precondition p(t)−a
γF σ 2

F ϕF (t)
< 1 becomes N θ̄ (t) < 1,
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which is definitely true in this case due to K (t) < 1. Then, by Eq. (A.109), we
can get that

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
)

+ (θ̄a)2[ γLϕL(t)

γFσ 2
FϕF (t)

+ 1

2

γ 2
L (ϕL(t))2

γ 2
Fσ 2

F (ϕF (t))2
]

− (θ̄a)[γLϕL(t) + γ 2
L (ϕL(t))2

γF (ϕF (t))
] + 1

2
γ 2

L (ϕL(t))2σ 2
F . (A.111)

From (3.35) and (A.111), we have

gL
02(t) = gLb1

02 (t)
.=gLb1

2 (t) + GL
2 (t). (A.112)

And, Eq. (A.90) becomes

gFb
02 (t) = gFb1

02 (t)
.=gFb1

2 (t) + GL
2 (t). (A.113)

• Subcase (Lb2) When a + K (t)γFσ 2
FϕF (t) ≤ cF , we have p∗(t) = cF ,

q∗(t, p∗(t)) = N θF (t). Then, the precondition p(t)−a
γF σ 2

F ϕF (t)
< 1 becomes N θF (t) <

1. Then, by Eq. (A.109), we can get that

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t)) + h P (

1

�
− 1) − η

ζ
ln(

1

�
)

+ (θF a)2[ γLϕL (t)

γFσ 2
FϕF (t)

+ 1

2

γ 2
L (ϕL (t))2

γ 2
Fσ 2

F (ϕF (t))2
]

− (θF a)[γLϕL (t) + γ 2
L (ϕL (t))2

γF (ϕF (t))
] + 1

2
γ 2

L (ϕL (t))2σ 2
F . (A.114)

From (3.36) and (A.114), we have

gL
02(t) = gLb2

02 (t)
.=gLb2

2 (t) + GL
2 (t). (A.115)

And, Eq. (A.90) becomes

gFb
02 (t) = gFb2

02 (t)
.=gFb2

2 (t) + GL
2 (t). (A.116)

• Subcase (Lb3) When cF ≤ a + K (t)γFσ 2
FϕF (t) ≤ c̄, we have p∗(t) = a +

K (t)γFσ 2
FϕF (t), q∗(t, p∗(t)) = K (t). Then, the precondition p(t)−a

γF σ 2
F ϕF (t)

< 1
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becomes K (t) < 1, which is obviously true. Then, by Eq. (A.109), we can get that

0 =dgL
02(t)

dt
+ β(2β + 1)σ 2gL

01(t) + η

ζ
(gL

2 (t) − gL
02(t))

+ h P (
1

�
− 1) − η

ζ
ln(

1

�
) + 1

2
γ 2

L (ϕL(t))2σ 2
F

+ (K (t)γFσ 2
FϕF (t))2[ γLϕL(t)

γFσ 2
FϕF (t)

+ 1

2

γ 2
L (ϕL(t))2

γ 2
Fσ 2

F (ϕF (t))2
]

− (K (t)γFσ 2
FϕF (t))[γLϕL(t) + γ 2

L (ϕL(t))2

γF (ϕF (t))
]. (A.117)

From (3.37) and (A.117), we have

gL
02(t) = gLb3

02 (t)
.=gLb3

2 (t) + GL
2 (t). (A.118)

And, Eq. (A.90) becomes

gFb
02 (t) = gFb3

02 (t)
.=gFb3

2 (t) + GL
2 (t). (A.119)

Then, the proof is complete. ��

Appendix B Proof of Corollary 1

Proof The conclusions in Table 3 can be obtained by taking partial derivatives of p∗(t)
and q∗(t) with corresponding variables, respectively. From AL = r0 − BL − CL ,
CL = ηLe−αL hL , BLe−αL hL = (αL + AL + ηL)CL , we can get that

AL = 1

1 + ηL
[r0 − (αL + ηL)ηL − ηLe−αL hL ].

Put AL into p∗(t) of Case (4) in Table 1, and take the derivative with respect to ηL

and αL , respectively. We can get that

∂ p∗(t)
∂ηL

= (γFσFϕF (t))2γLϕL(t)(T − t)

[2γFϕF (t) + γLϕL(t)]2
1

(1 + ηL)2
[1 − r0 − αL − e−αL hL ],

∂ p∗(t)
∂αL

= (γFσFϕF (t))2γLϕL(t)(T − t)

[2γFϕF (t) + γLϕL(t)]2
ηL

1 + ηL
[hLe−αL hL − 1].

Thus, the left side of Eqs. (3.53) and (3.54) is established. Following similar deriva-
tions, we can get that the right side of Eqs. (3.53) and (3.54) are true. ��
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Appendix C Proof of Corollary 2

Proof The conclusions of (1) can be obtained by bringing 1
�

= 1 into the expressions
of b∗

L1(t), b∗
F1(t), V L(t, xL , yL , s, 0) and V F (t, xF , yF , s, 0). If 1

�
> 1, b∗

L1(t) ≥ 0
and b∗

F1(t) ≥ 0 are clearly true. Furthermore, we have � + ln( 1
�

) > 1, then

G2(t) = (1 − � − ln(
1

�
))[1 − e− η

ζ
(T −t)] < 0. (C.120)

Due to V F (t, xF , yF , s, 1) < 0 and V L(t, xL , yL , s, 1) < 0, then (3.59) and (3.60)
are established. Then, the proof is complete. ��

Appendix D Proof of Theorem 4

Proof We first prove that the six-tuple (p∗(t), b∗
L(t), b∗

L1(t), q∗(t), b∗
F (t), b∗

F1(t))
obtained in Theorem 3 is an admissible strategy. Since p∗(t), b∗

L(t), b∗
L1(t), q∗(t),

b∗
F (t), b∗

F1(t) are deterministic functions of time t and some constant parameters, and
the premium strategy satisfies p∗(t) ∈ [cF , c̄] and the reinsurance strategy satisfies
q∗(t) ∈ [0, 1], so the six-tuple satisfies (i) and (i i) of Definition 1. According to
(2.12) and (2.13), the drift and diffusion terms satisfy the Lipschitz condition and the
linear growth condition. Then, the six-tuple satisfies (i i i) and (iv) of Definition 1.
Therefore, (p∗(t), b∗

L(t), b∗
L1(t), q∗(t), b∗

F (t), b∗
F1(t)) ∈ �L × �F .

Next, we show the optimality of (p∗(t), b∗
L(t), b∗

L1(t), q∗(t), b∗
F (t), b∗

F1(t)) in
�L × �F . From the construction of τi , we know that τi ∧ T → T when i → +∞.
For ∀(p(t), bL(t), bL1(t), q(t), bF (t), bF1(t)) ∈ �L ×�F and ∀ι ∈ [t, T ], we apply
Itô’s formula to J F (t, xF , yF , s, h) and deduce

J F (τi ∧ T , X F (τi ∧ T ), YF (τi ∧ T ), S(τi ∧ T ), H(τi ∧ T ))

= J F (t, xF , yF , s, h) +
∫ τi ∧T

t
AF J F (ι, X F (ι), YF (ι), S(ι), H(ι))dι

+
∫ τi ∧T

t
q∗(ι)σF

∂ J F (ι, xF , yF , s, h)

∂xF
dWF (ι)

+
∫ τi ∧T

t
b∗

F (ι)σ Sβ(ι)
∂ J F (ι, xF , yF , s, h)

∂s
dW (ι)

+
∫ τi ∧T

t

(
J F (ι, X F (ι) − b∗

F1(ι)ζ, YF (ι), S(ι), 1)

− J F (ι, X F (ι), YF (ι), S(ι), 0)
)
d M P (ι).

From the theory of the Itô integral,

∫ τi ∧T

t
q∗(ι)σF

∂ J F (ι, xF , yF , s, h)

∂xF
dWF (ι)
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and

∫ τi ∧T

t
b∗

F (ι)σ Sβ(ι)
∂ J F (ι, xF , yF , s, h)

∂s
dW (ι)

are Itô integrals with respect to Brownianmotions WF (·) and W (·), respectively. Since
q∗(·) and b∗

F (·) are square-integrable and the partial derivatives are continuous, these
two terms are square-integrable martingales with zero expectations. Because M P (·)
is a martingale, referring to Section 3.3 in Zhu et al. (2015) and Section 4.3 in Deng
et al. (2018), we know that the last term is also a square-integrable martingale with
zero expectation. For given (t, xF , yF , s, h), taking conditional expectations on both
sides of the above equation, we have

Et,xF ,yF ,s,h [J F (τi ∧ T , X F (τi ∧ T ), YF (τi ∧ T ), S(τi ∧ T ), H(τi ∧ T ))]

= J F (t, xF , yF , s, h) + Et,xF ,yF ,s,h
[ ∫ τi ∧T

t
AF J F (ι, X F (ι), YF (ι), S(ι), H(ι))dι

]

≤ J F (t, xF , yF , s, h).

From Lemma 1, we have uniform integrability of J F (τi ∧ T , X F (τi ∧ T ), YF (τi ∧
T ), S(τi ∧ T ), H(τi ∧ T )), and

sup
(q(·),bF (·),bF1(·))∈�F

Et,xF ,yF ,s,h
[
UF

(
XπF

F (T ) + ηF YF (T )
)]

= lim
i→+∞ Et,xF ,yF ,s,h [V F (τi ∧ T , X F (τi ∧ T ), YF (τi ∧ T ), S(τi ∧ T ), H(τi ∧ T ))]

≤ J F (t, xF , yF , s, h).

When (q(·), bF (·), bF1(·)) = (q∗(·), b∗
F (·), b∗

F1(·)), the inequality in the above for-
mula becomes an equality, and thus

sup
(q(·),bF (·),bF1(·))∈�F

Et,xF ,yF ,s,h
[
UF

(
XπF

F (T ) + ηF YF (T )
)] = J F (t, xF , yF , s, h).

Following similar derivations, we can obtain

sup
(q(·),bL (·),bL1(·))∈�L

Et,xL ,yL ,s,h
[
UL

(
XπL

L (T ) + ηLYL(T )
)] ≤ J L(t, xL , yL , s, h).

Andwhen (p(·), bL (·), bL1(·)) = (p∗(·), b∗
L(·), b∗

L1(·)), the above inequality becomes
an equality. Then, the proof is complete. ��
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